ffs_alloc.c revision 1.4 1 1.4 cgd /* $NetBSD: ffs_alloc.c,v 1.4 1994/10/20 04:20:55 cgd Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.2 cgd * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
36 1.1 mycroft */
37 1.1 mycroft
38 1.1 mycroft #include <sys/param.h>
39 1.1 mycroft #include <sys/systm.h>
40 1.1 mycroft #include <sys/buf.h>
41 1.1 mycroft #include <sys/proc.h>
42 1.1 mycroft #include <sys/vnode.h>
43 1.1 mycroft #include <sys/mount.h>
44 1.1 mycroft #include <sys/kernel.h>
45 1.1 mycroft #include <sys/syslog.h>
46 1.1 mycroft
47 1.1 mycroft #include <vm/vm.h>
48 1.1 mycroft
49 1.1 mycroft #include <ufs/ufs/quota.h>
50 1.1 mycroft #include <ufs/ufs/inode.h>
51 1.1 mycroft
52 1.1 mycroft #include <ufs/ffs/fs.h>
53 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
54 1.1 mycroft
55 1.1 mycroft extern u_long nextgennumber;
56 1.1 mycroft
57 1.1 mycroft static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
58 1.1 mycroft static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
59 1.1 mycroft static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
60 1.1 mycroft static ino_t ffs_dirpref __P((struct fs *));
61 1.1 mycroft static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
62 1.1 mycroft static void ffs_fserr __P((struct fs *, u_int, char *));
63 1.1 mycroft static u_long ffs_hashalloc
64 1.4 cgd __P((struct inode *, int, long, int, u_int32_t (*)()));
65 1.1 mycroft static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 1.1 mycroft static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67 1.1 mycroft
68 1.1 mycroft /*
69 1.1 mycroft * Allocate a block in the file system.
70 1.1 mycroft *
71 1.1 mycroft * The size of the requested block is given, which must be some
72 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
73 1.1 mycroft * A preference may be optionally specified. If a preference is given
74 1.1 mycroft * the following hierarchy is used to allocate a block:
75 1.1 mycroft * 1) allocate the requested block.
76 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
77 1.1 mycroft * 3) allocate a block in the same cylinder group.
78 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
79 1.1 mycroft * available block is located.
80 1.1 mycroft * If no block preference is given the following heirarchy is used
81 1.1 mycroft * to allocate a block:
82 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
83 1.1 mycroft * inode for the file.
84 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
85 1.1 mycroft * available block is located.
86 1.1 mycroft */
87 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
88 1.1 mycroft register struct inode *ip;
89 1.1 mycroft daddr_t lbn, bpref;
90 1.1 mycroft int size;
91 1.1 mycroft struct ucred *cred;
92 1.1 mycroft daddr_t *bnp;
93 1.1 mycroft {
94 1.1 mycroft register struct fs *fs;
95 1.1 mycroft daddr_t bno;
96 1.1 mycroft int cg, error;
97 1.1 mycroft
98 1.1 mycroft *bnp = 0;
99 1.1 mycroft fs = ip->i_fs;
100 1.1 mycroft #ifdef DIAGNOSTIC
101 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
102 1.1 mycroft printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
103 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
104 1.1 mycroft panic("ffs_alloc: bad size");
105 1.1 mycroft }
106 1.1 mycroft if (cred == NOCRED)
107 1.1 mycroft panic("ffs_alloc: missing credential\n");
108 1.1 mycroft #endif /* DIAGNOSTIC */
109 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
110 1.1 mycroft goto nospace;
111 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
112 1.1 mycroft goto nospace;
113 1.1 mycroft #ifdef QUOTA
114 1.1 mycroft if (error = chkdq(ip, (long)btodb(size), cred, 0))
115 1.1 mycroft return (error);
116 1.1 mycroft #endif
117 1.1 mycroft if (bpref >= fs->fs_size)
118 1.1 mycroft bpref = 0;
119 1.1 mycroft if (bpref == 0)
120 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
121 1.1 mycroft else
122 1.1 mycroft cg = dtog(fs, bpref);
123 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
124 1.4 cgd (u_int32_t (*)())ffs_alloccg);
125 1.1 mycroft if (bno > 0) {
126 1.1 mycroft ip->i_blocks += btodb(size);
127 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
128 1.1 mycroft *bnp = bno;
129 1.1 mycroft return (0);
130 1.1 mycroft }
131 1.1 mycroft #ifdef QUOTA
132 1.1 mycroft /*
133 1.1 mycroft * Restore user's disk quota because allocation failed.
