Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.35.4.3
      1  1.35.4.3        he /*	$NetBSD: ffs_alloc.c,v 1.35.4.3 2001/11/25 19:59:57 he Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1   mycroft  *
      7       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8       1.1   mycroft  * modification, are permitted provided that the following conditions
      9       1.1   mycroft  * are met:
     10       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15       1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16       1.1   mycroft  *    must display the following acknowledgement:
     17       1.1   mycroft  *	This product includes software developed by the University of
     18       1.1   mycroft  *	California, Berkeley and its contributors.
     19       1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21       1.1   mycroft  *    without specific prior written permission.
     22       1.1   mycroft  *
     23       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.1   mycroft  * SUCH DAMAGE.
     34       1.1   mycroft  *
     35      1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36       1.1   mycroft  */
     37      1.17       mrg 
     38      1.22    scottr #if defined(_KERNEL) && !defined(_LKM)
     39      1.27   thorpej #include "opt_ffs.h"
     40      1.21    scottr #include "opt_quota.h"
     41      1.22    scottr #endif
     42       1.1   mycroft 
     43       1.1   mycroft #include <sys/param.h>
     44       1.1   mycroft #include <sys/systm.h>
     45       1.1   mycroft #include <sys/buf.h>
     46       1.1   mycroft #include <sys/proc.h>
     47       1.1   mycroft #include <sys/vnode.h>
     48       1.1   mycroft #include <sys/mount.h>
     49       1.1   mycroft #include <sys/kernel.h>
     50       1.1   mycroft #include <sys/syslog.h>
     51       1.1   mycroft 
     52       1.1   mycroft #include <vm/vm.h>
     53       1.1   mycroft 
     54      1.29       mrg #include <uvm/uvm_extern.h>
     55      1.29       mrg 
     56       1.1   mycroft #include <ufs/ufs/quota.h>
     57      1.19    bouyer #include <ufs/ufs/ufsmount.h>
     58       1.1   mycroft #include <ufs/ufs/inode.h>
     59       1.9  christos #include <ufs/ufs/ufs_extern.h>
     60      1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     61       1.1   mycroft 
     62       1.1   mycroft #include <ufs/ffs/fs.h>
     63       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     64       1.1   mycroft 
     65      1.30      fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     66      1.30      fvdl static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     67      1.30      fvdl 					ufs_daddr_t));
     68      1.30      fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     69  1.35.4.3        he static ino_t ffs_dirpref __P((struct inode *));
     70      1.30      fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71      1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     72      1.30      fvdl static u_long ffs_hashalloc
     73      1.30      fvdl 		__P((struct inode *, int, long, int,
     74      1.30      fvdl 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     75      1.30      fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     76      1.30      fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     77      1.30      fvdl 				      ufs_daddr_t, int));
     78      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     79      1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80      1.18      fvdl #endif
     81      1.23  drochner 
     82      1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     83      1.34  jdolecek int ffs_log_changeopt = 0;
     84      1.34  jdolecek 
     85      1.23  drochner /* in ffs_tables.c */
     86      1.23  drochner extern int inside[], around[];
     87      1.23  drochner extern u_char *fragtbl[];
     88       1.1   mycroft 
     89       1.1   mycroft /*
     90       1.1   mycroft  * Allocate a block in the file system.
     91       1.1   mycroft  *
     92       1.1   mycroft  * The size of the requested block is given, which must be some
     93       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     94       1.1   mycroft  * A preference may be optionally specified. If a preference is given
     95       1.1   mycroft  * the following hierarchy is used to allocate a block:
     96       1.1   mycroft  *   1) allocate the requested block.
     97       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     98       1.1   mycroft  *   3) allocate a block in the same cylinder group.
     99       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    100       1.1   mycroft  *      available block is located.
    101       1.1   mycroft  * If no block preference is given the following heirarchy is used
    102       1.1   mycroft  * to allocate a block:
    103       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    104       1.1   mycroft  *      inode for the file.
    105       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    106       1.1   mycroft  *      available block is located.
    107       1.1   mycroft  */
    108       1.9  christos int
    109       1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    110      1.33  augustss 	struct inode *ip;
    111      1.18      fvdl 	ufs_daddr_t lbn, bpref;
    112       1.1   mycroft 	int size;
    113       1.1   mycroft 	struct ucred *cred;
    114      1.18      fvdl 	ufs_daddr_t *bnp;
    115       1.1   mycroft {
    116      1.33  augustss 	struct fs *fs;
    117      1.18      fvdl 	ufs_daddr_t bno;
    118       1.9  christos 	int cg;
    119       1.9  christos #ifdef QUOTA
    120       1.9  christos 	int error;
    121       1.9  christos #endif
    122       1.1   mycroft 
    123       1.1   mycroft 	*bnp = 0;
    124       1.1   mycroft 	fs = ip->i_fs;
    125       1.1   mycroft #ifdef DIAGNOSTIC
    126       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    127      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    128       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    129       1.1   mycroft 		panic("ffs_alloc: bad size");
    130       1.1   mycroft 	}
    131       1.1   mycroft 	if (cred == NOCRED)
    132       1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    133       1.1   mycroft #endif /* DIAGNOSTIC */
    134       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    135       1.1   mycroft 		goto nospace;
    136       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    137       1.1   mycroft 		goto nospace;
    138       1.1   mycroft #ifdef QUOTA
    139       1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    140       1.1   mycroft 		return (error);
    141       1.1   mycroft #endif
    142       1.1   mycroft 	if (bpref >= fs->fs_size)
    143       1.1   mycroft 		bpref = 0;
    144       1.1   mycroft 	if (bpref == 0)
    145       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    146       1.1   mycroft 	else
    147       1.1   mycroft 		cg = dtog(fs, bpref);
    148      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    149       1.9  christos 	    			     ffs_alloccg);
    150       1.1   mycroft 	if (bno > 0) {
    151      1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    152       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    153       1.1   mycroft 		*bnp = bno;
    154       1.1   mycroft 		return (0);
    155       1.1   mycroft 	}
    156       1.1   mycroft #ifdef QUOTA
    157       1.1   mycroft 	/*
    158       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    159       1.1   mycroft 	 */
    160       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    161       1.1   mycroft #endif
    162       1.1   mycroft nospace:
    163       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    164       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    165       1.1   mycroft 	return (ENOSPC);
    166       1.1   mycroft }
    167       1.1   mycroft 
    168       1.1   mycroft /*
    169       1.1   mycroft  * Reallocate a fragment to a bigger size
    170       1.1   mycroft  *
    171       1.1   mycroft  * The number and size of the old block is given, and a preference
    172       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    173       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    174       1.1   mycroft  * invoked to get an appropriate block.
    175       1.1   mycroft  */
    176       1.9  christos int
    177       1.1   mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    178      1.33  augustss 	struct inode *ip;
    179      1.18      fvdl 	ufs_daddr_t lbprev;
    180      1.18      fvdl 	ufs_daddr_t bpref;
    181       1.1   mycroft 	int osize, nsize;
    182       1.1   mycroft 	struct ucred *cred;
    183       1.1   mycroft 	struct buf **bpp;
    184       1.1   mycroft {
    185      1.33  augustss 	struct fs *fs;
    186       1.1   mycroft 	struct buf *bp;
    187       1.1   mycroft 	int cg, request, error;
    188      1.18      fvdl 	ufs_daddr_t bprev, bno;
    189      1.25   thorpej 
    190       1.1   mycroft 	*bpp = 0;
    191       1.1   mycroft 	fs = ip->i_fs;
    192       1.1   mycroft #ifdef DIAGNOSTIC
    193       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    194       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    195      1.13  christos 		printf(
    196       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    197       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    198       1.1   mycroft 		panic("ffs_realloccg: bad size");
    199       1.1   mycroft 	}
    200       1.1   mycroft 	if (cred == NOCRED)
    201       1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    202       1.1   mycroft #endif /* DIAGNOSTIC */
    203       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    204       1.1   mycroft 		goto nospace;
    205      1.30      fvdl 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    206      1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    207       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    208       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    209       1.1   mycroft 	}
    210       1.1   mycroft 	/*
    211       1.1   mycroft 	 * Allocate the extra space in the buffer.
    212       1.1   mycroft 	 */
    213       1.9  christos 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    214       1.1   mycroft 		brelse(bp);
    215       1.1   mycroft 		return (error);
    216       1.1   mycroft 	}
    217       1.1   mycroft #ifdef QUOTA
    218       1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    219       1.1   mycroft 		brelse(bp);
    220       1.1   mycroft 		return (error);
    221       1.1   mycroft 	}
    222       1.1   mycroft #endif
    223       1.1   mycroft 	/*
    224       1.1   mycroft 	 * Check for extension in the existing location.
