Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.29.8.4
      1  1.29.8.4    bouyer /*	$NetBSD: ffs_alloc.c,v 1.29.8.4 2001/03/27 15:32:46 bouyer Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1   mycroft  *
      7       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8       1.1   mycroft  * modification, are permitted provided that the following conditions
      9       1.1   mycroft  * are met:
     10       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15       1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16       1.1   mycroft  *    must display the following acknowledgement:
     17       1.1   mycroft  *	This product includes software developed by the University of
     18       1.1   mycroft  *	California, Berkeley and its contributors.
     19       1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21       1.1   mycroft  *    without specific prior written permission.
     22       1.1   mycroft  *
     23       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.1   mycroft  * SUCH DAMAGE.
     34       1.1   mycroft  *
     35      1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36       1.1   mycroft  */
     37      1.17       mrg 
     38      1.22    scottr #if defined(_KERNEL) && !defined(_LKM)
     39      1.27   thorpej #include "opt_ffs.h"
     40      1.21    scottr #include "opt_quota.h"
     41      1.22    scottr #endif
     42       1.1   mycroft 
     43       1.1   mycroft #include <sys/param.h>
     44       1.1   mycroft #include <sys/systm.h>
     45       1.1   mycroft #include <sys/buf.h>
     46       1.1   mycroft #include <sys/proc.h>
     47       1.1   mycroft #include <sys/vnode.h>
     48       1.1   mycroft #include <sys/mount.h>
     49       1.1   mycroft #include <sys/kernel.h>
     50       1.1   mycroft #include <sys/syslog.h>
     51       1.1   mycroft 
     52       1.1   mycroft #include <ufs/ufs/quota.h>
     53      1.19    bouyer #include <ufs/ufs/ufsmount.h>
     54       1.1   mycroft #include <ufs/ufs/inode.h>
     55       1.9  christos #include <ufs/ufs/ufs_extern.h>
     56      1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     57       1.1   mycroft 
     58       1.1   mycroft #include <ufs/ffs/fs.h>
     59       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     60       1.1   mycroft 
     61  1.29.8.1    bouyer static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     62  1.29.8.1    bouyer static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     63  1.29.8.1    bouyer 					ufs_daddr_t));
     64  1.29.8.1    bouyer static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     65  1.29.8.4    bouyer static ino_t ffs_dirpref __P((struct fs *, ino_t));
     66  1.29.8.1    bouyer static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     67  1.29.8.1    bouyer static void ffs_fserr __P((struct fs *, u_int, char *));
     68  1.29.8.1    bouyer static u_long ffs_hashalloc
     69  1.29.8.1    bouyer 		__P((struct inode *, int, long, int,
     70  1.29.8.1    bouyer 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     71  1.29.8.1    bouyer static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     72  1.29.8.1    bouyer static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     73  1.29.8.1    bouyer 				      ufs_daddr_t, int));
     74      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     75      1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     76      1.18      fvdl #endif
     77      1.23  drochner 
     78  1.29.8.1    bouyer /* if 1, changes in optimalization strategy are logged */
     79  1.29.8.1    bouyer int ffs_log_changeopt = 0;
     80  1.29.8.1    bouyer 
     81      1.23  drochner /* in ffs_tables.c */
     82  1.29.8.3    bouyer extern const int inside[], around[];
     83  1.29.8.3    bouyer extern const u_char * const fragtbl[];
     84       1.1   mycroft 
     85       1.1   mycroft /*
     86       1.1   mycroft  * Allocate a block in the file system.
     87       1.1   mycroft  *
     88       1.1   mycroft  * The size of the requested block is given, which must be some
     89       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     90       1.1   mycroft  * A preference may be optionally specified. If a preference is given
     91       1.1   mycroft  * the following hierarchy is used to allocate a block:
     92       1.1   mycroft  *   1) allocate the requested block.
     93       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     94       1.1   mycroft  *   3) allocate a block in the same cylinder group.
     95       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     96       1.1   mycroft  *      available block is located.
     97       1.1   mycroft  * If no block preference is given the following heirarchy is used
     98       1.1   mycroft  * to allocate a block:
     99       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    100       1.1   mycroft  *      inode for the file.
    101       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    102       1.1   mycroft  *      available block is located.
    103       1.1   mycroft  */
    104       1.9  christos int
    105       1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    106  1.29.8.1    bouyer 	struct inode *ip;
    107      1.18      fvdl 	ufs_daddr_t lbn, bpref;
    108       1.1   mycroft 	int size;
    109       1.1   mycroft 	struct ucred *cred;
    110      1.18      fvdl 	ufs_daddr_t *bnp;
    111       1.1   mycroft {
    112  1.29.8.2    bouyer 	struct fs *fs = ip->i_fs;
    113      1.18      fvdl 	ufs_daddr_t bno;
    114       1.9  christos 	int cg;
    115       1.9  christos #ifdef QUOTA
    116       1.9  christos 	int error;
    117       1.9  christos #endif
    118       1.1   mycroft 
    119  1.29.8.2    bouyer #ifdef UVM_PAGE_TRKOWN
    120  1.29.8.2    bouyer 	if (ITOV(ip)->v_type == VREG && lbn > 0) {
    121  1.29.8.2    bouyer 		struct vm_page *pg;
    122  1.29.8.2    bouyer 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    123  1.29.8.3    bouyer 		voff_t off = trunc_page(lblktosize(fs, (voff_t)lbn));
    124  1.29.8.3    bouyer 		voff_t endoff = round_page(lblktosize(fs, (voff_t)lbn) + size);
    125  1.29.8.2    bouyer 
    126  1.29.8.2    bouyer 		simple_lock(&uobj->vmobjlock);
    127  1.29.8.2    bouyer 		while (off < endoff) {
    128  1.29.8.2    bouyer 			pg = uvm_pagelookup(uobj, off);
    129  1.29.8.2    bouyer 			KASSERT(pg != NULL);
    130  1.29.8.2    bouyer 			KASSERT(pg->owner == curproc->p_pid);
    131  1.29.8.2    bouyer 			KASSERT((pg->flags & PG_CLEAN) == 0);
    132  1.29.8.2    bouyer 			off += PAGE_SIZE;
    133  1.29.8.2    bouyer 		}
    134  1.29.8.2    bouyer 		simple_unlock(&uobj->vmobjlock);
    135  1.29.8.2    bouyer 	}
    136  1.29.8.2    bouyer #endif
    137  1.29.8.2    bouyer 
    138       1.1   mycroft 	*bnp = 0;
    139       1.1   mycroft #ifdef DIAGNOSTIC
    140       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    141      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    142       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    143       1.1   mycroft 		panic("ffs_alloc: bad size");
    144       1.1   mycroft 	}
    145       1.1   mycroft 	if (cred == NOCRED)
    146       1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    147       1.1   mycroft #endif /* DIAGNOSTIC */
    148       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    149       1.1   mycroft 		goto nospace;
    150       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    151       1.1   mycroft 		goto nospace;
    152       1.1   mycroft #ifdef QUOTA
    153       1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    154       1.1   mycroft 		return (error);
    155       1.1   mycroft #endif
    156       1.1   mycroft 	if (bpref >= fs->fs_size)
    157       1.1   mycroft 		bpref = 0;
    158       1.1   mycroft 	if (bpref == 0)
    159       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    160       1.1   mycroft 	else
    161       1.1   mycroft 		cg = dtog(fs, bpref);
    162      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    163       1.9  christos 	    			     ffs_alloccg);
    164       1.1   mycroft 	if (bno > 0) {
    165      1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    166       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    167       1.1   mycroft 		*bnp = bno;
    168       1.1   mycroft 		return (0);
    169       1.1   mycroft 	}
    170       1.1   mycroft #ifdef QUOTA
    171       1.1   mycroft 	/*
    172       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    173       1.1   mycroft 	 */
    174       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    175       1.1   mycroft #endif
    176       1.1   mycroft nospace:
    177       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    178       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    179       1.1   mycroft 	return (ENOSPC);
    180       1.1   mycroft }
    181       1.1   mycroft 
    182       1.1   mycroft /*
    183       1.1   mycroft  * Reallocate a fragment to a bigger size
    184       1.1   mycroft  *
    185       1.1   mycroft  * The number and size of the old block is given, and a preference
    186       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    187       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    188       1.1   mycroft  * invoked to get an appropriate block.
    189       1.1   mycroft  */
    190       1.9  christos int
    191  1.29.8.2    bouyer ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    192  1.29.8.1    bouyer 	struct inode *ip;
    193      1.18      fvdl 	ufs_daddr_t lbprev;
    194      1.18      fvdl 	ufs_daddr_t bpref;
    195       1.1   mycroft 	int osize, nsize;
    196       1.1   mycroft 	struct ucred *cred;
    197       1.1   mycroft 	struct buf **bpp;
    198  1.29.8.2    bouyer 	ufs_daddr_t *blknop;
    199       1.1   mycroft {
    200  1.29.8.2    bouyer 	struct fs *fs = ip->i_fs;
    201       1.1   mycroft 	struct buf *bp;
    202       1.1   mycroft 	int cg, request, error;
    203      1.18      fvdl 	ufs_daddr_t bprev, bno;
    204      1.25   thorpej 
    205  1.29.8.2    bouyer #ifdef UVM_PAGE_TRKOWN
    206  1.29.8.2    bouyer 	if (ITOV(ip)->v_type == VREG) {
    207  1.29.8.2    bouyer 		struct vm_page *pg;
    208  1.29.8.2    bouyer 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    209  1.29.8.2    bouyer 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    210  1.29.8.2    bouyer 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    211  1.29.8.2    bouyer 
    212  1.29.8.2    bouyer 		simple_lock(&uobj->vmobjlock);
    213  1.29.8.2    bouyer 		while (off < endoff) {
    214  1.29.8.2    bouyer 			pg = uvm_pagelookup(uobj, off);
    215  1.29.8.2    bouyer 			KASSERT(pg != NULL);
    216  1.29.8.2    bouyer 			KASSERT(pg->owner == curproc->p_pid);
    217  1.29.8.2    bouyer 			KASSERT((pg->flags & PG_CLEAN) == 0);
    218  1.29.8.2    bouyer 			off += PAGE_SIZE;
    219  1.29.8.2    bouyer 		}
    220  1.29.8.2    bouyer 		simple_unlock(&uobj->vmobjlock);
    221  1.29.8.2    bouyer 	}
    222  1.29.8.2    bouyer #endif
    223  1.29.8.2    bouyer 
    224       1.1   mycroft #ifdef DIAGNOSTIC
    225       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    226       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    227      1.13  christos 		printf(
    228       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    229       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    230       1.1   mycroft 		panic("ffs_realloccg: bad size");
    231       1.1   mycroft 	}
    232       1.1   mycroft 	if (cred == NOCRED)
    233       1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    234       1.1   mycroft #endif /* DIAGNOSTIC */
    235       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    236       1.1   mycroft 		goto nospace;
    237  1.29.8.1    bouyer 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    238      1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    239       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    240       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    241       1.1   mycroft 	}
    242       1.1   mycroft 	/*
    243       1.1   mycroft 	 * Allocate the extra space in the buffer.