134 1.1 mycroft */
135 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
136 1.1 mycroft #endif
137 1.1 mycroft nospace:
138 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
139 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
140 1.1 mycroft return (ENOSPC);
141 1.1 mycroft }
142 1.1 mycroft
143 1.1 mycroft /*
144 1.1 mycroft * Reallocate a fragment to a bigger size
145 1.1 mycroft *
146 1.1 mycroft * The number and size of the old block is given, and a preference
147 1.1 mycroft * and new size is also specified. The allocator attempts to extend
148 1.1 mycroft * the original block. Failing that, the regular block allocator is
149 1.1 mycroft * invoked to get an appropriate block.
150 1.1 mycroft */
151 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
152 1.1 mycroft register struct inode *ip;
153 1.1 mycroft daddr_t lbprev;
154 1.1 mycroft daddr_t bpref;
155 1.1 mycroft int osize, nsize;
156 1.1 mycroft struct ucred *cred;
157 1.1 mycroft struct buf **bpp;
158 1.1 mycroft {
159 1.1 mycroft register struct fs *fs;
160 1.1 mycroft struct buf *bp;
161 1.1 mycroft int cg, request, error;
162 1.1 mycroft daddr_t bprev, bno;
163 1.1 mycroft
164 1.1 mycroft *bpp = 0;
165 1.1 mycroft fs = ip->i_fs;
166 1.1 mycroft #ifdef DIAGNOSTIC
167 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
168 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
169 1.1 mycroft printf(
170 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
171 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
172 1.1 mycroft panic("ffs_realloccg: bad size");
173 1.1 mycroft }
174 1.1 mycroft if (cred == NOCRED)
175 1.1 mycroft panic("ffs_realloccg: missing credential\n");
176 1.1 mycroft #endif /* DIAGNOSTIC */
177 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
178 1.1 mycroft goto nospace;
179 1.1 mycroft if ((bprev = ip->i_db[lbprev]) == 0) {
180 1.1 mycroft printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
181 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
182 1.1 mycroft panic("ffs_realloccg: bad bprev");
183 1.1 mycroft }
184 1.1 mycroft /*
185 1.1 mycroft * Allocate the extra space in the buffer.
186 1.1 mycroft */
187 1.1 mycroft if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
188 1.1 mycroft brelse(bp);
189 1.1 mycroft return (error);
190 1.1 mycroft }
191 1.1 mycroft #ifdef QUOTA
192 1.1 mycroft if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
193 1.1 mycroft brelse(bp);
194 1.1 mycroft return (error);
195 1.1 mycroft }
196 1.1 mycroft #endif
197 1.1 mycroft /*
198 1.1 mycroft * Check for extension in the existing location.
199 1.1 mycroft */
200 1.1 mycroft cg = dtog(fs, bprev);
201 1.1 mycroft if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
202 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
203 1.1 mycroft panic("bad blockno");
204 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
205 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
206 1.1 mycroft allocbuf(bp, nsize);
207 1.1 mycroft bp->b_flags |= B_DONE;
208 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
209 1.1 mycroft *bpp = bp;
210 1.1 mycroft return (0);
211 1.1 mycroft }
212 1.1 mycroft /*
213 1.1 mycroft * Allocate a new disk location.
214 1.1 mycroft */
215 1.1 mycroft if (bpref >= fs->fs_size)
216 1.1 mycroft bpref = 0;
217 1.1 mycroft switch ((int)fs->fs_optim) {
218 1.1 mycroft case FS_OPTSPACE:
219 1.1 mycroft /*
220 1.1 mycroft * Allocate an exact sized fragment. Although this makes
221 1.1 mycroft * best use of space, we will waste time relocating it if
222 1.1 mycroft * the file continues to grow. If the fragmentation is
223 1.1 mycroft * less than half of the minimum free reserve, we choose
224 1.1 mycroft * to begin optimizing for time.
