Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.29.14.2
      1  1.29.14.2  wrstuden /*	$NetBSD: ffs_alloc.c,v 1.29.14.2 1999/12/27 18:36:36 wrstuden Exp $	*/
      2        1.2       cgd 
      3        1.1   mycroft /*
      4        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6        1.1   mycroft  *
      7        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8        1.1   mycroft  * modification, are permitted provided that the following conditions
      9        1.1   mycroft  * are met:
     10        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15        1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16        1.1   mycroft  *    must display the following acknowledgement:
     17        1.1   mycroft  *	This product includes software developed by the University of
     18        1.1   mycroft  *	California, Berkeley and its contributors.
     19        1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21        1.1   mycroft  *    without specific prior written permission.
     22        1.1   mycroft  *
     23        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33        1.1   mycroft  * SUCH DAMAGE.
     34        1.1   mycroft  *
     35       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36        1.1   mycroft  */
     37       1.17       mrg 
     38       1.22    scottr #if defined(_KERNEL) && !defined(_LKM)
     39       1.27   thorpej #include "opt_ffs.h"
     40       1.21    scottr #include "opt_quota.h"
     41       1.22    scottr #endif
     42        1.1   mycroft 
     43        1.1   mycroft #include <sys/param.h>
     44        1.1   mycroft #include <sys/systm.h>
     45        1.1   mycroft #include <sys/buf.h>
     46        1.1   mycroft #include <sys/proc.h>
     47        1.1   mycroft #include <sys/vnode.h>
     48        1.1   mycroft #include <sys/mount.h>
     49        1.1   mycroft #include <sys/kernel.h>
     50        1.1   mycroft #include <sys/syslog.h>
     51        1.1   mycroft 
     52        1.1   mycroft #include <vm/vm.h>
     53        1.1   mycroft 
     54       1.29       mrg #include <uvm/uvm_extern.h>
     55       1.29       mrg 
     56        1.1   mycroft #include <ufs/ufs/quota.h>
     57       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     58        1.1   mycroft #include <ufs/ufs/inode.h>
     59        1.9  christos #include <ufs/ufs/ufs_extern.h>
     60       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     61        1.1   mycroft 
     62        1.1   mycroft #include <ufs/ffs/fs.h>
     63        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     64        1.1   mycroft 
     65  1.29.14.2  wrstuden static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     66  1.29.14.2  wrstuden static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     67  1.29.14.2  wrstuden 					ufs_daddr_t));
     68  1.29.14.2  wrstuden static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     69  1.29.14.2  wrstuden static ino_t ffs_dirpref __P((struct fs *));
     70  1.29.14.2  wrstuden static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71  1.29.14.2  wrstuden static void ffs_fserr __P((struct fs *, u_int, char *));
     72  1.29.14.2  wrstuden static u_long ffs_hashalloc
     73  1.29.14.2  wrstuden 		__P((struct inode *, int, long, int,
     74  1.29.14.2  wrstuden 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     75  1.29.14.2  wrstuden static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     76  1.29.14.2  wrstuden static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     77  1.29.14.2  wrstuden 				      ufs_daddr_t, int));
     78       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     79       1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80       1.18      fvdl #endif
     81       1.23  drochner 
     82       1.23  drochner /* in ffs_tables.c */
     83       1.23  drochner extern int inside[], around[];
     84       1.23  drochner extern u_char *fragtbl[];
     85        1.1   mycroft 
     86        1.1   mycroft /*
     87        1.1   mycroft  * Allocate a block in the file system.
     88        1.1   mycroft  *
     89        1.1   mycroft  * The size of the requested block is given, which must be some
     90        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     91        1.1   mycroft  * A preference may be optionally specified. If a preference is given
     92        1.1   mycroft  * the following hierarchy is used to allocate a block:
     93        1.1   mycroft  *   1) allocate the requested block.
     94        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     95        1.1   mycroft  *   3) allocate a block in the same cylinder group.
     96        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     97        1.1   mycroft  *      available block is located.
     98        1.1   mycroft  * If no block preference is given the following heirarchy is used
     99        1.1   mycroft  * to allocate a block:
    100        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    101        1.1   mycroft  *      inode for the file.
    102        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    103        1.1   mycroft  *      available block is located.
    104        1.1   mycroft  */
    105        1.9  christos int
    106        1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    107        1.1   mycroft 	register struct inode *ip;
    108       1.18      fvdl 	ufs_daddr_t lbn, bpref;
    109        1.1   mycroft 	int size;
    110        1.1   mycroft 	struct ucred *cred;
    111       1.18      fvdl 	ufs_daddr_t *bnp;
    112        1.1   mycroft {
    113        1.1   mycroft 	register struct fs *fs;
    114       1.18      fvdl 	ufs_daddr_t bno;
    115        1.9  christos 	int cg;
    116        1.9  christos #ifdef QUOTA
    117        1.9  christos 	int error;
    118        1.9  christos #endif
    119        1.1   mycroft 
    120        1.1   mycroft 	*bnp = 0;
    121        1.1   mycroft 	fs = ip->i_fs;
    122        1.1   mycroft #ifdef DIAGNOSTIC
    123        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    124       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    125        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    126        1.1   mycroft 		panic("ffs_alloc: bad size");
    127        1.1   mycroft 	}
    128        1.1   mycroft 	if (cred == NOCRED)
    129        1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    130        1.1   mycroft #endif /* DIAGNOSTIC */
    131        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    132        1.1   mycroft 		goto nospace;
    133        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    134        1.1   mycroft 		goto nospace;
    135        1.1   mycroft #ifdef QUOTA
    136  1.29.14.1  wrstuden 	if ((error = chkdq(ip, (long)btodb(size, UFS_BSHIFT), cred, 0)) != 0)
    137        1.1   mycroft 		return (error);
    138        1.1   mycroft #endif
    139        1.1   mycroft 	if (bpref >= fs->fs_size)
    140        1.1   mycroft 		bpref = 0;
    141        1.1   mycroft 	if (bpref == 0)
    142        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    143        1.1   mycroft 	else
    144        1.1   mycroft 		cg = dtog(fs, bpref);
    145       1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    146        1.9  christos 	    			     ffs_alloccg);
    147        1.1   mycroft 	if (bno > 0) {
    148  1.29.14.1  wrstuden 		ip->i_ffs_blocks += btodb(size, UFS_BSHIFT);
    149        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    150        1.1   mycroft 		*bnp = bno;
    151        1.1   mycroft 		return (0);
    152        1.1   mycroft 	}
    153        1.1   mycroft #ifdef QUOTA
    154        1.1   mycroft 	/*
    155        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    156        1.1   mycroft 	 */
    157  1.29.14.1  wrstuden 	(void) chkdq(ip, (long)-btodb(size, UFS_BSHIFT), cred, FORCE);
    158        1.1   mycroft #endif
    159        1.1   mycroft nospace:
    160        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    161        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    162        1.1   mycroft 	return (ENOSPC);
    163        1.1   mycroft }
    164        1.1   mycroft 
    165        1.1   mycroft /*
    166        1.1   mycroft  * Reallocate a fragment to a bigger size
    167        1.1   mycroft  *
    168        1.1   mycroft  * The number and size of the old block is given, and a preference
    169        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    170        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    171        1.1   mycroft  * invoked to get an appropriate block.
    172        1.1   mycroft  */
    173        1.9  christos int
    174        1.1   mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    175        1.1   mycroft 	register struct inode *ip;
    176       1.18      fvdl 	ufs_daddr_t lbprev;
    177       1.18      fvdl 	ufs_daddr_t bpref;
    178        1.1   mycroft 	int osize, nsize;
    179        1.1   mycroft 	struct ucred *cred;
    180        1.1   mycroft 	struct buf **bpp;
    181        1.1   mycroft {
    182        1.1   mycroft 	register struct fs *fs;
    183        1.1   mycroft 	struct buf *bp;
    184        1.1   mycroft 	int cg, request, error;
    185       1.18      fvdl 	ufs_daddr_t bprev, bno;
    186       1.25   thorpej 
    187        1.1   mycroft 	*bpp = 0;
    188        1.1   mycroft 	fs = ip->i_fs;
    189        1.1   mycroft #ifdef DIAGNOSTIC
    190        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    191        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    192       1.13  christos 		printf(
    193        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    194        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    195        1.1   mycroft 		panic("ffs_realloccg: bad size");
    196        1.1   mycroft 	}
    197        1.1   mycroft 	if (cred == NOCRED)
    198        1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    199        1.1   mycroft #endif /* DIAGNOSTIC */
    200        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    201        1.1   mycroft 		goto nospace;
    202  1.29.14.2  wrstuden 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    203       1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    204        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    205        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    206        1.1   mycroft 	}
    207        1.1   mycroft 	/*
    208        1.1   mycroft 	 * Allocate the extra space in the buffer.
