ffs_alloc.c revision 1.28 1 1.28 mycroft /* $NetBSD: ffs_alloc.c,v 1.28 1999/03/05 21:09:49 mycroft Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.17 mrg
38 1.22 scottr #if defined(_KERNEL) && !defined(_LKM)
39 1.27 thorpej #include "opt_ffs.h"
40 1.21 scottr #include "opt_quota.h"
41 1.17 mrg #include "opt_uvm.h"
42 1.22 scottr #endif
43 1.1 mycroft
44 1.1 mycroft #include <sys/param.h>
45 1.1 mycroft #include <sys/systm.h>
46 1.1 mycroft #include <sys/buf.h>
47 1.1 mycroft #include <sys/proc.h>
48 1.1 mycroft #include <sys/vnode.h>
49 1.1 mycroft #include <sys/mount.h>
50 1.1 mycroft #include <sys/kernel.h>
51 1.1 mycroft #include <sys/syslog.h>
52 1.1 mycroft
53 1.1 mycroft #include <vm/vm.h>
54 1.1 mycroft
55 1.1 mycroft #include <ufs/ufs/quota.h>
56 1.19 bouyer #include <ufs/ufs/ufsmount.h>
57 1.1 mycroft #include <ufs/ufs/inode.h>
58 1.9 christos #include <ufs/ufs/ufs_extern.h>
59 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
60 1.1 mycroft
61 1.1 mycroft #include <ufs/ffs/fs.h>
62 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
63 1.1 mycroft
64 1.19 bouyer static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 1.19 bouyer static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
66 1.19 bouyer struct cg *, ufs_daddr_t));
67 1.19 bouyer static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 1.19 bouyer static ino_t ffs_dirpref __P((struct fs *));
69 1.19 bouyer static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
70 1.19 bouyer static void ffs_fserr __P((struct fs *, u_int, char *));
71 1.19 bouyer static u_long ffs_hashalloc __P((struct inode *, int, long, int,
72 1.19 bouyer ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
73 1.19 bouyer int)));
74 1.19 bouyer static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 1.19 bouyer static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
76 1.19 bouyer ufs_daddr_t, int));
77 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
78 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
79 1.18 fvdl #endif
80 1.23 drochner
81 1.23 drochner /* in ffs_tables.c */
82 1.23 drochner extern int inside[], around[];
83 1.23 drochner extern u_char *fragtbl[];
84 1.1 mycroft
85 1.1 mycroft /*
86 1.1 mycroft * Allocate a block in the file system.
87 1.1 mycroft *
88 1.1 mycroft * The size of the requested block is given, which must be some
89 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
90 1.1 mycroft * A preference may be optionally specified. If a preference is given
91 1.1 mycroft * the following hierarchy is used to allocate a block:
92 1.1 mycroft * 1) allocate the requested block.
93 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
94 1.1 mycroft * 3) allocate a block in the same cylinder group.
95 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
96 1.1 mycroft * available block is located.
97 1.1 mycroft * If no block preference is given the following heirarchy is used
98 1.1 mycroft * to allocate a block:
99 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
100 1.1 mycroft * inode for the file.
101 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
102 1.1 mycroft * available block is located.
103 1.1 mycroft */
104 1.9 christos int
105 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
106 1.1 mycroft register struct inode *ip;
107 1.18 fvdl ufs_daddr_t lbn, bpref;
108 1.1 mycroft int size;
109 1.1 mycroft struct ucred *cred;
110 1.18 fvdl ufs_daddr_t *bnp;
111 1.1 mycroft {
112 1.1 mycroft register struct fs *fs;
113 1.18 fvdl ufs_daddr_t bno;
114 1.9 christos int cg;
115 1.9 christos #ifdef QUOTA
116 1.9 christos int error;
117 1.9 christos #endif
118 1.1 mycroft
119 1.1 mycroft *bnp = 0;
120 1.1 mycroft fs = ip->i_fs;
121 1.1 mycroft #ifdef DIAGNOSTIC
122 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
123 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
124 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
125 1.1 mycroft panic("ffs_alloc: bad size");
126 1.1 mycroft }
127 1.1 mycroft if (cred == NOCRED)
128 1.1 mycroft panic("ffs_alloc: missing credential\n");
129 1.1 mycroft #endif /* DIAGNOSTIC */
130 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
131 1.1 mycroft goto nospace;
132 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
133 1.1 mycroft goto nospace;
134 1.1 mycroft #ifdef QUOTA
135 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
136 1.1 mycroft return (error);
137 1.1 mycroft #endif
138 1.1 mycroft if (bpref >= fs->fs_size)
139 1.1 mycroft bpref = 0;
140 1.1 mycroft if (bpref == 0)
141 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
142 1.1 mycroft else
143 1.1 mycroft cg = dtog(fs, bpref);
144 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
145 1.9 christos ffs_alloccg);
146 1.1 mycroft if (bno > 0) {
147 1.15 bouyer ip->i_ffs_blocks += btodb(size);
148 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
149 1.1 mycroft *bnp = bno;
150 1.1 mycroft return (0);
151 1.1 mycroft }
152 1.1 mycroft #ifdef QUOTA
153 1.1 mycroft /*
154 1.1 mycroft * Restore user's disk quota because allocation failed.
155 1.1 mycroft */
156 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
157 1.1 mycroft #endif
158 1.1 mycroft nospace:
159 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
160 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
161 1.1 mycroft return (ENOSPC);
162 1.1 mycroft }
163 1.1 mycroft
164 1.1 mycroft /*
165 1.1 mycroft * Reallocate a fragment to a bigger size
166 1.1 mycroft *
167 1.1 mycroft * The number and size of the old block is given, and a preference
168 1.1 mycroft * and new size is also specified. The allocator attempts to extend
169 1.1 mycroft * the original block. Failing that, the regular block allocator is
170 1.1 mycroft * invoked to get an appropriate block.
171 1.1 mycroft */
172 1.9 christos int
173 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
174 1.1 mycroft register struct inode *ip;
175 1.18 fvdl ufs_daddr_t lbprev;
176 1.18 fvdl ufs_daddr_t bpref;
177 1.1 mycroft int osize, nsize;
178 1.1 mycroft struct ucred *cred;
179 1.1 mycroft struct buf **bpp;
180 1.1 mycroft {
181 1.1 mycroft register struct fs *fs;
182 1.1 mycroft struct buf *bp;
183 1.1 mycroft int cg, request, error;
184 1.18 fvdl ufs_daddr_t bprev, bno;
185 1.25 thorpej
186 1.1 mycroft *bpp = 0;
187 1.1 mycroft fs = ip->i_fs;
188 1.1 mycroft #ifdef DIAGNOSTIC
189 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
190 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
191 1.13 christos printf(
192 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
193 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
194 1.1 mycroft panic("ffs_realloccg: bad size");
195 1.1 mycroft }
196 1.1 mycroft if (cred == NOCRED)
197 1.1 mycroft panic("ffs_realloccg: missing credential\n");
198 1.1 mycroft #endif /* DIAGNOSTIC */
199 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
200 1.1 mycroft goto nospace;
201 1.19 bouyer if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
202 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
203 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
204 1.1 mycroft panic("ffs_realloccg: bad bprev");
205 1.1 mycroft }
206 1.1 mycroft /*
207 1.1 mycroft * Allocate the extra space in the buffer.
208 1.1 mycroft */
209 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
210 1.1 mycroft brelse(bp);
211 1.1 mycroft return (error);
212 1.1 mycroft }
213 1.1 mycroft #ifdef QUOTA
214 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
215 1.1 mycroft brelse(bp);
216 1.1 mycroft return (error);
217 1.1 mycroft }
218 1.1 mycroft #endif
219 1.1 mycroft /*
220 1.1 mycroft * Check for extension in the existing location.