225 1.1 mycroft */
226 1.1 mycroft request = nsize;
227 1.1 mycroft if (fs->fs_minfree < 5 ||
228 1.1 mycroft fs->fs_cstotal.cs_nffree >
229 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
230 1.1 mycroft break;
231 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
232 1.1 mycroft fs->fs_fsmnt);
233 1.1 mycroft fs->fs_optim = FS_OPTTIME;
234 1.1 mycroft break;
235 1.1 mycroft case FS_OPTTIME:
236 1.1 mycroft /*
237 1.1 mycroft * At this point we have discovered a file that is trying to
238 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
239 1.1 mycroft * we allocate a full sized block, then free the unused portion.
240 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
241 1.1 mycroft * above will be able to grow it in place without further
242 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
243 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
244 1.1 mycroft * optimizing for space.
245 1.1 mycroft */
246 1.1 mycroft request = fs->fs_bsize;
247 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
248 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
249 1.1 mycroft break;
250 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
251 1.1 mycroft fs->fs_fsmnt);
252 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
253 1.1 mycroft break;
254 1.1 mycroft default:
255 1.1 mycroft printf("dev = 0x%x, optim = %d, fs = %s\n",
256 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
257 1.1 mycroft panic("ffs_realloccg: bad optim");
258 1.1 mycroft /* NOTREACHED */
259 1.1 mycroft }
260 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
261 1.4 cgd (u_int32_t (*)())ffs_alloccg);
262 1.1 mycroft if (bno > 0) {
263 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
264 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
265 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
266 1.1 mycroft if (nsize < request)
267 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
268 1.1 mycroft (long)(request - nsize));
269 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
270 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 1.1 mycroft allocbuf(bp, nsize);
272 1.1 mycroft bp->b_flags |= B_DONE;
273 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
274 1.1 mycroft *bpp = bp;
275 1.1 mycroft return (0);
276 1.1 mycroft }
277 1.1 mycroft #ifdef QUOTA
278 1.1 mycroft /*
279 1.1 mycroft * Restore user's disk quota because allocation failed.
280 1.1 mycroft */
281 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
282 1.1 mycroft #endif
283 1.1 mycroft brelse(bp);
284 1.1 mycroft nospace:
285 1.1 mycroft /*
286 1.1 mycroft * no space available
287 1.1 mycroft */
288 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
289 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 1.1 mycroft return (ENOSPC);
291 1.1 mycroft }
292 1.1 mycroft
293 1.1 mycroft /*
294 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
295 1.1 mycroft *
296 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
297 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
298 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
299 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
300 1.1 mycroft * block immediately preceeding the current range. If successful, the
301 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
302 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
303 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
304 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
305 1.1 mycroft * the previous block allocation will be used.
306 1.1 mycroft */
307 1.3 mycroft #ifdef DEBUG
308 1.1 mycroft #include <sys/sysctl.h>
309 1.1 mycroft int doasyncfree = 1;
310 1.1 mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
311 1.3 mycroft #else
312 1.3 mycroft #define doasyncfree 1
313 1.1 mycroft #endif
314 1.1 mycroft
315 1.1 mycroft int
316 1.1 mycroft ffs_reallocblks(ap)
317 1.1 mycroft struct vop_reallocblks_args /* {
318 1.1 mycroft struct vnode *a_vp;
319 1.1 mycroft struct cluster_save *a_buflist;
320 1.1 mycroft } */ *ap;
321 1.1 mycroft {
322 1.1 mycroft struct fs *fs;
323 1.1 mycroft struct inode *ip;
324 1.1 mycroft struct vnode *vp;
325 1.1 mycroft struct buf *sbp, *ebp;
326 1.1 mycroft daddr_t *bap, *sbap, *ebap;
327 1.1 mycroft struct cluster_save *buflist;
328 1.1 mycroft daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
329 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
330 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
331 1.1 mycroft
332 1.1 mycroft vp = ap->a_vp;
333 1.1 mycroft ip = VTOI(vp);
334 1.1 mycroft fs = ip->i_fs;
335 1.1 mycroft if (fs->fs_contigsumsize <= 0)
336 1.1 mycroft return (ENOSPC);
337 1.1 mycroft buflist = ap->a_buflist;
338 1.1 mycroft len = buflist->bs_nchildren;
339 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
340 1.1 mycroft end_lbn = start_lbn + len - 1;
341 1.1 mycroft #ifdef DIAGNOSTIC
342 1.1 mycroft for (i = 1; i < len; i++)
343 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
344 1.1 mycroft panic("ffs_reallocblks: non-cluster");
345 1.1 mycroft #endif
346 1.1 mycroft /*
347 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
348 1.1 mycroft * the filesystem has decided to move and do not force it back to
349 1.1 mycroft * the previous cylinder group.