    209        1.1   mycroft 	 */
    210        1.9  christos 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    211        1.1   mycroft 		brelse(bp);
    212        1.1   mycroft 		return (error);
    213        1.1   mycroft 	}
    214        1.1   mycroft #ifdef QUOTA
    215  1.29.14.1  wrstuden 	if ((error = chkdq(ip, (long)btodb(nsize - osize, UFS_BSHIFT), cred, 0)) != 0) {
    216        1.1   mycroft 		brelse(bp);
    217        1.1   mycroft 		return (error);
    218        1.1   mycroft 	}
    219        1.1   mycroft #endif
    220        1.1   mycroft 	/*
    221        1.1   mycroft 	 * Check for extension in the existing location.
    222        1.1   mycroft 	 */
    223        1.1   mycroft 	cg = dtog(fs, bprev);
    224        1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    225        1.1   mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    226        1.1   mycroft 			panic("bad blockno");
    227  1.29.14.1  wrstuden 		ip->i_ffs_blocks += btodb(nsize - osize, UFS_BSHIFT);
    228        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    229        1.1   mycroft 		allocbuf(bp, nsize);
    230        1.1   mycroft 		bp->b_flags |= B_DONE;
    231       1.24     perry 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    232        1.1   mycroft 		*bpp = bp;
    233        1.1   mycroft 		return (0);
    234        1.1   mycroft 	}
    235        1.1   mycroft 	/*
    236        1.1   mycroft 	 * Allocate a new disk location.
    237        1.1   mycroft 	 */
    238        1.1   mycroft 	if (bpref >= fs->fs_size)
    239        1.1   mycroft 		bpref = 0;
    240        1.1   mycroft 	switch ((int)fs->fs_optim) {
    241        1.1   mycroft 	case FS_OPTSPACE:
    242        1.1   mycroft 		/*
    243        1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    244        1.1   mycroft 		 * best use of space, we will waste time relocating it if
    245        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    246        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    247        1.1   mycroft 		 * to begin optimizing for time.
    248        1.1   mycroft 		 */
    249        1.1   mycroft 		request = nsize;
    250        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    251        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    252        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    253        1.1   mycroft 			break;
    254        1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    255        1.1   mycroft 			fs->fs_fsmnt);
    256        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    257        1.1   mycroft 		break;
    258        1.1   mycroft 	case FS_OPTTIME:
    259        1.1   mycroft 		/*
    260        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    261        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    262        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    263        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    264        1.1   mycroft 		 * above will be able to grow it in place without further
    265        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    266        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    267        1.1   mycroft 		 * optimizing for space.
    268        1.1   mycroft 		 */
    269        1.1   mycroft 		request = fs->fs_bsize;
    270        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    271        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    272        1.1   mycroft 			break;
    273        1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    274        1.1   mycroft 			fs->fs_fsmnt);
    275        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    276        1.1   mycroft 		break;
    277        1.1   mycroft 	default:
    278       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    279        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    280        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    281        1.1   mycroft 		/* NOTREACHED */
    282        1.1   mycroft 	}
    283       1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    284        1.9  christos 	    			     ffs_alloccg);
    285        1.1   mycroft 	if (bno > 0) {
    286        1.1   mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    287       1.16       mrg 		(void) uvm_vnp_uncache(ITOV(ip));
    288  1.29.14.2  wrstuden 		if (!DOINGSOFTDEP(ITOV(ip)))
    289  1.29.14.2  wrstuden 			ffs_blkfree(ip, bprev, (long)osize);
    290        1.1   mycroft 		if (nsize < request)
    291        1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    292        1.1   mycroft 			    (long)(request - nsize));
    293  1.29.14.1  wrstuden 		ip->i_ffs_blocks += btodb(nsize - osize, UFS_BSHIFT);
    294        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    295        1.1   mycroft 		allocbuf(bp, nsize);
    296        1.1   mycroft 		bp->b_flags |= B_DONE;
    297       1.24     perry 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    298        1.1   mycroft 		*bpp = bp;
    299        1.1   mycroft 		return (0);
    300        1.1   mycroft 	}
    301        1.1   mycroft #ifdef QUOTA
    302        1.1   mycroft 	/*
    303        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    304        1.1   mycroft 	 */
    305  1.29.14.1  wrstuden 	(void) chkdq(ip, (long)-btodb(nsize - osize, UFS_BSHIFT), cred, FORCE);
    306        1.1   mycroft #endif
    307        1.1   mycroft 	brelse(bp);
    308        1.1   mycroft nospace:
    309        1.1   mycroft 	/*
    310        1.1   mycroft 	 * no space available
    311        1.1   mycroft 	 */
    312        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    313        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    314        1.1   mycroft 	return (ENOSPC);
    315        1.1   mycroft }
    316        1.1   mycroft 
    317        1.1   mycroft /*
    318        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    319        1.1   mycroft  *
    320        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    321        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    322        1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    323        1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    324        1.1   mycroft  * block immediately preceeding the current range. If successful, the
    325        1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    326        1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    327        1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    328        1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    329        1.1   mycroft  * the previous block allocation will be used.
    330        1.1   mycroft  */
    331        1.3   mycroft #ifdef DEBUG
    332        1.1   mycroft #include <sys/sysctl.h>
    333        1.5   mycroft int prtrealloc = 0;
    334        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    335        1.1   mycroft #endif
    336        1.1   mycroft 
    337       1.18      fvdl int doasyncfree = 1;
    338       1.18      fvdl extern int doreallocblks;
    339       1.18      fvdl 
    340        1.1   mycroft int
    341        1.9  christos ffs_reallocblks(v)
    342        1.9  christos 	void *v;
    343        1.9  christos {
    344        1.1   mycroft 	struct vop_reallocblks_args /* {
    345        1.1   mycroft 		struct vnode *a_vp;
    346        1.1   mycroft 		struct cluster_save *a_buflist;
    347        1.9  christos 	} */ *ap = v;
    348        1.1   mycroft 	struct fs *fs;
    349        1.1   mycroft 	struct inode *ip;
    350        1.1   mycroft 	struct vnode *vp;
    351        1.1   mycroft 	struct buf *sbp, *ebp;
    352       1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    353        1.1   mycroft 	struct cluster_save *buflist;
    354       1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    355        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    356        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    357        1.1   mycroft 
    358        1.1   mycroft 	vp = ap->a_vp;
    359        1.1   mycroft 	ip = VTOI(vp);
    360        1.1   mycroft 	fs = ip->i_fs;
    361        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    362        1.1   mycroft 		return (ENOSPC);
    363        1.1   mycroft 	buflist = ap->a_buflist;
    364        1.1   mycroft 	len = buflist->bs_nchildren;
    365        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    366        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    367        1.1   mycroft #ifdef DIAGNOSTIC
    368       1.18      fvdl 	for (i = 0; i < len; i++)
    369       1.18      fvdl 		if (!ffs_checkblk(ip,
    370       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    371       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    372        1.1   mycroft 	for (i = 1; i < len; i++)
    373        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    374       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    375       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    376       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    377       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    378       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    379       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    380        1.1   mycroft #endif
    381        1.1   mycroft 	/*
    382        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    383        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    384        1.1   mycroft 	 * the previous cylinder group.
    385        1.1   mycroft 	 */
    386        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    387        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    388        1.1   mycroft 		return (ENOSPC);
    389        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    390        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    391        1.1   mycroft 		return (ENOSPC);
    392        1.1   mycroft 	/*
    393        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    394        1.1   mycroft 	 */
    395        1.1   mycroft 	if (start_lvl == 0) {
    396       1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    397        1.1   mycroft 		soff = start_lbn;
    398        1.1   mycroft 	} else {
    399        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    400        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    401        1.1   mycroft 			brelse(sbp);
    402        1.1   mycroft 			return (ENOSPC);
    403        1.1   mycroft 		}
    404       1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    405        1.1   mycroft 		soff = idp->in_off;
    406        1.1   mycroft 	}
    407        1.1   mycroft 	/*
    408        1.1   mycroft 	 * Find the preferred location for the cluster.
    409        1.1   mycroft 	 */
    410        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    411        1.1   mycroft 	/*
    412        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    413        1.1   mycroft 	 */
    414        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    415        1.1   mycroft 		ssize = len;
    416        1.1   mycroft 	} else {
    417        1.1   mycroft #ifdef DIAGNOSTIC
    418        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    419        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    420        1.1   mycroft #endif
    421        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    422        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    423        1.1   mycroft 			goto fail;
    424       1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    425        1.1   mycroft 	}
    426        1.1   mycroft 	/*
    427        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    428        1.1   mycroft 	 */
    429       1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    430        1.9  christos 	    len, ffs_clusteralloc)) == 0)
    431        1.1   mycroft 		goto fail;
    432        1.1   mycroft 	/*
    433        1.1   mycroft 	 * We have found a new contiguous block.
    434        1.1   mycroft 	 *
    435        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    436        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    437        1.1   mycroft 	 * with the file.