221 1.1 mycroft */
222 1.1 mycroft cg = dtog(fs, bprev);
223 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
224 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
225 1.1 mycroft panic("bad blockno");
226 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
227 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
228 1.1 mycroft allocbuf(bp, nsize);
229 1.1 mycroft bp->b_flags |= B_DONE;
230 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
231 1.1 mycroft *bpp = bp;
232 1.1 mycroft return (0);
233 1.1 mycroft }
234 1.1 mycroft /*
235 1.1 mycroft * Allocate a new disk location.
236 1.1 mycroft */
237 1.1 mycroft if (bpref >= fs->fs_size)
238 1.1 mycroft bpref = 0;
239 1.1 mycroft switch ((int)fs->fs_optim) {
240 1.1 mycroft case FS_OPTSPACE:
241 1.1 mycroft /*
242 1.1 mycroft * Allocate an exact sized fragment. Although this makes
243 1.1 mycroft * best use of space, we will waste time relocating it if
244 1.1 mycroft * the file continues to grow. If the fragmentation is
245 1.1 mycroft * less than half of the minimum free reserve, we choose
246 1.1 mycroft * to begin optimizing for time.
247 1.1 mycroft */
248 1.1 mycroft request = nsize;
249 1.1 mycroft if (fs->fs_minfree < 5 ||
250 1.1 mycroft fs->fs_cstotal.cs_nffree >
251 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
252 1.1 mycroft break;
253 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
254 1.1 mycroft fs->fs_fsmnt);
255 1.1 mycroft fs->fs_optim = FS_OPTTIME;
256 1.1 mycroft break;
257 1.1 mycroft case FS_OPTTIME:
258 1.1 mycroft /*
259 1.1 mycroft * At this point we have discovered a file that is trying to
260 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
261 1.1 mycroft * we allocate a full sized block, then free the unused portion.
262 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
263 1.1 mycroft * above will be able to grow it in place without further
264 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
265 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
266 1.1 mycroft * optimizing for space.
267 1.1 mycroft */
268 1.1 mycroft request = fs->fs_bsize;
269 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
270 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
271 1.1 mycroft break;
272 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
273 1.1 mycroft fs->fs_fsmnt);
274 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
275 1.1 mycroft break;
276 1.1 mycroft default:
277 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
278 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
279 1.1 mycroft panic("ffs_realloccg: bad optim");
280 1.1 mycroft /* NOTREACHED */
281 1.1 mycroft }
282 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
283 1.9 christos ffs_alloccg);
284 1.1 mycroft if (bno > 0) {
285 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
286 1.16 mrg #if defined(UVM)
287 1.16 mrg (void) uvm_vnp_uncache(ITOV(ip));
288 1.16 mrg #else
289 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
290 1.16 mrg #endif
291 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
292 1.1 mycroft if (nsize < request)
293 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 1.1 mycroft (long)(request - nsize));
295 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
296 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 1.1 mycroft allocbuf(bp, nsize);
298 1.1 mycroft bp->b_flags |= B_DONE;
299 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
300 1.1 mycroft *bpp = bp;
301 1.1 mycroft return (0);
302 1.1 mycroft }
303 1.1 mycroft #ifdef QUOTA
304 1.1 mycroft /*
305 1.1 mycroft * Restore user's disk quota because allocation failed.
306 1.1 mycroft */
307 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
308 1.1 mycroft #endif
309 1.1 mycroft brelse(bp);
310 1.1 mycroft nospace:
311 1.1 mycroft /*
312 1.1 mycroft * no space available
313 1.1 mycroft */
314 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
315 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
316 1.1 mycroft return (ENOSPC);
317 1.1 mycroft }
318 1.1 mycroft
319 1.1 mycroft /*
320 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
321 1.1 mycroft *
322 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
323 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
324 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
325 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
326 1.1 mycroft * block immediately preceeding the current range. If successful, the
327 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
328 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
329 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
330 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
331 1.1 mycroft * the previous block allocation will be used.
332 1.1 mycroft */
333 1.3 mycroft #ifdef DEBUG
334 1.1 mycroft #include <sys/sysctl.h>
335 1.5 mycroft int prtrealloc = 0;
336 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
337 1.1 mycroft #endif
338 1.1 mycroft
339 1.18 fvdl int doasyncfree = 1;
340 1.18 fvdl extern int doreallocblks;
341 1.18 fvdl
342 1.1 mycroft int
343 1.9 christos ffs_reallocblks(v)
344 1.9 christos void *v;
345 1.9 christos {
346 1.1 mycroft struct vop_reallocblks_args /* {
347 1.1 mycroft struct vnode *a_vp;
348 1.1 mycroft struct cluster_save *a_buflist;
349 1.9 christos } */ *ap = v;
350 1.1 mycroft struct fs *fs;
351 1.1 mycroft struct inode *ip;
352 1.1 mycroft struct vnode *vp;
353 1.1 mycroft struct buf *sbp, *ebp;
354 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 1.1 mycroft struct cluster_save *buflist;
356 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
358 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
359 1.1 mycroft
360 1.1 mycroft vp = ap->a_vp;
361 1.1 mycroft ip = VTOI(vp);
362 1.1 mycroft fs = ip->i_fs;
363 1.1 mycroft if (fs->fs_contigsumsize <= 0)
364 1.1 mycroft return (ENOSPC);
365 1.1 mycroft buflist = ap->a_buflist;
366 1.1 mycroft len = buflist->bs_nchildren;
367 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
368 1.1 mycroft end_lbn = start_lbn + len - 1;
369 1.1 mycroft #ifdef DIAGNOSTIC
370 1.18 fvdl for (i = 0; i < len; i++)
371 1.18 fvdl if (!ffs_checkblk(ip,
372 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
373 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
374 1.1 mycroft for (i = 1; i < len; i++)
375 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
376 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
377 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
378 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
379 1.18 fvdl for (i = 1; i < len - 1; i++)
380 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
381 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
382 1.1 mycroft #endif
383 1.1 mycroft /*
384 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
385 1.1 mycroft * the filesystem has decided to move and do not force it back to
386 1.1 mycroft * the previous cylinder group.
387 1.1 mycroft */
388 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
389 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
390 1.1 mycroft return (ENOSPC);
391 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
392 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
393 1.1 mycroft return (ENOSPC);
394 1.1 mycroft /*
395 1.1 mycroft * Get the starting offset and block map for the first block.
396 1.1 mycroft */
397 1.1 mycroft if (start_lvl == 0) {
398 1.15 bouyer sbap = &ip->i_ffs_db[0];
399 1.1 mycroft soff = start_lbn;
400 1.1 mycroft } else {
401 1.1 mycroft idp = &start_ap[start_lvl - 1];
402 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
403 1.1 mycroft brelse(sbp);
404 1.1 mycroft return (ENOSPC);
405 1.1 mycroft }
406 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
407 1.1 mycroft soff = idp->in_off;
408 1.1 mycroft }
409 1.1 mycroft /*
410 1.1 mycroft * Find the preferred location for the cluster.
411 1.1 mycroft */
412 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
413 1.1 mycroft /*
414 1.1 mycroft * If the block range spans two block maps, get the second map.
415 1.1 mycroft */
416 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
417 1.1 mycroft ssize = len;
418 1.1 mycroft } else {
419 1.1 mycroft #ifdef DIAGNOSTIC
420 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
421 1.1 mycroft panic("ffs_reallocblk: start == end");
422 1.1 mycroft #endif
423 1.1 mycroft ssize = len - (idp->in_off + 1);
424 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
425 1.1 mycroft goto fail;
426 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
427 1.1 mycroft }
428 1.1 mycroft /*
429 1.1 mycroft * Search the block map looking for an allocation of the desired size.
430 1.1 mycroft */
431 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
432 1.9 christos len, ffs_clusteralloc)) == 0)
433 1.1 mycroft goto fail;
434 1.1 mycroft /*
435 1.1 mycroft * We have found a new contiguous block.
