ffs_alloc.c revision 1.35 1 1.35 thorpej /* $NetBSD: ffs_alloc.c,v 1.35 2000/05/19 04:34:44 thorpej Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.17 mrg
38 1.22 scottr #if defined(_KERNEL) && !defined(_LKM)
39 1.27 thorpej #include "opt_ffs.h"
40 1.21 scottr #include "opt_quota.h"
41 1.22 scottr #endif
42 1.1 mycroft
43 1.1 mycroft #include <sys/param.h>
44 1.1 mycroft #include <sys/systm.h>
45 1.1 mycroft #include <sys/buf.h>
46 1.1 mycroft #include <sys/proc.h>
47 1.1 mycroft #include <sys/vnode.h>
48 1.1 mycroft #include <sys/mount.h>
49 1.1 mycroft #include <sys/kernel.h>
50 1.1 mycroft #include <sys/syslog.h>
51 1.1 mycroft
52 1.1 mycroft #include <vm/vm.h>
53 1.1 mycroft
54 1.29 mrg #include <uvm/uvm_extern.h>
55 1.29 mrg
56 1.1 mycroft #include <ufs/ufs/quota.h>
57 1.19 bouyer #include <ufs/ufs/ufsmount.h>
58 1.1 mycroft #include <ufs/ufs/inode.h>
59 1.9 christos #include <ufs/ufs/ufs_extern.h>
60 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
61 1.1 mycroft
62 1.1 mycroft #include <ufs/ffs/fs.h>
63 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
64 1.1 mycroft
65 1.30 fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
66 1.30 fvdl static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
67 1.30 fvdl ufs_daddr_t));
68 1.30 fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
69 1.30 fvdl static ino_t ffs_dirpref __P((struct fs *));
70 1.30 fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 1.30 fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
72 1.30 fvdl static u_long ffs_hashalloc
73 1.30 fvdl __P((struct inode *, int, long, int,
74 1.30 fvdl ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
75 1.30 fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
76 1.30 fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
77 1.30 fvdl ufs_daddr_t, int));
78 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
79 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 1.18 fvdl #endif
81 1.23 drochner
82 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
83 1.34 jdolecek int ffs_log_changeopt = 0;
84 1.34 jdolecek
85 1.23 drochner /* in ffs_tables.c */
86 1.23 drochner extern int inside[], around[];
87 1.23 drochner extern u_char *fragtbl[];
88 1.1 mycroft
89 1.1 mycroft /*
90 1.1 mycroft * Allocate a block in the file system.
91 1.1 mycroft *
92 1.1 mycroft * The size of the requested block is given, which must be some
93 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
94 1.1 mycroft * A preference may be optionally specified. If a preference is given
95 1.1 mycroft * the following hierarchy is used to allocate a block:
96 1.1 mycroft * 1) allocate the requested block.
97 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
98 1.1 mycroft * 3) allocate a block in the same cylinder group.
99 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
100 1.1 mycroft * available block is located.
101 1.1 mycroft * If no block preference is given the following heirarchy is used
102 1.1 mycroft * to allocate a block:
103 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
104 1.1 mycroft * inode for the file.
105 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
106 1.1 mycroft * available block is located.
107 1.1 mycroft */
108 1.9 christos int
109 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
110 1.33 augustss struct inode *ip;
111 1.18 fvdl ufs_daddr_t lbn, bpref;
112 1.1 mycroft int size;
113 1.1 mycroft struct ucred *cred;
114 1.18 fvdl ufs_daddr_t *bnp;
115 1.1 mycroft {
116 1.33 augustss struct fs *fs;
117 1.18 fvdl ufs_daddr_t bno;
118 1.9 christos int cg;
119 1.9 christos #ifdef QUOTA
120 1.9 christos int error;
121 1.9 christos #endif
122 1.1 mycroft
123 1.1 mycroft *bnp = 0;
124 1.1 mycroft fs = ip->i_fs;
125 1.1 mycroft #ifdef DIAGNOSTIC
126 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
127 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
128 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
129 1.1 mycroft panic("ffs_alloc: bad size");
130 1.1 mycroft }
131 1.1 mycroft if (cred == NOCRED)
132 1.1 mycroft panic("ffs_alloc: missing credential\n");
133 1.1 mycroft #endif /* DIAGNOSTIC */
134 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
135 1.1 mycroft goto nospace;
136 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
137 1.1 mycroft goto nospace;
138 1.1 mycroft #ifdef QUOTA
139 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
140 1.1 mycroft return (error);
141 1.1 mycroft #endif
142 1.1 mycroft if (bpref >= fs->fs_size)
143 1.1 mycroft bpref = 0;
144 1.1 mycroft if (bpref == 0)
145 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
146 1.1 mycroft else
147 1.1 mycroft cg = dtog(fs, bpref);
148 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
149 1.9 christos ffs_alloccg);
150 1.1 mycroft if (bno > 0) {
151 1.15 bouyer ip->i_ffs_blocks += btodb(size);
152 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
153 1.1 mycroft *bnp = bno;
154 1.1 mycroft return (0);
155 1.1 mycroft }
156 1.1 mycroft #ifdef QUOTA
157 1.1 mycroft /*
158 1.1 mycroft * Restore user's disk quota because allocation failed.
159 1.1 mycroft */
160 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
161 1.1 mycroft #endif
162 1.1 mycroft nospace:
163 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
164 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
165 1.1 mycroft return (ENOSPC);
166 1.1 mycroft }
167 1.1 mycroft
168 1.1 mycroft /*
169 1.1 mycroft * Reallocate a fragment to a bigger size
170 1.1 mycroft *
171 1.1 mycroft * The number and size of the old block is given, and a preference
172 1.1 mycroft * and new size is also specified. The allocator attempts to extend
173 1.1 mycroft * the original block. Failing that, the regular block allocator is
174 1.1 mycroft * invoked to get an appropriate block.
175 1.1 mycroft */
176 1.9 christos int
177 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
178 1.33 augustss struct inode *ip;
179 1.18 fvdl ufs_daddr_t lbprev;
180 1.18 fvdl ufs_daddr_t bpref;
181 1.1 mycroft int osize, nsize;
182 1.1 mycroft struct ucred *cred;
183 1.1 mycroft struct buf **bpp;
184 1.1 mycroft {
185 1.33 augustss struct fs *fs;
186 1.1 mycroft struct buf *bp;
187 1.1 mycroft int cg, request, error;
188 1.18 fvdl ufs_daddr_t bprev, bno;
189 1.25 thorpej
190 1.1 mycroft *bpp = 0;
191 1.1 mycroft fs = ip->i_fs;
192 1.1 mycroft #ifdef DIAGNOSTIC
193 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
194 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
195 1.13 christos printf(
196 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
197 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
198 1.1 mycroft panic("ffs_realloccg: bad size");
199 1.1 mycroft }
200 1.1 mycroft if (cred == NOCRED)
201 1.1 mycroft panic("ffs_realloccg: missing credential\n");
202 1.1 mycroft #endif /* DIAGNOSTIC */
203 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
204 1.1 mycroft goto nospace;
205 1.30 fvdl if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
206 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
207 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
208 1.1 mycroft panic("ffs_realloccg: bad bprev");
209 1.1 mycroft }
210 1.1 mycroft /*
211 1.1 mycroft * Allocate the extra space in the buffer.
212 1.1 mycroft */
213 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
214 1.1 mycroft brelse(bp);
215 1.1 mycroft return (error);
216 1.1 mycroft }
217 1.1 mycroft #ifdef QUOTA
218 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
219 1.1 mycroft brelse(bp);
220 1.1 mycroft return (error);
221 1.1 mycroft }
222 1.1 mycroft #endif
223 1.1 mycroft /*
224 1.1 mycroft * Check for extension in the existing location.
225 1.1 mycroft */
226 1.1 mycroft cg = dtog(fs, bprev);
227 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
228 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
229 1.1 mycroft panic("bad blockno");
230 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
231 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
232 1.1 mycroft allocbuf(bp, nsize);
233 1.1 mycroft bp->b_flags |= B_DONE;
234 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
235 1.1 mycroft *bpp = bp;
236 1.1 mycroft return (0);
237 1.1 mycroft }
238 1.1 mycroft /*
239 1.1 mycroft * Allocate a new disk location.