    438        1.1   mycroft 	 */
    439        1.5   mycroft #ifdef DEBUG
    440        1.5   mycroft 	if (prtrealloc)
    441       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    442        1.5   mycroft 		    start_lbn, end_lbn);
    443        1.5   mycroft #endif
    444        1.1   mycroft 	blkno = newblk;
    445        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    446  1.29.14.2  wrstuden 		ufs_daddr_t ba;
    447  1.29.14.2  wrstuden 
    448  1.29.14.2  wrstuden 		if (i == ssize) {
    449        1.1   mycroft 			bap = ebap;
    450  1.29.14.2  wrstuden 			soff = -i;
    451  1.29.14.2  wrstuden 		}
    452  1.29.14.2  wrstuden 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    453        1.1   mycroft #ifdef DIAGNOSTIC
    454       1.18      fvdl 		if (!ffs_checkblk(ip,
    455       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    456       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    457  1.29.14.2  wrstuden 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    458        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    459        1.1   mycroft #endif
    460        1.5   mycroft #ifdef DEBUG
    461        1.5   mycroft 		if (prtrealloc)
    462  1.29.14.2  wrstuden 			printf(" %d,", ba);
    463        1.5   mycroft #endif
    464  1.29.14.2  wrstuden  		if (DOINGSOFTDEP(vp)) {
    465  1.29.14.2  wrstuden  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    466  1.29.14.2  wrstuden  				softdep_setup_allocdirect(ip, start_lbn + i,
    467  1.29.14.2  wrstuden  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    468  1.29.14.2  wrstuden  				    buflist->bs_children[i]);
    469  1.29.14.2  wrstuden  			else
    470  1.29.14.2  wrstuden  				softdep_setup_allocindir_page(ip, start_lbn + i,
    471  1.29.14.2  wrstuden  				    i < ssize ? sbp : ebp, soff + i, blkno,
    472  1.29.14.2  wrstuden  				    ba, buflist->bs_children[i]);
    473  1.29.14.2  wrstuden  		}
    474  1.29.14.2  wrstuden 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    475        1.1   mycroft 	}
    476        1.1   mycroft 	/*
    477        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    478        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    479        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    480        1.1   mycroft 	 * they are almost never written, but if we are concerned about
    481        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    482        1.1   mycroft 	 *
    483        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    484        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    485        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    486        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    487        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    488        1.1   mycroft 	 * synchronous write only when it has been cleared.
    489        1.1   mycroft 	 */
    490       1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    491        1.1   mycroft 		if (doasyncfree)
    492        1.1   mycroft 			bdwrite(sbp);
    493        1.1   mycroft 		else
    494        1.1   mycroft 			bwrite(sbp);
    495        1.1   mycroft 	} else {
    496        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    497       1.28   mycroft 		if (!doasyncfree)
    498       1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    499        1.1   mycroft 	}
    500       1.25   thorpej 	if (ssize < len) {
    501        1.1   mycroft 		if (doasyncfree)
    502        1.1   mycroft 			bdwrite(ebp);
    503        1.1   mycroft 		else
    504        1.1   mycroft 			bwrite(ebp);
    505       1.25   thorpej 	}
    506        1.1   mycroft 	/*
    507        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    508        1.1   mycroft 	 */
    509        1.5   mycroft #ifdef DEBUG
    510        1.5   mycroft 	if (prtrealloc)
    511       1.13  christos 		printf("\n\tnew:");
    512        1.5   mycroft #endif
    513        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    514  1.29.14.2  wrstuden 		if (!DOINGSOFTDEP(vp))
    515  1.29.14.2  wrstuden 			ffs_blkfree(ip,
    516  1.29.14.2  wrstuden 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    517  1.29.14.2  wrstuden 			    fs->fs_bsize);
    518        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    519        1.5   mycroft #ifdef DEBUG
    520       1.18      fvdl 		if (!ffs_checkblk(ip,
    521       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    522       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    523        1.5   mycroft 		if (prtrealloc)
    524       1.13  christos 			printf(" %d,", blkno);
    525        1.5   mycroft #endif
    526        1.5   mycroft 	}
    527        1.5   mycroft #ifdef DEBUG
    528        1.5   mycroft 	if (prtrealloc) {
    529        1.5   mycroft 		prtrealloc--;
    530       1.13  christos 		printf("\n");
    531        1.1   mycroft 	}
    532        1.5   mycroft #endif
    533        1.1   mycroft 	return (0);
    534        1.1   mycroft 
    535        1.1   mycroft fail:
    536        1.1   mycroft 	if (ssize < len)
    537        1.1   mycroft 		brelse(ebp);
    538       1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    539        1.1   mycroft 		brelse(sbp);
    540        1.1   mycroft 	return (ENOSPC);
    541        1.1   mycroft }
    542        1.1   mycroft 
    543        1.1   mycroft /*
    544        1.1   mycroft  * Allocate an inode in the file system.
    545        1.1   mycroft  *
    546        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    547        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    548        1.1   mycroft  *   1) allocate the preferred inode.
    549        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    550        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    551        1.1   mycroft  *      available inode is located.
    552        1.1   mycroft  * If no inode preference is given the following heirarchy is used
    553        1.1   mycroft  * to allocate an inode:
    554        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    555        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    556        1.1   mycroft  *      available inode is located.
    557        1.1   mycroft  */
    558        1.9  christos int
    559        1.9  christos ffs_valloc(v)
    560        1.9  christos 	void *v;
    561        1.9  christos {
    562        1.1   mycroft 	struct vop_valloc_args /* {
    563        1.1   mycroft 		struct vnode *a_pvp;
    564        1.1   mycroft 		int a_mode;
    565        1.1   mycroft 		struct ucred *a_cred;
    566        1.1   mycroft 		struct vnode **a_vpp;
    567        1.9  christos 	} */ *ap = v;
    568        1.1   mycroft 	register struct vnode *pvp = ap->a_pvp;
    569        1.1   mycroft 	register struct inode *pip;
    570        1.1   mycroft 	register struct fs *fs;
    571        1.1   mycroft 	register struct inode *ip;
    572        1.1   mycroft 	mode_t mode = ap->a_mode;
    573        1.1   mycroft 	ino_t ino, ipref;
    574        1.1   mycroft 	int cg, error;
    575        1.1   mycroft 
    576        1.1   mycroft 	*ap->a_vpp = NULL;
    577        1.1   mycroft 	pip = VTOI(pvp);
    578        1.1   mycroft 	fs = pip->i_fs;
    579        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    580        1.1   mycroft 		goto noinodes;
    581        1.1   mycroft 
    582        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    583        1.1   mycroft 		ipref = ffs_dirpref(fs);
    584        1.1   mycroft 	else
    585        1.1   mycroft 		ipref = pip->i_number;
    586        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    587        1.1   mycroft 		ipref = 0;
    588        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    589        1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    590        1.1   mycroft 	if (ino == 0)
    591        1.1   mycroft 		goto noinodes;
    592        1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    593        1.1   mycroft 	if (error) {
    594        1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    595        1.1   mycroft 		return (error);
    596        1.1   mycroft 	}
    597        1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    598       1.15    bouyer 	if (ip->i_ffs_mode) {
    599       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    600       1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    601        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    602        1.1   mycroft 	}
    603       1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    604       1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    605       1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    606       1.15    bouyer 		ip->i_ffs_blocks = 0;
    607        1.1   mycroft 	}
    608       1.15    bouyer 	ip->i_ffs_flags = 0;
    609        1.1   mycroft 	/*
    610        1.1   mycroft 	 * Set up a new generation number for this inode.
    611        1.1   mycroft 	 */
    612       1.15    bouyer 	ip->i_ffs_gen++;
    613        1.1   mycroft 	return (0);
    614        1.1   mycroft noinodes:
    615        1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    616        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    617        1.1   mycroft 	return (ENOSPC);
    618        1.1   mycroft }
    619        1.1   mycroft 
    620        1.1   mycroft /*
    621        1.1   mycroft  * Find a cylinder to place a directory.
    622        1.1   mycroft  *
    623        1.1   mycroft  * The policy implemented by this algorithm is to select from
    624        1.1   mycroft  * among those cylinder groups with above the average number of
    625        1.1   mycroft  * free inodes, the one with the smallest number of directories.
    626        1.1   mycroft  */
    627        1.1   mycroft static ino_t
    628        1.1   mycroft ffs_dirpref(fs)
    629        1.1   mycroft 	register struct fs *fs;
    630        1.1   mycroft {
    631        1.1   mycroft 	int cg, minndir, mincg, avgifree;
    632        1.1   mycroft 
    633        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    634        1.1   mycroft 	minndir = fs->fs_ipg;
    635        1.1   mycroft 	mincg = 0;
    636        1.1   mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    637        1.1   mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    638        1.1   mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    639        1.1   mycroft 			mincg = cg;
    640        1.1   mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    641        1.1   mycroft 		}
    642        1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    643        1.1   mycroft }
    644        1.1   mycroft 
    645        1.1   mycroft /*
    646        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    647        1.1   mycroft  * logically divided into sections. The first section is composed of the
    648        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    649        1.1   mycroft  *
    650        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    651        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    652        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    653        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    654        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    655        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    656        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    657        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    658        1.1   mycroft  * continues until a cylinder group with greater than the average number
    659        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    660        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    661        1.1   mycroft  * here a best guess is made based upon the logical block number being
    662        1.1   mycroft  * allocated.