436 1.1 mycroft *
437 1.1 mycroft * First we have to replace the old block pointers with the new
438 1.1 mycroft * block pointers in the inode and indirect blocks associated
439 1.1 mycroft * with the file.
440 1.1 mycroft */
441 1.5 mycroft #ifdef DEBUG
442 1.5 mycroft if (prtrealloc)
443 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
444 1.5 mycroft start_lbn, end_lbn);
445 1.5 mycroft #endif
446 1.1 mycroft blkno = newblk;
447 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
448 1.1 mycroft if (i == ssize)
449 1.1 mycroft bap = ebap;
450 1.1 mycroft #ifdef DIAGNOSTIC
451 1.18 fvdl if (!ffs_checkblk(ip,
452 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
453 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
454 1.19 bouyer if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
455 1.19 bouyer ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
456 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
457 1.1 mycroft #endif
458 1.5 mycroft #ifdef DEBUG
459 1.5 mycroft if (prtrealloc)
460 1.19 bouyer printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
461 1.5 mycroft #endif
462 1.19 bouyer *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
463 1.1 mycroft }
464 1.1 mycroft /*
465 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
466 1.1 mycroft * For strict correctness, the writes should be synchronous since
467 1.1 mycroft * the old block values may have been written to disk. In practise
468 1.1 mycroft * they are almost never written, but if we are concerned about
469 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
470 1.1 mycroft *
471 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
472 1.1 mycroft * that shows whether the associated buffers and inodes have
473 1.1 mycroft * been written. The flag should be set when the cluster is
474 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
475 1.1 mycroft * We can then check below to see if it is set, and do the
476 1.1 mycroft * synchronous write only when it has been cleared.
477 1.1 mycroft */
478 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
479 1.1 mycroft if (doasyncfree)
480 1.1 mycroft bdwrite(sbp);
481 1.1 mycroft else
482 1.1 mycroft bwrite(sbp);
483 1.1 mycroft } else {
484 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
485 1.28 mycroft if (!doasyncfree)
486 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
487 1.1 mycroft }
488 1.25 thorpej if (ssize < len) {
489 1.1 mycroft if (doasyncfree)
490 1.1 mycroft bdwrite(ebp);
491 1.1 mycroft else
492 1.1 mycroft bwrite(ebp);
493 1.25 thorpej }
494 1.1 mycroft /*
495 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
496 1.1 mycroft */
497 1.5 mycroft #ifdef DEBUG
498 1.5 mycroft if (prtrealloc)
499 1.13 christos printf("\n\tnew:");
500 1.5 mycroft #endif
501 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
502 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
503 1.1 mycroft fs->fs_bsize);
504 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
505 1.5 mycroft #ifdef DEBUG
506 1.18 fvdl if (!ffs_checkblk(ip,
507 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
508 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
509 1.5 mycroft if (prtrealloc)
510 1.13 christos printf(" %d,", blkno);
511 1.5 mycroft #endif
512 1.5 mycroft }
513 1.5 mycroft #ifdef DEBUG
514 1.5 mycroft if (prtrealloc) {
515 1.5 mycroft prtrealloc--;
516 1.13 christos printf("\n");
517 1.1 mycroft }
518 1.5 mycroft #endif
519 1.1 mycroft return (0);
520 1.1 mycroft
521 1.1 mycroft fail:
522 1.1 mycroft if (ssize < len)
523 1.1 mycroft brelse(ebp);
524 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
525 1.1 mycroft brelse(sbp);
526 1.1 mycroft return (ENOSPC);
527 1.1 mycroft }
528 1.1 mycroft
529 1.1 mycroft /*
530 1.1 mycroft * Allocate an inode in the file system.
531 1.1 mycroft *
532 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
533 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
534 1.1 mycroft * 1) allocate the preferred inode.
535 1.1 mycroft * 2) allocate an inode in the same cylinder group.
536 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
537 1.1 mycroft * available inode is located.
538 1.1 mycroft * If no inode preference is given the following heirarchy is used
539 1.1 mycroft * to allocate an inode:
540 1.1 mycroft * 1) allocate an inode in cylinder group 0.
541 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
542 1.1 mycroft * available inode is located.
543 1.1 mycroft */
544 1.9 christos int
545 1.9 christos ffs_valloc(v)
546 1.9 christos void *v;
547 1.9 christos {
548 1.1 mycroft struct vop_valloc_args /* {
549 1.1 mycroft struct vnode *a_pvp;
550 1.1 mycroft int a_mode;
551 1.1 mycroft struct ucred *a_cred;
552 1.1 mycroft struct vnode **a_vpp;
553 1.9 christos } */ *ap = v;
554 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
555 1.1 mycroft register struct inode *pip;
556 1.1 mycroft register struct fs *fs;
557 1.1 mycroft register struct inode *ip;
558 1.1 mycroft mode_t mode = ap->a_mode;
559 1.1 mycroft ino_t ino, ipref;
560 1.1 mycroft int cg, error;
561 1.1 mycroft
562 1.1 mycroft *ap->a_vpp = NULL;
563 1.1 mycroft pip = VTOI(pvp);
564 1.1 mycroft fs = pip->i_fs;
565 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
566 1.1 mycroft goto noinodes;
567 1.1 mycroft
568 1.1 mycroft if ((mode & IFMT) == IFDIR)
569 1.1 mycroft ipref = ffs_dirpref(fs);
570 1.1 mycroft else
571 1.1 mycroft ipref = pip->i_number;
572 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
573 1.1 mycroft ipref = 0;
574 1.1 mycroft cg = ino_to_cg(fs, ipref);
575 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
576 1.1 mycroft if (ino == 0)
577 1.1 mycroft goto noinodes;
578 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
579 1.1 mycroft if (error) {
580 1.1 mycroft VOP_VFREE(pvp, ino, mode);
581 1.1 mycroft return (error);
582 1.1 mycroft }
583 1.1 mycroft ip = VTOI(*ap->a_vpp);
584 1.15 bouyer if (ip->i_ffs_mode) {
585 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
586 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
587 1.1 mycroft panic("ffs_valloc: dup alloc");
588 1.1 mycroft }
589 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
590 1.13 christos printf("free inode %s/%d had %d blocks\n",
591 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
592 1.15 bouyer ip->i_ffs_blocks = 0;
593 1.1 mycroft }
594 1.15 bouyer ip->i_ffs_flags = 0;
595 1.1 mycroft /*
596 1.1 mycroft * Set up a new generation number for this inode.
597 1.1 mycroft */
598 1.15 bouyer ip->i_ffs_gen++;
599 1.1 mycroft return (0);
600 1.1 mycroft noinodes:
601 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
602 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
603 1.1 mycroft return (ENOSPC);
604 1.1 mycroft }
605 1.1 mycroft
606 1.1 mycroft /*
607 1.1 mycroft * Find a cylinder to place a directory.
608 1.1 mycroft *
609 1.1 mycroft * The policy implemented by this algorithm is to select from
610 1.1 mycroft * among those cylinder groups with above the average number of
611 1.1 mycroft * free inodes, the one with the smallest number of directories.
612 1.1 mycroft */
613 1.1 mycroft static ino_t
614 1.1 mycroft ffs_dirpref(fs)
615 1.1 mycroft register struct fs *fs;
616 1.1 mycroft {
617 1.1 mycroft int cg, minndir, mincg, avgifree;
618 1.1 mycroft
619 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
620 1.1 mycroft minndir = fs->fs_ipg;
621 1.1 mycroft mincg = 0;
622 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
623 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
624 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
625 1.1 mycroft mincg = cg;
626 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
627 1.1 mycroft }
628 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
629 1.1 mycroft }
630 1.1 mycroft
631 1.1 mycroft /*
632 1.1 mycroft * Select the desired position for the next block in a file. The file is
633 1.1 mycroft * logically divided into sections. The first section is composed of the
634 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
635 1.1 mycroft *
636 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
637 1.1 mycroft * request a block in the same cylinder group as the inode that describes
638 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
639 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
640 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
641 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
642 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
643 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
644 1.1 mycroft * continues until a cylinder group with greater than the average number
645 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
646 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
647 1.1 mycroft * here a best guess is made based upon the logical block number being
648 1.1 mycroft * allocated.