240 1.1 mycroft */
241 1.1 mycroft if (bpref >= fs->fs_size)
242 1.1 mycroft bpref = 0;
243 1.1 mycroft switch ((int)fs->fs_optim) {
244 1.1 mycroft case FS_OPTSPACE:
245 1.1 mycroft /*
246 1.1 mycroft * Allocate an exact sized fragment. Although this makes
247 1.1 mycroft * best use of space, we will waste time relocating it if
248 1.1 mycroft * the file continues to grow. If the fragmentation is
249 1.1 mycroft * less than half of the minimum free reserve, we choose
250 1.1 mycroft * to begin optimizing for time.
251 1.1 mycroft */
252 1.1 mycroft request = nsize;
253 1.1 mycroft if (fs->fs_minfree < 5 ||
254 1.1 mycroft fs->fs_cstotal.cs_nffree >
255 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 1.1 mycroft break;
257 1.34 jdolecek
258 1.34 jdolecek if (ffs_log_changeopt) {
259 1.34 jdolecek log(LOG_NOTICE,
260 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
261 1.34 jdolecek fs->fs_fsmnt);
262 1.34 jdolecek }
263 1.34 jdolecek
264 1.1 mycroft fs->fs_optim = FS_OPTTIME;
265 1.1 mycroft break;
266 1.1 mycroft case FS_OPTTIME:
267 1.1 mycroft /*
268 1.1 mycroft * At this point we have discovered a file that is trying to
269 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
270 1.1 mycroft * we allocate a full sized block, then free the unused portion.
271 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
272 1.1 mycroft * above will be able to grow it in place without further
273 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
274 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
275 1.1 mycroft * optimizing for space.
276 1.1 mycroft */
277 1.1 mycroft request = fs->fs_bsize;
278 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
279 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
280 1.1 mycroft break;
281 1.34 jdolecek
282 1.34 jdolecek if (ffs_log_changeopt) {
283 1.34 jdolecek log(LOG_NOTICE,
284 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
285 1.34 jdolecek fs->fs_fsmnt);
286 1.34 jdolecek }
287 1.34 jdolecek
288 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
289 1.1 mycroft break;
290 1.1 mycroft default:
291 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
292 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
293 1.1 mycroft panic("ffs_realloccg: bad optim");
294 1.1 mycroft /* NOTREACHED */
295 1.1 mycroft }
296 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
297 1.9 christos ffs_alloccg);
298 1.1 mycroft if (bno > 0) {
299 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
300 1.16 mrg (void) uvm_vnp_uncache(ITOV(ip));
301 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
302 1.30 fvdl ffs_blkfree(ip, bprev, (long)osize);
303 1.1 mycroft if (nsize < request)
304 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
305 1.1 mycroft (long)(request - nsize));
306 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
307 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
308 1.1 mycroft allocbuf(bp, nsize);
309 1.1 mycroft bp->b_flags |= B_DONE;
310 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
311 1.1 mycroft *bpp = bp;
312 1.1 mycroft return (0);
313 1.1 mycroft }
314 1.1 mycroft #ifdef QUOTA
315 1.1 mycroft /*
316 1.1 mycroft * Restore user's disk quota because allocation failed.
317 1.1 mycroft */
318 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
319 1.1 mycroft #endif
320 1.1 mycroft brelse(bp);
321 1.1 mycroft nospace:
322 1.1 mycroft /*
323 1.1 mycroft * no space available
324 1.1 mycroft */
325 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
326 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
327 1.1 mycroft return (ENOSPC);
328 1.1 mycroft }
329 1.1 mycroft
330 1.1 mycroft /*
331 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
332 1.1 mycroft *
333 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
334 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
335 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
336 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
337 1.1 mycroft * block immediately preceeding the current range. If successful, the
338 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
339 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
340 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
341 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
342 1.1 mycroft * the previous block allocation will be used.
343 1.1 mycroft */
344 1.3 mycroft #ifdef DEBUG
345 1.1 mycroft #include <sys/sysctl.h>
346 1.5 mycroft int prtrealloc = 0;
347 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
348 1.1 mycroft #endif
349 1.1 mycroft
350 1.18 fvdl int doasyncfree = 1;
351 1.18 fvdl extern int doreallocblks;
352 1.18 fvdl
353 1.1 mycroft int
354 1.9 christos ffs_reallocblks(v)
355 1.9 christos void *v;
356 1.9 christos {
357 1.1 mycroft struct vop_reallocblks_args /* {
358 1.1 mycroft struct vnode *a_vp;
359 1.1 mycroft struct cluster_save *a_buflist;
360 1.9 christos } */ *ap = v;
361 1.1 mycroft struct fs *fs;
362 1.1 mycroft struct inode *ip;
363 1.1 mycroft struct vnode *vp;
364 1.1 mycroft struct buf *sbp, *ebp;
365 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
366 1.1 mycroft struct cluster_save *buflist;
367 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
368 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
369 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
370 1.1 mycroft
371 1.1 mycroft vp = ap->a_vp;
372 1.1 mycroft ip = VTOI(vp);
373 1.1 mycroft fs = ip->i_fs;
374 1.1 mycroft if (fs->fs_contigsumsize <= 0)
375 1.1 mycroft return (ENOSPC);
376 1.1 mycroft buflist = ap->a_buflist;
377 1.1 mycroft len = buflist->bs_nchildren;
378 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
379 1.1 mycroft end_lbn = start_lbn + len - 1;
380 1.1 mycroft #ifdef DIAGNOSTIC
381 1.18 fvdl for (i = 0; i < len; i++)
382 1.18 fvdl if (!ffs_checkblk(ip,
383 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
384 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
385 1.1 mycroft for (i = 1; i < len; i++)
386 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
387 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
388 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
389 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
390 1.18 fvdl for (i = 1; i < len - 1; i++)
391 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
392 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
393 1.1 mycroft #endif
394 1.1 mycroft /*
395 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
396 1.1 mycroft * the filesystem has decided to move and do not force it back to
397 1.1 mycroft * the previous cylinder group.
398 1.1 mycroft */
399 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
400 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
401 1.1 mycroft return (ENOSPC);
402 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
403 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
404 1.1 mycroft return (ENOSPC);
405 1.1 mycroft /*
406 1.1 mycroft * Get the starting offset and block map for the first block.
407 1.1 mycroft */
408 1.1 mycroft if (start_lvl == 0) {
409 1.15 bouyer sbap = &ip->i_ffs_db[0];
410 1.1 mycroft soff = start_lbn;
411 1.1 mycroft } else {
412 1.1 mycroft idp = &start_ap[start_lvl - 1];
413 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
414 1.1 mycroft brelse(sbp);
415 1.1 mycroft return (ENOSPC);
416 1.1 mycroft }
417 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
418 1.1 mycroft soff = idp->in_off;
419 1.1 mycroft }
420 1.1 mycroft /*
421 1.1 mycroft * Find the preferred location for the cluster.
422 1.1 mycroft */
423 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
424 1.1 mycroft /*
425 1.1 mycroft * If the block range spans two block maps, get the second map.
426 1.1 mycroft */
427 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
428 1.1 mycroft ssize = len;
429 1.1 mycroft } else {
430 1.1 mycroft #ifdef DIAGNOSTIC
431 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
432 1.1 mycroft panic("ffs_reallocblk: start == end");
433 1.1 mycroft #endif
434 1.1 mycroft ssize = len - (idp->in_off + 1);
435 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
436 1.1 mycroft goto fail;
437 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
438 1.1 mycroft }
439 1.1 mycroft /*
440 1.1 mycroft * Search the block map looking for an allocation of the desired size.
441 1.1 mycroft */
442 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
443 1.9 christos len, ffs_clusteralloc)) == 0)
444 1.1 mycroft goto fail;
445 1.1 mycroft /*
446 1.1 mycroft * We have found a new contiguous block.