    225       1.1   mycroft 	 */
    226       1.1   mycroft 	cg = dtog(fs, bprev);
    227       1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    228       1.1   mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    229       1.1   mycroft 			panic("bad blockno");
    230      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    231       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    232       1.1   mycroft 		allocbuf(bp, nsize);
    233       1.1   mycroft 		bp->b_flags |= B_DONE;
    234      1.24     perry 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    235       1.1   mycroft 		*bpp = bp;
    236       1.1   mycroft 		return (0);
    237       1.1   mycroft 	}
    238       1.1   mycroft 	/*
    239       1.1   mycroft 	 * Allocate a new disk location.
    240       1.1   mycroft 	 */
    241       1.1   mycroft 	if (bpref >= fs->fs_size)
    242       1.1   mycroft 		bpref = 0;
    243       1.1   mycroft 	switch ((int)fs->fs_optim) {
    244       1.1   mycroft 	case FS_OPTSPACE:
    245       1.1   mycroft 		/*
    246       1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    247       1.1   mycroft 		 * best use of space, we will waste time relocating it if
    248       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    249       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    250       1.1   mycroft 		 * to begin optimizing for time.
    251       1.1   mycroft 		 */
    252       1.1   mycroft 		request = nsize;
    253       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    254       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    255       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    256       1.1   mycroft 			break;
    257      1.34  jdolecek 
    258      1.34  jdolecek 		if (ffs_log_changeopt) {
    259      1.34  jdolecek 			log(LOG_NOTICE,
    260      1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    261      1.34  jdolecek 				fs->fs_fsmnt);
    262      1.34  jdolecek 		}
    263      1.34  jdolecek 
    264       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    265       1.1   mycroft 		break;
    266       1.1   mycroft 	case FS_OPTTIME:
    267       1.1   mycroft 		/*
    268       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    269       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    270       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    271       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    272       1.1   mycroft 		 * above will be able to grow it in place without further
    273       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    274       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    275       1.1   mycroft 		 * optimizing for space.
    276       1.1   mycroft 		 */
    277       1.1   mycroft 		request = fs->fs_bsize;
    278       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    279       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    280       1.1   mycroft 			break;
    281      1.34  jdolecek 
    282      1.34  jdolecek 		if (ffs_log_changeopt) {
    283      1.34  jdolecek 			log(LOG_NOTICE,
    284      1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    285      1.34  jdolecek 				fs->fs_fsmnt);
    286      1.34  jdolecek 		}
    287      1.34  jdolecek 
    288       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    289       1.1   mycroft 		break;
    290       1.1   mycroft 	default:
    291      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    292       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    293       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    294       1.1   mycroft 		/* NOTREACHED */
    295       1.1   mycroft 	}
    296      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    297       1.9  christos 	    			     ffs_alloccg);
    298       1.1   mycroft 	if (bno > 0) {
    299       1.1   mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    300      1.16       mrg 		(void) uvm_vnp_uncache(ITOV(ip));
    301      1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    302      1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    303       1.1   mycroft 		if (nsize < request)
    304       1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    305       1.1   mycroft 			    (long)(request - nsize));
    306      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    307       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    308       1.1   mycroft 		allocbuf(bp, nsize);
    309       1.1   mycroft 		bp->b_flags |= B_DONE;
    310      1.24     perry 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    311       1.1   mycroft 		*bpp = bp;
    312       1.1   mycroft 		return (0);
    313       1.1   mycroft 	}
    314       1.1   mycroft #ifdef QUOTA
    315       1.1   mycroft 	/*
    316       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    317       1.1   mycroft 	 */
    318       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    319       1.1   mycroft #endif
    320       1.1   mycroft 	brelse(bp);
    321       1.1   mycroft nospace:
    322       1.1   mycroft 	/*
    323       1.1   mycroft 	 * no space available
    324       1.1   mycroft 	 */
    325       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    326       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    327       1.1   mycroft 	return (ENOSPC);
    328       1.1   mycroft }
    329       1.1   mycroft 
    330       1.1   mycroft /*
    331       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    332       1.1   mycroft  *
    333       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    334       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    335       1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    336       1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    337       1.1   mycroft  * block immediately preceeding the current range. If successful, the
    338       1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    339       1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    340       1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    341       1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    342       1.1   mycroft  * the previous block allocation will be used.
    343       1.1   mycroft  */
    344       1.3   mycroft #ifdef DEBUG
    345       1.1   mycroft #include <sys/sysctl.h>
    346       1.5   mycroft int prtrealloc = 0;
    347       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    348       1.1   mycroft #endif
    349       1.1   mycroft 
    350      1.18      fvdl int doasyncfree = 1;
    351      1.18      fvdl extern int doreallocblks;
    352      1.18      fvdl 
    353       1.1   mycroft int
    354       1.9  christos ffs_reallocblks(v)
    355       1.9  christos 	void *v;
    356       1.9  christos {
    357       1.1   mycroft 	struct vop_reallocblks_args /* {
    358       1.1   mycroft 		struct vnode *a_vp;
    359       1.1   mycroft 		struct cluster_save *a_buflist;
    360       1.9  christos 	} */ *ap = v;
    361       1.1   mycroft 	struct fs *fs;
    362       1.1   mycroft 	struct inode *ip;
    363       1.1   mycroft 	struct vnode *vp;
    364       1.1   mycroft 	struct buf *sbp, *ebp;
    365      1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    366       1.1   mycroft 	struct cluster_save *buflist;
    367      1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    368       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    369       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    370       1.1   mycroft 
    371       1.1   mycroft 	vp = ap->a_vp;
    372       1.1   mycroft 	ip = VTOI(vp);
    373       1.1   mycroft 	fs = ip->i_fs;
    374       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    375       1.1   mycroft 		return (ENOSPC);
    376       1.1   mycroft 	buflist = ap->a_buflist;
    377       1.1   mycroft 	len = buflist->bs_nchildren;
    378       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    379       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    380       1.1   mycroft #ifdef DIAGNOSTIC
    381      1.18      fvdl 	for (i = 0; i < len; i++)
    382      1.18      fvdl 		if (!ffs_checkblk(ip,
    383      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    384      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    385       1.1   mycroft 	for (i = 1; i < len; i++)
    386       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    387      1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    388      1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    389      1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    390      1.18      fvdl 	for (i = 1; i < len - 1; i++)
    391      1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    392      1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    393       1.1   mycroft #endif
    394       1.1   mycroft 	/*
    395       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    396       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    397       1.1   mycroft 	 * the previous cylinder group.
    398       1.1   mycroft 	 */
    399       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    400       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    401       1.1   mycroft 		return (ENOSPC);
    402       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    403       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    404       1.1   mycroft 		return (ENOSPC);
    405       1.1   mycroft 	/*
    406       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    407       1.1   mycroft 	 */
    408       1.1   mycroft 	if (start_lvl == 0) {
    409      1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    410       1.1   mycroft 		soff = start_lbn;
    411       1.1   mycroft 	} else {
    412       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    413       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    414       1.1   mycroft 			brelse(sbp);
    415       1.1   mycroft 			return (ENOSPC);
    416       1.1   mycroft 		}
    417      1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    418       1.1   mycroft 		soff = idp->in_off;
    419       1.1   mycroft 	}
    420       1.1   mycroft 	/*
    421       1.1   mycroft 	 * Find the preferred location for the cluster.
    422       1.1   mycroft 	 */
    423       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    424       1.1   mycroft 	/*
    425       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    426       1.1   mycroft 	 */
    427       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    428       1.1   mycroft 		ssize = len;
    429       1.1   mycroft 	} else {
    430       1.1   mycroft #ifdef DIAGNOSTIC
    431       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    432       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    433       1.1   mycroft #endif
    434       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    435       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    436       1.1   mycroft 			goto fail;
    437      1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    438       1.1   mycroft 	}
    439       1.1   mycroft 	/*
    440       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    441       1.1   mycroft 	 */
    442      1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    443       1.9  christos 	    len, ffs_clusteralloc)) == 0)
    444       1.1   mycroft 		goto fail;
    445       1.1   mycroft 	/*
    446       1.1   mycroft 	 * We have found a new contiguous block.
    447       1.1   mycroft 	 *
    448       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    449       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    450       1.1   mycroft 	 * with the file.
    451       1.1   mycroft 	 */
    452       1.5   mycroft #ifdef DEBUG
    453       1.5   mycroft 	if (prtrealloc)
    454      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    455       1.5   mycroft 		    start_lbn, end_lbn);
    456       1.5   mycroft #endif
    457       1.1   mycroft 	blkno = newblk;
    458       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    459      1.30      fvdl 		ufs_daddr_t ba;
    460      1.30      fvdl 
    461      1.30      fvdl 		if (i == ssize) {
    462       1.1   mycroft 			bap = ebap;
    463      1.30      fvdl 			soff = -i;
    464      1.30      fvdl 		}
    465      1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    466       1.1   mycroft #ifdef DIAGNOSTIC
    467      1.18      fvdl 		if (!ffs_checkblk(ip,
    468      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    469      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    470      1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    471       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    472       1.1   mycroft #endif
    473       1.5   mycroft #ifdef DEBUG
    474       1.5   mycroft 		if (prtrealloc)
    475      1.30      fvdl 			printf(" %d,", ba);
    476       1.5   mycroft #endif
    477      1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    478      1.30      fvdl  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    479      1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    480      1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    481      1.30      fvdl  				    buflist->bs_children[i]);
    482      1.30      fvdl  			else
    483      1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    484      1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    485      1.30      fvdl  				    ba, buflist->bs_children[i]);
    486      1.30      fvdl  		}
    487      1.30      fvdl 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    488       1.1   mycroft 	}
    489       1.1   mycroft 	/*
    490       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    491       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    492       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    493       1.1   mycroft 	 * they are almost never written, but if we are concerned about
    494       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    495       1.1   mycroft 	 *
    496       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    497       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    498       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    499       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    500       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    501       1.1   mycroft 	 * synchronous write only when it has been cleared.