649 1.1 mycroft *
650 1.1 mycroft * If a section is already partially allocated, the policy is to
651 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
652 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
653 1.1 mycroft * so that the disk head will be in transit between them for at least
654 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
655 1.1 mycroft * schedule another I/O transfer.
656 1.1 mycroft */
657 1.18 fvdl ufs_daddr_t
658 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
659 1.1 mycroft struct inode *ip;
660 1.18 fvdl ufs_daddr_t lbn;
661 1.1 mycroft int indx;
662 1.18 fvdl ufs_daddr_t *bap;
663 1.1 mycroft {
664 1.1 mycroft register struct fs *fs;
665 1.1 mycroft register int cg;
666 1.1 mycroft int avgbfree, startcg;
667 1.18 fvdl ufs_daddr_t nextblk;
668 1.1 mycroft
669 1.1 mycroft fs = ip->i_fs;
670 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
671 1.1 mycroft if (lbn < NDADDR) {
672 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
673 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
674 1.1 mycroft }
675 1.1 mycroft /*
676 1.1 mycroft * Find a cylinder with greater than average number of
677 1.1 mycroft * unused data blocks.
678 1.1 mycroft */
679 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
680 1.1 mycroft startcg =
681 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
682 1.1 mycroft else
683 1.19 bouyer startcg = dtog(fs,
684 1.19 bouyer ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
685 1.1 mycroft startcg %= fs->fs_ncg;
686 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
687 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
688 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
689 1.1 mycroft fs->fs_cgrotor = cg;
690 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
691 1.1 mycroft }
692 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
693 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
694 1.1 mycroft fs->fs_cgrotor = cg;
695 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
696 1.1 mycroft }
697 1.1 mycroft return (NULL);
698 1.1 mycroft }
699 1.1 mycroft /*
700 1.1 mycroft * One or more previous blocks have been laid out. If less
701 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
702 1.1 mycroft * next block is requested contiguously, otherwise it is
703 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
704 1.1 mycroft */
705 1.19 bouyer nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
706 1.19 bouyer if (indx < fs->fs_maxcontig ||
707 1.19 bouyer ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
708 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
709 1.1 mycroft return (nextblk);
710 1.1 mycroft if (fs->fs_rotdelay != 0)
711 1.1 mycroft /*
712 1.1 mycroft * Here we convert ms of delay to frags as:
713 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
714 1.1 mycroft * ((sect/frag) * (ms/sec))
715 1.1 mycroft * then round up to the next block.
716 1.1 mycroft */
717 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
718 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
719 1.1 mycroft return (nextblk);
720 1.1 mycroft }
721 1.1 mycroft
722 1.1 mycroft /*
723 1.1 mycroft * Implement the cylinder overflow algorithm.
724 1.1 mycroft *
725 1.1 mycroft * The policy implemented by this algorithm is:
726 1.1 mycroft * 1) allocate the block in its requested cylinder group.
727 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
728 1.1 mycroft * 3) brute force search for a free block.
729 1.1 mycroft */
730 1.1 mycroft /*VARARGS5*/
731 1.1 mycroft static u_long
732 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
733 1.1 mycroft struct inode *ip;
734 1.1 mycroft int cg;
735 1.1 mycroft long pref;
736 1.1 mycroft int size; /* size for data blocks, mode for inodes */
737 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
738 1.1 mycroft {
739 1.1 mycroft register struct fs *fs;
740 1.1 mycroft long result;
741 1.1 mycroft int i, icg = cg;
742 1.1 mycroft
743 1.1 mycroft fs = ip->i_fs;
744 1.1 mycroft /*
745 1.1 mycroft * 1: preferred cylinder group
746 1.1 mycroft */
747 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
748 1.1 mycroft if (result)
749 1.1 mycroft return (result);
750 1.1 mycroft /*
751 1.1 mycroft * 2: quadratic rehash
752 1.1 mycroft */
753 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
754 1.1 mycroft cg += i;
755 1.1 mycroft if (cg >= fs->fs_ncg)
756 1.1 mycroft cg -= fs->fs_ncg;
757 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
758 1.1 mycroft if (result)
759 1.1 mycroft return (result);
760 1.1 mycroft }
761 1.1 mycroft /*
762 1.1 mycroft * 3: brute force search
763 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
764 1.1 mycroft * and 1 is always checked in the quadratic rehash.
765 1.1 mycroft */
766 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
767 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
768 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
769 1.1 mycroft if (result)
770 1.1 mycroft return (result);
771 1.1 mycroft cg++;
772 1.1 mycroft if (cg == fs->fs_ncg)
773 1.1 mycroft cg = 0;
774 1.1 mycroft }
775 1.1 mycroft return (NULL);
776 1.1 mycroft }
777 1.1 mycroft
778 1.1 mycroft /*
779 1.1 mycroft * Determine whether a fragment can be extended.
780 1.1 mycroft *
781 1.1 mycroft * Check to see if the necessary fragments are available, and
782 1.1 mycroft * if they are, allocate them.
783 1.1 mycroft */
784 1.18 fvdl static ufs_daddr_t
785 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
786 1.1 mycroft struct inode *ip;
787 1.1 mycroft int cg;
788 1.1 mycroft long bprev;
789 1.1 mycroft int osize, nsize;
790 1.1 mycroft {
791 1.1 mycroft register struct fs *fs;
792 1.1 mycroft register struct cg *cgp;
793 1.1 mycroft struct buf *bp;
794 1.1 mycroft long bno;
795 1.1 mycroft int frags, bbase;
796 1.1 mycroft int i, error;
797 1.1 mycroft
798 1.1 mycroft fs = ip->i_fs;
799 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
800 1.1 mycroft return (NULL);
801 1.1 mycroft frags = numfrags(fs, nsize);
802 1.1 mycroft bbase = fragnum(fs, bprev);
803 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
804 1.1 mycroft /* cannot extend across a block boundary */
805 1.1 mycroft return (NULL);
806 1.1 mycroft }
807 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
808 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
809 1.1 mycroft if (error) {
810 1.1 mycroft brelse(bp);
811 1.1 mycroft return (NULL);
812 1.1 mycroft }
813 1.1 mycroft cgp = (struct cg *)bp->b_data;
814 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
815 1.1 mycroft brelse(bp);
816 1.1 mycroft return (NULL);
817 1.1 mycroft }
818 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
819 1.1 mycroft bno = dtogd(fs, bprev);
820 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
821 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
822 1.1 mycroft brelse(bp);
823 1.1 mycroft return (NULL);
824 1.1 mycroft }
825 1.1 mycroft /*
826 1.1 mycroft * the current fragment can be extended
827 1.1 mycroft * deduct the count on fragment being extended into
828 1.1 mycroft * increase the count on the remaining fragment (if any)
829 1.1 mycroft * allocate the extended piece
830 1.1 mycroft */
831 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
832 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
833 1.1 mycroft break;
834 1.19 bouyer ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
835 1.1 mycroft if (i != frags)
836 1.19 bouyer ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
837 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
838 1.19 bouyer clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
839 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
840 1.1 mycroft fs->fs_cstotal.cs_nffree--;
841 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
842 1.1 mycroft }
843 1.1 mycroft fs->fs_fmod = 1;
844 1.1 mycroft bdwrite(bp);
845 1.1 mycroft return (bprev);
846 1.1 mycroft }
847 1.1 mycroft
848 1.1 mycroft /*
849 1.1 mycroft * Determine whether a block can be allocated.