    663        1.1   mycroft  *
    664        1.1   mycroft  * If a section is already partially allocated, the policy is to
    665        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    666        1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    667        1.1   mycroft  * so that the disk head will be in transit between them for at least
    668        1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    669        1.1   mycroft  * schedule another I/O transfer.
    670        1.1   mycroft  */
    671       1.18      fvdl ufs_daddr_t
    672        1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    673        1.1   mycroft 	struct inode *ip;
    674       1.18      fvdl 	ufs_daddr_t lbn;
    675        1.1   mycroft 	int indx;
    676       1.18      fvdl 	ufs_daddr_t *bap;
    677        1.1   mycroft {
    678        1.1   mycroft 	register struct fs *fs;
    679        1.1   mycroft 	register int cg;
    680        1.1   mycroft 	int avgbfree, startcg;
    681       1.18      fvdl 	ufs_daddr_t nextblk;
    682        1.1   mycroft 
    683        1.1   mycroft 	fs = ip->i_fs;
    684        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    685        1.1   mycroft 		if (lbn < NDADDR) {
    686        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    687        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    688        1.1   mycroft 		}
    689        1.1   mycroft 		/*
    690        1.1   mycroft 		 * Find a cylinder with greater than average number of
    691        1.1   mycroft 		 * unused data blocks.
    692        1.1   mycroft 		 */
    693        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    694        1.1   mycroft 			startcg =
    695        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    696        1.1   mycroft 		else
    697       1.19    bouyer 			startcg = dtog(fs,
    698  1.29.14.2  wrstuden 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    699        1.1   mycroft 		startcg %= fs->fs_ncg;
    700        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    701        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    702        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    703        1.1   mycroft 				fs->fs_cgrotor = cg;
    704        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    705        1.1   mycroft 			}
    706        1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    707        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    708        1.1   mycroft 				fs->fs_cgrotor = cg;
    709        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    710        1.1   mycroft 			}
    711        1.1   mycroft 		return (NULL);
    712        1.1   mycroft 	}
    713        1.1   mycroft 	/*
    714        1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    715        1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    716        1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    717        1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    718        1.1   mycroft 	 */
    719  1.29.14.2  wrstuden 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    720       1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    721  1.29.14.2  wrstuden 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    722        1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    723        1.1   mycroft 		return (nextblk);
    724        1.1   mycroft 	if (fs->fs_rotdelay != 0)
    725        1.1   mycroft 		/*
    726        1.1   mycroft 		 * Here we convert ms of delay to frags as:
    727        1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    728        1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    729        1.1   mycroft 		 * then round up to the next block.
    730        1.1   mycroft 		 */
    731        1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    732        1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    733        1.1   mycroft 	return (nextblk);
    734        1.1   mycroft }
    735        1.1   mycroft 
    736        1.1   mycroft /*
    737        1.1   mycroft  * Implement the cylinder overflow algorithm.
    738        1.1   mycroft  *
    739        1.1   mycroft  * The policy implemented by this algorithm is:
    740        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    741        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    742        1.1   mycroft  *   3) brute force search for a free block.
    743        1.1   mycroft  */
    744        1.1   mycroft /*VARARGS5*/
    745        1.1   mycroft static u_long
    746        1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    747        1.1   mycroft 	struct inode *ip;
    748        1.1   mycroft 	int cg;
    749        1.1   mycroft 	long pref;
    750        1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    751       1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    752        1.1   mycroft {
    753        1.1   mycroft 	register struct fs *fs;
    754        1.1   mycroft 	long result;
    755        1.1   mycroft 	int i, icg = cg;
    756        1.1   mycroft 
    757        1.1   mycroft 	fs = ip->i_fs;
    758        1.1   mycroft 	/*
    759        1.1   mycroft 	 * 1: preferred cylinder group
    760        1.1   mycroft 	 */
    761        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    762        1.1   mycroft 	if (result)
    763        1.1   mycroft 		return (result);
    764        1.1   mycroft 	/*
    765        1.1   mycroft 	 * 2: quadratic rehash
    766        1.1   mycroft 	 */
    767        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    768        1.1   mycroft 		cg += i;
    769        1.1   mycroft 		if (cg >= fs->fs_ncg)
    770        1.1   mycroft 			cg -= fs->fs_ncg;
    771        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    772        1.1   mycroft 		if (result)
    773        1.1   mycroft 			return (result);
    774        1.1   mycroft 	}
    775        1.1   mycroft 	/*
    776        1.1   mycroft 	 * 3: brute force search
    777        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    778        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    779        1.1   mycroft 	 */
    780        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    781        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    782        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    783        1.1   mycroft 		if (result)
    784        1.1   mycroft 			return (result);
    785        1.1   mycroft 		cg++;
    786        1.1   mycroft 		if (cg == fs->fs_ncg)
    787        1.1   mycroft 			cg = 0;
    788        1.1   mycroft 	}
    789        1.1   mycroft 	return (NULL);
    790        1.1   mycroft }
    791        1.1   mycroft 
    792        1.1   mycroft /*
    793        1.1   mycroft  * Determine whether a fragment can be extended.
    794        1.1   mycroft  *
    795        1.1   mycroft  * Check to see if the necessary fragments are available, and
    796        1.1   mycroft  * if they are, allocate them.
    797        1.1   mycroft  */
    798       1.18      fvdl static ufs_daddr_t
    799        1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    800        1.1   mycroft 	struct inode *ip;
    801        1.1   mycroft 	int cg;
    802        1.1   mycroft 	long bprev;
    803        1.1   mycroft 	int osize, nsize;
    804        1.1   mycroft {
    805        1.1   mycroft 	register struct fs *fs;
    806        1.1   mycroft 	register struct cg *cgp;
    807        1.1   mycroft 	struct buf *bp;
    808        1.1   mycroft 	long bno;
    809        1.1   mycroft 	int frags, bbase;
    810        1.1   mycroft 	int i, error;
    811        1.1   mycroft 
    812        1.1   mycroft 	fs = ip->i_fs;
    813        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    814        1.1   mycroft 		return (NULL);
    815        1.1   mycroft 	frags = numfrags(fs, nsize);
    816        1.1   mycroft 	bbase = fragnum(fs, bprev);
    817        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    818        1.1   mycroft 		/* cannot extend across a block boundary */
    819        1.1   mycroft 		return (NULL);
    820        1.1   mycroft 	}
    821        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    822        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    823        1.1   mycroft 	if (error) {
    824        1.1   mycroft 		brelse(bp);
    825        1.1   mycroft 		return (NULL);
    826        1.1   mycroft 	}
    827        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    828  1.29.14.2  wrstuden 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    829        1.1   mycroft 		brelse(bp);
    830        1.1   mycroft 		return (NULL);
    831        1.1   mycroft 	}
    832  1.29.14.2  wrstuden 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    833        1.1   mycroft 	bno = dtogd(fs, bprev);
    834        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    835  1.29.14.2  wrstuden 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    836        1.1   mycroft 			brelse(bp);
    837        1.1   mycroft 			return (NULL);
    838        1.1   mycroft 		}
    839        1.1   mycroft 	/*
    840        1.1   mycroft 	 * the current fragment can be extended
    841        1.1   mycroft 	 * deduct the count on fragment being extended into
    842        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    843        1.1   mycroft 	 * allocate the extended piece
    844        1.1   mycroft 	 */
    845        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    846  1.29.14.2  wrstuden 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    847        1.1   mycroft 			break;
    848  1.29.14.2  wrstuden 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    849        1.1   mycroft 	if (i != frags)
    850  1.29.14.2  wrstuden 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    851        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    852  1.29.14.2  wrstuden 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    853  1.29.14.2  wrstuden 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    854        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    855        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    856        1.1   mycroft 	}
    857        1.1   mycroft 	fs->fs_fmod = 1;
    858  1.29.14.2  wrstuden 	if (DOINGSOFTDEP(ITOV(ip)))
    859  1.29.14.2  wrstuden 		softdep_setup_blkmapdep(bp, fs, bprev);
    860        1.1   mycroft 	bdwrite(bp);
    861        1.1   mycroft 	return (bprev);
    862        1.1   mycroft }
    863        1.1   mycroft 
    864        1.1   mycroft /*
    865        1.1   mycroft  * Determine whether a block can be allocated.
    866        1.1   mycroft  *
    867        1.1   mycroft  * Check to see if a block of the appropriate size is available,
    868        1.1   mycroft  * and if it is, allocate it.