350 1.1 mycroft */
351 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
352 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
353 1.1 mycroft return (ENOSPC);
354 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
355 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
356 1.1 mycroft return (ENOSPC);
357 1.1 mycroft /*
358 1.1 mycroft * Get the starting offset and block map for the first block.
359 1.1 mycroft */
360 1.1 mycroft if (start_lvl == 0) {
361 1.1 mycroft sbap = &ip->i_db[0];
362 1.1 mycroft soff = start_lbn;
363 1.1 mycroft } else {
364 1.1 mycroft idp = &start_ap[start_lvl - 1];
365 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
366 1.1 mycroft brelse(sbp);
367 1.1 mycroft return (ENOSPC);
368 1.1 mycroft }
369 1.1 mycroft sbap = (daddr_t *)sbp->b_data;
370 1.1 mycroft soff = idp->in_off;
371 1.1 mycroft }
372 1.1 mycroft /*
373 1.1 mycroft * Find the preferred location for the cluster.
374 1.1 mycroft */
375 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
376 1.1 mycroft /*
377 1.1 mycroft * If the block range spans two block maps, get the second map.
378 1.1 mycroft */
379 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
380 1.1 mycroft ssize = len;
381 1.1 mycroft } else {
382 1.1 mycroft #ifdef DIAGNOSTIC
383 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
384 1.1 mycroft panic("ffs_reallocblk: start == end");
385 1.1 mycroft #endif
386 1.1 mycroft ssize = len - (idp->in_off + 1);
387 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
388 1.1 mycroft goto fail;
389 1.1 mycroft ebap = (daddr_t *)ebp->b_data;
390 1.1 mycroft }
391 1.1 mycroft /*
392 1.1 mycroft * Search the block map looking for an allocation of the desired size.
393 1.1 mycroft */
394 1.1 mycroft if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
395 1.4 cgd len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
396 1.1 mycroft goto fail;
397 1.1 mycroft /*
398 1.1 mycroft * We have found a new contiguous block.
399 1.1 mycroft *
400 1.1 mycroft * First we have to replace the old block pointers with the new
401 1.1 mycroft * block pointers in the inode and indirect blocks associated
402 1.1 mycroft * with the file.
403 1.1 mycroft */
404 1.1 mycroft blkno = newblk;
405 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
406 1.1 mycroft if (i == ssize)
407 1.1 mycroft bap = ebap;
408 1.1 mycroft #ifdef DIAGNOSTIC
409 1.1 mycroft if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
410 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
411 1.1 mycroft #endif
412 1.1 mycroft *bap++ = blkno;
413 1.1 mycroft }
414 1.1 mycroft /*
415 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
416 1.1 mycroft * For strict correctness, the writes should be synchronous since
417 1.1 mycroft * the old block values may have been written to disk. In practise
418 1.1 mycroft * they are almost never written, but if we are concerned about
419 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
420 1.1 mycroft *
421 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
422 1.1 mycroft * that shows whether the associated buffers and inodes have
423 1.1 mycroft * been written. The flag should be set when the cluster is
424 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
425 1.1 mycroft * We can then check below to see if it is set, and do the
426 1.1 mycroft * synchronous write only when it has been cleared.
427 1.1 mycroft */
428 1.1 mycroft if (sbap != &ip->i_db[0]) {
429 1.1 mycroft if (doasyncfree)
430 1.1 mycroft bdwrite(sbp);
431 1.1 mycroft else
432 1.1 mycroft bwrite(sbp);
433 1.1 mycroft } else {
434 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
435 1.1 mycroft if (!doasyncfree)
436 1.1 mycroft VOP_UPDATE(vp, &time, &time, MNT_WAIT);
437 1.1 mycroft }
438 1.1 mycroft if (ssize < len)
439 1.1 mycroft if (doasyncfree)
440 1.1 mycroft bdwrite(ebp);
441 1.1 mycroft else
442 1.1 mycroft bwrite(ebp);
443 1.1 mycroft /*
444 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
445 1.1 mycroft */
446 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
447 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
448 1.1 mycroft fs->fs_bsize);
449 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
450 1.1 mycroft }
451 1.1 mycroft return (0);
452 1.1 mycroft
453 1.1 mycroft fail:
454 1.1 mycroft if (ssize < len)
455 1.1 mycroft brelse(ebp);
456 1.1 mycroft if (sbap != &ip->i_db[0])
457 1.1 mycroft brelse(sbp);
458 1.1 mycroft return (ENOSPC);
459 1.1 mycroft }
460 1.1 mycroft
461 1.1 mycroft /*
462 1.1 mycroft * Allocate an inode in the file system.