    244       1.1   mycroft 	 */
    245  1.29.8.2    bouyer 	if (bpp != NULL &&
    246  1.29.8.2    bouyer 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    247       1.1   mycroft 		brelse(bp);
    248       1.1   mycroft 		return (error);
    249       1.1   mycroft 	}
    250       1.1   mycroft #ifdef QUOTA
    251       1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    252       1.1   mycroft 		brelse(bp);
    253       1.1   mycroft 		return (error);
    254       1.1   mycroft 	}
    255       1.1   mycroft #endif
    256       1.1   mycroft 	/*
    257       1.1   mycroft 	 * Check for extension in the existing location.
    258       1.1   mycroft 	 */
    259       1.1   mycroft 	cg = dtog(fs, bprev);
    260       1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    261      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    262       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    263  1.29.8.2    bouyer 
    264  1.29.8.2    bouyer 		if (bpp != NULL) {
    265  1.29.8.2    bouyer 			if (bp->b_blkno != fsbtodb(fs, bno))
    266  1.29.8.2    bouyer 				panic("bad blockno");
    267  1.29.8.2    bouyer 			allocbuf(bp, nsize);
    268  1.29.8.2    bouyer 			bp->b_flags |= B_DONE;
    269  1.29.8.2    bouyer 			memset(bp->b_data + osize, 0, nsize - osize);
    270  1.29.8.2    bouyer 			*bpp = bp;
    271  1.29.8.2    bouyer 		}
    272  1.29.8.2    bouyer 		if (blknop != NULL) {
    273  1.29.8.2    bouyer 			*blknop = bno;
    274  1.29.8.2    bouyer 		}
    275       1.1   mycroft 		return (0);
    276       1.1   mycroft 	}
    277       1.1   mycroft 	/*
    278       1.1   mycroft 	 * Allocate a new disk location.
    279       1.1   mycroft 	 */
    280       1.1   mycroft 	if (bpref >= fs->fs_size)
    281       1.1   mycroft 		bpref = 0;
    282       1.1   mycroft 	switch ((int)fs->fs_optim) {
    283       1.1   mycroft 	case FS_OPTSPACE:
    284       1.1   mycroft 		/*
    285       1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    286       1.1   mycroft 		 * best use of space, we will waste time relocating it if
    287       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    288       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    289       1.1   mycroft 		 * to begin optimizing for time.
    290       1.1   mycroft 		 */
    291       1.1   mycroft 		request = nsize;
    292       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    293       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    294       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    295       1.1   mycroft 			break;
    296  1.29.8.1    bouyer 
    297  1.29.8.1    bouyer 		if (ffs_log_changeopt) {
    298  1.29.8.1    bouyer 			log(LOG_NOTICE,
    299  1.29.8.1    bouyer 				"%s: optimization changed from SPACE to TIME\n",
    300  1.29.8.1    bouyer 				fs->fs_fsmnt);
    301  1.29.8.1    bouyer 		}
    302  1.29.8.1    bouyer 
    303       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    304       1.1   mycroft 		break;
    305       1.1   mycroft 	case FS_OPTTIME:
    306       1.1   mycroft 		/*
    307       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    308       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    309       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    310       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    311       1.1   mycroft 		 * above will be able to grow it in place without further
    312       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    313       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    314       1.1   mycroft 		 * optimizing for space.
    315       1.1   mycroft 		 */
    316       1.1   mycroft 		request = fs->fs_bsize;
    317       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    318       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    319       1.1   mycroft 			break;
    320  1.29.8.1    bouyer 
    321  1.29.8.1    bouyer 		if (ffs_log_changeopt) {
    322  1.29.8.1    bouyer 			log(LOG_NOTICE,
    323  1.29.8.1    bouyer 				"%s: optimization changed from TIME to SPACE\n",
    324  1.29.8.1    bouyer 				fs->fs_fsmnt);
    325  1.29.8.1    bouyer 		}
    326  1.29.8.1    bouyer 
    327       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    328       1.1   mycroft 		break;
    329       1.1   mycroft 	default:
    330      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    331       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    332       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    333       1.1   mycroft 		/* NOTREACHED */
    334       1.1   mycroft 	}
    335      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    336       1.9  christos 	    			     ffs_alloccg);
    337       1.1   mycroft 	if (bno > 0) {
    338  1.29.8.1    bouyer 		if (!DOINGSOFTDEP(ITOV(ip)))
    339  1.29.8.1    bouyer 			ffs_blkfree(ip, bprev, (long)osize);
    340       1.1   mycroft 		if (nsize < request)
    341       1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    342       1.1   mycroft 			    (long)(request - nsize));
    343      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    344       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    345  1.29.8.2    bouyer 		if (bpp != NULL) {
    346  1.29.8.2    bouyer 			bp->b_blkno = fsbtodb(fs, bno);
    347  1.29.8.2    bouyer 			allocbuf(bp, nsize);
    348  1.29.8.2    bouyer 			bp->b_flags |= B_DONE;
    349  1.29.8.2    bouyer 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    350  1.29.8.2    bouyer 			*bpp = bp;
    351  1.29.8.2    bouyer 		}
    352  1.29.8.2    bouyer 		if (blknop != NULL) {
    353  1.29.8.2    bouyer 			*blknop = bno;
    354  1.29.8.2    bouyer 		}
    355       1.1   mycroft 		return (0);
    356       1.1   mycroft 	}
    357       1.1   mycroft #ifdef QUOTA
    358       1.1   mycroft 	/*
    359       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    360       1.1   mycroft 	 */
    361       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    362       1.1   mycroft #endif
    363  1.29.8.2    bouyer 	if (bpp != NULL) {
    364  1.29.8.2    bouyer 		brelse(bp);
    365  1.29.8.2    bouyer 	}
    366  1.29.8.2    bouyer 
    367       1.1   mycroft nospace:
    368       1.1   mycroft 	/*
    369       1.1   mycroft 	 * no space available
    370       1.1   mycroft 	 */
    371       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    372       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    373       1.1   mycroft 	return (ENOSPC);
    374       1.1   mycroft }
    375       1.1   mycroft 
    376       1.1   mycroft /*
    377       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    378       1.1   mycroft  *
    379       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    380       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    381       1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    382       1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    383       1.1   mycroft  * block immediately preceeding the current range. If successful, the
    384       1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    385       1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    386       1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    387       1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    388       1.1   mycroft  * the previous block allocation will be used.
    389       1.1   mycroft  */
    390       1.3   mycroft #ifdef DEBUG
    391       1.1   mycroft #include <sys/sysctl.h>
    392       1.5   mycroft int prtrealloc = 0;
    393       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    394       1.1   mycroft #endif
    395       1.1   mycroft 
    396      1.18      fvdl int doasyncfree = 1;
    397      1.18      fvdl 
    398       1.1   mycroft int
    399       1.9  christos ffs_reallocblks(v)
    400       1.9  christos 	void *v;
    401       1.9  christos {
    402       1.1   mycroft 	struct vop_reallocblks_args /* {
    403       1.1   mycroft 		struct vnode *a_vp;
    404       1.1   mycroft 		struct cluster_save *a_buflist;
    405       1.9  christos 	} */ *ap = v;
    406       1.1   mycroft 	struct fs *fs;
    407       1.1   mycroft 	struct inode *ip;
    408       1.1   mycroft 	struct vnode *vp;
    409       1.1   mycroft 	struct buf *sbp, *ebp;
    410      1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    411       1.1   mycroft 	struct cluster_save *buflist;
    412      1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    413       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    414       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    415       1.1   mycroft 
    416  1.29.8.2    bouyer 	/* XXXUBC don't reallocblks for now */
    417  1.29.8.2    bouyer 	return ENOSPC;
    418  1.29.8.2    bouyer 
    419       1.1   mycroft 	vp = ap->a_vp;
    420       1.1   mycroft 	ip = VTOI(vp);
    421       1.1   mycroft 	fs = ip->i_fs;
    422       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    423       1.1   mycroft 		return (ENOSPC);
    424       1.1   mycroft 	buflist = ap->a_buflist;
    425       1.1   mycroft 	len = buflist->bs_nchildren;
    426       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    427       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    428       1.1   mycroft #ifdef DIAGNOSTIC
    429      1.18      fvdl 	for (i = 0; i < len; i++)
    430      1.18      fvdl 		if (!ffs_checkblk(ip,
    431      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    432      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    433       1.1   mycroft 	for (i = 1; i < len; i++)
    434       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    435      1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    436      1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    437      1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    438      1.18      fvdl 	for (i = 1; i < len - 1; i++)
    439      1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    440      1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    441       1.1   mycroft #endif
    442       1.1   mycroft 	/*
    443       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    444       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    445       1.1   mycroft 	 * the previous cylinder group.