    869        1.1   mycroft  */
    870       1.18      fvdl static ufs_daddr_t
    871        1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    872        1.1   mycroft 	struct inode *ip;
    873        1.1   mycroft 	int cg;
    874       1.18      fvdl 	ufs_daddr_t bpref;
    875        1.1   mycroft 	int size;
    876        1.1   mycroft {
    877  1.29.14.2  wrstuden 	struct cg *cgp;
    878        1.1   mycroft 	struct buf *bp;
    879  1.29.14.2  wrstuden 	ufs_daddr_t bno, blkno;
    880  1.29.14.2  wrstuden 	int error, frags, allocsiz, i;
    881  1.29.14.2  wrstuden 	struct fs *fs = ip->i_fs;
    882  1.29.14.2  wrstuden #ifdef FFS_EI
    883  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
    884  1.29.14.2  wrstuden #endif
    885        1.1   mycroft 
    886        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    887        1.1   mycroft 		return (NULL);
    888        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    889        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    890        1.1   mycroft 	if (error) {
    891        1.1   mycroft 		brelse(bp);
    892        1.1   mycroft 		return (NULL);
    893        1.1   mycroft 	}
    894        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    895       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
    896        1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    897        1.1   mycroft 		brelse(bp);
    898        1.1   mycroft 		return (NULL);
    899        1.1   mycroft 	}
    900       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    901        1.1   mycroft 	if (size == fs->fs_bsize) {
    902  1.29.14.2  wrstuden 		bno = ffs_alloccgblk(ip, bp, bpref);
    903        1.1   mycroft 		bdwrite(bp);
    904        1.1   mycroft 		return (bno);
    905        1.1   mycroft 	}
    906        1.1   mycroft 	/*
    907        1.1   mycroft 	 * check to see if any fragments are already available
    908        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
    909        1.1   mycroft 	 * it down to a smaller size if necessary
    910        1.1   mycroft 	 */
    911        1.1   mycroft 	frags = numfrags(fs, size);
    912        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    913        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    914        1.1   mycroft 			break;
    915        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
    916        1.1   mycroft 		/*
    917        1.1   mycroft 		 * no fragments were available, so a block will be
    918        1.1   mycroft 		 * allocated, and hacked up
    919        1.1   mycroft 		 */
    920        1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    921        1.1   mycroft 			brelse(bp);
    922        1.1   mycroft 			return (NULL);
    923        1.1   mycroft 		}
    924  1.29.14.2  wrstuden 		bno = ffs_alloccgblk(ip, bp, bpref);
    925        1.1   mycroft 		bpref = dtogd(fs, bno);
    926        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
    927       1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    928        1.1   mycroft 		i = fs->fs_frag - frags;
    929       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    930        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
    931  1.29.14.2  wrstuden 		fs->fs_cs(fs, cg).cs_nffree += i;
    932        1.1   mycroft 		fs->fs_fmod = 1;
    933       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    934        1.1   mycroft 		bdwrite(bp);
    935        1.1   mycroft 		return (bno);
    936        1.1   mycroft 	}
    937  1.29.14.2  wrstuden 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    938  1.29.14.2  wrstuden #if 0
    939  1.29.14.2  wrstuden 	/*
    940  1.29.14.2  wrstuden 	 * XXX fvdl mapsearch will panic, and never return -1
    941  1.29.14.2  wrstuden 	 *          also: returning NULL as ufs_daddr_t ?
    942  1.29.14.2  wrstuden 	 */
    943        1.1   mycroft 	if (bno < 0) {
    944        1.1   mycroft 		brelse(bp);
    945        1.1   mycroft 		return (NULL);
    946        1.1   mycroft 	}
    947  1.29.14.2  wrstuden #endif
    948        1.1   mycroft 	for (i = 0; i < frags; i++)
    949       1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    950       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    951        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    952        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    953        1.1   mycroft 	fs->fs_fmod = 1;
    954       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    955        1.1   mycroft 	if (frags != allocsiz)
    956       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    957  1.29.14.2  wrstuden 	blkno = cg * fs->fs_fpg + bno;
    958  1.29.14.2  wrstuden 	if (DOINGSOFTDEP(ITOV(ip)))
    959  1.29.14.2  wrstuden 		softdep_setup_blkmapdep(bp, fs, blkno);
    960        1.1   mycroft 	bdwrite(bp);
    961  1.29.14.2  wrstuden 	return blkno;
    962        1.1   mycroft }
    963        1.1   mycroft 
    964        1.1   mycroft /*
    965        1.1   mycroft  * Allocate a block in a cylinder group.
    966        1.1   mycroft  *
    967        1.1   mycroft  * This algorithm implements the following policy:
    968        1.1   mycroft  *   1) allocate the requested block.
    969        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    970        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
    971        1.1   mycroft  *      specified cylinder group.
    972        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
    973        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
    974        1.1   mycroft  */
    975       1.18      fvdl static ufs_daddr_t
    976  1.29.14.2  wrstuden ffs_alloccgblk(ip, bp, bpref)
    977  1.29.14.2  wrstuden 	struct inode *ip;
    978  1.29.14.2  wrstuden 	struct buf *bp;
    979       1.18      fvdl 	ufs_daddr_t bpref;
    980        1.1   mycroft {
    981  1.29.14.2  wrstuden 	struct cg *cgp;
    982       1.18      fvdl 	ufs_daddr_t bno, blkno;
    983        1.1   mycroft 	int cylno, pos, delta;
    984        1.1   mycroft 	short *cylbp;
    985        1.1   mycroft 	register int i;
    986  1.29.14.2  wrstuden 	struct fs *fs = ip->i_fs;
    987  1.29.14.2  wrstuden #ifdef FFS_EI
    988  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
    989  1.29.14.2  wrstuden #endif
    990        1.1   mycroft 
    991  1.29.14.2  wrstuden 	cgp = (struct cg *)bp->b_data;
    992  1.29.14.2  wrstuden 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    993       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    994        1.1   mycroft 		goto norot;
    995        1.1   mycroft 	}
    996        1.1   mycroft 	bpref = blknum(fs, bpref);
    997        1.1   mycroft 	bpref = dtogd(fs, bpref);
    998        1.1   mycroft 	/*
    999        1.1   mycroft 	 * if the requested block is available, use it
   1000        1.1   mycroft 	 */
   1001       1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1002       1.19    bouyer 		fragstoblks(fs, bpref))) {
   1003        1.1   mycroft 		bno = bpref;
   1004        1.1   mycroft 		goto gotit;
   1005        1.1   mycroft 	}
   1006       1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1007        1.1   mycroft 		/*
   1008        1.1   mycroft 		 * Block layout information is not available.
   1009        1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1010        1.1   mycroft 		 * next available free block following the one
   1011        1.1   mycroft 		 * we just allocated. Hopefully this will at
   1012        1.1   mycroft 		 * least hit a track cache on drives of unknown
   1013        1.1   mycroft 		 * geometry (e.g. SCSI).
   1014        1.1   mycroft 		 */
   1015        1.1   mycroft 		goto norot;
   1016        1.1   mycroft 	}
   1017        1.6   mycroft 	/*
   1018        1.6   mycroft 	 * check for a block available on the same cylinder
   1019        1.6   mycroft 	 */
   1020        1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1021       1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1022        1.6   mycroft 		goto norot;
   1023        1.1   mycroft 	/*
   1024        1.1   mycroft 	 * check the summary information to see if a block is
   1025        1.1   mycroft 	 * available in the requested cylinder starting at the
   1026        1.1   mycroft 	 * requested rotational position and proceeding around.
   1027        1.1   mycroft 	 */
   1028       1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1029        1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1030        1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1031       1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1032        1.1   mycroft 			break;
   1033        1.1   mycroft 	if (i == fs->fs_nrpos)
   1034        1.1   mycroft 		for (i = 0; i < pos; i++)
   1035       1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1036        1.1   mycroft 				break;
   1037       1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1038        1.1   mycroft 		/*
   1039        1.1   mycroft 		 * found a rotational position, now find the actual
   1040        1.1   mycroft 		 * block. A panic if none is actually there.
   1041        1.1   mycroft 		 */
   1042        1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1043        1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1044        1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1045       1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1046        1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1047        1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1048        1.1   mycroft 		}
   1049        1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1050       1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1051        1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1052        1.1   mycroft 				goto gotit;
   1053        1.1   mycroft 			}
   1054        1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1055        1.1   mycroft 			if (delta <= 0 ||
   1056        1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1057        1.1   mycroft 				break;
   1058        1.1   mycroft 			i += delta;
   1059        1.1   mycroft 		}
   1060       1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1061        1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1062        1.1   mycroft 	}
   1063        1.1   mycroft norot:
   1064        1.1   mycroft 	/*
   1065        1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1066        1.1   mycroft 	 * available one in this cylinder group.