463 1.1 mycroft *
464 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
465 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
466 1.1 mycroft * 1) allocate the preferred inode.
467 1.1 mycroft * 2) allocate an inode in the same cylinder group.
468 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
469 1.1 mycroft * available inode is located.
470 1.1 mycroft * If no inode preference is given the following heirarchy is used
471 1.1 mycroft * to allocate an inode:
472 1.1 mycroft * 1) allocate an inode in cylinder group 0.
473 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
474 1.1 mycroft * available inode is located.
475 1.1 mycroft */
476 1.1 mycroft ffs_valloc(ap)
477 1.1 mycroft struct vop_valloc_args /* {
478 1.1 mycroft struct vnode *a_pvp;
479 1.1 mycroft int a_mode;
480 1.1 mycroft struct ucred *a_cred;
481 1.1 mycroft struct vnode **a_vpp;
482 1.1 mycroft } */ *ap;
483 1.1 mycroft {
484 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
485 1.1 mycroft register struct inode *pip;
486 1.1 mycroft register struct fs *fs;
487 1.1 mycroft register struct inode *ip;
488 1.1 mycroft mode_t mode = ap->a_mode;
489 1.1 mycroft ino_t ino, ipref;
490 1.1 mycroft int cg, error;
491 1.1 mycroft
492 1.1 mycroft *ap->a_vpp = NULL;
493 1.1 mycroft pip = VTOI(pvp);
494 1.1 mycroft fs = pip->i_fs;
495 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
496 1.1 mycroft goto noinodes;
497 1.1 mycroft
498 1.1 mycroft if ((mode & IFMT) == IFDIR)
499 1.1 mycroft ipref = ffs_dirpref(fs);
500 1.1 mycroft else
501 1.1 mycroft ipref = pip->i_number;
502 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
503 1.1 mycroft ipref = 0;
504 1.1 mycroft cg = ino_to_cg(fs, ipref);
505 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
506 1.1 mycroft if (ino == 0)
507 1.1 mycroft goto noinodes;
508 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
509 1.1 mycroft if (error) {
510 1.1 mycroft VOP_VFREE(pvp, ino, mode);
511 1.1 mycroft return (error);
512 1.1 mycroft }
513 1.1 mycroft ip = VTOI(*ap->a_vpp);
514 1.1 mycroft if (ip->i_mode) {
515 1.1 mycroft printf("mode = 0%o, inum = %d, fs = %s\n",
516 1.1 mycroft ip->i_mode, ip->i_number, fs->fs_fsmnt);
517 1.1 mycroft panic("ffs_valloc: dup alloc");
518 1.1 mycroft }
519 1.1 mycroft if (ip->i_blocks) { /* XXX */
520 1.1 mycroft printf("free inode %s/%d had %d blocks\n",
521 1.1 mycroft fs->fs_fsmnt, ino, ip->i_blocks);
522 1.1 mycroft ip->i_blocks = 0;
523 1.1 mycroft }
524 1.1 mycroft ip->i_flags = 0;
525 1.1 mycroft /*
526 1.1 mycroft * Set up a new generation number for this inode.
527 1.1 mycroft */
528 1.1 mycroft if (++nextgennumber < (u_long)time.tv_sec)
529 1.1 mycroft nextgennumber = time.tv_sec;
530 1.1 mycroft ip->i_gen = nextgennumber;
531 1.1 mycroft return (0);
532 1.1 mycroft noinodes:
533 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
534 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
535 1.1 mycroft return (ENOSPC);
536 1.1 mycroft }
537 1.1 mycroft
538 1.1 mycroft /*
539 1.1 mycroft * Find a cylinder to place a directory.
540 1.1 mycroft *
541 1.1 mycroft * The policy implemented by this algorithm is to select from
542 1.1 mycroft * among those cylinder groups with above the average number of
543 1.1 mycroft * free inodes, the one with the smallest number of directories.