447 1.1 mycroft *
448 1.1 mycroft * First we have to replace the old block pointers with the new
449 1.1 mycroft * block pointers in the inode and indirect blocks associated
450 1.1 mycroft * with the file.
451 1.1 mycroft */
452 1.5 mycroft #ifdef DEBUG
453 1.5 mycroft if (prtrealloc)
454 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
455 1.5 mycroft start_lbn, end_lbn);
456 1.5 mycroft #endif
457 1.1 mycroft blkno = newblk;
458 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
459 1.30 fvdl ufs_daddr_t ba;
460 1.30 fvdl
461 1.30 fvdl if (i == ssize) {
462 1.1 mycroft bap = ebap;
463 1.30 fvdl soff = -i;
464 1.30 fvdl }
465 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
466 1.1 mycroft #ifdef DIAGNOSTIC
467 1.18 fvdl if (!ffs_checkblk(ip,
468 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
469 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
470 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
471 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
472 1.1 mycroft #endif
473 1.5 mycroft #ifdef DEBUG
474 1.5 mycroft if (prtrealloc)
475 1.30 fvdl printf(" %d,", ba);
476 1.5 mycroft #endif
477 1.30 fvdl if (DOINGSOFTDEP(vp)) {
478 1.30 fvdl if (sbap == &ip->i_ffs_db[0] && i < ssize)
479 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
480 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
481 1.30 fvdl buflist->bs_children[i]);
482 1.30 fvdl else
483 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
484 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
485 1.30 fvdl ba, buflist->bs_children[i]);
486 1.30 fvdl }
487 1.30 fvdl *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
488 1.1 mycroft }
489 1.1 mycroft /*
490 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
491 1.1 mycroft * For strict correctness, the writes should be synchronous since
492 1.1 mycroft * the old block values may have been written to disk. In practise
493 1.1 mycroft * they are almost never written, but if we are concerned about
494 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
495 1.1 mycroft *
496 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
497 1.1 mycroft * that shows whether the associated buffers and inodes have
498 1.1 mycroft * been written. The flag should be set when the cluster is
499 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
500 1.1 mycroft * We can then check below to see if it is set, and do the
501 1.1 mycroft * synchronous write only when it has been cleared.
502 1.1 mycroft */
503 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
504 1.1 mycroft if (doasyncfree)
505 1.1 mycroft bdwrite(sbp);
506 1.1 mycroft else
507 1.1 mycroft bwrite(sbp);
508 1.1 mycroft } else {
509 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
510 1.28 mycroft if (!doasyncfree)
511 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
512 1.1 mycroft }
513 1.25 thorpej if (ssize < len) {
514 1.1 mycroft if (doasyncfree)
515 1.1 mycroft bdwrite(ebp);
516 1.1 mycroft else
517 1.1 mycroft bwrite(ebp);
518 1.25 thorpej }
519 1.1 mycroft /*
520 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
521 1.1 mycroft */
522 1.5 mycroft #ifdef DEBUG
523 1.5 mycroft if (prtrealloc)
524 1.13 christos printf("\n\tnew:");
525 1.5 mycroft #endif
526 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
527 1.30 fvdl if (!DOINGSOFTDEP(vp))
528 1.30 fvdl ffs_blkfree(ip,
529 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
530 1.30 fvdl fs->fs_bsize);
531 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
532 1.5 mycroft #ifdef DEBUG
533 1.18 fvdl if (!ffs_checkblk(ip,
534 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
535 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
536 1.5 mycroft if (prtrealloc)
537 1.13 christos printf(" %d,", blkno);
538 1.5 mycroft #endif
539 1.5 mycroft }
540 1.5 mycroft #ifdef DEBUG
541 1.5 mycroft if (prtrealloc) {
542 1.5 mycroft prtrealloc--;
543 1.13 christos printf("\n");
544 1.1 mycroft }
545 1.5 mycroft #endif
546 1.1 mycroft return (0);
547 1.1 mycroft
548 1.1 mycroft fail:
549 1.1 mycroft if (ssize < len)
550 1.1 mycroft brelse(ebp);
551 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
552 1.1 mycroft brelse(sbp);
553 1.1 mycroft return (ENOSPC);
554 1.1 mycroft }
555 1.1 mycroft
556 1.1 mycroft /*
557 1.1 mycroft * Allocate an inode in the file system.
558 1.1 mycroft *
559 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
560 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
561 1.1 mycroft * 1) allocate the preferred inode.
562 1.1 mycroft * 2) allocate an inode in the same cylinder group.
563 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
564 1.1 mycroft * available inode is located.
565 1.1 mycroft * If no inode preference is given the following heirarchy is used
566 1.1 mycroft * to allocate an inode:
567 1.1 mycroft * 1) allocate an inode in cylinder group 0.
568 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
569 1.1 mycroft * available inode is located.
570 1.1 mycroft */
571 1.9 christos int
572 1.9 christos ffs_valloc(v)
573 1.9 christos void *v;
574 1.9 christos {
575 1.1 mycroft struct vop_valloc_args /* {
576 1.1 mycroft struct vnode *a_pvp;
577 1.1 mycroft int a_mode;
578 1.1 mycroft struct ucred *a_cred;
579 1.1 mycroft struct vnode **a_vpp;
580 1.9 christos } */ *ap = v;
581 1.33 augustss struct vnode *pvp = ap->a_pvp;
582 1.33 augustss struct inode *pip;
583 1.33 augustss struct fs *fs;
584 1.33 augustss struct inode *ip;
585 1.1 mycroft mode_t mode = ap->a_mode;
586 1.1 mycroft ino_t ino, ipref;
587 1.1 mycroft int cg, error;
588 1.1 mycroft
589 1.1 mycroft *ap->a_vpp = NULL;
590 1.1 mycroft pip = VTOI(pvp);
591 1.1 mycroft fs = pip->i_fs;
592 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
593 1.1 mycroft goto noinodes;
594 1.1 mycroft
595 1.1 mycroft if ((mode & IFMT) == IFDIR)
596 1.1 mycroft ipref = ffs_dirpref(fs);
597 1.1 mycroft else
598 1.1 mycroft ipref = pip->i_number;
599 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
600 1.1 mycroft ipref = 0;
601 1.1 mycroft cg = ino_to_cg(fs, ipref);
602 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
603 1.1 mycroft if (ino == 0)
604 1.1 mycroft goto noinodes;
605 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
606 1.1 mycroft if (error) {
607 1.1 mycroft VOP_VFREE(pvp, ino, mode);
608 1.1 mycroft return (error);
609 1.1 mycroft }
610 1.1 mycroft ip = VTOI(*ap->a_vpp);
611 1.15 bouyer if (ip->i_ffs_mode) {
612 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
613 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
614 1.1 mycroft panic("ffs_valloc: dup alloc");
615 1.1 mycroft }
616 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
617 1.13 christos printf("free inode %s/%d had %d blocks\n",
618 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
619 1.15 bouyer ip->i_ffs_blocks = 0;
620 1.1 mycroft }
621 1.15 bouyer ip->i_ffs_flags = 0;
622 1.1 mycroft /*
623 1.1 mycroft * Set up a new generation number for this inode.
624 1.1 mycroft */
625 1.15 bouyer ip->i_ffs_gen++;
626 1.1 mycroft return (0);
627 1.1 mycroft noinodes:
628 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
629 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
630 1.1 mycroft return (ENOSPC);
631 1.1 mycroft }
632 1.1 mycroft
633 1.1 mycroft /*
634 1.1 mycroft * Find a cylinder to place a directory.
635 1.1 mycroft *
636 1.1 mycroft * The policy implemented by this algorithm is to select from
637 1.1 mycroft * among those cylinder groups with above the average number of
638 1.1 mycroft * free inodes, the one with the smallest number of directories.