    446       1.1   mycroft 	 */
    447       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    448       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    449       1.1   mycroft 		return (ENOSPC);
    450       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    451       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    452       1.1   mycroft 		return (ENOSPC);
    453       1.1   mycroft 	/*
    454       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    455       1.1   mycroft 	 */
    456       1.1   mycroft 	if (start_lvl == 0) {
    457      1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    458       1.1   mycroft 		soff = start_lbn;
    459       1.1   mycroft 	} else {
    460       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    461       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    462       1.1   mycroft 			brelse(sbp);
    463       1.1   mycroft 			return (ENOSPC);
    464       1.1   mycroft 		}
    465      1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    466       1.1   mycroft 		soff = idp->in_off;
    467       1.1   mycroft 	}
    468       1.1   mycroft 	/*
    469       1.1   mycroft 	 * Find the preferred location for the cluster.
    470       1.1   mycroft 	 */
    471       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    472       1.1   mycroft 	/*
    473       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    474       1.1   mycroft 	 */
    475       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    476       1.1   mycroft 		ssize = len;
    477       1.1   mycroft 	} else {
    478       1.1   mycroft #ifdef DIAGNOSTIC
    479       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    480       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    481       1.1   mycroft #endif
    482       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    483       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    484       1.1   mycroft 			goto fail;
    485      1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    486       1.1   mycroft 	}
    487       1.1   mycroft 	/*
    488       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    489       1.1   mycroft 	 */
    490      1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    491       1.9  christos 	    len, ffs_clusteralloc)) == 0)
    492       1.1   mycroft 		goto fail;
    493       1.1   mycroft 	/*
    494       1.1   mycroft 	 * We have found a new contiguous block.
    495       1.1   mycroft 	 *
    496       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    497       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    498       1.1   mycroft 	 * with the file.
    499       1.1   mycroft 	 */
    500       1.5   mycroft #ifdef DEBUG
    501       1.5   mycroft 	if (prtrealloc)
    502      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    503       1.5   mycroft 		    start_lbn, end_lbn);
    504       1.5   mycroft #endif
    505       1.1   mycroft 	blkno = newblk;
    506       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    507  1.29.8.1    bouyer 		ufs_daddr_t ba;
    508  1.29.8.1    bouyer 
    509  1.29.8.1    bouyer 		if (i == ssize) {
    510       1.1   mycroft 			bap = ebap;
    511  1.29.8.1    bouyer 			soff = -i;
    512  1.29.8.1    bouyer 		}
    513  1.29.8.1    bouyer 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    514       1.1   mycroft #ifdef DIAGNOSTIC
    515      1.18      fvdl 		if (!ffs_checkblk(ip,
    516      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    517      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    518  1.29.8.1    bouyer 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    519       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    520       1.1   mycroft #endif
    521       1.5   mycroft #ifdef DEBUG
    522       1.5   mycroft 		if (prtrealloc)
    523  1.29.8.1    bouyer 			printf(" %d,", ba);
    524       1.5   mycroft #endif
    525  1.29.8.1    bouyer  		if (DOINGSOFTDEP(vp)) {
    526  1.29.8.1    bouyer  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    527  1.29.8.1    bouyer  				softdep_setup_allocdirect(ip, start_lbn + i,
    528  1.29.8.1    bouyer  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    529  1.29.8.1    bouyer  				    buflist->bs_children[i]);
    530  1.29.8.1    bouyer  			else
    531  1.29.8.1    bouyer  				softdep_setup_allocindir_page(ip, start_lbn + i,
    532  1.29.8.1    bouyer  				    i < ssize ? sbp : ebp, soff + i, blkno,
    533  1.29.8.1    bouyer  				    ba, buflist->bs_children[i]);
    534  1.29.8.1    bouyer  		}
    535  1.29.8.1    bouyer 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    536       1.1   mycroft 	}
    537       1.1   mycroft 	/*
    538       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    539       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    540       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    541       1.1   mycroft 	 * they are almost never written, but if we are concerned about
    542       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    543       1.1   mycroft 	 *
    544       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    545       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    546       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    547       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    548       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    549       1.1   mycroft 	 * synchronous write only when it has been cleared.
    550       1.1   mycroft 	 */
    551      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    552       1.1   mycroft 		if (doasyncfree)
    553       1.1   mycroft 			bdwrite(sbp);
    554       1.1   mycroft 		else
    555       1.1   mycroft 			bwrite(sbp);
    556       1.1   mycroft 	} else {
    557       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    558      1.28   mycroft 		if (!doasyncfree)
    559      1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    560       1.1   mycroft 	}
    561      1.25   thorpej 	if (ssize < len) {
    562       1.1   mycroft 		if (doasyncfree)
    563       1.1   mycroft 			bdwrite(ebp);
    564       1.1   mycroft 		else
    565       1.1   mycroft 			bwrite(ebp);
    566      1.25   thorpej 	}
    567       1.1   mycroft 	/*
    568       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    569       1.1   mycroft 	 */
    570       1.5   mycroft #ifdef DEBUG
    571       1.5   mycroft 	if (prtrealloc)
    572      1.13  christos 		printf("\n\tnew:");
    573       1.5   mycroft #endif
    574       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    575  1.29.8.1    bouyer 		if (!DOINGSOFTDEP(vp))
    576  1.29.8.1    bouyer 			ffs_blkfree(ip,
    577  1.29.8.1    bouyer 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    578  1.29.8.1    bouyer 			    fs->fs_bsize);
    579       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    580       1.5   mycroft #ifdef DEBUG
    581      1.18      fvdl 		if (!ffs_checkblk(ip,
    582      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    583      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    584       1.5   mycroft 		if (prtrealloc)
    585      1.13  christos 			printf(" %d,", blkno);
    586       1.5   mycroft #endif
    587       1.5   mycroft 	}
    588       1.5   mycroft #ifdef DEBUG
    589       1.5   mycroft 	if (prtrealloc) {
    590       1.5   mycroft 		prtrealloc--;
    591      1.13  christos 		printf("\n");
    592       1.1   mycroft 	}
    593       1.5   mycroft #endif
    594       1.1   mycroft 	return (0);
    595       1.1   mycroft 
    596       1.1   mycroft fail:
    597       1.1   mycroft 	if (ssize < len)
    598       1.1   mycroft 		brelse(ebp);
    599      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    600       1.1   mycroft 		brelse(sbp);
    601       1.1   mycroft 	return (ENOSPC);
    602       1.1   mycroft }
    603       1.1   mycroft 
    604       1.1   mycroft /*
    605       1.1   mycroft  * Allocate an inode in the file system.
    606       1.1   mycroft  *
    607       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    608       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    609       1.1   mycroft  *   1) allocate the preferred inode.
    610       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    611       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    612       1.1   mycroft  *      available inode is located.
    613       1.1   mycroft  * If no inode preference is given the following heirarchy is used
    614       1.1   mycroft  * to allocate an inode:
    615       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    616       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    617       1.1   mycroft  *      available inode is located.
    618       1.1   mycroft  */
    619       1.9  christos int
    620       1.9  christos ffs_valloc(v)
    621       1.9  christos 	void *v;
    622       1.9  christos {
    623       1.1   mycroft 	struct vop_valloc_args /* {
    624       1.1   mycroft 		struct vnode *a_pvp;
    625       1.1   mycroft 		int a_mode;
    626       1.1   mycroft 		struct ucred *a_cred;
    627       1.1   mycroft 		struct vnode **a_vpp;
    628       1.9  christos 	} */ *ap = v;
    629  1.29.8.1    bouyer 	struct vnode *pvp = ap->a_pvp;
    630  1.29.8.1    bouyer 	struct inode *pip;
    631  1.29.8.1    bouyer 	struct fs *fs;
    632  1.29.8.1    bouyer 	struct inode *ip;
    633       1.1   mycroft 	mode_t mode = ap->a_mode;
    634       1.1   mycroft 	ino_t ino, ipref;
    635       1.1   mycroft 	int cg, error;
    636       1.1   mycroft 
    637       1.1   mycroft 	*ap->a_vpp = NULL;
    638       1.1   mycroft 	pip = VTOI(pvp);
    639       1.1   mycroft 	fs = pip->i_fs;
    640       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    641       1.1   mycroft 		goto noinodes;
    642       1.1   mycroft 
    643  1.29.8.4    bouyer 	ipref = pip->i_number;
    644       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    645  1.29.8.4    bouyer 		ipref = ffs_dirpref(fs, ipref);
    646       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    647       1.1   mycroft 		ipref = 0;
    648       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    649       1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    650       1.1   mycroft 	if (ino == 0)
    651       1.1   mycroft 		goto noinodes;
    652       1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    653       1.1   mycroft 	if (error) {
    654       1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    655       1.1   mycroft 		return (error);
    656       1.1   mycroft 	}
    657       1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    658      1.15    bouyer 	if (ip->i_ffs_mode) {
    659      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    660      1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    661       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    662       1.1   mycroft 	}
    663      1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    664      1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    665      1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    666      1.15    bouyer 		ip->i_ffs_blocks = 0;
    667       1.1   mycroft 	}
    668      1.15    bouyer 	ip->i_ffs_flags = 0;
    669       1.1   mycroft 	/*
    670       1.1   mycroft 	 * Set up a new generation number for this inode.
    671       1.1   mycroft 	 */
    672      1.15    bouyer 	ip->i_ffs_gen++;
    673       1.1   mycroft 	return (0);
    674       1.1   mycroft noinodes:
    675       1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    676       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    677       1.1   mycroft 	return (ENOSPC);
    678       1.1   mycroft }
    679       1.1   mycroft 
    680       1.1   mycroft /*
    681  1.29.8.4    bouyer  * Find a cylinder in which to place a directory.