850 1.1 mycroft *
851 1.1 mycroft * Check to see if a block of the appropriate size is available,
852 1.1 mycroft * and if it is, allocate it.
853 1.1 mycroft */
854 1.18 fvdl static ufs_daddr_t
855 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
856 1.1 mycroft struct inode *ip;
857 1.1 mycroft int cg;
858 1.18 fvdl ufs_daddr_t bpref;
859 1.1 mycroft int size;
860 1.1 mycroft {
861 1.1 mycroft register struct fs *fs;
862 1.1 mycroft register struct cg *cgp;
863 1.1 mycroft struct buf *bp;
864 1.1 mycroft register int i;
865 1.1 mycroft int error, bno, frags, allocsiz;
866 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
867 1.1 mycroft
868 1.1 mycroft fs = ip->i_fs;
869 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
870 1.1 mycroft return (NULL);
871 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
872 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
873 1.1 mycroft if (error) {
874 1.1 mycroft brelse(bp);
875 1.1 mycroft return (NULL);
876 1.1 mycroft }
877 1.1 mycroft cgp = (struct cg *)bp->b_data;
878 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
879 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
880 1.1 mycroft brelse(bp);
881 1.1 mycroft return (NULL);
882 1.1 mycroft }
883 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
884 1.1 mycroft if (size == fs->fs_bsize) {
885 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
886 1.1 mycroft bdwrite(bp);
887 1.1 mycroft return (bno);
888 1.1 mycroft }
889 1.1 mycroft /*
890 1.1 mycroft * check to see if any fragments are already available
891 1.1 mycroft * allocsiz is the size which will be allocated, hacking
892 1.1 mycroft * it down to a smaller size if necessary
893 1.1 mycroft */
894 1.1 mycroft frags = numfrags(fs, size);
895 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
896 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
897 1.1 mycroft break;
898 1.1 mycroft if (allocsiz == fs->fs_frag) {
899 1.1 mycroft /*
900 1.1 mycroft * no fragments were available, so a block will be
901 1.1 mycroft * allocated, and hacked up
902 1.1 mycroft */
903 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
904 1.1 mycroft brelse(bp);
905 1.1 mycroft return (NULL);
906 1.1 mycroft }
907 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
908 1.1 mycroft bpref = dtogd(fs, bno);
909 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
910 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
911 1.1 mycroft i = fs->fs_frag - frags;
912 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
913 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
914 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
915 1.1 mycroft fs->fs_fmod = 1;
916 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
917 1.1 mycroft bdwrite(bp);
918 1.1 mycroft return (bno);
919 1.1 mycroft }
920 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
921 1.1 mycroft if (bno < 0) {
922 1.1 mycroft brelse(bp);
923 1.1 mycroft return (NULL);
924 1.1 mycroft }
925 1.1 mycroft for (i = 0; i < frags; i++)
926 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
927 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
928 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
929 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
930 1.1 mycroft fs->fs_fmod = 1;
931 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
932 1.1 mycroft if (frags != allocsiz)
933 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
934 1.1 mycroft bdwrite(bp);
935 1.1 mycroft return (cg * fs->fs_fpg + bno);
936 1.1 mycroft }
937 1.1 mycroft
938 1.1 mycroft /*
939 1.1 mycroft * Allocate a block in a cylinder group.
940 1.1 mycroft *
941 1.1 mycroft * This algorithm implements the following policy:
942 1.1 mycroft * 1) allocate the requested block.
943 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
944 1.1 mycroft * 3) allocate the next available block on the block rotor for the
945 1.1 mycroft * specified cylinder group.
946 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
947 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
948 1.1 mycroft */
949 1.18 fvdl static ufs_daddr_t
950 1.19 bouyer ffs_alloccgblk(mp, fs, cgp, bpref)
951 1.19 bouyer struct mount *mp;
952 1.1 mycroft register struct fs *fs;
953 1.1 mycroft register struct cg *cgp;
954 1.18 fvdl ufs_daddr_t bpref;
955 1.1 mycroft {
956 1.18 fvdl ufs_daddr_t bno, blkno;
957 1.1 mycroft int cylno, pos, delta;
958 1.1 mycroft short *cylbp;
959 1.1 mycroft register int i;
960 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(mp);
961 1.1 mycroft
962 1.19 bouyer if (bpref == 0 ||
963 1.19 bouyer dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
964 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
965 1.1 mycroft goto norot;
966 1.1 mycroft }
967 1.1 mycroft bpref = blknum(fs, bpref);
968 1.1 mycroft bpref = dtogd(fs, bpref);
969 1.1 mycroft /*
970 1.1 mycroft * if the requested block is available, use it
971 1.1 mycroft */
972 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
973 1.19 bouyer fragstoblks(fs, bpref))) {
974 1.1 mycroft bno = bpref;
975 1.1 mycroft goto gotit;
976 1.1 mycroft }
977 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
978 1.1 mycroft /*
979 1.1 mycroft * Block layout information is not available.
980 1.1 mycroft * Leaving bpref unchanged means we take the
981 1.1 mycroft * next available free block following the one
982 1.1 mycroft * we just allocated. Hopefully this will at
983 1.1 mycroft * least hit a track cache on drives of unknown
984 1.1 mycroft * geometry (e.g. SCSI).
985 1.1 mycroft */
986 1.1 mycroft goto norot;
987 1.1 mycroft }
988 1.6 mycroft /*
989 1.6 mycroft * check for a block available on the same cylinder
990 1.6 mycroft */
991 1.6 mycroft cylno = cbtocylno(fs, bpref);
992 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
993 1.6 mycroft goto norot;
994 1.1 mycroft /*
995 1.1 mycroft * check the summary information to see if a block is
996 1.1 mycroft * available in the requested cylinder starting at the
997 1.1 mycroft * requested rotational position and proceeding around.
998 1.1 mycroft */
999 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
1000 1.1 mycroft pos = cbtorpos(fs, bpref);
1001 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
1002 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1003 1.1 mycroft break;
1004 1.1 mycroft if (i == fs->fs_nrpos)
1005 1.1 mycroft for (i = 0; i < pos; i++)
1006 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1007 1.1 mycroft break;
1008 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1009 1.1 mycroft /*
1010 1.1 mycroft * found a rotational position, now find the actual
1011 1.1 mycroft * block. A panic if none is actually there.
1012 1.1 mycroft */
1013 1.1 mycroft pos = cylno % fs->fs_cpc;
1014 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1015 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1016 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1017 1.1 mycroft pos, i, fs->fs_fsmnt);
1018 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1019 1.1 mycroft }
1020 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1021 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1022 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1023 1.1 mycroft goto gotit;
1024 1.1 mycroft }
1025 1.1 mycroft delta = fs_rotbl(fs)[i];
1026 1.1 mycroft if (delta <= 0 ||
1027 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1028 1.1 mycroft break;
1029 1.1 mycroft i += delta;
1030 1.1 mycroft }
1031 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1032 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1033 1.1 mycroft }
1034 1.1 mycroft norot:
1035 1.1 mycroft /*
1036 1.1 mycroft * no blocks in the requested cylinder, so take next
1037 1.1 mycroft * available one in this cylinder group.
1038 1.1 mycroft */
1039 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1040 1.1 mycroft if (bno < 0)
1041 1.1 mycroft return (NULL);
1042 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1043 1.1 mycroft gotit:
1044 1.1 mycroft blkno = fragstoblks(fs, bno);
1045 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1046 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1047 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1048 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1049 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1050 1.1 mycroft cylno = cbtocylno(fs, bno);
1051 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1052 1.19 bouyer needswap);
1053 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1054 1.1 mycroft fs->fs_fmod = 1;
1055 1.19 bouyer return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1056 1.1 mycroft }
1057 1.1 mycroft
1058 1.1 mycroft /*
1059 1.1 mycroft * Determine whether a cluster can be allocated.