639 1.1 mycroft */
640 1.1 mycroft static ino_t
641 1.1 mycroft ffs_dirpref(fs)
642 1.33 augustss struct fs *fs;
643 1.1 mycroft {
644 1.1 mycroft int cg, minndir, mincg, avgifree;
645 1.1 mycroft
646 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
647 1.1 mycroft minndir = fs->fs_ipg;
648 1.1 mycroft mincg = 0;
649 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
650 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
651 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
652 1.1 mycroft mincg = cg;
653 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
654 1.1 mycroft }
655 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
656 1.1 mycroft }
657 1.1 mycroft
658 1.1 mycroft /*
659 1.1 mycroft * Select the desired position for the next block in a file. The file is
660 1.1 mycroft * logically divided into sections. The first section is composed of the
661 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
662 1.1 mycroft *
663 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
664 1.1 mycroft * request a block in the same cylinder group as the inode that describes
665 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
666 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
667 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
668 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
669 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
670 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
671 1.1 mycroft * continues until a cylinder group with greater than the average number
672 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
673 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
674 1.1 mycroft * here a best guess is made based upon the logical block number being
675 1.1 mycroft * allocated.
676 1.1 mycroft *
677 1.1 mycroft * If a section is already partially allocated, the policy is to
678 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
679 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
680 1.1 mycroft * so that the disk head will be in transit between them for at least
681 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
682 1.1 mycroft * schedule another I/O transfer.
683 1.1 mycroft */
684 1.18 fvdl ufs_daddr_t
685 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
686 1.1 mycroft struct inode *ip;
687 1.18 fvdl ufs_daddr_t lbn;
688 1.1 mycroft int indx;
689 1.18 fvdl ufs_daddr_t *bap;
690 1.1 mycroft {
691 1.33 augustss struct fs *fs;
692 1.33 augustss int cg;
693 1.1 mycroft int avgbfree, startcg;
694 1.18 fvdl ufs_daddr_t nextblk;
695 1.1 mycroft
696 1.1 mycroft fs = ip->i_fs;
697 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
698 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
699 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
700 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
701 1.1 mycroft }
702 1.1 mycroft /*
703 1.1 mycroft * Find a cylinder with greater than average number of
704 1.1 mycroft * unused data blocks.
705 1.1 mycroft */
706 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
707 1.1 mycroft startcg =
708 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
709 1.1 mycroft else
710 1.19 bouyer startcg = dtog(fs,
711 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
712 1.1 mycroft startcg %= fs->fs_ncg;
713 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
714 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
715 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
716 1.1 mycroft fs->fs_cgrotor = cg;
717 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
718 1.1 mycroft }
719 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
720 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
721 1.1 mycroft fs->fs_cgrotor = cg;
722 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
723 1.1 mycroft }
724 1.35 thorpej return (0);
725 1.1 mycroft }
726 1.1 mycroft /*
727 1.1 mycroft * One or more previous blocks have been laid out. If less
728 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
729 1.1 mycroft * next block is requested contiguously, otherwise it is
730 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
731 1.1 mycroft */
732 1.30 fvdl nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
733 1.19 bouyer if (indx < fs->fs_maxcontig ||
734 1.30 fvdl ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
735 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
736 1.1 mycroft return (nextblk);
737 1.1 mycroft if (fs->fs_rotdelay != 0)
738 1.1 mycroft /*
739 1.1 mycroft * Here we convert ms of delay to frags as:
740 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
741 1.1 mycroft * ((sect/frag) * (ms/sec))
742 1.1 mycroft * then round up to the next block.
743 1.1 mycroft */
744 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
745 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
746 1.1 mycroft return (nextblk);
747 1.1 mycroft }
748 1.1 mycroft
749 1.1 mycroft /*
750 1.1 mycroft * Implement the cylinder overflow algorithm.
751 1.1 mycroft *
752 1.1 mycroft * The policy implemented by this algorithm is:
753 1.1 mycroft * 1) allocate the block in its requested cylinder group.
754 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
755 1.1 mycroft * 3) brute force search for a free block.
756 1.1 mycroft */
757 1.1 mycroft /*VARARGS5*/
758 1.1 mycroft static u_long
759 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
760 1.1 mycroft struct inode *ip;
761 1.1 mycroft int cg;
762 1.1 mycroft long pref;
763 1.1 mycroft int size; /* size for data blocks, mode for inodes */
764 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
765 1.1 mycroft {
766 1.33 augustss struct fs *fs;
767 1.1 mycroft long result;
768 1.1 mycroft int i, icg = cg;
769 1.1 mycroft
770 1.1 mycroft fs = ip->i_fs;
771 1.1 mycroft /*
772 1.1 mycroft * 1: preferred cylinder group
773 1.1 mycroft */
774 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
775 1.1 mycroft if (result)
776 1.1 mycroft return (result);
777 1.1 mycroft /*
778 1.1 mycroft * 2: quadratic rehash
779 1.1 mycroft */
780 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
781 1.1 mycroft cg += i;
782 1.1 mycroft if (cg >= fs->fs_ncg)
783 1.1 mycroft cg -= fs->fs_ncg;
784 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
785 1.1 mycroft if (result)
786 1.1 mycroft return (result);
787 1.1 mycroft }
788 1.1 mycroft /*
789 1.1 mycroft * 3: brute force search
790 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
791 1.1 mycroft * and 1 is always checked in the quadratic rehash.
792 1.1 mycroft */
793 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
794 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
795 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
796 1.1 mycroft if (result)
797 1.1 mycroft return (result);
798 1.1 mycroft cg++;
799 1.1 mycroft if (cg == fs->fs_ncg)
800 1.1 mycroft cg = 0;
801 1.1 mycroft }
802 1.35 thorpej return (0);
803 1.1 mycroft }
804 1.1 mycroft
805 1.1 mycroft /*
806 1.1 mycroft * Determine whether a fragment can be extended.
807 1.1 mycroft *
808 1.1 mycroft * Check to see if the necessary fragments are available, and
809 1.1 mycroft * if they are, allocate them.
810 1.1 mycroft */
811 1.18 fvdl static ufs_daddr_t
812 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
813 1.1 mycroft struct inode *ip;
814 1.1 mycroft int cg;
815 1.1 mycroft long bprev;
816 1.1 mycroft int osize, nsize;
817 1.1 mycroft {
818 1.33 augustss struct fs *fs;
819 1.33 augustss struct cg *cgp;
820 1.1 mycroft struct buf *bp;
821 1.1 mycroft long bno;
822 1.1 mycroft int frags, bbase;
823 1.1 mycroft int i, error;
824 1.1 mycroft
825 1.1 mycroft fs = ip->i_fs;
826 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
827 1.35 thorpej return (0);
828 1.1 mycroft frags = numfrags(fs, nsize);
829 1.1 mycroft bbase = fragnum(fs, bprev);
830 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
831 1.1 mycroft /* cannot extend across a block boundary */
832 1.35 thorpej return (0);
833 1.1 mycroft }
834 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
835 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
836 1.1 mycroft if (error) {
837 1.1 mycroft brelse(bp);
838 1.35 thorpej return (0);
839 1.1 mycroft }
840 1.1 mycroft cgp = (struct cg *)bp->b_data;
841 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
842 1.1 mycroft brelse(bp);
843 1.35 thorpej return (0);
844 1.1 mycroft }
845 1.30 fvdl cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
846 1.1 mycroft bno = dtogd(fs, bprev);
847 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
848 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
849 1.1 mycroft brelse(bp);
850 1.35 thorpej return (0);
851 1.1 mycroft }
852 1.1 mycroft /*
853 1.1 mycroft * the current fragment can be extended
854 1.1 mycroft * deduct the count on fragment being extended into
855 1.1 mycroft * increase the count on the remaining fragment (if any)
856 1.1 mycroft * allocate the extended piece
857 1.1 mycroft */
858 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
859 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
860 1.1 mycroft break;
861 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
862 1.1 mycroft if (i != frags)
863 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
864 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
865 1.30 fvdl clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
866 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
867 1.1 mycroft fs->fs_cstotal.cs_nffree--;
868 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
869 1.1 mycroft }
870 1.1 mycroft fs->fs_fmod = 1;
871 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
872 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
873 1.1 mycroft bdwrite(bp);
874 1.1 mycroft return (bprev);
875 1.1 mycroft }
876 1.1 mycroft
877 1.1 mycroft /*
878 1.1 mycroft * Determine whether a block can be allocated.