    502       1.1   mycroft 	 */
    503      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    504       1.1   mycroft 		if (doasyncfree)
    505       1.1   mycroft 			bdwrite(sbp);
    506       1.1   mycroft 		else
    507       1.1   mycroft 			bwrite(sbp);
    508       1.1   mycroft 	} else {
    509       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    510      1.28   mycroft 		if (!doasyncfree)
    511      1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    512       1.1   mycroft 	}
    513      1.25   thorpej 	if (ssize < len) {
    514       1.1   mycroft 		if (doasyncfree)
    515       1.1   mycroft 			bdwrite(ebp);
    516       1.1   mycroft 		else
    517       1.1   mycroft 			bwrite(ebp);
    518      1.25   thorpej 	}
    519       1.1   mycroft 	/*
    520       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    521       1.1   mycroft 	 */
    522       1.5   mycroft #ifdef DEBUG
    523       1.5   mycroft 	if (prtrealloc)
    524      1.13  christos 		printf("\n\tnew:");
    525       1.5   mycroft #endif
    526       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    527      1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    528      1.30      fvdl 			ffs_blkfree(ip,
    529      1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    530      1.30      fvdl 			    fs->fs_bsize);
    531       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    532       1.5   mycroft #ifdef DEBUG
    533      1.18      fvdl 		if (!ffs_checkblk(ip,
    534      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    535      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    536       1.5   mycroft 		if (prtrealloc)
    537      1.13  christos 			printf(" %d,", blkno);
    538       1.5   mycroft #endif
    539       1.5   mycroft 	}
    540       1.5   mycroft #ifdef DEBUG
    541       1.5   mycroft 	if (prtrealloc) {
    542       1.5   mycroft 		prtrealloc--;
    543      1.13  christos 		printf("\n");
    544       1.1   mycroft 	}
    545       1.5   mycroft #endif
    546       1.1   mycroft 	return (0);
    547       1.1   mycroft 
    548       1.1   mycroft fail:
    549       1.1   mycroft 	if (ssize < len)
    550       1.1   mycroft 		brelse(ebp);
    551      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    552       1.1   mycroft 		brelse(sbp);
    553       1.1   mycroft 	return (ENOSPC);
    554       1.1   mycroft }
    555       1.1   mycroft 
    556       1.1   mycroft /*
    557       1.1   mycroft  * Allocate an inode in the file system.
    558       1.1   mycroft  *
    559       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    560       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    561       1.1   mycroft  *   1) allocate the preferred inode.
    562       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    563       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    564       1.1   mycroft  *      available inode is located.
    565       1.1   mycroft  * If no inode preference is given the following heirarchy is used
    566       1.1   mycroft  * to allocate an inode:
    567       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    568       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    569       1.1   mycroft  *      available inode is located.
    570       1.1   mycroft  */
    571       1.9  christos int
    572       1.9  christos ffs_valloc(v)
    573       1.9  christos 	void *v;
    574       1.9  christos {
    575       1.1   mycroft 	struct vop_valloc_args /* {
    576       1.1   mycroft 		struct vnode *a_pvp;
    577       1.1   mycroft 		int a_mode;
    578       1.1   mycroft 		struct ucred *a_cred;
    579       1.1   mycroft 		struct vnode **a_vpp;
    580       1.9  christos 	} */ *ap = v;
    581      1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    582      1.33  augustss 	struct inode *pip;
    583      1.33  augustss 	struct fs *fs;
    584      1.33  augustss 	struct inode *ip;
    585       1.1   mycroft 	mode_t mode = ap->a_mode;
    586       1.1   mycroft 	ino_t ino, ipref;
    587       1.1   mycroft 	int cg, error;
    588       1.1   mycroft 
    589       1.1   mycroft 	*ap->a_vpp = NULL;
    590       1.1   mycroft 	pip = VTOI(pvp);
    591       1.1   mycroft 	fs = pip->i_fs;
    592       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    593       1.1   mycroft 		goto noinodes;
    594       1.1   mycroft 
    595       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    596  1.35.4.3        he 		ipref = ffs_dirpref(pip);
    597  1.35.4.3        he 	else
    598  1.35.4.3        he 		ipref = pip->i_number;
    599       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    600       1.1   mycroft 		ipref = 0;
    601       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    602  1.35.4.3        he 	/*
    603  1.35.4.3        he 	 * Track number of dirs created one after another
    604  1.35.4.3        he 	 * in a same cg without intervening by files.
    605  1.35.4.3        he 	 */
    606  1.35.4.3        he 	if ((mode & IFMT) == IFDIR) {
    607  1.35.4.3        he 		if (fs->fs_contigdirs[cg] < 65535)
    608  1.35.4.3        he 			fs->fs_contigdirs[cg]++;
    609  1.35.4.3        he 	} else {
    610  1.35.4.3        he 		if (fs->fs_contigdirs[cg] > 0)
    611  1.35.4.3        he 			fs->fs_contigdirs[cg]--;
    612  1.35.4.3        he 	}
    613       1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    614       1.1   mycroft 	if (ino == 0)
    615       1.1   mycroft 		goto noinodes;
    616       1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    617       1.1   mycroft 	if (error) {
    618       1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    619       1.1   mycroft 		return (error);
    620       1.1   mycroft 	}
    621       1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    622      1.15    bouyer 	if (ip->i_ffs_mode) {
    623      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    624      1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    625       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    626       1.1   mycroft 	}
    627      1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    628      1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    629      1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    630      1.15    bouyer 		ip->i_ffs_blocks = 0;
    631       1.1   mycroft 	}
    632      1.15    bouyer 	ip->i_ffs_flags = 0;
    633       1.1   mycroft 	/*
    634       1.1   mycroft 	 * Set up a new generation number for this inode.
    635       1.1   mycroft 	 */
    636      1.15    bouyer 	ip->i_ffs_gen++;
    637       1.1   mycroft 	return (0);
    638       1.1   mycroft noinodes:
    639       1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    640       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    641       1.1   mycroft 	return (ENOSPC);
    642       1.1   mycroft }
    643       1.1   mycroft 
    644       1.1   mycroft /*
    645  1.35.4.3        he  * Find a cylinder group in which to place a directory.
    646  1.35.4.1        he  *
    647  1.35.4.3        he  * The policy implemented by this algorithm is to allocate a
    648  1.35.4.3        he  * directory inode in the same cylinder group as its parent
    649  1.35.4.3        he  * directory, but also to reserve space for its files inodes
    650  1.35.4.3        he  * and data. Restrict the number of directories which may be
    651  1.35.4.3        he  * allocated one after another in the same cylinder group
    652  1.35.4.3        he  * without intervening allocation of files.
    653       1.1   mycroft  *
    654  1.35.4.3        he  * If we allocate a first level directory then force allocation
    655  1.35.4.3        he  * in another cylinder group.
    656       1.1   mycroft  */
    657       1.1   mycroft static ino_t
    658  1.35.4.3        he ffs_dirpref(pip)
    659  1.35.4.3        he 	struct inode *pip;
    660       1.1   mycroft {
    661  1.35.4.3        he 	register struct fs *fs;
    662  1.35.4.3        he 	int cg, prefcg, dirsize, cgsize;
    663  1.35.4.3        he 	int avgifree, avgbfree, avgndir, curdirsize;
    664  1.35.4.3        he 	int minifree, minbfree, maxndir;
    665  1.35.4.3        he 	int mincg, minndir;
    666  1.35.4.3        he 	int maxcontigdirs;
    667  1.35.4.3        he 
    668  1.35.4.3        he 	fs = pip->i_fs;
    669       1.1   mycroft 
    670       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    671  1.35.4.3        he 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    672  1.35.4.3        he 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    673  1.35.4.3        he 
    674  1.35.4.3        he 	/*
    675  1.35.4.3        he 	 * Force allocation in another cg if creating a first level dir.