    682  1.29.8.4    bouyer  *
    683  1.29.8.4    bouyer  * The policy implemented by this algorithm is to select from among
    684  1.29.8.4    bouyer  * those cylinder groups with above the average number of free inodes
    685  1.29.8.4    bouyer  * and a "reasonable" number of free blocks, the one with the smallest
    686  1.29.8.4    bouyer  * number of directories.  If there are no cylinder groups with a
    687  1.29.8.4    bouyer  * reasonable number of free blocks, we select a CG with *any* free
    688  1.29.8.4    bouyer  * blocks or free frags.
    689  1.29.8.4    bouyer  *
    690  1.29.8.4    bouyer  * "Reasonable" here is arbitrarily defined as "at least 25% of the
    691  1.29.8.4    bouyer  * average amount of free space."
    692       1.1   mycroft  *
    693  1.29.8.4    bouyer  * This complex policy is intended to avoid pathological (linear
    694  1.29.8.4    bouyer  * search) allocation performance when a filesystem contains many
    695  1.29.8.4    bouyer  * small cylinder groups with few directory inodes and no free blocks;
    696  1.29.8.4    bouyer  * this was observed in practice with the old allocation policy (which
    697  1.29.8.4    bouyer  * ignored the distribution of free blocks).  Under the old policy,
    698  1.29.8.4    bouyer  * when a new filesystem is populated with a number of files somewhat
    699  1.29.8.4    bouyer  * larger than the CG size, and then a second tree containing a large
    700  1.29.8.4    bouyer  * number of files and directories is created, mkdir() performance
    701  1.29.8.4    bouyer  * would degrade catastrophically, taking many seconds and involving
    702  1.29.8.4    bouyer  * thousands of disk reads to complete.
    703  1.29.8.4    bouyer  *
    704  1.29.8.4    bouyer  * XXX TODO: we currently ignore our "ipref" argument; we may want to
    705  1.29.8.4    bouyer  * add a heuristic to determine whether to place a directory in the
    706  1.29.8.4    bouyer  * same CG as its parent to reduce the amount of seeking required in
    707  1.29.8.4    bouyer  * the course of tree-walks.
    708       1.1   mycroft  */
    709       1.1   mycroft static ino_t
    710  1.29.8.4    bouyer ffs_dirpref(fs, ipref)
    711  1.29.8.1    bouyer 	struct fs *fs;
    712  1.29.8.4    bouyer 	ino_t ipref;
    713       1.1   mycroft {
    714  1.29.8.4    bouyer 	int cg, minndir, mincg, avgifree, bfreethresh;
    715  1.29.8.4    bouyer 	int minndirf, mincgf;
    716  1.29.8.4    bouyer 	struct csum *cs;
    717       1.1   mycroft 
    718       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    719  1.29.8.4    bouyer 	bfreethresh = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    720  1.29.8.4    bouyer 	bfreethresh >>= 2;
    721       1.1   mycroft 	minndir = fs->fs_ipg;
    722  1.29.8.4    bouyer 	minndirf = fs->fs_ipg;
    723       1.1   mycroft 	mincg = 0;
    724  1.29.8.4    bouyer 	mincgf = 0;
    725  1.29.8.4    bouyer 	for (cg = 0; cg < fs->fs_ncg; cg++) {
    726  1.29.8.4    bouyer 		cs = &fs->fs_cs(fs, cg);
    727  1.29.8.4    bouyer 		if (cs->cs_nifree >= avgifree) {
    728  1.29.8.4    bouyer 			if ((cs->cs_ndir < minndir) &&
    729  1.29.8.4    bouyer 			    (cs->cs_nbfree > bfreethresh)) {
    730  1.29.8.4    bouyer 				mincg = cg;
    731  1.29.8.4    bouyer 				minndir = cs->cs_ndir;
    732  1.29.8.4    bouyer 			}
    733  1.29.8.4    bouyer 			if ((cs->cs_ndir < minndirf) &&
    734  1.29.8.4    bouyer 			    ((cs->cs_nffree + cs->cs_nbfree) > 0)) {
    735  1.29.8.4    bouyer 				mincgf = cg;
    736  1.29.8.4    bouyer 				minndirf = cs->cs_ndir;
    737  1.29.8.4    bouyer 			}
    738       1.1   mycroft 		}
    739  1.29.8.4    bouyer 	}
    740  1.29.8.4    bouyer 	if (minndir == fs->fs_ipg)
    741  1.29.8.4    bouyer 		mincg = mincgf;
    742       1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    743       1.1   mycroft }
    744       1.1   mycroft 
    745       1.1   mycroft /*
    746       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    747       1.1   mycroft  * logically divided into sections. The first section is composed of the
    748       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    749       1.1   mycroft  *
    750       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    751       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    752       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    753       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    754       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    755       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    756       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    757       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    758       1.1   mycroft  * continues until a cylinder group with greater than the average number
    759       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    760       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    761       1.1   mycroft  * here a best guess is made based upon the logical block number being
    762       1.1   mycroft  * allocated.
    763       1.1   mycroft  *
    764       1.1   mycroft  * If a section is already partially allocated, the policy is to
    765       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    766       1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    767       1.1   mycroft  * so that the disk head will be in transit between them for at least
    768       1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    769       1.1   mycroft  * schedule another I/O transfer.
    770       1.1   mycroft  */
    771      1.18      fvdl ufs_daddr_t
    772       1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    773       1.1   mycroft 	struct inode *ip;
    774      1.18      fvdl 	ufs_daddr_t lbn;
    775       1.1   mycroft 	int indx;
    776      1.18      fvdl 	ufs_daddr_t *bap;
    777       1.1   mycroft {
    778  1.29.8.1    bouyer 	struct fs *fs;
    779  1.29.8.1    bouyer 	int cg;
    780       1.1   mycroft 	int avgbfree, startcg;
    781      1.18      fvdl 	ufs_daddr_t nextblk;
    782       1.1   mycroft 
    783       1.1   mycroft 	fs = ip->i_fs;
    784       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    785  1.29.8.1    bouyer 		if (lbn < NDADDR + NINDIR(fs)) {
    786       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    787       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    788       1.1   mycroft 		}
    789       1.1   mycroft 		/*
    790       1.1   mycroft 		 * Find a cylinder with greater than average number of
    791       1.1   mycroft 		 * unused data blocks.
    792       1.1   mycroft 		 */
    793       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    794       1.1   mycroft 			startcg =
    795       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    796       1.1   mycroft 		else
    797      1.19    bouyer 			startcg = dtog(fs,
    798  1.29.8.1    bouyer 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    799       1.1   mycroft 		startcg %= fs->fs_ncg;
    800       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    801       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    802       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    803       1.1   mycroft 				fs->fs_cgrotor = cg;
    804       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    805       1.1   mycroft 			}
    806       1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    807       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    808       1.1   mycroft 				fs->fs_cgrotor = cg;
    809       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    810       1.1   mycroft 			}
    811  1.29.8.1    bouyer 		return (0);
    812       1.1   mycroft 	}
    813       1.1   mycroft 	/*
    814       1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    815       1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    816       1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    817       1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    818       1.1   mycroft 	 */
    819  1.29.8.1    bouyer 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    820      1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    821  1.29.8.1    bouyer 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    822       1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    823       1.1   mycroft 		return (nextblk);
    824       1.1   mycroft 	if (fs->fs_rotdelay != 0)
    825       1.1   mycroft 		/*
    826       1.1   mycroft 		 * Here we convert ms of delay to frags as:
    827       1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    828       1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    829       1.1   mycroft 		 * then round up to the next block.
    830       1.1   mycroft 		 */
    831       1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    832       1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    833       1.1   mycroft 	return (nextblk);
    834       1.1   mycroft }
    835       1.1   mycroft 
    836       1.1   mycroft /*
    837       1.1   mycroft  * Implement the cylinder overflow algorithm.
    838       1.1   mycroft  *
    839       1.1   mycroft  * The policy implemented by this algorithm is:
    840       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    841       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    842       1.1   mycroft  *   3) brute force search for a free block.
    843       1.1   mycroft  */
    844       1.1   mycroft /*VARARGS5*/
    845       1.1   mycroft static u_long
    846       1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    847       1.1   mycroft 	struct inode *ip;
    848       1.1   mycroft 	int cg;
    849       1.1   mycroft 	long pref;
    850       1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    851      1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    852       1.1   mycroft {
    853  1.29.8.1    bouyer 	struct fs *fs;
    854       1.1   mycroft 	long result;
    855       1.1   mycroft 	int i, icg = cg;
    856       1.1   mycroft 
    857       1.1   mycroft 	fs = ip->i_fs;
    858       1.1   mycroft 	/*
    859       1.1   mycroft 	 * 1: preferred cylinder group
    860       1.1   mycroft 	 */
    861       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    862       1.1   mycroft 	if (result)
    863       1.1   mycroft 		return (result);
    864       1.1   mycroft 	/*
    865       1.1   mycroft 	 * 2: quadratic rehash
    866       1.1   mycroft 	 */
    867       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    868       1.1   mycroft 		cg += i;
    869       1.1   mycroft 		if (cg >= fs->fs_ncg)
    870       1.1   mycroft 			cg -= fs->fs_ncg;
    871       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    872       1.1   mycroft 		if (result)
    873       1.1   mycroft 			return (result);
    874       1.1   mycroft 	}
    875       1.1   mycroft 	/*
    876       1.1   mycroft 	 * 3: brute force search
    877       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    878       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    879       1.1   mycroft 	 */
    880       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    881       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    882       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    883       1.1   mycroft 		if (result)
    884       1.1   mycroft 			return (result);
    885       1.1   mycroft 		cg++;
    886       1.1   mycroft 		if (cg == fs->fs_ncg)
    887       1.1   mycroft 			cg = 0;
    888       1.1   mycroft 	}
    889  1.29.8.1    bouyer 	return (0);
    890       1.1   mycroft }
    891       1.1   mycroft 
    892       1.1   mycroft /*
    893       1.1   mycroft  * Determine whether a fragment can be extended.