879 1.1 mycroft *
880 1.1 mycroft * Check to see if a block of the appropriate size is available,
881 1.1 mycroft * and if it is, allocate it.
882 1.1 mycroft */
883 1.18 fvdl static ufs_daddr_t
884 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
885 1.1 mycroft struct inode *ip;
886 1.1 mycroft int cg;
887 1.18 fvdl ufs_daddr_t bpref;
888 1.1 mycroft int size;
889 1.1 mycroft {
890 1.30 fvdl struct cg *cgp;
891 1.1 mycroft struct buf *bp;
892 1.30 fvdl ufs_daddr_t bno, blkno;
893 1.30 fvdl int error, frags, allocsiz, i;
894 1.30 fvdl struct fs *fs = ip->i_fs;
895 1.30 fvdl #ifdef FFS_EI
896 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
897 1.30 fvdl #endif
898 1.1 mycroft
899 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
900 1.35 thorpej return (0);
901 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
902 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
903 1.1 mycroft if (error) {
904 1.1 mycroft brelse(bp);
905 1.35 thorpej return (0);
906 1.1 mycroft }
907 1.1 mycroft cgp = (struct cg *)bp->b_data;
908 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
909 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
910 1.1 mycroft brelse(bp);
911 1.35 thorpej return (0);
912 1.1 mycroft }
913 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
914 1.1 mycroft if (size == fs->fs_bsize) {
915 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
916 1.1 mycroft bdwrite(bp);
917 1.1 mycroft return (bno);
918 1.1 mycroft }
919 1.1 mycroft /*
920 1.1 mycroft * check to see if any fragments are already available
921 1.1 mycroft * allocsiz is the size which will be allocated, hacking
922 1.1 mycroft * it down to a smaller size if necessary
923 1.1 mycroft */
924 1.1 mycroft frags = numfrags(fs, size);
925 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
926 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
927 1.1 mycroft break;
928 1.1 mycroft if (allocsiz == fs->fs_frag) {
929 1.1 mycroft /*
930 1.1 mycroft * no fragments were available, so a block will be
931 1.1 mycroft * allocated, and hacked up
932 1.1 mycroft */
933 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
934 1.1 mycroft brelse(bp);
935 1.35 thorpej return (0);
936 1.1 mycroft }
937 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
938 1.1 mycroft bpref = dtogd(fs, bno);
939 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
940 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
941 1.1 mycroft i = fs->fs_frag - frags;
942 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
943 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
944 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
945 1.1 mycroft fs->fs_fmod = 1;
946 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
947 1.1 mycroft bdwrite(bp);
948 1.1 mycroft return (bno);
949 1.1 mycroft }
950 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
951 1.30 fvdl #if 0
952 1.30 fvdl /*
953 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
954 1.30 fvdl * also: returning NULL as ufs_daddr_t ?
955 1.30 fvdl */
956 1.1 mycroft if (bno < 0) {
957 1.1 mycroft brelse(bp);
958 1.35 thorpej return (0);
959 1.1 mycroft }
960 1.30 fvdl #endif
961 1.1 mycroft for (i = 0; i < frags; i++)
962 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
963 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
964 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
965 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
966 1.1 mycroft fs->fs_fmod = 1;
967 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
968 1.1 mycroft if (frags != allocsiz)
969 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
970 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
971 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
972 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
973 1.1 mycroft bdwrite(bp);
974 1.30 fvdl return blkno;
975 1.1 mycroft }
976 1.1 mycroft
977 1.1 mycroft /*
978 1.1 mycroft * Allocate a block in a cylinder group.
979 1.1 mycroft *
980 1.1 mycroft * This algorithm implements the following policy:
981 1.1 mycroft * 1) allocate the requested block.
982 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
983 1.1 mycroft * 3) allocate the next available block on the block rotor for the
984 1.1 mycroft * specified cylinder group.
985 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
986 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
987 1.1 mycroft */
988 1.18 fvdl static ufs_daddr_t
989 1.30 fvdl ffs_alloccgblk(ip, bp, bpref)
990 1.30 fvdl struct inode *ip;
991 1.30 fvdl struct buf *bp;
992 1.18 fvdl ufs_daddr_t bpref;
993 1.1 mycroft {
994 1.30 fvdl struct cg *cgp;
995 1.18 fvdl ufs_daddr_t bno, blkno;
996 1.1 mycroft int cylno, pos, delta;
997 1.1 mycroft short *cylbp;
998 1.33 augustss int i;
999 1.30 fvdl struct fs *fs = ip->i_fs;
1000 1.30 fvdl #ifdef FFS_EI
1001 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1002 1.30 fvdl #endif
1003 1.1 mycroft
1004 1.30 fvdl cgp = (struct cg *)bp->b_data;
1005 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1006 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1007 1.1 mycroft goto norot;
1008 1.1 mycroft }
1009 1.1 mycroft bpref = blknum(fs, bpref);
1010 1.1 mycroft bpref = dtogd(fs, bpref);
1011 1.1 mycroft /*
1012 1.1 mycroft * if the requested block is available, use it
1013 1.1 mycroft */
1014 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1015 1.19 bouyer fragstoblks(fs, bpref))) {
1016 1.1 mycroft bno = bpref;
1017 1.1 mycroft goto gotit;
1018 1.1 mycroft }
1019 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1020 1.1 mycroft /*
1021 1.1 mycroft * Block layout information is not available.
1022 1.1 mycroft * Leaving bpref unchanged means we take the
1023 1.1 mycroft * next available free block following the one
1024 1.1 mycroft * we just allocated. Hopefully this will at
1025 1.1 mycroft * least hit a track cache on drives of unknown
1026 1.1 mycroft * geometry (e.g. SCSI).
1027 1.1 mycroft */
1028 1.1 mycroft goto norot;
1029 1.1 mycroft }
1030 1.6 mycroft /*
1031 1.6 mycroft * check for a block available on the same cylinder
1032 1.6 mycroft */
1033 1.6 mycroft cylno = cbtocylno(fs, bpref);
1034 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
1035 1.6 mycroft goto norot;
1036 1.1 mycroft /*
1037 1.1 mycroft * check the summary information to see if a block is
1038 1.1 mycroft * available in the requested cylinder starting at the
1039 1.1 mycroft * requested rotational position and proceeding around.
1040 1.1 mycroft */
1041 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
1042 1.1 mycroft pos = cbtorpos(fs, bpref);
1043 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
1044 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1045 1.1 mycroft break;
1046 1.1 mycroft if (i == fs->fs_nrpos)
1047 1.1 mycroft for (i = 0; i < pos; i++)
1048 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1049 1.1 mycroft break;
1050 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1051 1.1 mycroft /*
1052 1.1 mycroft * found a rotational position, now find the actual
1053 1.1 mycroft * block. A panic if none is actually there.
1054 1.1 mycroft */
1055 1.1 mycroft pos = cylno % fs->fs_cpc;
1056 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1057 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1058 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1059 1.1 mycroft pos, i, fs->fs_fsmnt);
1060 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1061 1.1 mycroft }
1062 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1063 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1064 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1065 1.1 mycroft goto gotit;
1066 1.1 mycroft }
1067 1.1 mycroft delta = fs_rotbl(fs)[i];
1068 1.1 mycroft if (delta <= 0 ||
1069 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1070 1.1 mycroft break;
1071 1.1 mycroft i += delta;
1072 1.1 mycroft }
1073 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1074 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1075 1.1 mycroft }
1076 1.1 mycroft norot:
1077 1.1 mycroft /*
1078 1.1 mycroft * no blocks in the requested cylinder, so take next
1079 1.1 mycroft * available one in this cylinder group.
1080 1.1 mycroft */
1081 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1082 1.1 mycroft if (bno < 0)
1083 1.35 thorpej return (0);
1084 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1085 1.1 mycroft gotit:
1086 1.1 mycroft blkno = fragstoblks(fs, bno);
1087 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1088 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1089 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1090 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1091 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1092 1.1 mycroft cylno = cbtocylno(fs, bno);
1093 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1094 1.30 fvdl needswap);
1095 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1096 1.1 mycroft fs->fs_fmod = 1;
1097 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1098 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1099 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1100 1.30 fvdl return (blkno);
1101 1.1 mycroft }
1102 1.1 mycroft
1103 1.1 mycroft /*
1104 1.1 mycroft * Determine whether a cluster can be allocated.