    676  1.35.4.3        he 	 */
    677  1.35.4.3        he 	if (ITOV(pip)->v_flag & VROOT) {
    678  1.35.4.3        he 		prefcg = random() % fs->fs_ncg;
    679  1.35.4.3        he 		mincg = prefcg;
    680  1.35.4.3        he 		minndir = fs->fs_ipg;
    681  1.35.4.3        he 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    682  1.35.4.3        he 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    683  1.35.4.3        he 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    684  1.35.4.3        he 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    685  1.35.4.1        he 				mincg = cg;
    686  1.35.4.3        he 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    687  1.35.4.1        he 			}
    688  1.35.4.3        he 		for (cg = 0; cg < prefcg; cg++)
    689  1.35.4.3        he 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    690  1.35.4.3        he 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    691  1.35.4.3        he 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    692  1.35.4.3        he 				mincg = cg;
    693  1.35.4.3        he 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    694  1.35.4.1        he 			}
    695  1.35.4.3        he 		return ((ino_t)(fs->fs_ipg * mincg));
    696  1.35.4.1        he 	}
    697  1.35.4.3        he 
    698  1.35.4.3        he 	/*
    699  1.35.4.3        he 	 * Count various limits which used for
    700  1.35.4.3        he 	 * optimal allocation of a directory inode.
    701  1.35.4.3        he 	 */
    702  1.35.4.3        he 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    703  1.35.4.3        he 	minifree = avgifree - fs->fs_ipg / 4;
    704  1.35.4.3        he 	if (minifree < 0)
    705  1.35.4.3        he 		minifree = 0;
    706  1.35.4.3        he 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
    707  1.35.4.3        he 	if (minbfree < 0)
    708  1.35.4.3        he 		minbfree = 0;
    709  1.35.4.3        he 	cgsize = fs->fs_fsize * fs->fs_fpg;
    710  1.35.4.3        he 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    711  1.35.4.3        he 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    712  1.35.4.3        he 	if (dirsize < curdirsize)
    713  1.35.4.3        he 		dirsize = curdirsize;
    714  1.35.4.3        he 	maxcontigdirs = min(cgsize / dirsize, 255);
    715  1.35.4.3        he 	if (fs->fs_avgfpdir > 0)
    716  1.35.4.3        he 		maxcontigdirs = min(maxcontigdirs,
    717  1.35.4.3        he 				    fs->fs_ipg / fs->fs_avgfpdir);
    718  1.35.4.3        he 	if (maxcontigdirs == 0)
    719  1.35.4.3        he 		maxcontigdirs = 1;
    720  1.35.4.3        he 
    721  1.35.4.3        he 	/*
    722  1.35.4.3        he 	 * Limit number of dirs in one cg and reserve space for
    723  1.35.4.3        he 	 * regular files, but only if we have no deficit in
    724  1.35.4.3        he 	 * inodes or space.
    725  1.35.4.3        he 	 */
    726  1.35.4.3        he 	prefcg = ino_to_cg(fs, pip->i_number);
    727  1.35.4.3        he 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    728  1.35.4.3        he 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    729  1.35.4.3        he 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    730  1.35.4.3        he 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    731  1.35.4.3        he 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    732  1.35.4.3        he 				return ((ino_t)(fs->fs_ipg * cg));
    733  1.35.4.3        he 		}
    734  1.35.4.3        he 	for (cg = 0; cg < prefcg; cg++)
    735  1.35.4.3        he 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    736  1.35.4.3        he 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    737  1.35.4.3        he 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    738  1.35.4.3        he 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    739  1.35.4.3        he 				return ((ino_t)(fs->fs_ipg * cg));
    740  1.35.4.3        he 		}
    741  1.35.4.3        he 	/*
    742  1.35.4.3        he 	 * This is a backstop when we are deficient in space.
    743  1.35.4.3        he 	 */
    744  1.35.4.3        he 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    745  1.35.4.3        he 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    746  1.35.4.3        he 			return ((ino_t)(fs->fs_ipg * cg));
    747  1.35.4.3        he 	for (cg = 0; cg < prefcg; cg++)
    748  1.35.4.3        he 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    749  1.35.4.3        he 			break;
    750  1.35.4.3        he 	return ((ino_t)(fs->fs_ipg * cg));
    751       1.1   mycroft }
    752       1.1   mycroft 
    753       1.1   mycroft /*
    754       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    755       1.1   mycroft  * logically divided into sections. The first section is composed of the
    756       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    757       1.1   mycroft  *
    758       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    759       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    760       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    761       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    762       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    763       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    764       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    765       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    766       1.1   mycroft  * continues until a cylinder group with greater than the average number
    767       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    768       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    769       1.1   mycroft  * here a best guess is made based upon the logical block number being
    770       1.1   mycroft  * allocated.
    771       1.1   mycroft  *
    772       1.1   mycroft  * If a section is already partially allocated, the policy is to
    773       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    774       1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    775       1.1   mycroft  * so that the disk head will be in transit between them for at least
    776       1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    777       1.1   mycroft  * schedule another I/O transfer.
    778       1.1   mycroft  */
    779      1.18      fvdl ufs_daddr_t
    780       1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    781       1.1   mycroft 	struct inode *ip;
    782      1.18      fvdl 	ufs_daddr_t lbn;
    783       1.1   mycroft 	int indx;
    784      1.18      fvdl 	ufs_daddr_t *bap;
    785       1.1   mycroft {
    786      1.33  augustss 	struct fs *fs;
    787      1.33  augustss 	int cg;
    788       1.1   mycroft 	int avgbfree, startcg;
    789      1.18      fvdl 	ufs_daddr_t nextblk;
    790       1.1   mycroft 
    791       1.1   mycroft 	fs = ip->i_fs;
    792       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    793      1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    794       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    795       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    796       1.1   mycroft 		}
    797       1.1   mycroft 		/*
    798       1.1   mycroft 		 * Find a cylinder with greater than average number of
    799       1.1   mycroft 		 * unused data blocks.
    800       1.1   mycroft 		 */
    801       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    802       1.1   mycroft 			startcg =
    803       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    804       1.1   mycroft 		else
    805      1.19    bouyer 			startcg = dtog(fs,
    806      1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    807       1.1   mycroft 		startcg %= fs->fs_ncg;
    808       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    809       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    810       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    811       1.1   mycroft 				fs->fs_cgrotor = cg;
    812       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    813       1.1   mycroft 			}
    814       1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    815       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    816       1.1   mycroft 				fs->fs_cgrotor = cg;
    817       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    818       1.1   mycroft 			}
    819      1.35   thorpej 		return (0);
    820       1.1   mycroft 	}
    821       1.1   mycroft 	/*
    822       1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    823       1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    824       1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    825       1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    826       1.1   mycroft 	 */
    827      1.30      fvdl 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    828      1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    829      1.30      fvdl 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    830       1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    831       1.1   mycroft 		return (nextblk);
    832       1.1   mycroft 	if (fs->fs_rotdelay != 0)
    833       1.1   mycroft 		/*
    834       1.1   mycroft 		 * Here we convert ms of delay to frags as:
    835       1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    836       1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    837       1.1   mycroft 		 * then round up to the next block.
    838       1.1   mycroft 		 */
    839       1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    840       1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    841       1.1   mycroft 	return (nextblk);
    842       1.1   mycroft }
    843       1.1   mycroft 
    844       1.1   mycroft /*
    845       1.1   mycroft  * Implement the cylinder overflow algorithm.
    846       1.1   mycroft  *
    847       1.1   mycroft  * The policy implemented by this algorithm is:
    848       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    849       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    850       1.1   mycroft  *   3) brute force search for a free block.
    851       1.1   mycroft  */
    852       1.1   mycroft /*VARARGS5*/
    853       1.1   mycroft static u_long
    854       1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    855       1.1   mycroft 	struct inode *ip;
    856       1.1   mycroft 	int cg;
    857       1.1   mycroft 	long pref;
    858       1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    859      1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    860       1.1   mycroft {
    861      1.33  augustss 	struct fs *fs;
    862       1.1   mycroft 	long result;
    863       1.1   mycroft 	int i, icg = cg;
    864       1.1   mycroft 
    865       1.1   mycroft 	fs = ip->i_fs;
    866       1.1   mycroft 	/*
    867       1.1   mycroft 	 * 1: preferred cylinder group
    868       1.1   mycroft 	 */
    869       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    870       1.1   mycroft 	if (result)
    871       1.1   mycroft 		return (result);
    872       1.1   mycroft 	/*
    873       1.1   mycroft 	 * 2: quadratic rehash
    874       1.1   mycroft 	 */
    875       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    876       1.1   mycroft 		cg += i;
    877       1.1   mycroft 		if (cg >= fs->fs_ncg)
    878       1.1   mycroft 			cg -= fs->fs_ncg;
    879       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    880       1.1   mycroft 		if (result)
    881       1.1   mycroft 			return (result);
    882       1.1   mycroft 	}
    883       1.1   mycroft 	/*
    884       1.1   mycroft 	 * 3: brute force search
    885       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    886       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    887       1.1   mycroft 	 */
    888       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    889       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    890       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    891       1.1   mycroft 		if (result)
    892       1.1   mycroft 			return (result);
    893       1.1   mycroft 		cg++;
    894       1.1   mycroft 		if (cg == fs->fs_ncg)
    895       1.1   mycroft 			cg = 0;
    896       1.1   mycroft 	}
    897      1.35   thorpej 	return (0);
    898       1.1   mycroft }
    899       1.1   mycroft 
    900       1.1   mycroft /*
    901       1.1   mycroft  * Determine whether a fragment can be extended.