    894       1.1   mycroft  *
    895       1.1   mycroft  * Check to see if the necessary fragments are available, and
    896       1.1   mycroft  * if they are, allocate them.
    897       1.1   mycroft  */
    898      1.18      fvdl static ufs_daddr_t
    899       1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    900       1.1   mycroft 	struct inode *ip;
    901       1.1   mycroft 	int cg;
    902       1.1   mycroft 	long bprev;
    903       1.1   mycroft 	int osize, nsize;
    904       1.1   mycroft {
    905  1.29.8.1    bouyer 	struct fs *fs;
    906  1.29.8.1    bouyer 	struct cg *cgp;
    907       1.1   mycroft 	struct buf *bp;
    908       1.1   mycroft 	long bno;
    909       1.1   mycroft 	int frags, bbase;
    910       1.1   mycroft 	int i, error;
    911       1.1   mycroft 
    912       1.1   mycroft 	fs = ip->i_fs;
    913       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    914  1.29.8.1    bouyer 		return (0);
    915       1.1   mycroft 	frags = numfrags(fs, nsize);
    916       1.1   mycroft 	bbase = fragnum(fs, bprev);
    917       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    918       1.1   mycroft 		/* cannot extend across a block boundary */
    919  1.29.8.1    bouyer 		return (0);
    920       1.1   mycroft 	}
    921       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    922       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    923       1.1   mycroft 	if (error) {
    924       1.1   mycroft 		brelse(bp);
    925  1.29.8.1    bouyer 		return (0);
    926       1.1   mycroft 	}
    927       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    928  1.29.8.1    bouyer 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    929       1.1   mycroft 		brelse(bp);
    930  1.29.8.1    bouyer 		return (0);
    931       1.1   mycroft 	}
    932  1.29.8.1    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    933       1.1   mycroft 	bno = dtogd(fs, bprev);
    934       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    935  1.29.8.1    bouyer 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    936       1.1   mycroft 			brelse(bp);
    937  1.29.8.1    bouyer 			return (0);
    938       1.1   mycroft 		}
    939       1.1   mycroft 	/*
    940       1.1   mycroft 	 * the current fragment can be extended
    941       1.1   mycroft 	 * deduct the count on fragment being extended into
    942       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    943       1.1   mycroft 	 * allocate the extended piece
    944       1.1   mycroft 	 */
    945       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    946  1.29.8.1    bouyer 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    947       1.1   mycroft 			break;
    948  1.29.8.1    bouyer 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    949       1.1   mycroft 	if (i != frags)
    950  1.29.8.1    bouyer 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    951       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    952  1.29.8.1    bouyer 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    953  1.29.8.1    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    954       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    955       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    956       1.1   mycroft 	}
    957       1.1   mycroft 	fs->fs_fmod = 1;
    958  1.29.8.1    bouyer 	if (DOINGSOFTDEP(ITOV(ip)))
    959  1.29.8.1    bouyer 		softdep_setup_blkmapdep(bp, fs, bprev);
    960       1.1   mycroft 	bdwrite(bp);
    961       1.1   mycroft 	return (bprev);
    962       1.1   mycroft }
    963       1.1   mycroft 
    964       1.1   mycroft /*
    965       1.1   mycroft  * Determine whether a block can be allocated.
    966       1.1   mycroft  *
    967       1.1   mycroft  * Check to see if a block of the appropriate size is available,
    968       1.1   mycroft  * and if it is, allocate it.
    969       1.1   mycroft  */
    970      1.18      fvdl static ufs_daddr_t
    971       1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    972       1.1   mycroft 	struct inode *ip;
    973       1.1   mycroft 	int cg;
    974      1.18      fvdl 	ufs_daddr_t bpref;
    975       1.1   mycroft 	int size;
    976       1.1   mycroft {
    977  1.29.8.1    bouyer 	struct cg *cgp;
    978       1.1   mycroft 	struct buf *bp;
    979  1.29.8.1    bouyer 	ufs_daddr_t bno, blkno;
    980  1.29.8.1    bouyer 	int error, frags, allocsiz, i;
    981  1.29.8.1    bouyer 	struct fs *fs = ip->i_fs;
    982  1.29.8.1    bouyer #ifdef FFS_EI
    983  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
    984  1.29.8.1    bouyer #endif
    985       1.1   mycroft 
    986       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    987  1.29.8.1    bouyer 		return (0);
    988       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    989       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    990       1.1   mycroft 	if (error) {
    991       1.1   mycroft 		brelse(bp);
    992  1.29.8.1    bouyer 		return (0);
    993       1.1   mycroft 	}
    994       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    995      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
    996       1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    997       1.1   mycroft 		brelse(bp);
    998  1.29.8.1    bouyer 		return (0);
    999       1.1   mycroft 	}
   1000      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1001       1.1   mycroft 	if (size == fs->fs_bsize) {
   1002  1.29.8.1    bouyer 		bno = ffs_alloccgblk(ip, bp, bpref);
   1003       1.1   mycroft 		bdwrite(bp);
   1004       1.1   mycroft 		return (bno);
   1005       1.1   mycroft 	}
   1006       1.1   mycroft 	/*
   1007       1.1   mycroft 	 * check to see if any fragments are already available
   1008       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1009       1.1   mycroft 	 * it down to a smaller size if necessary
   1010       1.1   mycroft 	 */
   1011       1.1   mycroft 	frags = numfrags(fs, size);
   1012       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1013       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1014       1.1   mycroft 			break;
   1015       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1016       1.1   mycroft 		/*
   1017       1.1   mycroft 		 * no fragments were available, so a block will be
   1018       1.1   mycroft 		 * allocated, and hacked up
   1019       1.1   mycroft 		 */
   1020       1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1021       1.1   mycroft 			brelse(bp);
   1022  1.29.8.1    bouyer 			return (0);
   1023       1.1   mycroft 		}
   1024  1.29.8.1    bouyer 		bno = ffs_alloccgblk(ip, bp, bpref);
   1025       1.1   mycroft 		bpref = dtogd(fs, bno);
   1026       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1027      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1028       1.1   mycroft 		i = fs->fs_frag - frags;
   1029      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1030       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1031  1.29.8.1    bouyer 		fs->fs_cs(fs, cg).cs_nffree += i;
   1032       1.1   mycroft 		fs->fs_fmod = 1;
   1033      1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1034       1.1   mycroft 		bdwrite(bp);
   1035       1.1   mycroft 		return (bno);
   1036       1.1   mycroft 	}
   1037  1.29.8.1    bouyer 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1038  1.29.8.1    bouyer #if 0
   1039  1.29.8.1    bouyer 	/*
   1040  1.29.8.1    bouyer 	 * XXX fvdl mapsearch will panic, and never return -1
   1041  1.29.8.1    bouyer 	 *          also: returning NULL as ufs_daddr_t ?
   1042  1.29.8.1    bouyer 	 */
   1043       1.1   mycroft 	if (bno < 0) {
   1044       1.1   mycroft 		brelse(bp);
   1045  1.29.8.1    bouyer 		return (0);
   1046       1.1   mycroft 	}
   1047  1.29.8.1    bouyer #endif
   1048       1.1   mycroft 	for (i = 0; i < frags; i++)
   1049      1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1050      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1051       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1052       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1053       1.1   mycroft 	fs->fs_fmod = 1;
   1054      1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1055       1.1   mycroft 	if (frags != allocsiz)
   1056      1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1057  1.29.8.1    bouyer 	blkno = cg * fs->fs_fpg + bno;
   1058  1.29.8.1    bouyer 	if (DOINGSOFTDEP(ITOV(ip)))
   1059  1.29.8.1    bouyer 		softdep_setup_blkmapdep(bp, fs, blkno);
   1060       1.1   mycroft 	bdwrite(bp);
   1061  1.29.8.1    bouyer 	return blkno;
   1062       1.1   mycroft }
   1063       1.1   mycroft 
   1064       1.1   mycroft /*
   1065       1.1   mycroft  * Allocate a block in a cylinder group.
   1066       1.1   mycroft  *
   1067       1.1   mycroft  * This algorithm implements the following policy:
   1068       1.1   mycroft  *   1) allocate the requested block.
   1069       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1070       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1071       1.1   mycroft  *      specified cylinder group.
   1072       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1073       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1074       1.1   mycroft  */
   1075      1.18      fvdl static ufs_daddr_t
   1076  1.29.8.1    bouyer ffs_alloccgblk(ip, bp, bpref)
   1077  1.29.8.1    bouyer 	struct inode *ip;
   1078  1.29.8.1    bouyer 	struct buf *bp;
   1079      1.18      fvdl 	ufs_daddr_t bpref;
   1080       1.1   mycroft {
   1081  1.29.8.1    bouyer 	struct cg *cgp;
   1082      1.18      fvdl 	ufs_daddr_t bno, blkno;
   1083       1.1   mycroft 	int cylno, pos, delta;
   1084       1.1   mycroft 	short *cylbp;
   1085  1.29.8.1    bouyer 	int i;
   1086  1.29.8.1    bouyer 	struct fs *fs = ip->i_fs;
   1087  1.29.8.1    bouyer #ifdef FFS_EI
   1088  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1089  1.29.8.1    bouyer #endif
   1090       1.1   mycroft 
   1091  1.29.8.1    bouyer 	cgp = (struct cg *)bp->b_data;
   1092  1.29.8.1    bouyer 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1093      1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1094       1.1   mycroft 		goto norot;
   1095       1.1   mycroft 	}
   1096       1.1   mycroft 	bpref = blknum(fs, bpref);
   1097       1.1   mycroft 	bpref = dtogd(fs, bpref);
   1098       1.1   mycroft 	/*
   1099       1.1   mycroft 	 * if the requested block is available, use it
   1100       1.1   mycroft 	 */
   1101      1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1102      1.19    bouyer 		fragstoblks(fs, bpref))) {
   1103       1.1   mycroft 		bno = bpref;
   1104       1.1   mycroft 		goto gotit;
   1105       1.1   mycroft 	}
   1106      1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1107       1.1   mycroft 		/*
   1108       1.1   mycroft 		 * Block layout information is not available.