1105 1.1 mycroft *
1106 1.1 mycroft * We do not currently check for optimal rotational layout if there
1107 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1108 1.1 mycroft * take the first one that we find following bpref.
1109 1.1 mycroft */
1110 1.18 fvdl static ufs_daddr_t
1111 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1112 1.1 mycroft struct inode *ip;
1113 1.1 mycroft int cg;
1114 1.18 fvdl ufs_daddr_t bpref;
1115 1.1 mycroft int len;
1116 1.1 mycroft {
1117 1.33 augustss struct fs *fs;
1118 1.33 augustss struct cg *cgp;
1119 1.1 mycroft struct buf *bp;
1120 1.18 fvdl int i, got, run, bno, bit, map;
1121 1.1 mycroft u_char *mapp;
1122 1.5 mycroft int32_t *lp;
1123 1.1 mycroft
1124 1.1 mycroft fs = ip->i_fs;
1125 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1126 1.35 thorpej return (0);
1127 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1128 1.1 mycroft NOCRED, &bp))
1129 1.1 mycroft goto fail;
1130 1.1 mycroft cgp = (struct cg *)bp->b_data;
1131 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1132 1.1 mycroft goto fail;
1133 1.1 mycroft /*
1134 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1135 1.1 mycroft * available in this cylinder group.
1136 1.1 mycroft */
1137 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1138 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1139 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1140 1.1 mycroft break;
1141 1.5 mycroft if (i > fs->fs_contigsumsize) {
1142 1.5 mycroft /*
1143 1.5 mycroft * This is the first time looking for a cluster in this
1144 1.5 mycroft * cylinder group. Update the cluster summary information
1145 1.5 mycroft * to reflect the true maximum sized cluster so that
1146 1.5 mycroft * future cluster allocation requests can avoid reading
1147 1.5 mycroft * the cylinder group map only to find no clusters.
1148 1.5 mycroft */
1149 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1150 1.5 mycroft for (i = len - 1; i > 0; i--)
1151 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1152 1.5 mycroft break;
1153 1.5 mycroft fs->fs_maxcluster[cg] = i;
1154 1.1 mycroft goto fail;
1155 1.5 mycroft }
1156 1.1 mycroft /*
1157 1.1 mycroft * Search the cluster map to find a big enough cluster.
1158 1.1 mycroft * We take the first one that we find, even if it is larger
1159 1.1 mycroft * than we need as we prefer to get one close to the previous
1160 1.1 mycroft * block allocation. We do not search before the current
1161 1.1 mycroft * preference point as we do not want to allocate a block
1162 1.1 mycroft * that is allocated before the previous one (as we will
1163 1.1 mycroft * then have to wait for another pass of the elevator
1164 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1165 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1166 1.1 mycroft */
1167 1.1 mycroft if (dtog(fs, bpref) != cg)
1168 1.1 mycroft bpref = 0;
1169 1.1 mycroft else
1170 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1171 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1172 1.1 mycroft map = *mapp++;
1173 1.1 mycroft bit = 1 << (bpref % NBBY);
1174 1.19 bouyer for (run = 0, got = bpref;
1175 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1176 1.1 mycroft if ((map & bit) == 0) {
1177 1.1 mycroft run = 0;
1178 1.1 mycroft } else {
1179 1.1 mycroft run++;
1180 1.1 mycroft if (run == len)
1181 1.1 mycroft break;
1182 1.1 mycroft }
1183 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1184 1.1 mycroft bit <<= 1;
1185 1.1 mycroft } else {
1186 1.1 mycroft map = *mapp++;
1187 1.1 mycroft bit = 1;
1188 1.1 mycroft }
1189 1.1 mycroft }
1190 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1191 1.1 mycroft goto fail;
1192 1.1 mycroft /*
1193 1.1 mycroft * Allocate the cluster that we have found.
1194 1.1 mycroft */
1195 1.30 fvdl #ifdef DIAGNOSTIC
1196 1.18 fvdl for (i = 1; i <= len; i++)
1197 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1198 1.30 fvdl got - run + i))
1199 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1200 1.30 fvdl #endif
1201 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1202 1.18 fvdl if (dtog(fs, bno) != cg)
1203 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1204 1.1 mycroft len = blkstofrags(fs, len);
1205 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1206 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1207 1.1 mycroft panic("ffs_clusteralloc: lost block");
1208 1.8 cgd bdwrite(bp);
1209 1.1 mycroft return (bno);
1210 1.1 mycroft
1211 1.1 mycroft fail:
1212 1.1 mycroft brelse(bp);
1213 1.1 mycroft return (0);
1214 1.1 mycroft }
1215 1.1 mycroft
1216 1.1 mycroft /*
1217 1.1 mycroft * Determine whether an inode can be allocated.
1218 1.1 mycroft *
1219 1.1 mycroft * Check to see if an inode is available, and if it is,
1220 1.1 mycroft * allocate it using the following policy:
1221 1.1 mycroft * 1) allocate the requested inode.
1222 1.1 mycroft * 2) allocate the next available inode after the requested
1223 1.1 mycroft * inode in the specified cylinder group.
1224 1.1 mycroft */
1225 1.18 fvdl static ufs_daddr_t
1226 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1227 1.1 mycroft struct inode *ip;
1228 1.1 mycroft int cg;
1229 1.18 fvdl ufs_daddr_t ipref;
1230 1.1 mycroft int mode;
1231 1.1 mycroft {
1232 1.33 augustss struct cg *cgp;
1233 1.1 mycroft struct buf *bp;
1234 1.1 mycroft int error, start, len, loc, map, i;
1235 1.33 augustss struct fs *fs = ip->i_fs;
1236 1.19 bouyer #ifdef FFS_EI
1237 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1238 1.19 bouyer #endif
1239 1.1 mycroft
1240 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1241 1.35 thorpej return (0);
1242 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1243 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1244 1.1 mycroft if (error) {
1245 1.1 mycroft brelse(bp);
1246 1.35 thorpej return (0);
1247 1.1 mycroft }
1248 1.1 mycroft cgp = (struct cg *)bp->b_data;
1249 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1250 1.1 mycroft brelse(bp);
1251 1.35 thorpej return (0);
1252 1.1 mycroft }
1253 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1254 1.1 mycroft if (ipref) {
1255 1.1 mycroft ipref %= fs->fs_ipg;
1256 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1257 1.1 mycroft goto gotit;
1258 1.1 mycroft }
1259 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1260 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1261 1.19 bouyer NBBY);
1262 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1263 1.1 mycroft if (loc == 0) {
1264 1.1 mycroft len = start + 1;
1265 1.1 mycroft start = 0;
1266 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1267 1.1 mycroft if (loc == 0) {
1268 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1269 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1270 1.19 bouyer fs->fs_fsmnt);
1271 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1272 1.1 mycroft /* NOTREACHED */
1273 1.1 mycroft }
1274 1.1 mycroft }
1275 1.1 mycroft i = start + len - loc;
1276 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1277 1.1 mycroft ipref = i * NBBY;
1278 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1279 1.1 mycroft if ((map & i) == 0) {
1280 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1281 1.1 mycroft goto gotit;
1282 1.1 mycroft }
1283 1.1 mycroft }
1284 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1285 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1286 1.1 mycroft /* NOTREACHED */
1287 1.1 mycroft gotit:
1288 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1289 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1290 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1291 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1292 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1293 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1294 1.1 mycroft fs->fs_fmod = 1;
1295 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1296 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1297 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1298 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1299 1.1 mycroft }
1300 1.1 mycroft bdwrite(bp);
1301 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1302 1.1 mycroft }
1303 1.1 mycroft
1304 1.1 mycroft /*
1305 1.1 mycroft * Free a block or fragment.