544 1.1 mycroft */
545 1.1 mycroft static ino_t
546 1.1 mycroft ffs_dirpref(fs)
547 1.1 mycroft register struct fs *fs;
548 1.1 mycroft {
549 1.1 mycroft int cg, minndir, mincg, avgifree;
550 1.1 mycroft
551 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
552 1.1 mycroft minndir = fs->fs_ipg;
553 1.1 mycroft mincg = 0;
554 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
555 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
556 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
557 1.1 mycroft mincg = cg;
558 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
559 1.1 mycroft }
560 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
561 1.1 mycroft }
562 1.1 mycroft
563 1.1 mycroft /*
564 1.1 mycroft * Select the desired position for the next block in a file. The file is
565 1.1 mycroft * logically divided into sections. The first section is composed of the
566 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
567 1.1 mycroft *
568 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
569 1.1 mycroft * request a block in the same cylinder group as the inode that describes
570 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
571 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
572 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
573 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
574 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
575 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
576 1.1 mycroft * continues until a cylinder group with greater than the average number
577 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
578 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
579 1.1 mycroft * here a best guess is made based upon the logical block number being
580 1.1 mycroft * allocated.
581 1.1 mycroft *
582 1.1 mycroft * If a section is already partially allocated, the policy is to
583 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
584 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
585 1.1 mycroft * so that the disk head will be in transit between them for at least
586 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
587 1.1 mycroft * schedule another I/O transfer.
588 1.1 mycroft */
589 1.1 mycroft daddr_t
590 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
591 1.1 mycroft struct inode *ip;
592 1.1 mycroft daddr_t lbn;
593 1.1 mycroft int indx;
594 1.1 mycroft daddr_t *bap;
595 1.1 mycroft {
596 1.1 mycroft register struct fs *fs;
597 1.1 mycroft register int cg;
598 1.1 mycroft int avgbfree, startcg;
599 1.1 mycroft daddr_t nextblk;
600 1.1 mycroft
601 1.1 mycroft fs = ip->i_fs;
602 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
603 1.1 mycroft if (lbn < NDADDR) {
604 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
605 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
606 1.1 mycroft }
607 1.1 mycroft /*
608 1.1 mycroft * Find a cylinder with greater than average number of
609 1.1 mycroft * unused data blocks.
610 1.1 mycroft */
611 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
612 1.1 mycroft startcg =
613 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
614 1.1 mycroft else
615 1.1 mycroft startcg = dtog(fs, bap[indx - 1]) + 1;
616 1.1 mycroft startcg %= fs->fs_ncg;
617 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
618 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
619 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
620 1.1 mycroft fs->fs_cgrotor = cg;
621 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
622 1.1 mycroft }
623 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
624 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
625 1.1 mycroft fs->fs_cgrotor = cg;
626 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
627 1.1 mycroft }
628 1.1 mycroft return (NULL);
629 1.1 mycroft }
630 1.1 mycroft /*
631 1.1 mycroft * One or more previous blocks have been laid out. If less
632 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
633 1.1 mycroft * next block is requested contiguously, otherwise it is
634 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
635 1.1 mycroft */
636 1.1 mycroft nextblk = bap[indx - 1] + fs->fs_frag;
637 1.1 mycroft if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
638 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
639 1.1 mycroft return (nextblk);
640 1.1 mycroft if (fs->fs_rotdelay != 0)
641 1.1 mycroft /*
642 1.1 mycroft * Here we convert ms of delay to frags as:
643 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
644 1.1 mycroft * ((sect/frag) * (ms/sec))
645 1.1 mycroft * then round up to the next block.
646 1.1 mycroft */
647 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
648 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
649 1.1 mycroft return (nextblk);
650 1.1 mycroft }
651 1.1 mycroft
652 1.1 mycroft /*
653 1.1 mycroft * Implement the cylinder overflow algorithm.
654 1.1 mycroft *
655 1.1 mycroft * The policy implemented by this algorithm is:
656 1.1 mycroft * 1) allocate the block in its requested cylinder group.
657 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
658 1.1 mycroft * 3) brute force search for a free block.