   1109       1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1110       1.1   mycroft 		 * next available free block following the one
   1111       1.1   mycroft 		 * we just allocated. Hopefully this will at
   1112       1.1   mycroft 		 * least hit a track cache on drives of unknown
   1113       1.1   mycroft 		 * geometry (e.g. SCSI).
   1114       1.1   mycroft 		 */
   1115       1.1   mycroft 		goto norot;
   1116       1.1   mycroft 	}
   1117       1.6   mycroft 	/*
   1118       1.6   mycroft 	 * check for a block available on the same cylinder
   1119       1.6   mycroft 	 */
   1120       1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1121      1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1122       1.6   mycroft 		goto norot;
   1123       1.1   mycroft 	/*
   1124       1.1   mycroft 	 * check the summary information to see if a block is
   1125       1.1   mycroft 	 * available in the requested cylinder starting at the
   1126       1.1   mycroft 	 * requested rotational position and proceeding around.
   1127       1.1   mycroft 	 */
   1128      1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1129       1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1130       1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1131      1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1132       1.1   mycroft 			break;
   1133       1.1   mycroft 	if (i == fs->fs_nrpos)
   1134       1.1   mycroft 		for (i = 0; i < pos; i++)
   1135      1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1136       1.1   mycroft 				break;
   1137      1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1138       1.1   mycroft 		/*
   1139       1.1   mycroft 		 * found a rotational position, now find the actual
   1140       1.1   mycroft 		 * block. A panic if none is actually there.
   1141       1.1   mycroft 		 */
   1142       1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1143       1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1144       1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1145      1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1146       1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1147       1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1148       1.1   mycroft 		}
   1149       1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1150      1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1151       1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1152       1.1   mycroft 				goto gotit;
   1153       1.1   mycroft 			}
   1154       1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1155       1.1   mycroft 			if (delta <= 0 ||
   1156       1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1157       1.1   mycroft 				break;
   1158       1.1   mycroft 			i += delta;
   1159       1.1   mycroft 		}
   1160      1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1161       1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1162       1.1   mycroft 	}
   1163       1.1   mycroft norot:
   1164       1.1   mycroft 	/*
   1165       1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1166       1.1   mycroft 	 * available one in this cylinder group.
   1167       1.1   mycroft 	 */
   1168  1.29.8.1    bouyer 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1169       1.1   mycroft 	if (bno < 0)
   1170  1.29.8.1    bouyer 		return (0);
   1171      1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1172       1.1   mycroft gotit:
   1173       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1174      1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1175  1.29.8.1    bouyer 	ffs_clusteracct(fs, cgp, blkno, -1);
   1176      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1177       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1178      1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1179       1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1180      1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1181  1.29.8.1    bouyer 	    needswap);
   1182      1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1183       1.1   mycroft 	fs->fs_fmod = 1;
   1184  1.29.8.1    bouyer 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1185  1.29.8.1    bouyer 	if (DOINGSOFTDEP(ITOV(ip)))
   1186  1.29.8.1    bouyer 		softdep_setup_blkmapdep(bp, fs, blkno);
   1187  1.29.8.1    bouyer 	return (blkno);
   1188       1.1   mycroft }
   1189       1.1   mycroft 
   1190       1.1   mycroft /*
   1191       1.1   mycroft  * Determine whether a cluster can be allocated.
   1192       1.1   mycroft  *
   1193       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1194       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1195       1.1   mycroft  * take the first one that we find following bpref.
   1196       1.1   mycroft  */
   1197      1.18      fvdl static ufs_daddr_t
   1198       1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1199       1.1   mycroft 	struct inode *ip;
   1200       1.1   mycroft 	int cg;
   1201      1.18      fvdl 	ufs_daddr_t bpref;
   1202       1.1   mycroft 	int len;
   1203       1.1   mycroft {
   1204  1.29.8.1    bouyer 	struct fs *fs;
   1205  1.29.8.1    bouyer 	struct cg *cgp;
   1206       1.1   mycroft 	struct buf *bp;
   1207      1.18      fvdl 	int i, got, run, bno, bit, map;
   1208       1.1   mycroft 	u_char *mapp;
   1209       1.5   mycroft 	int32_t *lp;
   1210       1.1   mycroft 
   1211       1.1   mycroft 	fs = ip->i_fs;
   1212       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1213  1.29.8.1    bouyer 		return (0);
   1214       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1215       1.1   mycroft 	    NOCRED, &bp))
   1216       1.1   mycroft 		goto fail;
   1217       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1218  1.29.8.1    bouyer 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1219       1.1   mycroft 		goto fail;
   1220       1.1   mycroft 	/*
   1221       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1222       1.1   mycroft 	 * available in this cylinder group.
   1223       1.1   mycroft 	 */
   1224  1.29.8.1    bouyer 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1225       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1226  1.29.8.1    bouyer 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1227       1.1   mycroft 			break;
   1228       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1229       1.5   mycroft 		/*
   1230       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1231       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1232       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1233       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1234       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1235       1.5   mycroft 		 */
   1236  1.29.8.1    bouyer 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1237       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1238  1.29.8.1    bouyer 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1239       1.5   mycroft 				break;
   1240       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1241       1.1   mycroft 		goto fail;
   1242       1.5   mycroft 	}
   1243       1.1   mycroft 	/*
   1244       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1245       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1246       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1247       1.1   mycroft 	 * block allocation. We do not search before the current
   1248       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1249       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1250       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1251       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1252       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1253       1.1   mycroft 	 */
   1254       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1255       1.1   mycroft 		bpref = 0;
   1256       1.1   mycroft 	else
   1257       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1258  1.29.8.1    bouyer 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1259       1.1   mycroft 	map = *mapp++;
   1260       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1261      1.19    bouyer 	for (run = 0, got = bpref;
   1262  1.29.8.1    bouyer 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1263       1.1   mycroft 		if ((map & bit) == 0) {
   1264       1.1   mycroft 			run = 0;
   1265       1.1   mycroft 		} else {
   1266       1.1   mycroft 			run++;
   1267       1.1   mycroft 			if (run == len)
   1268       1.1   mycroft 				break;
   1269       1.1   mycroft 		}
   1270      1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1271       1.1   mycroft 			bit <<= 1;
   1272       1.1   mycroft 		} else {
   1273       1.1   mycroft 			map = *mapp++;
   1274       1.1   mycroft 			bit = 1;
   1275       1.1   mycroft 		}
   1276       1.1   mycroft 	}
   1277  1.29.8.1    bouyer 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1278       1.1   mycroft 		goto fail;
   1279       1.1   mycroft 	/*
   1280       1.1   mycroft 	 * Allocate the cluster that we have found.
   1281       1.1   mycroft 	 */
   1282  1.29.8.1    bouyer #ifdef DIAGNOSTIC
   1283      1.18      fvdl 	for (i = 1; i <= len; i++)
   1284  1.29.8.1    bouyer 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1285  1.29.8.1    bouyer 		    got - run + i))
   1286      1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1287  1.29.8.1    bouyer #endif
   1288      1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1289      1.18      fvdl 	if (dtog(fs, bno) != cg)
   1290      1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1291       1.1   mycroft 	len = blkstofrags(fs, len);
   1292       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1293  1.29.8.1    bouyer 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1294       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1295       1.8       cgd 	bdwrite(bp);
   1296       1.1   mycroft 	return (bno);
   1297       1.1   mycroft 
   1298       1.1   mycroft fail:
   1299       1.1   mycroft 	brelse(bp);
   1300       1.1   mycroft 	return (0);
   1301       1.1   mycroft }
   1302       1.1   mycroft 
   1303       1.1   mycroft /*
   1304       1.1   mycroft  * Determine whether an inode can be allocated.
   1305       1.1   mycroft  *
   1306       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1307       1.1   mycroft  * allocate it using the following policy:
   1308       1.1   mycroft  *   1) allocate the requested inode.
   1309       1.1   mycroft  *   2) allocate the next available inode after the requested
   1310       1.1   mycroft  *      inode in the specified cylinder group.