1306 1.1 mycroft *
1307 1.1 mycroft * The specified block or fragment is placed back in the
1308 1.1 mycroft * free map. If a fragment is deallocated, a possible
1309 1.1 mycroft * block reassembly is checked.
1310 1.1 mycroft */
1311 1.9 christos void
1312 1.1 mycroft ffs_blkfree(ip, bno, size)
1313 1.33 augustss struct inode *ip;
1314 1.18 fvdl ufs_daddr_t bno;
1315 1.1 mycroft long size;
1316 1.1 mycroft {
1317 1.33 augustss struct cg *cgp;
1318 1.1 mycroft struct buf *bp;
1319 1.18 fvdl ufs_daddr_t blkno;
1320 1.1 mycroft int i, error, cg, blk, frags, bbase;
1321 1.33 augustss struct fs *fs = ip->i_fs;
1322 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1323 1.1 mycroft
1324 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1325 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1326 1.30 fvdl printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1327 1.30 fvdl ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1328 1.1 mycroft panic("blkfree: bad size");
1329 1.1 mycroft }
1330 1.1 mycroft cg = dtog(fs, bno);
1331 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1332 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1333 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1334 1.1 mycroft return;
1335 1.1 mycroft }
1336 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1337 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1338 1.1 mycroft if (error) {
1339 1.1 mycroft brelse(bp);
1340 1.1 mycroft return;
1341 1.1 mycroft }
1342 1.1 mycroft cgp = (struct cg *)bp->b_data;
1343 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1344 1.1 mycroft brelse(bp);
1345 1.1 mycroft return;
1346 1.1 mycroft }
1347 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1348 1.1 mycroft bno = dtogd(fs, bno);
1349 1.1 mycroft if (size == fs->fs_bsize) {
1350 1.1 mycroft blkno = fragstoblks(fs, bno);
1351 1.30 fvdl if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1352 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1353 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1354 1.1 mycroft panic("blkfree: freeing free block");
1355 1.1 mycroft }
1356 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1357 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1358 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1359 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1360 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1361 1.1 mycroft i = cbtocylno(fs, bno);
1362 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1363 1.30 fvdl needswap);
1364 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1365 1.1 mycroft } else {
1366 1.1 mycroft bbase = bno - fragnum(fs, bno);
1367 1.1 mycroft /*
1368 1.1 mycroft * decrement the counts associated with the old frags
1369 1.1 mycroft */
1370 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1371 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1372 1.1 mycroft /*
1373 1.1 mycroft * deallocate the fragment
1374 1.1 mycroft */
1375 1.1 mycroft frags = numfrags(fs, size);
1376 1.1 mycroft for (i = 0; i < frags; i++) {
1377 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1378 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1379 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1380 1.1 mycroft panic("blkfree: freeing free frag");
1381 1.1 mycroft }
1382 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1383 1.1 mycroft }
1384 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1385 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1386 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1387 1.1 mycroft /*
1388 1.1 mycroft * add back in counts associated with the new frags
1389 1.1 mycroft */
1390 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1391 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1392 1.1 mycroft /*
1393 1.1 mycroft * if a complete block has been reassembled, account for it
1394 1.1 mycroft */
1395 1.1 mycroft blkno = fragstoblks(fs, bbase);
1396 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1397 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1398 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1399 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1400 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1401 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1402 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1403 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1404 1.1 mycroft i = cbtocylno(fs, bbase);
1405 1.30 fvdl ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1406 1.30 fvdl bbase)], 1,
1407 1.30 fvdl needswap);
1408 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1409 1.1 mycroft }
1410 1.1 mycroft }
1411 1.1 mycroft fs->fs_fmod = 1;
1412 1.1 mycroft bdwrite(bp);
1413 1.1 mycroft }
1414 1.1 mycroft
1415 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1416 1.18 fvdl /*
1417 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1418 1.18 fvdl * fragment is allocated, false if it is free.
1419 1.18 fvdl */
1420 1.18 fvdl static int
1421 1.18 fvdl ffs_checkblk(ip, bno, size)
1422 1.18 fvdl struct inode *ip;
1423 1.18 fvdl ufs_daddr_t bno;
1424 1.18 fvdl long size;
1425 1.18 fvdl {
1426 1.18 fvdl struct fs *fs;
1427 1.18 fvdl struct cg *cgp;
1428 1.18 fvdl struct buf *bp;
1429 1.18 fvdl int i, error, frags, free;
1430 1.18 fvdl
1431 1.18 fvdl fs = ip->i_fs;
1432 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1433 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1434 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1435 1.18 fvdl panic("checkblk: bad size");
1436 1.18 fvdl }
1437 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1438 1.18 fvdl panic("checkblk: bad block %d", bno);
1439 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1440 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1441 1.18 fvdl if (error) {
1442 1.18 fvdl brelse(bp);
1443 1.18 fvdl return 0;
1444 1.18 fvdl }
1445 1.18 fvdl cgp = (struct cg *)bp->b_data;
1446 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1447 1.18 fvdl brelse(bp);
1448 1.18 fvdl return 0;
1449 1.18 fvdl }
1450 1.18 fvdl bno = dtogd(fs, bno);
1451 1.18 fvdl if (size == fs->fs_bsize) {
1452 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1453 1.19 bouyer fragstoblks(fs, bno));
1454 1.18 fvdl } else {
1455 1.18 fvdl frags = numfrags(fs, size);
1456 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1457 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1458 1.18 fvdl free++;
1459 1.18 fvdl if (free != 0 && free != frags)
1460 1.18 fvdl panic("checkblk: partially free fragment");
1461 1.18 fvdl }
1462 1.18 fvdl brelse(bp);
1463 1.18 fvdl return (!free);
1464 1.18 fvdl }
1465 1.18 fvdl #endif /* DIAGNOSTIC */
1466 1.18 fvdl
1467 1.1 mycroft /*
1468 1.1 mycroft * Free an inode.
1469 1.30 fvdl */
1470 1.30 fvdl int
1471 1.30 fvdl ffs_vfree(v)
1472 1.30 fvdl void *v;
1473 1.30 fvdl {
1474 1.30 fvdl struct vop_vfree_args /* {
1475 1.30 fvdl struct vnode *a_pvp;
1476 1.30 fvdl ino_t a_ino;
1477 1.30 fvdl int a_mode;
1478 1.30 fvdl } */ *ap = v;
1479 1.30 fvdl
1480 1.30 fvdl if (DOINGSOFTDEP(ap->a_pvp)) {
1481 1.30 fvdl softdep_freefile(ap);
1482 1.30 fvdl return (0);
1483 1.30 fvdl }
1484 1.30 fvdl return (ffs_freefile(ap));
1485 1.30 fvdl }
1486 1.30 fvdl
1487 1.30 fvdl /*
1488 1.30 fvdl * Do the actual free operation.
1489 1.1 mycroft * The specified inode is placed back in the free map.
1490 1.1 mycroft */
1491 1.1 mycroft int
1492 1.30 fvdl ffs_freefile(v)
1493 1.9 christos void *v;
1494 1.9 christos {
1495 1.1 mycroft struct vop_vfree_args /* {
1496 1.1 mycroft struct vnode *a_pvp;
1497 1.1 mycroft ino_t a_ino;
1498 1.1 mycroft int a_mode;
1499 1.9 christos } */ *ap = v;
1500 1.33 augustss struct cg *cgp;
1501 1.33 augustss struct inode *pip = VTOI(ap->a_pvp);
1502 1.33 augustss struct fs *fs = pip->i_fs;
1503 1.1 mycroft ino_t ino = ap->a_ino;
1504 1.1 mycroft struct buf *bp;
1505 1.1 mycroft int error, cg;
1506 1.19 bouyer #ifdef FFS_EI
1507 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1508 1.19 bouyer #endif
1509 1.1 mycroft
1510 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1511 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1512 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1513 1.1 mycroft cg = ino_to_cg(fs, ino);
1514 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1515 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1516 1.1 mycroft if (error) {
1517 1.1 mycroft brelse(bp);
1518 1.30 fvdl return (error);
1519 1.1 mycroft }
1520 1.1 mycroft cgp = (struct cg *)bp->b_data;
1521 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1522 1.1 mycroft brelse(bp);
1523 1.1 mycroft return (0);
1524 1.1 mycroft }
1525 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1526 1.1 mycroft ino %= fs->fs_ipg;
1527 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1528 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1529 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1530 1.1 mycroft if (fs->fs_ronly == 0)
1531 1.1 mycroft panic("ifree: freeing free inode");
1532 1.1 mycroft }
1533 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1534 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1535 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1536 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1537 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1538 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1539 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1540 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1541 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1542 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1543 1.1 mycroft }
1544 1.1 mycroft fs->fs_fmod = 1;
1545 1.1 mycroft bdwrite(bp);
1546 1.1 mycroft return (0);
1547 1.1 mycroft }
1548 1.1 mycroft
1549 1.1 mycroft /*
1550 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1551 1.1 mycroft *
1552 1.1 mycroft * It is a panic if a request is made to find a block if none are
1553 1.1 mycroft * available.