1060 1.1 mycroft *
1061 1.1 mycroft * We do not currently check for optimal rotational layout if there
1062 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1063 1.1 mycroft * take the first one that we find following bpref.
1064 1.1 mycroft */
1065 1.18 fvdl static ufs_daddr_t
1066 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1067 1.1 mycroft struct inode *ip;
1068 1.1 mycroft int cg;
1069 1.18 fvdl ufs_daddr_t bpref;
1070 1.1 mycroft int len;
1071 1.1 mycroft {
1072 1.1 mycroft register struct fs *fs;
1073 1.1 mycroft register struct cg *cgp;
1074 1.1 mycroft struct buf *bp;
1075 1.18 fvdl int i, got, run, bno, bit, map;
1076 1.1 mycroft u_char *mapp;
1077 1.5 mycroft int32_t *lp;
1078 1.1 mycroft
1079 1.1 mycroft fs = ip->i_fs;
1080 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1081 1.1 mycroft return (NULL);
1082 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1083 1.1 mycroft NOCRED, &bp))
1084 1.1 mycroft goto fail;
1085 1.1 mycroft cgp = (struct cg *)bp->b_data;
1086 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1087 1.1 mycroft goto fail;
1088 1.1 mycroft /*
1089 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1090 1.1 mycroft * available in this cylinder group.
1091 1.1 mycroft */
1092 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1093 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1094 1.19 bouyer if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1095 1.1 mycroft break;
1096 1.5 mycroft if (i > fs->fs_contigsumsize) {
1097 1.5 mycroft /*
1098 1.5 mycroft * This is the first time looking for a cluster in this
1099 1.5 mycroft * cylinder group. Update the cluster summary information
1100 1.5 mycroft * to reflect the true maximum sized cluster so that
1101 1.5 mycroft * future cluster allocation requests can avoid reading
1102 1.5 mycroft * the cylinder group map only to find no clusters.
1103 1.5 mycroft */
1104 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1105 1.5 mycroft for (i = len - 1; i > 0; i--)
1106 1.19 bouyer if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1107 1.5 mycroft break;
1108 1.5 mycroft fs->fs_maxcluster[cg] = i;
1109 1.1 mycroft goto fail;
1110 1.5 mycroft }
1111 1.1 mycroft /*
1112 1.1 mycroft * Search the cluster map to find a big enough cluster.
1113 1.1 mycroft * We take the first one that we find, even if it is larger
1114 1.1 mycroft * than we need as we prefer to get one close to the previous
1115 1.1 mycroft * block allocation. We do not search before the current
1116 1.1 mycroft * preference point as we do not want to allocate a block
1117 1.1 mycroft * that is allocated before the previous one (as we will
1118 1.1 mycroft * then have to wait for another pass of the elevator
1119 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1120 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1121 1.1 mycroft */
1122 1.1 mycroft if (dtog(fs, bpref) != cg)
1123 1.1 mycroft bpref = 0;
1124 1.1 mycroft else
1125 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1126 1.19 bouyer mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1127 1.1 mycroft map = *mapp++;
1128 1.1 mycroft bit = 1 << (bpref % NBBY);
1129 1.19 bouyer for (run = 0, got = bpref;
1130 1.19 bouyer got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1131 1.1 mycroft if ((map & bit) == 0) {
1132 1.1 mycroft run = 0;
1133 1.1 mycroft } else {
1134 1.1 mycroft run++;
1135 1.1 mycroft if (run == len)
1136 1.1 mycroft break;
1137 1.1 mycroft }
1138 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1139 1.1 mycroft bit <<= 1;
1140 1.1 mycroft } else {
1141 1.1 mycroft map = *mapp++;
1142 1.1 mycroft bit = 1;
1143 1.1 mycroft }
1144 1.1 mycroft }
1145 1.19 bouyer if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1146 1.1 mycroft goto fail;
1147 1.1 mycroft /*
1148 1.1 mycroft * Allocate the cluster that we have found.
1149 1.1 mycroft */
1150 1.18 fvdl for (i = 1; i <= len; i++)
1151 1.19 bouyer if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1152 1.19 bouyer got - run + i))
1153 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1154 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1155 1.18 fvdl if (dtog(fs, bno) != cg)
1156 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1157 1.1 mycroft len = blkstofrags(fs, len);
1158 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1159 1.19 bouyer if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1160 1.19 bouyer != bno + i)
1161 1.1 mycroft panic("ffs_clusteralloc: lost block");
1162 1.8 cgd bdwrite(bp);
1163 1.1 mycroft return (bno);
1164 1.1 mycroft
1165 1.1 mycroft fail:
1166 1.1 mycroft brelse(bp);
1167 1.1 mycroft return (0);
1168 1.1 mycroft }
1169 1.1 mycroft
1170 1.1 mycroft /*
1171 1.1 mycroft * Determine whether an inode can be allocated.
1172 1.1 mycroft *
1173 1.1 mycroft * Check to see if an inode is available, and if it is,
1174 1.1 mycroft * allocate it using the following policy:
1175 1.1 mycroft * 1) allocate the requested inode.
1176 1.1 mycroft * 2) allocate the next available inode after the requested
1177 1.1 mycroft * inode in the specified cylinder group.
1178 1.1 mycroft */
1179 1.18 fvdl static ufs_daddr_t
1180 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1181 1.1 mycroft struct inode *ip;
1182 1.1 mycroft int cg;
1183 1.18 fvdl ufs_daddr_t ipref;
1184 1.1 mycroft int mode;
1185 1.1 mycroft {
1186 1.1 mycroft register struct fs *fs;
1187 1.1 mycroft register struct cg *cgp;
1188 1.1 mycroft struct buf *bp;
1189 1.1 mycroft int error, start, len, loc, map, i;
1190 1.19 bouyer #ifdef FFS_EI
1191 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
1192 1.19 bouyer #endif
1193 1.1 mycroft
1194 1.1 mycroft fs = ip->i_fs;
1195 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1196 1.1 mycroft return (NULL);
1197 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1198 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1199 1.1 mycroft if (error) {
1200 1.1 mycroft brelse(bp);
1201 1.1 mycroft return (NULL);
1202 1.1 mycroft }
1203 1.1 mycroft cgp = (struct cg *)bp->b_data;
1204 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1205 1.1 mycroft brelse(bp);
1206 1.1 mycroft return (NULL);
1207 1.1 mycroft }
1208 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1209 1.1 mycroft if (ipref) {
1210 1.1 mycroft ipref %= fs->fs_ipg;
1211 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1212 1.1 mycroft goto gotit;
1213 1.1 mycroft }
1214 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1215 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1216 1.19 bouyer NBBY);
1217 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1218 1.1 mycroft if (loc == 0) {
1219 1.1 mycroft len = start + 1;
1220 1.1 mycroft start = 0;
1221 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1222 1.1 mycroft if (loc == 0) {
1223 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1224 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1225 1.19 bouyer fs->fs_fsmnt);
1226 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1227 1.1 mycroft /* NOTREACHED */
1228 1.1 mycroft }
1229 1.1 mycroft }
1230 1.1 mycroft i = start + len - loc;
1231 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1232 1.1 mycroft ipref = i * NBBY;
1233 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1234 1.1 mycroft if ((map & i) == 0) {
1235 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1236 1.1 mycroft goto gotit;
1237 1.1 mycroft }
1238 1.1 mycroft }
1239 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1240 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1241 1.1 mycroft /* NOTREACHED */
1242 1.1 mycroft gotit:
1243 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1244 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1245 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1246 1.19 bouyer fs->fs_cs(fs, cg).cs_nifree --;
1247 1.1 mycroft fs->fs_fmod = 1;
1248 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1249 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1250 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1251 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1252 1.1 mycroft }
1253 1.1 mycroft bdwrite(bp);
1254 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1255 1.1 mycroft }
1256 1.1 mycroft
1257 1.1 mycroft /*
1258 1.1 mycroft * Free a block or fragment.