659 1.1 mycroft */
660 1.1 mycroft /*VARARGS5*/
661 1.1 mycroft static u_long
662 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
663 1.1 mycroft struct inode *ip;
664 1.1 mycroft int cg;
665 1.1 mycroft long pref;
666 1.1 mycroft int size; /* size for data blocks, mode for inodes */
667 1.4 cgd u_int32_t (*allocator)();
668 1.1 mycroft {
669 1.1 mycroft register struct fs *fs;
670 1.1 mycroft long result;
671 1.1 mycroft int i, icg = cg;
672 1.1 mycroft
673 1.1 mycroft fs = ip->i_fs;
674 1.1 mycroft /*
675 1.1 mycroft * 1: preferred cylinder group
676 1.1 mycroft */
677 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
678 1.1 mycroft if (result)
679 1.1 mycroft return (result);
680 1.1 mycroft /*
681 1.1 mycroft * 2: quadratic rehash
682 1.1 mycroft */
683 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
684 1.1 mycroft cg += i;
685 1.1 mycroft if (cg >= fs->fs_ncg)
686 1.1 mycroft cg -= fs->fs_ncg;
687 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
688 1.1 mycroft if (result)
689 1.1 mycroft return (result);
690 1.1 mycroft }
691 1.1 mycroft /*
692 1.1 mycroft * 3: brute force search
693 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
694 1.1 mycroft * and 1 is always checked in the quadratic rehash.
695 1.1 mycroft */
696 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
697 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
698 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
699 1.1 mycroft if (result)
700 1.1 mycroft return (result);
701 1.1 mycroft cg++;
702 1.1 mycroft if (cg == fs->fs_ncg)
703 1.1 mycroft cg = 0;
704 1.1 mycroft }
705 1.1 mycroft return (NULL);
706 1.1 mycroft }
707 1.1 mycroft
708 1.1 mycroft /*
709 1.1 mycroft * Determine whether a fragment can be extended.
710 1.1 mycroft *
711 1.1 mycroft * Check to see if the necessary fragments are available, and
712 1.1 mycroft * if they are, allocate them.
713 1.1 mycroft */
714 1.1 mycroft static daddr_t
715 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
716 1.1 mycroft struct inode *ip;
717 1.1 mycroft int cg;
718 1.1 mycroft long bprev;
719 1.1 mycroft int osize, nsize;
720 1.1 mycroft {
721 1.1 mycroft register struct fs *fs;
722 1.1 mycroft register struct cg *cgp;
723 1.1 mycroft struct buf *bp;
724 1.1 mycroft long bno;
725 1.1 mycroft int frags, bbase;
726 1.1 mycroft int i, error;
727 1.1 mycroft
728 1.1 mycroft fs = ip->i_fs;
729 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
730 1.1 mycroft return (NULL);
731 1.1 mycroft frags = numfrags(fs, nsize);
732 1.1 mycroft bbase = fragnum(fs, bprev);
733 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
734 1.1 mycroft /* cannot extend across a block boundary */
735 1.1 mycroft return (NULL);
736 1.1 mycroft }
737 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
738 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
739 1.1 mycroft if (error) {
740 1.1 mycroft brelse(bp);
741 1.1 mycroft return (NULL);
742 1.1 mycroft }
743 1.1 mycroft cgp = (struct cg *)bp->b_data;
744 1.1 mycroft if (!cg_chkmagic(cgp)) {
745 1.1 mycroft brelse(bp);
746 1.1 mycroft return (NULL);
747 1.1 mycroft }
748 1.1 mycroft cgp->cg_time = time.tv_sec;
749 1.1 mycroft bno = dtogd(fs, bprev);
750 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
751 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i)) {
752 1.1 mycroft brelse(bp);
753 1.1 mycroft return (NULL);
754 1.1 mycroft }
755 1.1 mycroft /*
756 1.1 mycroft * the current fragment can be extended
757 1.1 mycroft * deduct the count on fragment being extended into
758 1.1 mycroft * increase the count on the remaining fragment (if any)
759 1.1 mycroft * allocate the extended piece
760 1.1 mycroft */
761 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
762 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i))
763 1.1 mycroft break;
764 1.1 mycroft cgp->cg_frsum[i - numfrags(fs, osize)]--;
765 1.1 mycroft if (i != frags)
766 1.1 mycroft cgp->cg_frsum[i - frags]++;
767 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
768 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
769 1.1 mycroft cgp->cg_cs.cs_nffree--;
770 1.1 mycroft fs->fs_cstotal.cs_nffree--;
771 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
772 1.1 mycroft }
773 1.1 mycroft fs->fs_fmod = 1;
774 1.1 mycroft bdwrite(bp);
775 1.1 mycroft return (bprev);
776 1.1 mycroft }
777 1.1 mycroft
778 1.1 mycroft /*
779 1.1 mycroft * Determine whether a block can be allocated.