   1311       1.1   mycroft  */
   1312      1.18      fvdl static ufs_daddr_t
   1313       1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1314       1.1   mycroft 	struct inode *ip;
   1315       1.1   mycroft 	int cg;
   1316      1.18      fvdl 	ufs_daddr_t ipref;
   1317       1.1   mycroft 	int mode;
   1318       1.1   mycroft {
   1319  1.29.8.1    bouyer 	struct cg *cgp;
   1320       1.1   mycroft 	struct buf *bp;
   1321       1.1   mycroft 	int error, start, len, loc, map, i;
   1322  1.29.8.1    bouyer 	struct fs *fs = ip->i_fs;
   1323      1.19    bouyer #ifdef FFS_EI
   1324  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1325      1.19    bouyer #endif
   1326       1.1   mycroft 
   1327       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1328  1.29.8.1    bouyer 		return (0);
   1329       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1330       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1331       1.1   mycroft 	if (error) {
   1332       1.1   mycroft 		brelse(bp);
   1333  1.29.8.1    bouyer 		return (0);
   1334       1.1   mycroft 	}
   1335       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1336      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1337       1.1   mycroft 		brelse(bp);
   1338  1.29.8.1    bouyer 		return (0);
   1339       1.1   mycroft 	}
   1340      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1341       1.1   mycroft 	if (ipref) {
   1342       1.1   mycroft 		ipref %= fs->fs_ipg;
   1343      1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1344       1.1   mycroft 			goto gotit;
   1345       1.1   mycroft 	}
   1346      1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1347      1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1348      1.19    bouyer 		NBBY);
   1349      1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1350       1.1   mycroft 	if (loc == 0) {
   1351       1.1   mycroft 		len = start + 1;
   1352       1.1   mycroft 		start = 0;
   1353      1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1354       1.1   mycroft 		if (loc == 0) {
   1355      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1356      1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1357      1.19    bouyer 				fs->fs_fsmnt);
   1358       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1359       1.1   mycroft 			/* NOTREACHED */
   1360       1.1   mycroft 		}
   1361       1.1   mycroft 	}
   1362       1.1   mycroft 	i = start + len - loc;
   1363      1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1364       1.1   mycroft 	ipref = i * NBBY;
   1365       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1366       1.1   mycroft 		if ((map & i) == 0) {
   1367      1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1368       1.1   mycroft 			goto gotit;
   1369       1.1   mycroft 		}
   1370       1.1   mycroft 	}
   1371      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1372       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1373       1.1   mycroft 	/* NOTREACHED */
   1374       1.1   mycroft gotit:
   1375  1.29.8.1    bouyer 	if (DOINGSOFTDEP(ITOV(ip)))
   1376  1.29.8.1    bouyer 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1377      1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1378      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1379       1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1380  1.29.8.1    bouyer 	fs->fs_cs(fs, cg).cs_nifree--;
   1381       1.1   mycroft 	fs->fs_fmod = 1;
   1382       1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1383      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1384       1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1385       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1386       1.1   mycroft 	}
   1387       1.1   mycroft 	bdwrite(bp);
   1388       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1389       1.1   mycroft }
   1390       1.1   mycroft 
   1391       1.1   mycroft /*
   1392       1.1   mycroft  * Free a block or fragment.
   1393       1.1   mycroft  *
   1394       1.1   mycroft  * The specified block or fragment is placed back in the
   1395       1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1396       1.1   mycroft  * block reassembly is checked.
   1397       1.1   mycroft  */
   1398       1.9  christos void
   1399       1.1   mycroft ffs_blkfree(ip, bno, size)
   1400  1.29.8.1    bouyer 	struct inode *ip;
   1401      1.18      fvdl 	ufs_daddr_t bno;
   1402       1.1   mycroft 	long size;
   1403       1.1   mycroft {
   1404  1.29.8.1    bouyer 	struct cg *cgp;
   1405       1.1   mycroft 	struct buf *bp;
   1406      1.18      fvdl 	ufs_daddr_t blkno;
   1407       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1408  1.29.8.1    bouyer 	struct fs *fs = ip->i_fs;
   1409  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1410       1.1   mycroft 
   1411  1.29.8.1    bouyer 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1412  1.29.8.1    bouyer 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1413  1.29.8.1    bouyer 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1414  1.29.8.1    bouyer 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1415       1.1   mycroft 		panic("blkfree: bad size");
   1416       1.1   mycroft 	}
   1417       1.1   mycroft 	cg = dtog(fs, bno);
   1418       1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1419      1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1420      1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1421       1.1   mycroft 		return;
   1422       1.1   mycroft 	}
   1423       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1424       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1425       1.1   mycroft 	if (error) {
   1426       1.1   mycroft 		brelse(bp);
   1427       1.1   mycroft 		return;
   1428       1.1   mycroft 	}
   1429       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1430      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1431       1.1   mycroft 		brelse(bp);
   1432       1.1   mycroft 		return;
   1433       1.1   mycroft 	}
   1434      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1435       1.1   mycroft 	bno = dtogd(fs, bno);
   1436       1.1   mycroft 	if (size == fs->fs_bsize) {
   1437       1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1438  1.29.8.1    bouyer 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1439      1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1440       1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1441       1.1   mycroft 			panic("blkfree: freeing free block");
   1442       1.1   mycroft 		}
   1443      1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1444  1.29.8.1    bouyer 		ffs_clusteracct(fs, cgp, blkno, 1);
   1445      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1446       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1447       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1448       1.1   mycroft 		i = cbtocylno(fs, bno);
   1449      1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1450  1.29.8.1    bouyer 		    needswap);
   1451      1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1452       1.1   mycroft 	} else {
   1453       1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1454       1.1   mycroft 		/*
   1455       1.1   mycroft 		 * decrement the counts associated with the old frags
   1456       1.1   mycroft 		 */
   1457      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1458      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1459       1.1   mycroft 		/*
   1460       1.1   mycroft 		 * deallocate the fragment
   1461       1.1   mycroft 		 */
   1462       1.1   mycroft 		frags = numfrags(fs, size);
   1463       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1464      1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1465      1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1466       1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1467       1.1   mycroft 				panic("blkfree: freeing free frag");
   1468       1.1   mycroft 			}
   1469      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1470       1.1   mycroft 		}
   1471      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1472       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1473  1.29.8.1    bouyer 		fs->fs_cs(fs, cg).cs_nffree += i;
   1474       1.1   mycroft 		/*
   1475       1.1   mycroft 		 * add back in counts associated with the new frags
   1476       1.1   mycroft 		 */
   1477      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1478      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1479       1.1   mycroft 		/*
   1480       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1481       1.1   mycroft 		 */
   1482       1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1483      1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1484      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1485       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1486       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1487  1.29.8.1    bouyer 			ffs_clusteracct(fs, cgp, blkno, 1);
   1488      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1489       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1490       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1491       1.1   mycroft 			i = cbtocylno(fs, bbase);
   1492  1.29.8.1    bouyer 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1493  1.29.8.1    bouyer 								bbase)], 1,
   1494  1.29.8.1    bouyer 			    needswap);
   1495      1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1496       1.1   mycroft 		}
   1497       1.1   mycroft 	}
   1498       1.1   mycroft 	fs->fs_fmod = 1;
   1499       1.1   mycroft 	bdwrite(bp);
   1500       1.1   mycroft }
   1501       1.1   mycroft 
   1502      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1503      1.18      fvdl /*
   1504      1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1505      1.18      fvdl  * fragment is allocated, false if it is free.
   1506      1.18      fvdl  */
   1507      1.18      fvdl static int
   1508      1.18      fvdl ffs_checkblk(ip, bno, size)
   1509      1.18      fvdl 	struct inode *ip;
   1510      1.18      fvdl 	ufs_daddr_t bno;
   1511      1.18      fvdl 	long size;
   1512      1.18      fvdl {
   1513      1.18      fvdl 	struct fs *fs;
   1514      1.18      fvdl 	struct cg *cgp;
   1515      1.18      fvdl 	struct buf *bp;
   1516      1.18      fvdl 	int i, error, frags, free;
   1517      1.18      fvdl 
   1518      1.18      fvdl 	fs = ip->i_fs;
   1519      1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1520      1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1521      1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1522      1.18      fvdl 		panic("checkblk: bad size");
   1523      1.18      fvdl 	}
   1524      1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1525      1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1526      1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1527      1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1528      1.18      fvdl 	if (error) {
   1529      1.18      fvdl 		brelse(bp);
   1530      1.18      fvdl 		return 0;
   1531      1.18      fvdl 	}
   1532      1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1533  1.29.8.1    bouyer 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1534      1.18      fvdl 		brelse(bp);
   1535      1.18      fvdl 		return 0;
   1536      1.18      fvdl 	}
   1537      1.18      fvdl 	bno = dtogd(fs, bno);
   1538      1.18      fvdl 	if (size == fs->fs_bsize) {
   1539  1.29.8.1    bouyer 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1540      1.19    bouyer 			fragstoblks(fs, bno));
   1541      1.18      fvdl 	} else {
   1542      1.18      fvdl 		frags = numfrags(fs, size);
   1543      1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1544  1.29.8.1    bouyer 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1545      1.18      fvdl 				free++;
   1546      1.18      fvdl 		if (free != 0 && free != frags)
   1547      1.18      fvdl 			panic("checkblk: partially free fragment");
   1548      1.18      fvdl 	}
   1549      1.18      fvdl 	brelse(bp);
   1550      1.18      fvdl 	return (!free);
   1551      1.18      fvdl }
   1552      1.18      fvdl #endif /* DIAGNOSTIC */
   1553      1.18      fvdl 
   1554       1.1   mycroft /*
   1555       1.1   mycroft  * Free an inode.
   1556       1.1   mycroft  */
   1557       1.1   mycroft int
   1558       1.9  christos ffs_vfree(v)
   1559       1.9  christos 	void *v;
   1560       1.9  christos {
   1561       1.1   mycroft 	struct vop_vfree_args /* {
   1562       1.1   mycroft 		struct vnode *a_pvp;
   1563       1.1   mycroft 		ino_t a_ino;
   1564       1.1   mycroft 		int a_mode;
   1565       1.9  christos 	} */ *ap = v;
   1566  1.29.8.1    bouyer 
   1567  1.29.8.1    bouyer 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1568  1.29.8.1    bouyer 		softdep_freefile(ap);
   1569  1.29.8.1    bouyer 		return (0);
   1570  1.29.8.1    bouyer 	}
   1571  1.29.8.1    bouyer 	return (ffs_freefile(ap));
   1572  1.29.8.1    bouyer }
   1573  1.29.8.1    bouyer 
   1574  1.29.8.1    bouyer /*
   1575  1.29.8.1    bouyer  * Do the actual free operation.
   1576  1.29.8.1    bouyer  * The specified inode is placed back in the free map.