   1067        1.1   mycroft 	 */
   1068  1.29.14.2  wrstuden 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1069        1.1   mycroft 	if (bno < 0)
   1070        1.1   mycroft 		return (NULL);
   1071       1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1072        1.1   mycroft gotit:
   1073        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1074       1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1075  1.29.14.2  wrstuden 	ffs_clusteracct(fs, cgp, blkno, -1);
   1076       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1077        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1078       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1079        1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1080       1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1081  1.29.14.2  wrstuden 	    needswap);
   1082       1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1083        1.1   mycroft 	fs->fs_fmod = 1;
   1084  1.29.14.2  wrstuden 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1085  1.29.14.2  wrstuden 	if (DOINGSOFTDEP(ITOV(ip)))
   1086  1.29.14.2  wrstuden 		softdep_setup_blkmapdep(bp, fs, blkno);
   1087  1.29.14.2  wrstuden 	return (blkno);
   1088        1.1   mycroft }
   1089        1.1   mycroft 
   1090        1.1   mycroft /*
   1091        1.1   mycroft  * Determine whether a cluster can be allocated.
   1092        1.1   mycroft  *
   1093        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1094        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1095        1.1   mycroft  * take the first one that we find following bpref.
   1096        1.1   mycroft  */
   1097       1.18      fvdl static ufs_daddr_t
   1098        1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1099        1.1   mycroft 	struct inode *ip;
   1100        1.1   mycroft 	int cg;
   1101       1.18      fvdl 	ufs_daddr_t bpref;
   1102        1.1   mycroft 	int len;
   1103        1.1   mycroft {
   1104        1.1   mycroft 	register struct fs *fs;
   1105        1.1   mycroft 	register struct cg *cgp;
   1106        1.1   mycroft 	struct buf *bp;
   1107       1.18      fvdl 	int i, got, run, bno, bit, map;
   1108        1.1   mycroft 	u_char *mapp;
   1109        1.5   mycroft 	int32_t *lp;
   1110        1.1   mycroft 
   1111        1.1   mycroft 	fs = ip->i_fs;
   1112        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1113        1.1   mycroft 		return (NULL);
   1114        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1115        1.1   mycroft 	    NOCRED, &bp))
   1116        1.1   mycroft 		goto fail;
   1117        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1118  1.29.14.2  wrstuden 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1119        1.1   mycroft 		goto fail;
   1120        1.1   mycroft 	/*
   1121        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1122        1.1   mycroft 	 * available in this cylinder group.
   1123        1.1   mycroft 	 */
   1124  1.29.14.2  wrstuden 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1125        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1126  1.29.14.2  wrstuden 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1127        1.1   mycroft 			break;
   1128        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1129        1.5   mycroft 		/*
   1130        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1131        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1132        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1133        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1134        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1135        1.5   mycroft 		 */
   1136  1.29.14.2  wrstuden 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1137        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1138  1.29.14.2  wrstuden 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1139        1.5   mycroft 				break;
   1140        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1141        1.1   mycroft 		goto fail;
   1142        1.5   mycroft 	}
   1143        1.1   mycroft 	/*
   1144        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1145        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1146        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1147        1.1   mycroft 	 * block allocation. We do not search before the current
   1148        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1149        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1150        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1151        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1152        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1153        1.1   mycroft 	 */
   1154        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1155        1.1   mycroft 		bpref = 0;
   1156        1.1   mycroft 	else
   1157        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1158  1.29.14.2  wrstuden 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1159        1.1   mycroft 	map = *mapp++;
   1160        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1161       1.19    bouyer 	for (run = 0, got = bpref;
   1162  1.29.14.2  wrstuden 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1163        1.1   mycroft 		if ((map & bit) == 0) {
   1164        1.1   mycroft 			run = 0;
   1165        1.1   mycroft 		} else {
   1166        1.1   mycroft 			run++;
   1167        1.1   mycroft 			if (run == len)
   1168        1.1   mycroft 				break;
   1169        1.1   mycroft 		}
   1170       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1171        1.1   mycroft 			bit <<= 1;
   1172        1.1   mycroft 		} else {
   1173        1.1   mycroft 			map = *mapp++;
   1174        1.1   mycroft 			bit = 1;
   1175        1.1   mycroft 		}
   1176        1.1   mycroft 	}
   1177  1.29.14.2  wrstuden 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1178        1.1   mycroft 		goto fail;
   1179        1.1   mycroft 	/*
   1180        1.1   mycroft 	 * Allocate the cluster that we have found.
   1181        1.1   mycroft 	 */
   1182  1.29.14.2  wrstuden #ifdef DIAGNOSTIC
   1183       1.18      fvdl 	for (i = 1; i <= len; i++)
   1184  1.29.14.2  wrstuden 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1185  1.29.14.2  wrstuden 		    got - run + i))
   1186       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1187  1.29.14.2  wrstuden #endif
   1188       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1189       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1190       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1191        1.1   mycroft 	len = blkstofrags(fs, len);
   1192        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1193  1.29.14.2  wrstuden 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1194        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1195        1.8       cgd 	bdwrite(bp);
   1196        1.1   mycroft 	return (bno);
   1197        1.1   mycroft 
   1198        1.1   mycroft fail:
   1199        1.1   mycroft 	brelse(bp);
   1200        1.1   mycroft 	return (0);
   1201        1.1   mycroft }
   1202        1.1   mycroft 
   1203        1.1   mycroft /*
   1204        1.1   mycroft  * Determine whether an inode can be allocated.
   1205        1.1   mycroft  *
   1206        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1207        1.1   mycroft  * allocate it using the following policy:
   1208        1.1   mycroft  *   1) allocate the requested inode.
   1209        1.1   mycroft  *   2) allocate the next available inode after the requested
   1210        1.1   mycroft  *      inode in the specified cylinder group.
   1211        1.1   mycroft  */
   1212       1.18      fvdl static ufs_daddr_t
   1213        1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1214        1.1   mycroft 	struct inode *ip;
   1215        1.1   mycroft 	int cg;
   1216       1.18      fvdl 	ufs_daddr_t ipref;
   1217        1.1   mycroft 	int mode;
   1218        1.1   mycroft {
   1219        1.1   mycroft 	register struct cg *cgp;
   1220        1.1   mycroft 	struct buf *bp;
   1221        1.1   mycroft 	int error, start, len, loc, map, i;
   1222  1.29.14.2  wrstuden 	register struct fs *fs = ip->i_fs;
   1223       1.19    bouyer #ifdef FFS_EI
   1224  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
   1225       1.19    bouyer #endif
   1226        1.1   mycroft 
   1227        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1228        1.1   mycroft 		return (NULL);
   1229        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1230        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1231        1.1   mycroft 	if (error) {
   1232        1.1   mycroft 		brelse(bp);
   1233        1.1   mycroft 		return (NULL);
   1234        1.1   mycroft 	}
   1235        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1236       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1237        1.1   mycroft 		brelse(bp);
   1238        1.1   mycroft 		return (NULL);
   1239        1.1   mycroft 	}
   1240       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1241        1.1   mycroft 	if (ipref) {
   1242        1.1   mycroft 		ipref %= fs->fs_ipg;
   1243       1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1244        1.1   mycroft 			goto gotit;
   1245        1.1   mycroft 	}
   1246       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1247       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1248       1.19    bouyer 		NBBY);
   1249       1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1250        1.1   mycroft 	if (loc == 0) {
   1251        1.1   mycroft 		len = start + 1;
   1252        1.1   mycroft 		start = 0;
   1253       1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1254        1.1   mycroft 		if (loc == 0) {
   1255       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1256       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1257       1.19    bouyer 				fs->fs_fsmnt);
   1258        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1259        1.1   mycroft 			/* NOTREACHED */
   1260        1.1   mycroft 		}
   1261        1.1   mycroft 	}
   1262        1.1   mycroft 	i = start + len - loc;
   1263       1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1264        1.1   mycroft 	ipref = i * NBBY;
   1265        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1266        1.1   mycroft 		if ((map & i) == 0) {
   1267       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1268        1.1   mycroft 			goto gotit;
   1269        1.1   mycroft 		}
   1270        1.1   mycroft 	}
   1271       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1272        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1273        1.1   mycroft 	/* NOTREACHED */
   1274        1.1   mycroft gotit:
   1275  1.29.14.2  wrstuden 	if (DOINGSOFTDEP(ITOV(ip)))
   1276  1.29.14.2  wrstuden 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1277       1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1278       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1279        1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1280  1.29.14.2  wrstuden 	fs->fs_cs(fs, cg).cs_nifree--;
   1281        1.1   mycroft 	fs->fs_fmod = 1;
   1282        1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1283       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1284        1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1285        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1286        1.1   mycroft 	}
   1287        1.1   mycroft 	bdwrite(bp);
   1288        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1289        1.1   mycroft }
   1290        1.1   mycroft 
   1291        1.1   mycroft /*
   1292        1.1   mycroft  * Free a block or fragment.