1259 1.1 mycroft *
1260 1.1 mycroft * The specified block or fragment is placed back in the
1261 1.1 mycroft * free map. If a fragment is deallocated, a possible
1262 1.1 mycroft * block reassembly is checked.
1263 1.1 mycroft */
1264 1.9 christos void
1265 1.1 mycroft ffs_blkfree(ip, bno, size)
1266 1.1 mycroft register struct inode *ip;
1267 1.18 fvdl ufs_daddr_t bno;
1268 1.1 mycroft long size;
1269 1.1 mycroft {
1270 1.1 mycroft register struct fs *fs;
1271 1.1 mycroft register struct cg *cgp;
1272 1.1 mycroft struct buf *bp;
1273 1.18 fvdl ufs_daddr_t blkno;
1274 1.1 mycroft int i, error, cg, blk, frags, bbase;
1275 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1276 1.1 mycroft
1277 1.1 mycroft fs = ip->i_fs;
1278 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1279 1.13 christos printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1280 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1281 1.1 mycroft panic("blkfree: bad size");
1282 1.1 mycroft }
1283 1.1 mycroft cg = dtog(fs, bno);
1284 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1285 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1286 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1287 1.1 mycroft return;
1288 1.1 mycroft }
1289 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1290 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1291 1.1 mycroft if (error) {
1292 1.1 mycroft brelse(bp);
1293 1.1 mycroft return;
1294 1.1 mycroft }
1295 1.1 mycroft cgp = (struct cg *)bp->b_data;
1296 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1297 1.1 mycroft brelse(bp);
1298 1.1 mycroft return;
1299 1.1 mycroft }
1300 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1301 1.1 mycroft bno = dtogd(fs, bno);
1302 1.1 mycroft if (size == fs->fs_bsize) {
1303 1.1 mycroft blkno = fragstoblks(fs, bno);
1304 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1305 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1306 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1307 1.1 mycroft panic("blkfree: freeing free block");
1308 1.1 mycroft }
1309 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1310 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1311 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1312 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1313 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1314 1.1 mycroft i = cbtocylno(fs, bno);
1315 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1316 1.19 bouyer needswap);
1317 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1318 1.1 mycroft } else {
1319 1.1 mycroft bbase = bno - fragnum(fs, bno);
1320 1.1 mycroft /*
1321 1.1 mycroft * decrement the counts associated with the old frags
1322 1.1 mycroft */
1323 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1324 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1325 1.1 mycroft /*
1326 1.1 mycroft * deallocate the fragment
1327 1.1 mycroft */
1328 1.1 mycroft frags = numfrags(fs, size);
1329 1.1 mycroft for (i = 0; i < frags; i++) {
1330 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1331 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1332 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1333 1.1 mycroft panic("blkfree: freeing free frag");
1334 1.1 mycroft }
1335 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1336 1.1 mycroft }
1337 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1338 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1339 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
1340 1.1 mycroft /*
1341 1.1 mycroft * add back in counts associated with the new frags
1342 1.1 mycroft */
1343 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1344 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1345 1.1 mycroft /*
1346 1.1 mycroft * if a complete block has been reassembled, account for it
1347 1.1 mycroft */
1348 1.1 mycroft blkno = fragstoblks(fs, bbase);
1349 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1350 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1351 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1352 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1353 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1354 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1355 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1356 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1357 1.1 mycroft i = cbtocylno(fs, bbase);
1358 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1359 1.19 bouyer needswap);
1360 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1361 1.1 mycroft }
1362 1.1 mycroft }
1363 1.1 mycroft fs->fs_fmod = 1;
1364 1.1 mycroft bdwrite(bp);
1365 1.1 mycroft }
1366 1.1 mycroft
1367 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1368 1.18 fvdl /*
1369 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1370 1.18 fvdl * fragment is allocated, false if it is free.
1371 1.18 fvdl */
1372 1.18 fvdl static int
1373 1.18 fvdl ffs_checkblk(ip, bno, size)
1374 1.18 fvdl struct inode *ip;
1375 1.18 fvdl ufs_daddr_t bno;
1376 1.18 fvdl long size;
1377 1.18 fvdl {
1378 1.18 fvdl struct fs *fs;
1379 1.18 fvdl struct cg *cgp;
1380 1.18 fvdl struct buf *bp;
1381 1.18 fvdl int i, error, frags, free;
1382 1.18 fvdl
1383 1.18 fvdl fs = ip->i_fs;
1384 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1385 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1386 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1387 1.18 fvdl panic("checkblk: bad size");
1388 1.18 fvdl }
1389 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1390 1.18 fvdl panic("checkblk: bad block %d", bno);
1391 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1392 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1393 1.18 fvdl if (error) {
1394 1.18 fvdl brelse(bp);
1395 1.18 fvdl return 0;
1396 1.18 fvdl }
1397 1.18 fvdl cgp = (struct cg *)bp->b_data;
1398 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1399 1.18 fvdl brelse(bp);
1400 1.18 fvdl return 0;
1401 1.18 fvdl }
1402 1.18 fvdl bno = dtogd(fs, bno);
1403 1.18 fvdl if (size == fs->fs_bsize) {
1404 1.19 bouyer free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1405 1.19 bouyer fragstoblks(fs, bno));
1406 1.18 fvdl } else {
1407 1.18 fvdl frags = numfrags(fs, size);
1408 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1409 1.19 bouyer if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1410 1.18 fvdl free++;
1411 1.18 fvdl if (free != 0 && free != frags)
1412 1.18 fvdl panic("checkblk: partially free fragment");
1413 1.18 fvdl }
1414 1.18 fvdl brelse(bp);
1415 1.18 fvdl return (!free);
1416 1.18 fvdl }
1417 1.18 fvdl #endif /* DIAGNOSTIC */
1418 1.18 fvdl
1419 1.1 mycroft /*
1420 1.1 mycroft * Free an inode.
1421 1.1 mycroft *
1422 1.1 mycroft * The specified inode is placed back in the free map.
1423 1.1 mycroft */
1424 1.1 mycroft int
1425 1.9 christos ffs_vfree(v)
1426 1.9 christos void *v;
1427 1.9 christos {
1428 1.1 mycroft struct vop_vfree_args /* {
1429 1.1 mycroft struct vnode *a_pvp;
1430 1.1 mycroft ino_t a_ino;
1431 1.1 mycroft int a_mode;
1432 1.9 christos } */ *ap = v;
1433 1.1 mycroft register struct fs *fs;
1434 1.1 mycroft register struct cg *cgp;
1435 1.1 mycroft register struct inode *pip;
1436 1.1 mycroft ino_t ino = ap->a_ino;
1437 1.1 mycroft struct buf *bp;
1438 1.1 mycroft int error, cg;
1439 1.19 bouyer #ifdef FFS_EI
1440 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1441 1.19 bouyer #endif
1442 1.1 mycroft
1443 1.1 mycroft pip = VTOI(ap->a_pvp);
1444 1.1 mycroft fs = pip->i_fs;
1445 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1446 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1447 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1448 1.1 mycroft cg = ino_to_cg(fs, ino);
1449 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1450 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1451 1.1 mycroft if (error) {
1452 1.1 mycroft brelse(bp);
1453 1.1 mycroft return (0);
1454 1.1 mycroft }
1455 1.1 mycroft cgp = (struct cg *)bp->b_data;
1456 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1457 1.1 mycroft brelse(bp);
1458 1.1 mycroft return (0);
1459 1.1 mycroft }
1460 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1461 1.1 mycroft ino %= fs->fs_ipg;
1462 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1463 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1464 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1465 1.1 mycroft if (fs->fs_ronly == 0)
1466 1.1 mycroft panic("ifree: freeing free inode");
1467 1.1 mycroft }
1468 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1469 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1470 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1471 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1472 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1473 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1474 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1475 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1476 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1477 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1478 1.1 mycroft }
1479 1.1 mycroft fs->fs_fmod = 1;
1480 1.1 mycroft bdwrite(bp);
1481 1.1 mycroft return (0);
1482 1.1 mycroft }
1483 1.1 mycroft
1484 1.1 mycroft /*
1485 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1486 1.1 mycroft *
1487 1.1 mycroft * It is a panic if a request is made to find a block if none are
1488 1.1 mycroft * available.