1554 1.1 mycroft */
1555 1.18 fvdl static ufs_daddr_t
1556 1.30 fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
1557 1.33 augustss struct fs *fs;
1558 1.33 augustss struct cg *cgp;
1559 1.18 fvdl ufs_daddr_t bpref;
1560 1.1 mycroft int allocsiz;
1561 1.1 mycroft {
1562 1.18 fvdl ufs_daddr_t bno;
1563 1.1 mycroft int start, len, loc, i;
1564 1.1 mycroft int blk, field, subfield, pos;
1565 1.19 bouyer int ostart, olen;
1566 1.30 fvdl #ifdef FFS_EI
1567 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1568 1.30 fvdl #endif
1569 1.1 mycroft
1570 1.1 mycroft /*
1571 1.1 mycroft * find the fragment by searching through the free block
1572 1.1 mycroft * map for an appropriate bit pattern
1573 1.1 mycroft */
1574 1.1 mycroft if (bpref)
1575 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1576 1.1 mycroft else
1577 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1578 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1579 1.19 bouyer ostart = start;
1580 1.19 bouyer olen = len;
1581 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1582 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1583 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1584 1.1 mycroft if (loc == 0) {
1585 1.1 mycroft len = start + 1;
1586 1.1 mycroft start = 0;
1587 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1588 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1589 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1590 1.1 mycroft if (loc == 0) {
1591 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1592 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1593 1.20 ross printf("offset=%d %ld\n",
1594 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1595 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1596 1.1 mycroft panic("ffs_alloccg: map corrupted");
1597 1.1 mycroft /* NOTREACHED */
1598 1.1 mycroft }
1599 1.1 mycroft }
1600 1.1 mycroft bno = (start + len - loc) * NBBY;
1601 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1602 1.1 mycroft /*
1603 1.1 mycroft * found the byte in the map
1604 1.1 mycroft * sift through the bits to find the selected frag
1605 1.1 mycroft */
1606 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1607 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1608 1.1 mycroft blk <<= 1;
1609 1.1 mycroft field = around[allocsiz];
1610 1.1 mycroft subfield = inside[allocsiz];
1611 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1612 1.1 mycroft if ((blk & field) == subfield)
1613 1.1 mycroft return (bno + pos);
1614 1.1 mycroft field <<= 1;
1615 1.1 mycroft subfield <<= 1;
1616 1.1 mycroft }
1617 1.1 mycroft }
1618 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1619 1.1 mycroft panic("ffs_alloccg: block not in map");
1620 1.1 mycroft return (-1);
1621 1.1 mycroft }
1622 1.1 mycroft
1623 1.1 mycroft /*
1624 1.1 mycroft * Update the cluster map because of an allocation or free.
1625 1.1 mycroft *
1626 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1627 1.1 mycroft */
1628 1.9 christos void
1629 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
1630 1.1 mycroft struct fs *fs;
1631 1.1 mycroft struct cg *cgp;
1632 1.18 fvdl ufs_daddr_t blkno;
1633 1.1 mycroft int cnt;
1634 1.1 mycroft {
1635 1.4 cgd int32_t *sump;
1636 1.5 mycroft int32_t *lp;
1637 1.1 mycroft u_char *freemapp, *mapp;
1638 1.1 mycroft int i, start, end, forw, back, map, bit;
1639 1.30 fvdl #ifdef FFS_EI
1640 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1641 1.30 fvdl #endif
1642 1.1 mycroft
1643 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1644 1.1 mycroft return;
1645 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1646 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1647 1.1 mycroft /*
1648 1.1 mycroft * Allocate or clear the actual block.
1649 1.1 mycroft */
1650 1.1 mycroft if (cnt > 0)
1651 1.1 mycroft setbit(freemapp, blkno);
1652 1.1 mycroft else
1653 1.1 mycroft clrbit(freemapp, blkno);
1654 1.1 mycroft /*
1655 1.1 mycroft * Find the size of the cluster going forward.
1656 1.1 mycroft */
1657 1.1 mycroft start = blkno + 1;
1658 1.1 mycroft end = start + fs->fs_contigsumsize;
1659 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1660 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1661 1.1 mycroft mapp = &freemapp[start / NBBY];
1662 1.1 mycroft map = *mapp++;
1663 1.1 mycroft bit = 1 << (start % NBBY);
1664 1.1 mycroft for (i = start; i < end; i++) {
1665 1.1 mycroft if ((map & bit) == 0)
1666 1.1 mycroft break;
1667 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1668 1.1 mycroft bit <<= 1;
1669 1.1 mycroft } else {
1670 1.1 mycroft map = *mapp++;
1671 1.1 mycroft bit = 1;
1672 1.1 mycroft }
1673 1.1 mycroft }
1674 1.1 mycroft forw = i - start;
1675 1.1 mycroft /*
1676 1.1 mycroft * Find the size of the cluster going backward.
1677 1.1 mycroft */
1678 1.1 mycroft start = blkno - 1;
1679 1.1 mycroft end = start - fs->fs_contigsumsize;
1680 1.1 mycroft if (end < 0)
1681 1.1 mycroft end = -1;
1682 1.1 mycroft mapp = &freemapp[start / NBBY];
1683 1.1 mycroft map = *mapp--;
1684 1.1 mycroft bit = 1 << (start % NBBY);
1685 1.1 mycroft for (i = start; i > end; i--) {
1686 1.1 mycroft if ((map & bit) == 0)
1687 1.1 mycroft break;
1688 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1689 1.1 mycroft bit >>= 1;
1690 1.1 mycroft } else {
1691 1.1 mycroft map = *mapp--;
1692 1.1 mycroft bit = 1 << (NBBY - 1);
1693 1.1 mycroft }
1694 1.1 mycroft }
1695 1.1 mycroft back = start - i;
1696 1.1 mycroft /*
1697 1.1 mycroft * Account for old cluster and the possibly new forward and
1698 1.1 mycroft * back clusters.
1699 1.1 mycroft */
1700 1.1 mycroft i = back + forw + 1;
1701 1.1 mycroft if (i > fs->fs_contigsumsize)
1702 1.1 mycroft i = fs->fs_contigsumsize;
1703 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1704 1.1 mycroft if (back > 0)
1705 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1706 1.1 mycroft if (forw > 0)
1707 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1708 1.19 bouyer
1709 1.5 mycroft /*
1710 1.5 mycroft * Update cluster summary information.
1711 1.5 mycroft */
1712 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1713 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1714 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1715 1.5 mycroft break;
1716 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1717 1.1 mycroft }
1718 1.1 mycroft
1719 1.1 mycroft /*
1720 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1721 1.1 mycroft *
1722 1.1 mycroft * The form of the error message is:
1723 1.1 mycroft * fs: error message
1724 1.1 mycroft */
1725 1.1 mycroft static void
1726 1.1 mycroft ffs_fserr(fs, uid, cp)
1727 1.1 mycroft struct fs *fs;
1728 1.1 mycroft u_int uid;
1729 1.1 mycroft char *cp;
1730 1.1 mycroft {
1731 1.1 mycroft
1732 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1733 1.1 mycroft }
1734