    902       1.1   mycroft  *
    903       1.1   mycroft  * Check to see if the necessary fragments are available, and
    904       1.1   mycroft  * if they are, allocate them.
    905       1.1   mycroft  */
    906      1.18      fvdl static ufs_daddr_t
    907       1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    908       1.1   mycroft 	struct inode *ip;
    909       1.1   mycroft 	int cg;
    910       1.1   mycroft 	long bprev;
    911       1.1   mycroft 	int osize, nsize;
    912       1.1   mycroft {
    913      1.33  augustss 	struct fs *fs;
    914      1.33  augustss 	struct cg *cgp;
    915       1.1   mycroft 	struct buf *bp;
    916       1.1   mycroft 	long bno;
    917       1.1   mycroft 	int frags, bbase;
    918       1.1   mycroft 	int i, error;
    919       1.1   mycroft 
    920       1.1   mycroft 	fs = ip->i_fs;
    921       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    922      1.35   thorpej 		return (0);
    923       1.1   mycroft 	frags = numfrags(fs, nsize);
    924       1.1   mycroft 	bbase = fragnum(fs, bprev);
    925       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    926       1.1   mycroft 		/* cannot extend across a block boundary */
    927      1.35   thorpej 		return (0);
    928       1.1   mycroft 	}
    929       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    930       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    931       1.1   mycroft 	if (error) {
    932       1.1   mycroft 		brelse(bp);
    933      1.35   thorpej 		return (0);
    934       1.1   mycroft 	}
    935       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    936      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    937       1.1   mycroft 		brelse(bp);
    938      1.35   thorpej 		return (0);
    939       1.1   mycroft 	}
    940      1.30      fvdl 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    941       1.1   mycroft 	bno = dtogd(fs, bprev);
    942       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    943      1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    944       1.1   mycroft 			brelse(bp);
    945      1.35   thorpej 			return (0);
    946       1.1   mycroft 		}
    947       1.1   mycroft 	/*
    948       1.1   mycroft 	 * the current fragment can be extended
    949       1.1   mycroft 	 * deduct the count on fragment being extended into
    950       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    951       1.1   mycroft 	 * allocate the extended piece
    952       1.1   mycroft 	 */
    953       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    954      1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    955       1.1   mycroft 			break;
    956      1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    957       1.1   mycroft 	if (i != frags)
    958      1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    959       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    960      1.30      fvdl 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    961      1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    962       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    963       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    964       1.1   mycroft 	}
    965       1.1   mycroft 	fs->fs_fmod = 1;
    966      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
    967      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
    968       1.1   mycroft 	bdwrite(bp);
    969       1.1   mycroft 	return (bprev);
    970       1.1   mycroft }
    971       1.1   mycroft 
    972       1.1   mycroft /*
    973       1.1   mycroft  * Determine whether a block can be allocated.
    974       1.1   mycroft  *
    975       1.1   mycroft  * Check to see if a block of the appropriate size is available,
    976       1.1   mycroft  * and if it is, allocate it.
    977       1.1   mycroft  */
    978      1.18      fvdl static ufs_daddr_t
    979       1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    980       1.1   mycroft 	struct inode *ip;
    981       1.1   mycroft 	int cg;
    982      1.18      fvdl 	ufs_daddr_t bpref;
    983       1.1   mycroft 	int size;
    984       1.1   mycroft {
    985      1.30      fvdl 	struct cg *cgp;
    986       1.1   mycroft 	struct buf *bp;
    987      1.30      fvdl 	ufs_daddr_t bno, blkno;
    988      1.30      fvdl 	int error, frags, allocsiz, i;
    989      1.30      fvdl 	struct fs *fs = ip->i_fs;
    990      1.30      fvdl #ifdef FFS_EI
    991      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
    992      1.30      fvdl #endif
    993       1.1   mycroft 
    994       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    995      1.35   thorpej 		return (0);
    996       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    997       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    998       1.1   mycroft 	if (error) {
    999       1.1   mycroft 		brelse(bp);
   1000      1.35   thorpej 		return (0);
   1001       1.1   mycroft 	}
   1002       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1003      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1004       1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1005       1.1   mycroft 		brelse(bp);
   1006      1.35   thorpej 		return (0);
   1007       1.1   mycroft 	}
   1008      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1009       1.1   mycroft 	if (size == fs->fs_bsize) {
   1010      1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1011       1.1   mycroft 		bdwrite(bp);
   1012       1.1   mycroft 		return (bno);
   1013       1.1   mycroft 	}
   1014       1.1   mycroft 	/*
   1015       1.1   mycroft 	 * check to see if any fragments are already available
   1016       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1017       1.1   mycroft 	 * it down to a smaller size if necessary
   1018       1.1   mycroft 	 */
   1019       1.1   mycroft 	frags = numfrags(fs, size);
   1020       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1021       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1022       1.1   mycroft 			break;
   1023       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1024       1.1   mycroft 		/*
   1025       1.1   mycroft 		 * no fragments were available, so a block will be
   1026       1.1   mycroft 		 * allocated, and hacked up
   1027       1.1   mycroft 		 */
   1028       1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1029       1.1   mycroft 			brelse(bp);
   1030      1.35   thorpej 			return (0);
   1031       1.1   mycroft 		}
   1032      1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1033       1.1   mycroft 		bpref = dtogd(fs, bno);
   1034       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1035      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1036       1.1   mycroft 		i = fs->fs_frag - frags;
   1037      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1038       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1039      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1040       1.1   mycroft 		fs->fs_fmod = 1;
   1041      1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1042       1.1   mycroft 		bdwrite(bp);
   1043       1.1   mycroft 		return (bno);
   1044       1.1   mycroft 	}
   1045      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1046      1.30      fvdl #if 0
   1047      1.30      fvdl 	/*
   1048      1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1049      1.30      fvdl 	 *          also: returning NULL as ufs_daddr_t ?
   1050      1.30      fvdl 	 */
   1051       1.1   mycroft 	if (bno < 0) {
   1052       1.1   mycroft 		brelse(bp);
   1053      1.35   thorpej 		return (0);
   1054       1.1   mycroft 	}
   1055      1.30      fvdl #endif
   1056       1.1   mycroft 	for (i = 0; i < frags; i++)
   1057      1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1058      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1059       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1060       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1061       1.1   mycroft 	fs->fs_fmod = 1;
   1062      1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1063       1.1   mycroft 	if (frags != allocsiz)
   1064      1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1065      1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1066      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1067      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1068       1.1   mycroft 	bdwrite(bp);
   1069      1.30      fvdl 	return blkno;
   1070       1.1   mycroft }
   1071       1.1   mycroft 
   1072       1.1   mycroft /*
   1073       1.1   mycroft  * Allocate a block in a cylinder group.
   1074       1.1   mycroft  *
   1075       1.1   mycroft  * This algorithm implements the following policy:
   1076       1.1   mycroft  *   1) allocate the requested block.
   1077       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1078       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1079       1.1   mycroft  *      specified cylinder group.
   1080       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1081       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1082       1.1   mycroft  */
   1083      1.18      fvdl static ufs_daddr_t
   1084      1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1085      1.30      fvdl 	struct inode *ip;
   1086      1.30      fvdl 	struct buf *bp;
   1087      1.18      fvdl 	ufs_daddr_t bpref;
   1088       1.1   mycroft {
   1089      1.30      fvdl 	struct cg *cgp;
   1090      1.18      fvdl 	ufs_daddr_t bno, blkno;
   1091       1.1   mycroft 	int cylno, pos, delta;
   1092       1.1   mycroft 	short *cylbp;
   1093      1.33  augustss 	int i;
   1094      1.30      fvdl 	struct fs *fs = ip->i_fs;
   1095      1.30      fvdl #ifdef FFS_EI
   1096      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1097      1.30      fvdl #endif
   1098       1.1   mycroft 
   1099      1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1100      1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1101      1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1102       1.1   mycroft 		goto norot;
   1103       1.1   mycroft 	}
   1104       1.1   mycroft 	bpref = blknum(fs, bpref);
   1105       1.1   mycroft 	bpref = dtogd(fs, bpref);
   1106       1.1   mycroft 	/*
   1107       1.1   mycroft 	 * if the requested block is available, use it
   1108       1.1   mycroft 	 */
   1109      1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1110      1.19    bouyer 		fragstoblks(fs, bpref))) {
   1111       1.1   mycroft 		bno = bpref;
   1112       1.1   mycroft 		goto gotit;
   1113       1.1   mycroft 	}
   1114      1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1115       1.1   mycroft 		/*
   1116       1.1   mycroft 		 * Block layout information is not available.
   1117       1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1118       1.1   mycroft 		 * next available free block following the one
   1119       1.1   mycroft 		 * we just allocated. Hopefully this will at
   1120       1.1   mycroft 		 * least hit a track cache on drives of unknown
   1121       1.1   mycroft 		 * geometry (e.g. SCSI).