1489 1.1 mycroft */
1490 1.18 fvdl static ufs_daddr_t
1491 1.19 bouyer ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1492 1.19 bouyer int needswap;
1493 1.1 mycroft register struct fs *fs;
1494 1.1 mycroft register struct cg *cgp;
1495 1.18 fvdl ufs_daddr_t bpref;
1496 1.1 mycroft int allocsiz;
1497 1.1 mycroft {
1498 1.18 fvdl ufs_daddr_t bno;
1499 1.1 mycroft int start, len, loc, i;
1500 1.1 mycroft int blk, field, subfield, pos;
1501 1.19 bouyer int ostart, olen;
1502 1.1 mycroft
1503 1.1 mycroft /*
1504 1.1 mycroft * find the fragment by searching through the free block
1505 1.1 mycroft * map for an appropriate bit pattern
1506 1.1 mycroft */
1507 1.1 mycroft if (bpref)
1508 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1509 1.1 mycroft else
1510 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1511 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1512 1.19 bouyer ostart = start;
1513 1.19 bouyer olen = len;
1514 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1515 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1516 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1517 1.1 mycroft if (loc == 0) {
1518 1.1 mycroft len = start + 1;
1519 1.1 mycroft start = 0;
1520 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1521 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1522 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1523 1.1 mycroft if (loc == 0) {
1524 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1525 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1526 1.20 ross printf("offset=%d %ld\n",
1527 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1528 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1529 1.1 mycroft panic("ffs_alloccg: map corrupted");
1530 1.1 mycroft /* NOTREACHED */
1531 1.1 mycroft }
1532 1.1 mycroft }
1533 1.1 mycroft bno = (start + len - loc) * NBBY;
1534 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1535 1.1 mycroft /*
1536 1.1 mycroft * found the byte in the map
1537 1.1 mycroft * sift through the bits to find the selected frag
1538 1.1 mycroft */
1539 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1540 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1541 1.1 mycroft blk <<= 1;
1542 1.1 mycroft field = around[allocsiz];
1543 1.1 mycroft subfield = inside[allocsiz];
1544 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1545 1.1 mycroft if ((blk & field) == subfield)
1546 1.1 mycroft return (bno + pos);
1547 1.1 mycroft field <<= 1;
1548 1.1 mycroft subfield <<= 1;
1549 1.1 mycroft }
1550 1.1 mycroft }
1551 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1552 1.1 mycroft panic("ffs_alloccg: block not in map");
1553 1.1 mycroft return (-1);
1554 1.1 mycroft }
1555 1.1 mycroft
1556 1.1 mycroft /*
1557 1.1 mycroft * Update the cluster map because of an allocation or free.
1558 1.1 mycroft *
1559 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1560 1.1 mycroft */
1561 1.9 christos void
1562 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1563 1.19 bouyer int needswap;
1564 1.1 mycroft struct fs *fs;
1565 1.1 mycroft struct cg *cgp;
1566 1.18 fvdl ufs_daddr_t blkno;
1567 1.1 mycroft int cnt;
1568 1.1 mycroft {
1569 1.4 cgd int32_t *sump;
1570 1.5 mycroft int32_t *lp;
1571 1.1 mycroft u_char *freemapp, *mapp;
1572 1.1 mycroft int i, start, end, forw, back, map, bit;
1573 1.1 mycroft
1574 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1575 1.1 mycroft return;
1576 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1577 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1578 1.1 mycroft /*
1579 1.1 mycroft * Allocate or clear the actual block.
1580 1.1 mycroft */
1581 1.1 mycroft if (cnt > 0)
1582 1.1 mycroft setbit(freemapp, blkno);
1583 1.1 mycroft else
1584 1.1 mycroft clrbit(freemapp, blkno);
1585 1.1 mycroft /*
1586 1.1 mycroft * Find the size of the cluster going forward.
1587 1.1 mycroft */
1588 1.1 mycroft start = blkno + 1;
1589 1.1 mycroft end = start + fs->fs_contigsumsize;
1590 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1591 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1592 1.1 mycroft mapp = &freemapp[start / NBBY];
1593 1.1 mycroft map = *mapp++;
1594 1.1 mycroft bit = 1 << (start % NBBY);
1595 1.1 mycroft for (i = start; i < end; i++) {
1596 1.1 mycroft if ((map & bit) == 0)
1597 1.1 mycroft break;
1598 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1599 1.1 mycroft bit <<= 1;
1600 1.1 mycroft } else {
1601 1.1 mycroft map = *mapp++;
1602 1.1 mycroft bit = 1;
1603 1.1 mycroft }
1604 1.1 mycroft }
1605 1.1 mycroft forw = i - start;
1606 1.1 mycroft /*
1607 1.1 mycroft * Find the size of the cluster going backward.
1608 1.1 mycroft */
1609 1.1 mycroft start = blkno - 1;
1610 1.1 mycroft end = start - fs->fs_contigsumsize;
1611 1.1 mycroft if (end < 0)
1612 1.1 mycroft end = -1;
1613 1.1 mycroft mapp = &freemapp[start / NBBY];
1614 1.1 mycroft map = *mapp--;
1615 1.1 mycroft bit = 1 << (start % NBBY);
1616 1.1 mycroft for (i = start; i > end; i--) {
1617 1.1 mycroft if ((map & bit) == 0)
1618 1.1 mycroft break;
1619 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1620 1.1 mycroft bit >>= 1;
1621 1.1 mycroft } else {
1622 1.1 mycroft map = *mapp--;
1623 1.1 mycroft bit = 1 << (NBBY - 1);
1624 1.1 mycroft }
1625 1.1 mycroft }
1626 1.1 mycroft back = start - i;
1627 1.1 mycroft /*
1628 1.1 mycroft * Account for old cluster and the possibly new forward and
1629 1.1 mycroft * back clusters.
1630 1.1 mycroft */
1631 1.1 mycroft i = back + forw + 1;
1632 1.1 mycroft if (i > fs->fs_contigsumsize)
1633 1.1 mycroft i = fs->fs_contigsumsize;
1634 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1635 1.1 mycroft if (back > 0)
1636 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1637 1.1 mycroft if (forw > 0)
1638 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1639 1.19 bouyer
1640 1.5 mycroft /*
1641 1.5 mycroft * Update cluster summary information.
1642 1.5 mycroft */
1643 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1644 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1645 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1646 1.5 mycroft break;
1647 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1648 1.1 mycroft }
1649 1.1 mycroft
1650 1.1 mycroft /*
1651 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1652 1.1 mycroft *
1653 1.1 mycroft * The form of the error message is:
1654 1.1 mycroft * fs: error message
1655 1.1 mycroft */
1656 1.1 mycroft static void
1657 1.1 mycroft ffs_fserr(fs, uid, cp)
1658 1.1 mycroft struct fs *fs;
1659 1.1 mycroft u_int uid;
1660 1.1 mycroft char *cp;
1661 1.1 mycroft {
1662 1.1 mycroft
1663 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1664 1.1 mycroft }
1665