   1293        1.1   mycroft  *
   1294        1.1   mycroft  * The specified block or fragment is placed back in the
   1295        1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1296        1.1   mycroft  * block reassembly is checked.
   1297        1.1   mycroft  */
   1298        1.9  christos void
   1299        1.1   mycroft ffs_blkfree(ip, bno, size)
   1300        1.1   mycroft 	register struct inode *ip;
   1301       1.18      fvdl 	ufs_daddr_t bno;
   1302        1.1   mycroft 	long size;
   1303        1.1   mycroft {
   1304        1.1   mycroft 	register struct cg *cgp;
   1305        1.1   mycroft 	struct buf *bp;
   1306       1.18      fvdl 	ufs_daddr_t blkno;
   1307        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1308  1.29.14.2  wrstuden 	register struct fs *fs = ip->i_fs;
   1309  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
   1310        1.1   mycroft 
   1311  1.29.14.2  wrstuden 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1312  1.29.14.2  wrstuden 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1313  1.29.14.2  wrstuden 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1314  1.29.14.2  wrstuden 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1315        1.1   mycroft 		panic("blkfree: bad size");
   1316        1.1   mycroft 	}
   1317        1.1   mycroft 	cg = dtog(fs, bno);
   1318        1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1319       1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1320       1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1321        1.1   mycroft 		return;
   1322        1.1   mycroft 	}
   1323        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1324        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1325        1.1   mycroft 	if (error) {
   1326        1.1   mycroft 		brelse(bp);
   1327        1.1   mycroft 		return;
   1328        1.1   mycroft 	}
   1329        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1330       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1331        1.1   mycroft 		brelse(bp);
   1332        1.1   mycroft 		return;
   1333        1.1   mycroft 	}
   1334       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1335        1.1   mycroft 	bno = dtogd(fs, bno);
   1336        1.1   mycroft 	if (size == fs->fs_bsize) {
   1337        1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1338  1.29.14.2  wrstuden 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1339       1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1340        1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1341        1.1   mycroft 			panic("blkfree: freeing free block");
   1342        1.1   mycroft 		}
   1343       1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1344  1.29.14.2  wrstuden 		ffs_clusteracct(fs, cgp, blkno, 1);
   1345       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1346        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1347        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1348        1.1   mycroft 		i = cbtocylno(fs, bno);
   1349       1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1350  1.29.14.2  wrstuden 		    needswap);
   1351       1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1352        1.1   mycroft 	} else {
   1353        1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1354        1.1   mycroft 		/*
   1355        1.1   mycroft 		 * decrement the counts associated with the old frags
   1356        1.1   mycroft 		 */
   1357       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1358       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1359        1.1   mycroft 		/*
   1360        1.1   mycroft 		 * deallocate the fragment
   1361        1.1   mycroft 		 */
   1362        1.1   mycroft 		frags = numfrags(fs, size);
   1363        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1364       1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1365       1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1366        1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1367        1.1   mycroft 				panic("blkfree: freeing free frag");
   1368        1.1   mycroft 			}
   1369       1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1370        1.1   mycroft 		}
   1371       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1372        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1373  1.29.14.2  wrstuden 		fs->fs_cs(fs, cg).cs_nffree += i;
   1374        1.1   mycroft 		/*
   1375        1.1   mycroft 		 * add back in counts associated with the new frags
   1376        1.1   mycroft 		 */
   1377       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1378       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1379        1.1   mycroft 		/*
   1380        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1381        1.1   mycroft 		 */
   1382        1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1383       1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1384       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1385        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1386        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1387  1.29.14.2  wrstuden 			ffs_clusteracct(fs, cgp, blkno, 1);
   1388       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1389        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1390        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1391        1.1   mycroft 			i = cbtocylno(fs, bbase);
   1392  1.29.14.2  wrstuden 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1393  1.29.14.2  wrstuden 								bbase)], 1,
   1394  1.29.14.2  wrstuden 			    needswap);
   1395       1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1396        1.1   mycroft 		}
   1397        1.1   mycroft 	}
   1398        1.1   mycroft 	fs->fs_fmod = 1;
   1399        1.1   mycroft 	bdwrite(bp);
   1400        1.1   mycroft }
   1401        1.1   mycroft 
   1402       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1403       1.18      fvdl /*
   1404       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1405       1.18      fvdl  * fragment is allocated, false if it is free.
   1406       1.18      fvdl  */
   1407       1.18      fvdl static int
   1408       1.18      fvdl ffs_checkblk(ip, bno, size)
   1409       1.18      fvdl 	struct inode *ip;
   1410       1.18      fvdl 	ufs_daddr_t bno;
   1411       1.18      fvdl 	long size;
   1412       1.18      fvdl {
   1413       1.18      fvdl 	struct fs *fs;
   1414       1.18      fvdl 	struct cg *cgp;
   1415       1.18      fvdl 	struct buf *bp;
   1416       1.18      fvdl 	int i, error, frags, free;
   1417       1.18      fvdl 
   1418       1.18      fvdl 	fs = ip->i_fs;
   1419       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1420       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1421       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1422       1.18      fvdl 		panic("checkblk: bad size");
   1423       1.18      fvdl 	}
   1424       1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1425       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1426       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1427       1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1428       1.18      fvdl 	if (error) {
   1429       1.18      fvdl 		brelse(bp);
   1430       1.18      fvdl 		return 0;
   1431       1.18      fvdl 	}
   1432       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1433  1.29.14.2  wrstuden 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1434       1.18      fvdl 		brelse(bp);
   1435       1.18      fvdl 		return 0;
   1436       1.18      fvdl 	}
   1437       1.18      fvdl 	bno = dtogd(fs, bno);
   1438       1.18      fvdl 	if (size == fs->fs_bsize) {
   1439  1.29.14.2  wrstuden 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1440       1.19    bouyer 			fragstoblks(fs, bno));
   1441       1.18      fvdl 	} else {
   1442       1.18      fvdl 		frags = numfrags(fs, size);
   1443       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1444  1.29.14.2  wrstuden 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1445       1.18      fvdl 				free++;
   1446       1.18      fvdl 		if (free != 0 && free != frags)
   1447       1.18      fvdl 			panic("checkblk: partially free fragment");
   1448       1.18      fvdl 	}
   1449       1.18      fvdl 	brelse(bp);
   1450       1.18      fvdl 	return (!free);
   1451       1.18      fvdl }
   1452       1.18      fvdl #endif /* DIAGNOSTIC */
   1453       1.18      fvdl 
   1454        1.1   mycroft /*
   1455        1.1   mycroft  * Free an inode.
   1456        1.1   mycroft  */
   1457        1.1   mycroft int
   1458        1.9  christos ffs_vfree(v)
   1459        1.9  christos 	void *v;
   1460        1.9  christos {
   1461        1.1   mycroft 	struct vop_vfree_args /* {
   1462        1.1   mycroft 		struct vnode *a_pvp;
   1463        1.1   mycroft 		ino_t a_ino;
   1464        1.1   mycroft 		int a_mode;
   1465        1.9  christos 	} */ *ap = v;
   1466  1.29.14.2  wrstuden 
   1467  1.29.14.2  wrstuden 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1468  1.29.14.2  wrstuden 		softdep_freefile(ap);
   1469  1.29.14.2  wrstuden 		return (0);
   1470  1.29.14.2  wrstuden 	}
   1471  1.29.14.2  wrstuden 	return (ffs_freefile(ap));
   1472  1.29.14.2  wrstuden }
   1473  1.29.14.2  wrstuden 
   1474  1.29.14.2  wrstuden /*
   1475  1.29.14.2  wrstuden  * Do the actual free operation.
   1476  1.29.14.2  wrstuden  * The specified inode is placed back in the free map.
   1477  1.29.14.2  wrstuden  */
   1478  1.29.14.2  wrstuden int
   1479  1.29.14.2  wrstuden ffs_freefile(v)
   1480  1.29.14.2  wrstuden 	void *v;
   1481  1.29.14.2  wrstuden {
   1482  1.29.14.2  wrstuden 	struct vop_vfree_args /* {
   1483  1.29.14.2  wrstuden 		struct vnode *a_pvp;
   1484  1.29.14.2  wrstuden 		ino_t a_ino;
   1485  1.29.14.2  wrstuden 		int a_mode;
   1486  1.29.14.2  wrstuden 	} */ *ap = v;
   1487        1.1   mycroft 	register struct cg *cgp;
   1488  1.29.14.2  wrstuden 	register struct inode *pip = VTOI(ap->a_pvp);
   1489  1.29.14.2  wrstuden 	register struct fs *fs = pip->i_fs;
   1490        1.1   mycroft 	ino_t ino = ap->a_ino;
   1491        1.1   mycroft 	struct buf *bp;
   1492        1.1   mycroft 	int error, cg;
   1493       1.19    bouyer #ifdef FFS_EI
   1494  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
   1495       1.19    bouyer #endif
   1496        1.1   mycroft 
   1497        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1498        1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1499        1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1500        1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1501        1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1502        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1503        1.1   mycroft 	if (error) {
   1504        1.1   mycroft 		brelse(bp);
   1505  1.29.14.2  wrstuden 		return (error);
   1506        1.1   mycroft 	}
   1507        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1508       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1509        1.1   mycroft 		brelse(bp);
   1510        1.1   mycroft 		return (0);
   1511        1.1   mycroft 	}
   1512       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1513        1.1   mycroft 	ino %= fs->fs_ipg;
   1514       1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1515       1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1516        1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1517        1.1   mycroft 		if (fs->fs_ronly == 0)
   1518        1.1   mycroft 			panic("ifree: freeing free inode");
   1519        1.1   mycroft 	}
   1520       1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1521       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1522       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1523       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1524        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1525        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1526        1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1527       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1528        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1529        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1530        1.1   mycroft 	}
   1531        1.1   mycroft 	fs->fs_fmod = 1;
   1532        1.1   mycroft 	bdwrite(bp);
   1533        1.1   mycroft 	return (0);
   1534        1.1   mycroft }
   1535        1.1   mycroft 
   1536        1.1   mycroft /*
   1537        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1538        1.1   mycroft  *
   1539        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1540        1.1   mycroft  * available.