   1122       1.1   mycroft 		 */
   1123       1.1   mycroft 		goto norot;
   1124       1.1   mycroft 	}
   1125       1.6   mycroft 	/*
   1126       1.6   mycroft 	 * check for a block available on the same cylinder
   1127       1.6   mycroft 	 */
   1128       1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1129      1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1130       1.6   mycroft 		goto norot;
   1131       1.1   mycroft 	/*
   1132       1.1   mycroft 	 * check the summary information to see if a block is
   1133       1.1   mycroft 	 * available in the requested cylinder starting at the
   1134       1.1   mycroft 	 * requested rotational position and proceeding around.
   1135       1.1   mycroft 	 */
   1136      1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1137       1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1138       1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1139      1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1140       1.1   mycroft 			break;
   1141       1.1   mycroft 	if (i == fs->fs_nrpos)
   1142       1.1   mycroft 		for (i = 0; i < pos; i++)
   1143      1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1144       1.1   mycroft 				break;
   1145      1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1146       1.1   mycroft 		/*
   1147       1.1   mycroft 		 * found a rotational position, now find the actual
   1148       1.1   mycroft 		 * block. A panic if none is actually there.
   1149       1.1   mycroft 		 */
   1150       1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1151       1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1152       1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1153      1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1154       1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1155       1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1156       1.1   mycroft 		}
   1157       1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1158      1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1159       1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1160       1.1   mycroft 				goto gotit;
   1161       1.1   mycroft 			}
   1162       1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1163       1.1   mycroft 			if (delta <= 0 ||
   1164       1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1165       1.1   mycroft 				break;
   1166       1.1   mycroft 			i += delta;
   1167       1.1   mycroft 		}
   1168      1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1169       1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1170       1.1   mycroft 	}
   1171       1.1   mycroft norot:
   1172       1.1   mycroft 	/*
   1173       1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1174       1.1   mycroft 	 * available one in this cylinder group.
   1175       1.1   mycroft 	 */
   1176      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1177       1.1   mycroft 	if (bno < 0)
   1178      1.35   thorpej 		return (0);
   1179      1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1180       1.1   mycroft gotit:
   1181       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1182      1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1183      1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1184      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1185       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1186      1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1187       1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1188      1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1189      1.30      fvdl 	    needswap);
   1190      1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1191       1.1   mycroft 	fs->fs_fmod = 1;
   1192      1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1193      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1194      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1195      1.30      fvdl 	return (blkno);
   1196       1.1   mycroft }
   1197       1.1   mycroft 
   1198       1.1   mycroft /*
   1199       1.1   mycroft  * Determine whether a cluster can be allocated.
   1200       1.1   mycroft  *
   1201       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1202       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1203       1.1   mycroft  * take the first one that we find following bpref.
   1204       1.1   mycroft  */
   1205      1.18      fvdl static ufs_daddr_t
   1206       1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1207       1.1   mycroft 	struct inode *ip;
   1208       1.1   mycroft 	int cg;
   1209      1.18      fvdl 	ufs_daddr_t bpref;
   1210       1.1   mycroft 	int len;
   1211       1.1   mycroft {
   1212      1.33  augustss 	struct fs *fs;
   1213      1.33  augustss 	struct cg *cgp;
   1214       1.1   mycroft 	struct buf *bp;
   1215      1.18      fvdl 	int i, got, run, bno, bit, map;
   1216       1.1   mycroft 	u_char *mapp;
   1217       1.5   mycroft 	int32_t *lp;
   1218       1.1   mycroft 
   1219       1.1   mycroft 	fs = ip->i_fs;
   1220       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1221      1.35   thorpej 		return (0);
   1222       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1223       1.1   mycroft 	    NOCRED, &bp))
   1224       1.1   mycroft 		goto fail;
   1225       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1226      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1227       1.1   mycroft 		goto fail;
   1228       1.1   mycroft 	/*
   1229       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1230       1.1   mycroft 	 * available in this cylinder group.
   1231       1.1   mycroft 	 */
   1232      1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1233       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1234      1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1235       1.1   mycroft 			break;
   1236       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1237       1.5   mycroft 		/*
   1238       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1239       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1240       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1241       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1242       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1243       1.5   mycroft 		 */
   1244      1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1245       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1246      1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1247       1.5   mycroft 				break;
   1248       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1249       1.1   mycroft 		goto fail;
   1250       1.5   mycroft 	}
   1251       1.1   mycroft 	/*
   1252       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1253       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1254       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1255       1.1   mycroft 	 * block allocation. We do not search before the current
   1256       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1257       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1258       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1259       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1260       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1261       1.1   mycroft 	 */
   1262       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1263       1.1   mycroft 		bpref = 0;
   1264       1.1   mycroft 	else
   1265       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1266      1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1267       1.1   mycroft 	map = *mapp++;
   1268       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1269      1.19    bouyer 	for (run = 0, got = bpref;
   1270      1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1271       1.1   mycroft 		if ((map & bit) == 0) {
   1272       1.1   mycroft 			run = 0;
   1273       1.1   mycroft 		} else {
   1274       1.1   mycroft 			run++;
   1275       1.1   mycroft 			if (run == len)
   1276       1.1   mycroft 				break;
   1277       1.1   mycroft 		}
   1278      1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1279       1.1   mycroft 			bit <<= 1;
   1280       1.1   mycroft 		} else {
   1281       1.1   mycroft 			map = *mapp++;
   1282       1.1   mycroft 			bit = 1;
   1283       1.1   mycroft 		}
   1284       1.1   mycroft 	}
   1285      1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1286       1.1   mycroft 		goto fail;
   1287       1.1   mycroft 	/*
   1288       1.1   mycroft 	 * Allocate the cluster that we have found.
   1289       1.1   mycroft 	 */
   1290      1.30      fvdl #ifdef DIAGNOSTIC
   1291      1.18      fvdl 	for (i = 1; i <= len; i++)
   1292      1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1293      1.30      fvdl 		    got - run + i))
   1294      1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1295      1.30      fvdl #endif
   1296      1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1297      1.18      fvdl 	if (dtog(fs, bno) != cg)
   1298      1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1299       1.1   mycroft 	len = blkstofrags(fs, len);
   1300       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1301      1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1302       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1303       1.8       cgd 	bdwrite(bp);
   1304       1.1   mycroft 	return (bno);
   1305       1.1   mycroft 
   1306       1.1   mycroft fail:
   1307       1.1   mycroft 	brelse(bp);
   1308       1.1   mycroft 	return (0);
   1309       1.1   mycroft }
   1310       1.1   mycroft 
   1311       1.1   mycroft /*
   1312       1.1   mycroft  * Determine whether an inode can be allocated.
   1313       1.1   mycroft  *
   1314       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1315       1.1   mycroft  * allocate it using the following policy:
   1316       1.1   mycroft  *   1) allocate the requested inode.
   1317       1.1   mycroft  *   2) allocate the next available inode after the requested
   1318       1.1   mycroft  *      inode in the specified cylinder group.
   1319       1.1   mycroft  */
   1320      1.18      fvdl static ufs_daddr_t
   1321       1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1322       1.1   mycroft 	struct inode *ip;
   1323       1.1   mycroft 	int cg;
   1324      1.18      fvdl 	ufs_daddr_t ipref;
   1325       1.1   mycroft 	int mode;
   1326       1.1   mycroft {
   1327      1.33  augustss 	struct cg *cgp;
   1328       1.1   mycroft 	struct buf *bp;
   1329       1.1   mycroft 	int error, start, len, loc, map, i;
   1330      1.33  augustss 	struct fs *fs = ip->i_fs;
   1331      1.19    bouyer #ifdef FFS_EI
   1332      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1333      1.19    bouyer #endif
   1334       1.1   mycroft 
   1335       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1336      1.35   thorpej 		return (0);
   1337       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1338       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1339       1.1   mycroft 	if (error) {
   1340       1.1   mycroft 		brelse(bp);
   1341      1.35   thorpej 		return (0);
   1342       1.1   mycroft 	}
   1343       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1344      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1345       1.1   mycroft 		brelse(bp);
   1346      1.35   thorpej 		return (0);
   1347       1.1   mycroft 	}
   1348      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1349       1.1   mycroft 	if (ipref) {
   1350       1.1   mycroft 		ipref %= fs->fs_ipg;
   1351      1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1352       1.1   mycroft 			goto gotit;
   1353       1.1   mycroft 	}
   1354      1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1355      1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1356      1.19    bouyer 		NBBY);
   1357      1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1358       1.1   mycroft 	if (loc == 0) {
   1359       1.1   mycroft 		len = start + 1;
   1360       1.1   mycroft 		start = 0;
   1361      1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1362       1.1   mycroft 		if (loc == 0) {
   1363      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1364      1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1365      1.19    bouyer 				fs->fs_fsmnt);
   1366       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1367       1.1   mycroft 			/* NOTREACHED */
   1368       1.1   mycroft 		}
   1369       1.1   mycroft 	}
   1370       1.1   mycroft 	i = start + len - loc;
   1371      1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1372       1.1   mycroft 	ipref = i * NBBY;
   1373       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1374       1.1   mycroft 		if ((map & i) == 0) {
   1375      1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1376       1.1   mycroft 			goto gotit;
   1377       1.1   mycroft 		}
   1378       1.1   mycroft 	}
   1379      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1380       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1381       1.1   mycroft 	/* NOTREACHED */
   1382       1.1   mycroft gotit:
   1383      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1384      1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1385      1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1386      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1387       1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1388      1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1389       1.1   mycroft 	fs->fs_fmod = 1;
   1390       1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1391      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1392       1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1393       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1394       1.1   mycroft 	}
   1395       1.1   mycroft 	bdwrite(bp);
   1396       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1397       1.1   mycroft }
   1398       1.1   mycroft 
   1399       1.1   mycroft /*
   1400       1.1   mycroft  * Free a block or fragment.