   1577  1.29.8.1    bouyer  */
   1578  1.29.8.1    bouyer int
   1579  1.29.8.1    bouyer ffs_freefile(v)
   1580  1.29.8.1    bouyer 	void *v;
   1581  1.29.8.1    bouyer {
   1582  1.29.8.1    bouyer 	struct vop_vfree_args /* {
   1583  1.29.8.1    bouyer 		struct vnode *a_pvp;
   1584  1.29.8.1    bouyer 		ino_t a_ino;
   1585  1.29.8.1    bouyer 		int a_mode;
   1586  1.29.8.1    bouyer 	} */ *ap = v;
   1587  1.29.8.1    bouyer 	struct cg *cgp;
   1588  1.29.8.1    bouyer 	struct inode *pip = VTOI(ap->a_pvp);
   1589  1.29.8.1    bouyer 	struct fs *fs = pip->i_fs;
   1590       1.1   mycroft 	ino_t ino = ap->a_ino;
   1591       1.1   mycroft 	struct buf *bp;
   1592       1.1   mycroft 	int error, cg;
   1593      1.19    bouyer #ifdef FFS_EI
   1594  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1595      1.19    bouyer #endif
   1596       1.1   mycroft 
   1597       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1598       1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1599       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1600       1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1601       1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1602       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1603       1.1   mycroft 	if (error) {
   1604       1.1   mycroft 		brelse(bp);
   1605  1.29.8.1    bouyer 		return (error);
   1606       1.1   mycroft 	}
   1607       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1608      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1609       1.1   mycroft 		brelse(bp);
   1610       1.1   mycroft 		return (0);
   1611       1.1   mycroft 	}
   1612      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1613       1.1   mycroft 	ino %= fs->fs_ipg;
   1614      1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1615      1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1616       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1617       1.1   mycroft 		if (fs->fs_ronly == 0)
   1618       1.1   mycroft 			panic("ifree: freeing free inode");
   1619       1.1   mycroft 	}
   1620      1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1621      1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1622      1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1623      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1624       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1625       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1626       1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1627      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1628       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1629       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1630       1.1   mycroft 	}
   1631       1.1   mycroft 	fs->fs_fmod = 1;
   1632       1.1   mycroft 	bdwrite(bp);
   1633       1.1   mycroft 	return (0);
   1634       1.1   mycroft }
   1635       1.1   mycroft 
   1636       1.1   mycroft /*
   1637       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1638       1.1   mycroft  *
   1639       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1640       1.1   mycroft  * available.
   1641       1.1   mycroft  */
   1642      1.18      fvdl static ufs_daddr_t
   1643  1.29.8.1    bouyer ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1644  1.29.8.1    bouyer 	struct fs *fs;
   1645  1.29.8.1    bouyer 	struct cg *cgp;
   1646      1.18      fvdl 	ufs_daddr_t bpref;
   1647       1.1   mycroft 	int allocsiz;
   1648       1.1   mycroft {
   1649      1.18      fvdl 	ufs_daddr_t bno;
   1650       1.1   mycroft 	int start, len, loc, i;
   1651       1.1   mycroft 	int blk, field, subfield, pos;
   1652      1.19    bouyer 	int ostart, olen;
   1653  1.29.8.1    bouyer #ifdef FFS_EI
   1654  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1655  1.29.8.1    bouyer #endif
   1656       1.1   mycroft 
   1657       1.1   mycroft 	/*
   1658       1.1   mycroft 	 * find the fragment by searching through the free block
   1659       1.1   mycroft 	 * map for an appropriate bit pattern
   1660       1.1   mycroft 	 */
   1661       1.1   mycroft 	if (bpref)
   1662       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1663       1.1   mycroft 	else
   1664      1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1665       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1666      1.19    bouyer 	ostart = start;
   1667      1.19    bouyer 	olen = len;
   1668      1.19    bouyer 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1669       1.1   mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1670       1.1   mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1671       1.1   mycroft 	if (loc == 0) {
   1672       1.1   mycroft 		len = start + 1;
   1673       1.1   mycroft 		start = 0;
   1674      1.19    bouyer 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1675       1.1   mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1676       1.1   mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1677       1.1   mycroft 		if (loc == 0) {
   1678      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1679      1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1680      1.20      ross 			printf("offset=%d %ld\n",
   1681      1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1682      1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1683       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1684       1.1   mycroft 			/* NOTREACHED */
   1685       1.1   mycroft 		}
   1686       1.1   mycroft 	}
   1687       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1688      1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1689       1.1   mycroft 	/*
   1690       1.1   mycroft 	 * found the byte in the map
   1691       1.1   mycroft 	 * sift through the bits to find the selected frag
   1692       1.1   mycroft 	 */
   1693       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1694      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1695       1.1   mycroft 		blk <<= 1;
   1696       1.1   mycroft 		field = around[allocsiz];
   1697       1.1   mycroft 		subfield = inside[allocsiz];
   1698       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1699       1.1   mycroft 			if ((blk & field) == subfield)
   1700       1.1   mycroft 				return (bno + pos);
   1701       1.1   mycroft 			field <<= 1;
   1702       1.1   mycroft 			subfield <<= 1;
   1703       1.1   mycroft 		}
   1704       1.1   mycroft 	}
   1705      1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1706       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1707       1.1   mycroft 	return (-1);
   1708       1.1   mycroft }
   1709       1.1   mycroft 
   1710       1.1   mycroft /*
   1711       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1712       1.1   mycroft  *
   1713       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1714       1.1   mycroft  */
   1715       1.9  christos void
   1716  1.29.8.1    bouyer ffs_clusteracct(fs, cgp, blkno, cnt)
   1717       1.1   mycroft 	struct fs *fs;
   1718       1.1   mycroft 	struct cg *cgp;
   1719      1.18      fvdl 	ufs_daddr_t blkno;
   1720       1.1   mycroft 	int cnt;
   1721       1.1   mycroft {
   1722       1.4       cgd 	int32_t *sump;
   1723       1.5   mycroft 	int32_t *lp;
   1724       1.1   mycroft 	u_char *freemapp, *mapp;
   1725       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1726  1.29.8.1    bouyer #ifdef FFS_EI
   1727  1.29.8.1    bouyer 	const int needswap = UFS_FSNEEDSWAP(fs);
   1728  1.29.8.1    bouyer #endif
   1729       1.1   mycroft 
   1730       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1731       1.1   mycroft 		return;
   1732      1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1733      1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1734       1.1   mycroft 	/*
   1735       1.1   mycroft 	 * Allocate or clear the actual block.
   1736       1.1   mycroft 	 */
   1737       1.1   mycroft 	if (cnt > 0)
   1738       1.1   mycroft 		setbit(freemapp, blkno);
   1739       1.1   mycroft 	else
   1740       1.1   mycroft 		clrbit(freemapp, blkno);
   1741       1.1   mycroft 	/*
   1742       1.1   mycroft 	 * Find the size of the cluster going forward.
   1743       1.1   mycroft 	 */
   1744       1.1   mycroft 	start = blkno + 1;
   1745       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1746      1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1747      1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1748       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1749       1.1   mycroft 	map = *mapp++;
   1750       1.1   mycroft 	bit = 1 << (start % NBBY);
   1751       1.1   mycroft 	for (i = start; i < end; i++) {
   1752       1.1   mycroft 		if ((map & bit) == 0)
   1753       1.1   mycroft 			break;
   1754       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1755       1.1   mycroft 			bit <<= 1;
   1756       1.1   mycroft 		} else {
   1757       1.1   mycroft 			map = *mapp++;
   1758       1.1   mycroft 			bit = 1;
   1759       1.1   mycroft 		}
   1760       1.1   mycroft 	}
   1761       1.1   mycroft 	forw = i - start;
   1762       1.1   mycroft 	/*
   1763       1.1   mycroft 	 * Find the size of the cluster going backward.
   1764       1.1   mycroft 	 */
   1765       1.1   mycroft 	start = blkno - 1;
   1766       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1767       1.1   mycroft 	if (end < 0)
   1768       1.1   mycroft 		end = -1;
   1769       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1770       1.1   mycroft 	map = *mapp--;
   1771       1.1   mycroft 	bit = 1 << (start % NBBY);
   1772       1.1   mycroft 	for (i = start; i > end; i--) {
   1773       1.1   mycroft 		if ((map & bit) == 0)
   1774       1.1   mycroft 			break;
   1775       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1776       1.1   mycroft 			bit >>= 1;
   1777       1.1   mycroft 		} else {
   1778       1.1   mycroft 			map = *mapp--;
   1779       1.1   mycroft 			bit = 1 << (NBBY - 1);
   1780       1.1   mycroft 		}
   1781       1.1   mycroft 	}
   1782       1.1   mycroft 	back = start - i;
   1783       1.1   mycroft 	/*
   1784       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1785       1.1   mycroft 	 * back clusters.
   1786       1.1   mycroft 	 */
   1787       1.1   mycroft 	i = back + forw + 1;
   1788       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1789       1.1   mycroft 		i = fs->fs_contigsumsize;
   1790      1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1791       1.1   mycroft 	if (back > 0)
   1792      1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1793       1.1   mycroft 	if (forw > 0)
   1794      1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1795      1.19    bouyer 
   1796       1.5   mycroft 	/*
   1797       1.5   mycroft 	 * Update cluster summary information.
   1798       1.5   mycroft 	 */
   1799       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1800       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1801      1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1802       1.5   mycroft 			break;
   1803      1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1804       1.1   mycroft }
   1805       1.1   mycroft 
   1806       1.1   mycroft /*
   1807       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1808       1.1   mycroft  *
   1809       1.1   mycroft  * The form of the error message is:
   1810       1.1   mycroft  *	fs: error message
   1811       1.1   mycroft  */
   1812       1.1   mycroft static void
   1813       1.1   mycroft ffs_fserr(fs, uid, cp)
   1814       1.1   mycroft 	struct fs *fs;
   1815       1.1   mycroft 	u_int uid;
   1816       1.1   mycroft 	char *cp;
   1817       1.1   mycroft {
   1818       1.1   mycroft 
   1819  1.29.8.2    bouyer 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1820  1.29.8.2    bouyer 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1821       1.1   mycroft }
   1822