   1541        1.1   mycroft  */
   1542       1.18      fvdl static ufs_daddr_t
   1543  1.29.14.2  wrstuden ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1544        1.1   mycroft 	register struct fs *fs;
   1545        1.1   mycroft 	register struct cg *cgp;
   1546       1.18      fvdl 	ufs_daddr_t bpref;
   1547        1.1   mycroft 	int allocsiz;
   1548        1.1   mycroft {
   1549       1.18      fvdl 	ufs_daddr_t bno;
   1550        1.1   mycroft 	int start, len, loc, i;
   1551        1.1   mycroft 	int blk, field, subfield, pos;
   1552       1.19    bouyer 	int ostart, olen;
   1553  1.29.14.2  wrstuden #ifdef FFS_EI
   1554  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
   1555  1.29.14.2  wrstuden #endif
   1556        1.1   mycroft 
   1557        1.1   mycroft 	/*
   1558        1.1   mycroft 	 * find the fragment by searching through the free block
   1559        1.1   mycroft 	 * map for an appropriate bit pattern
   1560        1.1   mycroft 	 */
   1561        1.1   mycroft 	if (bpref)
   1562        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1563        1.1   mycroft 	else
   1564       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1565        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1566       1.19    bouyer 	ostart = start;
   1567       1.19    bouyer 	olen = len;
   1568       1.19    bouyer 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1569        1.1   mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1570        1.1   mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1571        1.1   mycroft 	if (loc == 0) {
   1572        1.1   mycroft 		len = start + 1;
   1573        1.1   mycroft 		start = 0;
   1574       1.19    bouyer 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1575        1.1   mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1576        1.1   mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1577        1.1   mycroft 		if (loc == 0) {
   1578       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1579       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1580       1.20      ross 			printf("offset=%d %ld\n",
   1581       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1582       1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1583        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1584        1.1   mycroft 			/* NOTREACHED */
   1585        1.1   mycroft 		}
   1586        1.1   mycroft 	}
   1587        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1588       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1589        1.1   mycroft 	/*
   1590        1.1   mycroft 	 * found the byte in the map
   1591        1.1   mycroft 	 * sift through the bits to find the selected frag
   1592        1.1   mycroft 	 */
   1593        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1594       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1595        1.1   mycroft 		blk <<= 1;
   1596        1.1   mycroft 		field = around[allocsiz];
   1597        1.1   mycroft 		subfield = inside[allocsiz];
   1598        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1599        1.1   mycroft 			if ((blk & field) == subfield)
   1600        1.1   mycroft 				return (bno + pos);
   1601        1.1   mycroft 			field <<= 1;
   1602        1.1   mycroft 			subfield <<= 1;
   1603        1.1   mycroft 		}
   1604        1.1   mycroft 	}
   1605       1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1606        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1607        1.1   mycroft 	return (-1);
   1608        1.1   mycroft }
   1609        1.1   mycroft 
   1610        1.1   mycroft /*
   1611        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1612        1.1   mycroft  *
   1613        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1614        1.1   mycroft  */
   1615        1.9  christos void
   1616  1.29.14.2  wrstuden ffs_clusteracct(fs, cgp, blkno, cnt)
   1617        1.1   mycroft 	struct fs *fs;
   1618        1.1   mycroft 	struct cg *cgp;
   1619       1.18      fvdl 	ufs_daddr_t blkno;
   1620        1.1   mycroft 	int cnt;
   1621        1.1   mycroft {
   1622        1.4       cgd 	int32_t *sump;
   1623        1.5   mycroft 	int32_t *lp;
   1624        1.1   mycroft 	u_char *freemapp, *mapp;
   1625        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1626  1.29.14.2  wrstuden #ifdef FFS_EI
   1627  1.29.14.2  wrstuden 	const int needswap = UFS_FSNEEDSWAP(fs);
   1628  1.29.14.2  wrstuden #endif
   1629        1.1   mycroft 
   1630        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1631        1.1   mycroft 		return;
   1632       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1633       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1634        1.1   mycroft 	/*
   1635        1.1   mycroft 	 * Allocate or clear the actual block.
   1636        1.1   mycroft 	 */
   1637        1.1   mycroft 	if (cnt > 0)
   1638        1.1   mycroft 		setbit(freemapp, blkno);
   1639        1.1   mycroft 	else
   1640        1.1   mycroft 		clrbit(freemapp, blkno);
   1641        1.1   mycroft 	/*
   1642        1.1   mycroft 	 * Find the size of the cluster going forward.
   1643        1.1   mycroft 	 */
   1644        1.1   mycroft 	start = blkno + 1;
   1645        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1646       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1647       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1648        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1649        1.1   mycroft 	map = *mapp++;
   1650        1.1   mycroft 	bit = 1 << (start % NBBY);
   1651        1.1   mycroft 	for (i = start; i < end; i++) {
   1652        1.1   mycroft 		if ((map & bit) == 0)
   1653        1.1   mycroft 			break;
   1654        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1655        1.1   mycroft 			bit <<= 1;
   1656        1.1   mycroft 		} else {
   1657        1.1   mycroft 			map = *mapp++;
   1658        1.1   mycroft 			bit = 1;
   1659        1.1   mycroft 		}
   1660        1.1   mycroft 	}
   1661        1.1   mycroft 	forw = i - start;
   1662        1.1   mycroft 	/*
   1663        1.1   mycroft 	 * Find the size of the cluster going backward.
   1664        1.1   mycroft 	 */
   1665        1.1   mycroft 	start = blkno - 1;
   1666        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1667        1.1   mycroft 	if (end < 0)
   1668        1.1   mycroft 		end = -1;
   1669        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1670        1.1   mycroft 	map = *mapp--;
   1671        1.1   mycroft 	bit = 1 << (start % NBBY);
   1672        1.1   mycroft 	for (i = start; i > end; i--) {
   1673        1.1   mycroft 		if ((map & bit) == 0)
   1674        1.1   mycroft 			break;
   1675        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1676        1.1   mycroft 			bit >>= 1;
   1677        1.1   mycroft 		} else {
   1678        1.1   mycroft 			map = *mapp--;
   1679        1.1   mycroft 			bit = 1 << (NBBY - 1);
   1680        1.1   mycroft 		}
   1681        1.1   mycroft 	}
   1682        1.1   mycroft 	back = start - i;
   1683        1.1   mycroft 	/*
   1684        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1685        1.1   mycroft 	 * back clusters.
   1686        1.1   mycroft 	 */
   1687        1.1   mycroft 	i = back + forw + 1;
   1688        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1689        1.1   mycroft 		i = fs->fs_contigsumsize;
   1690       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1691        1.1   mycroft 	if (back > 0)
   1692       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1693        1.1   mycroft 	if (forw > 0)
   1694       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1695       1.19    bouyer 
   1696        1.5   mycroft 	/*
   1697        1.5   mycroft 	 * Update cluster summary information.
   1698        1.5   mycroft 	 */
   1699        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1700        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1701       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1702        1.5   mycroft 			break;
   1703       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1704        1.1   mycroft }
   1705        1.1   mycroft 
   1706        1.1   mycroft /*
   1707        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1708        1.1   mycroft  *
   1709        1.1   mycroft  * The form of the error message is:
   1710        1.1   mycroft  *	fs: error message
   1711        1.1   mycroft  */
   1712        1.1   mycroft static void
   1713        1.1   mycroft ffs_fserr(fs, uid, cp)
   1714        1.1   mycroft 	struct fs *fs;
   1715        1.1   mycroft 	u_int uid;
   1716        1.1   mycroft 	char *cp;
   1717        1.1   mycroft {
   1718        1.1   mycroft 
   1719        1.1   mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1720        1.1   mycroft }
   1721