   1401       1.1   mycroft  *
   1402       1.1   mycroft  * The specified block or fragment is placed back in the
   1403       1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1404       1.1   mycroft  * block reassembly is checked.
   1405       1.1   mycroft  */
   1406       1.9  christos void
   1407       1.1   mycroft ffs_blkfree(ip, bno, size)
   1408      1.33  augustss 	struct inode *ip;
   1409      1.18      fvdl 	ufs_daddr_t bno;
   1410       1.1   mycroft 	long size;
   1411       1.1   mycroft {
   1412      1.33  augustss 	struct cg *cgp;
   1413       1.1   mycroft 	struct buf *bp;
   1414      1.18      fvdl 	ufs_daddr_t blkno;
   1415       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1416      1.33  augustss 	struct fs *fs = ip->i_fs;
   1417      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1418       1.1   mycroft 
   1419      1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1420      1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1421      1.30      fvdl 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1422      1.30      fvdl 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1423       1.1   mycroft 		panic("blkfree: bad size");
   1424       1.1   mycroft 	}
   1425       1.1   mycroft 	cg = dtog(fs, bno);
   1426       1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1427      1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1428      1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1429       1.1   mycroft 		return;
   1430       1.1   mycroft 	}
   1431       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1432       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1433       1.1   mycroft 	if (error) {
   1434       1.1   mycroft 		brelse(bp);
   1435       1.1   mycroft 		return;
   1436       1.1   mycroft 	}
   1437       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1438      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1439       1.1   mycroft 		brelse(bp);
   1440       1.1   mycroft 		return;
   1441       1.1   mycroft 	}
   1442      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1443       1.1   mycroft 	bno = dtogd(fs, bno);
   1444       1.1   mycroft 	if (size == fs->fs_bsize) {
   1445       1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1446      1.30      fvdl 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1447      1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1448       1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1449       1.1   mycroft 			panic("blkfree: freeing free block");
   1450       1.1   mycroft 		}
   1451      1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1452      1.30      fvdl 		ffs_clusteracct(fs, cgp, blkno, 1);
   1453      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1454       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1455       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1456       1.1   mycroft 		i = cbtocylno(fs, bno);
   1457      1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1458      1.30      fvdl 		    needswap);
   1459      1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1460       1.1   mycroft 	} else {
   1461       1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1462       1.1   mycroft 		/*
   1463       1.1   mycroft 		 * decrement the counts associated with the old frags
   1464       1.1   mycroft 		 */
   1465      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1466      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1467       1.1   mycroft 		/*
   1468       1.1   mycroft 		 * deallocate the fragment
   1469       1.1   mycroft 		 */
   1470       1.1   mycroft 		frags = numfrags(fs, size);
   1471       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1472      1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1473      1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1474       1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1475       1.1   mycroft 				panic("blkfree: freeing free frag");
   1476       1.1   mycroft 			}
   1477      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1478       1.1   mycroft 		}
   1479      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1480       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1481      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1482       1.1   mycroft 		/*
   1483       1.1   mycroft 		 * add back in counts associated with the new frags
   1484       1.1   mycroft 		 */
   1485      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1486      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1487       1.1   mycroft 		/*
   1488       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1489       1.1   mycroft 		 */
   1490       1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1491      1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1492      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1493       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1494       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1495      1.30      fvdl 			ffs_clusteracct(fs, cgp, blkno, 1);
   1496      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1497       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1498       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1499       1.1   mycroft 			i = cbtocylno(fs, bbase);
   1500      1.30      fvdl 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1501      1.30      fvdl 								bbase)], 1,
   1502      1.30      fvdl 			    needswap);
   1503      1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1504       1.1   mycroft 		}
   1505       1.1   mycroft 	}
   1506       1.1   mycroft 	fs->fs_fmod = 1;
   1507       1.1   mycroft 	bdwrite(bp);
   1508       1.1   mycroft }
   1509       1.1   mycroft 
   1510      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1511      1.18      fvdl /*
   1512      1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1513      1.18      fvdl  * fragment is allocated, false if it is free.
   1514      1.18      fvdl  */
   1515      1.18      fvdl static int
   1516      1.18      fvdl ffs_checkblk(ip, bno, size)
   1517      1.18      fvdl 	struct inode *ip;
   1518      1.18      fvdl 	ufs_daddr_t bno;
   1519      1.18      fvdl 	long size;
   1520      1.18      fvdl {
   1521      1.18      fvdl 	struct fs *fs;
   1522      1.18      fvdl 	struct cg *cgp;
   1523      1.18      fvdl 	struct buf *bp;
   1524      1.18      fvdl 	int i, error, frags, free;
   1525      1.18      fvdl 
   1526      1.18      fvdl 	fs = ip->i_fs;
   1527      1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1528      1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1529      1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1530      1.18      fvdl 		panic("checkblk: bad size");
   1531      1.18      fvdl 	}
   1532      1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1533      1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1534      1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1535      1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1536      1.18      fvdl 	if (error) {
   1537      1.18      fvdl 		brelse(bp);
   1538      1.18      fvdl 		return 0;
   1539      1.18      fvdl 	}
   1540      1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1541      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1542      1.18      fvdl 		brelse(bp);
   1543      1.18      fvdl 		return 0;
   1544      1.18      fvdl 	}
   1545      1.18      fvdl 	bno = dtogd(fs, bno);
   1546      1.18      fvdl 	if (size == fs->fs_bsize) {
   1547      1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1548      1.19    bouyer 			fragstoblks(fs, bno));
   1549      1.18      fvdl 	} else {
   1550      1.18      fvdl 		frags = numfrags(fs, size);
   1551      1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1552      1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1553      1.18      fvdl 				free++;
   1554      1.18      fvdl 		if (free != 0 && free != frags)
   1555      1.18      fvdl 			panic("checkblk: partially free fragment");
   1556      1.18      fvdl 	}
   1557      1.18      fvdl 	brelse(bp);
   1558      1.18      fvdl 	return (!free);
   1559      1.18      fvdl }
   1560      1.18      fvdl #endif /* DIAGNOSTIC */
   1561      1.18      fvdl 
   1562       1.1   mycroft /*
   1563       1.1   mycroft  * Free an inode.
   1564      1.30      fvdl  */
   1565      1.30      fvdl int
   1566      1.30      fvdl ffs_vfree(v)
   1567      1.30      fvdl 	void *v;
   1568      1.30      fvdl {
   1569      1.30      fvdl 	struct vop_vfree_args /* {
   1570      1.30      fvdl 		struct vnode *a_pvp;
   1571      1.30      fvdl 		ino_t a_ino;
   1572      1.30      fvdl 		int a_mode;
   1573      1.30      fvdl 	} */ *ap = v;
   1574      1.30      fvdl 
   1575      1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1576      1.30      fvdl 		softdep_freefile(ap);
   1577      1.30      fvdl 		return (0);
   1578      1.30      fvdl 	}
   1579      1.30      fvdl 	return (ffs_freefile(ap));
   1580      1.30      fvdl }
   1581      1.30      fvdl 
   1582      1.30      fvdl /*
   1583      1.30      fvdl  * Do the actual free operation.
   1584       1.1   mycroft  * The specified inode is placed back in the free map.
   1585       1.1   mycroft  */
   1586       1.1   mycroft int
   1587      1.30      fvdl ffs_freefile(v)
   1588       1.9  christos 	void *v;
   1589       1.9  christos {
   1590       1.1   mycroft 	struct vop_vfree_args /* {
   1591       1.1   mycroft 		struct vnode *a_pvp;
   1592       1.1   mycroft 		ino_t a_ino;
   1593       1.1   mycroft 		int a_mode;
   1594       1.9  christos 	} */ *ap = v;
   1595      1.33  augustss 	struct cg *cgp;
   1596      1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1597      1.33  augustss 	struct fs *fs = pip->i_fs;
   1598       1.1   mycroft 	ino_t ino = ap->a_ino;
   1599       1.1   mycroft 	struct buf *bp;
   1600       1.1   mycroft 	int error, cg;
   1601      1.19    bouyer #ifdef FFS_EI
   1602      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1603      1.19    bouyer #endif
   1604       1.1   mycroft 
   1605       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1606       1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1607       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1608       1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1609       1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1610       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1611       1.1   mycroft 	if (error) {
   1612       1.1   mycroft 		brelse(bp);
   1613      1.30      fvdl 		return (error);
   1614       1.1   mycroft 	}
   1615       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1616      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1617       1.1   mycroft 		brelse(bp);
   1618       1.1   mycroft 		return (0);
   1619       1.1   mycroft 	}
   1620      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1621       1.1   mycroft 	ino %= fs->fs_ipg;
   1622      1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1623      1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1624       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1625       1.1   mycroft 		if (fs->fs_ronly == 0)
   1626       1.1   mycroft 			panic("ifree: freeing free inode");
   1627       1.1   mycroft 	}
   1628      1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1629      1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1630      1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1631      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1632       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1633       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1634       1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1635      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1636       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1637       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1638       1.1   mycroft 	}
   1639       1.1   mycroft 	fs->fs_fmod = 1;
   1640       1.1   mycroft 	bdwrite(bp);
   1641       1.1   mycroft 	return (0);
   1642       1.1   mycroft }
   1643       1.1   mycroft 
   1644       1.1   mycroft /*
   1645       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1646       1.1   mycroft  *
   1647       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1648       1.1   mycroft  * available.
   1649       1.1   mycroft  */
   1650      1.18      fvdl static ufs_daddr_t
   1651      1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1652      1.33  augustss 	struct fs *fs;
   1653      1.33  augustss 	struct cg *cgp;
   1654      1.18      fvdl 	ufs_daddr_t bpref;
   1655       1.1   mycroft 	int allocsiz;
   1656       1.1   mycroft {
   1657      1.18      fvdl 	ufs_daddr_t bno;
   1658       1.1   mycroft 	int start, len, loc, i;
   1659       1.1   mycroft 	int blk, field, subfield, pos;
   1660      1.19    bouyer 	int ostart, olen;
   1661      1.30      fvdl #ifdef FFS_EI
   1662      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1663      1.30      fvdl #endif
   1664       1.1   mycroft 
   1665       1.1   mycroft 	/*
   1666       1.1   mycroft 	 * find the fragment by searching through the free block
   1667       1.1   mycroft 	 * map for an appropriate bit pattern
   1668       1.1   mycroft 	 */
   1669       1.1   mycroft 	if (bpref)
   1670       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1671       1.1   mycroft 	else
   1672      1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1673       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1674      1.19    bouyer 	ostart = start;
   1675      1.19    bouyer 	olen = len;
   1676  1.35.4.2        he 	loc = scanc((u_int)len,
   1677  1.35.4.2        he 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1678  1.35.4.2        he 		(const u_char *)fragtbl[fs->fs_frag],
   1679  1.35.4.2        he 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1680       1.1   mycroft 	if (loc == 0) {
   1681       1.1   mycroft 		len = start + 1;
   1682       1.1   mycroft 		start = 0;
   1683  1.35.4.2        he 		loc = scanc((u_int)len,
   1684  1.35.4.2        he 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1685  1.35.4.2        he 			(const u_char *)fragtbl[fs->fs_frag],
   1686  1.35.4.2        he 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1687       1.1   mycroft 		if (loc == 0) {
   1688      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1689      1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1690      1.20      ross 			printf("offset=%d %ld\n",
   1691      1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1692      1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1693       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1694       1.1   mycroft 			/* NOTREACHED */
   1695       1.1   mycroft 		}
   1696       1.1   mycroft 	}
   1697       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1698      1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1699       1.1   mycroft 	/*
   1700       1.1   mycroft 	 * found the byte in the map
   1701       1.1   mycroft 	 * sift through the bits to find the selected frag
   1702       1.1   mycroft 	 */
   1703       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1704      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1705       1.1   mycroft 		blk <<= 1;
   1706       1.1   mycroft 		field = around[allocsiz];
   1707       1.1   mycroft 		subfield = inside[allocsiz];
   1708       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1709       1.1   mycroft 			if ((blk & field) == subfield)
   1710       1.1   mycroft 				return (bno + pos);
   1711       1.1   mycroft 			field <<= 1;
   1712       1.1   mycroft 			subfield <<= 1;
   1713       1.1   mycroft 		}
   1714       1.1   mycroft 	}
   1715      1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1716       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1717       1.1   mycroft 	return (-1);
   1718       1.1   mycroft }
   1719       1.1   mycroft 
   1720       1.1   mycroft /*
   1721       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1722       1.1   mycroft  *
   1723       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1724       1.1   mycroft  */
   1725       1.9  christos void
   1726      1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1727       1.1   mycroft 	struct fs *fs;
   1728       1.1   mycroft 	struct cg *cgp;
   1729      1.18      fvdl 	ufs_daddr_t blkno;
   1730       1.1   mycroft 	int cnt;
   1731       1.1   mycroft {
   1732       1.4       cgd 	int32_t *sump;
   1733       1.5   mycroft 	int32_t *lp;
   1734       1.1   mycroft 	u_char *freemapp, *mapp;
   1735       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1736      1.30      fvdl #ifdef FFS_EI
   1737      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1738      1.30      fvdl #endif
   1739       1.1   mycroft 
   1740       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1741       1.1   mycroft 		return;
   1742      1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1743      1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1744       1.1   mycroft 	/*
   1745       1.1   mycroft 	 * Allocate or clear the actual block.
   1746       1.1   mycroft 	 */
   1747       1.1   mycroft 	if (cnt > 0)
   1748       1.1   mycroft 		setbit(freemapp, blkno);
   1749       1.1   mycroft 	else
   1750       1.1   mycroft 		clrbit(freemapp, blkno);
   1751       1.1   mycroft 	/*
   1752       1.1   mycroft 	 * Find the size of the cluster going forward.
   1753       1.1   mycroft 	 */
   1754       1.1   mycroft 	start = blkno + 1;
   1755       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1756      1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1757      1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1758       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1759       1.1   mycroft 	map = *mapp++;
   1760       1.1   mycroft 	bit = 1 << (start % NBBY);
   1761       1.1   mycroft 	for (i = start; i < end; i++) {
   1762       1.1   mycroft 		if ((map & bit) == 0)
   1763       1.1   mycroft 			break;
   1764       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1765       1.1   mycroft 			bit <<= 1;
   1766       1.1   mycroft 		} else {
   1767       1.1   mycroft 			map = *mapp++;
   1768       1.1   mycroft 			bit = 1;
   1769       1.1   mycroft 		}
   1770       1.1   mycroft 	}
   1771       1.1   mycroft 	forw = i - start;
   1772       1.1   mycroft 	/*
   1773       1.1   mycroft 	 * Find the size of the cluster going backward.
   1774       1.1   mycroft 	 */
   1775       1.1   mycroft 	start = blkno - 1;
   1776       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1777       1.1   mycroft 	if (end < 0)
   1778       1.1   mycroft 		end = -1;
   1779       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1780       1.1   mycroft 	map = *mapp--;
   1781       1.1   mycroft 	bit = 1 << (start % NBBY);
   1782       1.1   mycroft 	for (i = start; i > end; i--) {
   1783       1.1   mycroft 		if ((map & bit) == 0)
   1784       1.1   mycroft 			break;
   1785       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1786       1.1   mycroft 			bit >>= 1;
   1787       1.1   mycroft 		} else {
   1788       1.1   mycroft 			map = *mapp--;
   1789       1.1   mycroft 			bit = 1 << (NBBY - 1);
   1790       1.1   mycroft 		}
   1791       1.1   mycroft 	}
   1792       1.1   mycroft 	back = start - i;
   1793       1.1   mycroft 	/*
   1794       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1795       1.1   mycroft 	 * back clusters.
   1796       1.1   mycroft 	 */
   1797       1.1   mycroft 	i = back + forw + 1;
   1798       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1799       1.1   mycroft 		i = fs->fs_contigsumsize;
   1800      1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1801       1.1   mycroft 	if (back > 0)
   1802      1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1803       1.1   mycroft 	if (forw > 0)
   1804      1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1805      1.19    bouyer 
   1806       1.5   mycroft 	/*
   1807       1.5   mycroft 	 * Update cluster summary information.
   1808       1.5   mycroft 	 */
   1809       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1810       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1811      1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1812       1.5   mycroft 			break;
   1813      1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1814       1.1   mycroft }
   1815       1.1   mycroft 
   1816       1.1   mycroft /*
   1817       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1818       1.1   mycroft  *
   1819       1.1   mycroft  * The form of the error message is:
   1820       1.1   mycroft  *	fs: error message
   1821       1.1   mycroft  */
   1822       1.1   mycroft static void
   1823       1.1   mycroft ffs_fserr(fs, uid, cp)
   1824       1.1   mycroft 	struct fs *fs;
   1825       1.1   mycroft 	u_int uid;
   1826       1.1   mycroft 	char *cp;
   1827       1.1   mycroft {
   1828       1.1   mycroft 
   1829       1.1   mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1830       1.1   mycroft }
   1831