780 1.1 mycroft *
781 1.1 mycroft * Check to see if a block of the appropriate size is available,
782 1.1 mycroft * and if it is, allocate it.
783 1.1 mycroft */
784 1.1 mycroft static daddr_t
785 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
786 1.1 mycroft struct inode *ip;
787 1.1 mycroft int cg;
788 1.1 mycroft daddr_t bpref;
789 1.1 mycroft int size;
790 1.1 mycroft {
791 1.1 mycroft register struct fs *fs;
792 1.1 mycroft register struct cg *cgp;
793 1.1 mycroft struct buf *bp;
794 1.1 mycroft register int i;
795 1.1 mycroft int error, bno, frags, allocsiz;
796 1.1 mycroft
797 1.1 mycroft fs = ip->i_fs;
798 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
799 1.1 mycroft return (NULL);
800 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
801 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
802 1.1 mycroft if (error) {
803 1.1 mycroft brelse(bp);
804 1.1 mycroft return (NULL);
805 1.1 mycroft }
806 1.1 mycroft cgp = (struct cg *)bp->b_data;
807 1.1 mycroft if (!cg_chkmagic(cgp) ||
808 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
809 1.1 mycroft brelse(bp);
810 1.1 mycroft return (NULL);
811 1.1 mycroft }
812 1.1 mycroft cgp->cg_time = time.tv_sec;
813 1.1 mycroft if (size == fs->fs_bsize) {
814 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
815 1.1 mycroft bdwrite(bp);
816 1.1 mycroft return (bno);
817 1.1 mycroft }
818 1.1 mycroft /*
819 1.1 mycroft * check to see if any fragments are already available
820 1.1 mycroft * allocsiz is the size which will be allocated, hacking
821 1.1 mycroft * it down to a smaller size if necessary
822 1.1 mycroft */
823 1.1 mycroft frags = numfrags(fs, size);
824 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
825 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
826 1.1 mycroft break;
827 1.1 mycroft if (allocsiz == fs->fs_frag) {
828 1.1 mycroft /*
829 1.1 mycroft * no fragments were available, so a block will be
830 1.1 mycroft * allocated, and hacked up
831 1.1 mycroft */
832 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
833 1.1 mycroft brelse(bp);
834 1.1 mycroft return (NULL);
835 1.1 mycroft }
836 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
837 1.1 mycroft bpref = dtogd(fs, bno);
838 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
839 1.1 mycroft setbit(cg_blksfree(cgp), bpref + i);
840 1.1 mycroft i = fs->fs_frag - frags;
841 1.1 mycroft cgp->cg_cs.cs_nffree += i;
842 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
843 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
844 1.1 mycroft fs->fs_fmod = 1;
845 1.1 mycroft cgp->cg_frsum[i]++;
846 1.1 mycroft bdwrite(bp);
847 1.1 mycroft return (bno);
848 1.1 mycroft }
849 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
850 1.1 mycroft if (bno < 0) {
851 1.1 mycroft brelse(bp);
852 1.1 mycroft return (NULL);
853 1.1 mycroft }
854 1.1 mycroft for (i = 0; i < frags; i++)
855 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
856 1.1 mycroft cgp->cg_cs.cs_nffree -= frags;
857 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
858 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
859 1.1 mycroft fs->fs_fmod = 1;
860 1.1 mycroft cgp->cg_frsum[allocsiz]--;
861 1.1 mycroft if (frags != allocsiz)
862 1.1 mycroft cgp->cg_frsum[allocsiz - frags]++;
863 1.1 mycroft bdwrite(bp);
864 1.1 mycroft return (cg * fs->fs_fpg + bno);
865 1.1 mycroft }
866 1.1 mycroft
867 1.1 mycroft /*
868 1.1 mycroft * Allocate a block in a cylinder group.
869 1.1 mycroft *
870 1.1 mycroft * This algorithm implements the following policy:
871 1.1 mycroft * 1) allocate the requested block.
872 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
873 1.1 mycroft * 3) allocate the next available block on the block rotor for the
874 1.1 mycroft * specified cylinder group.
875 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
876 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
877 1.1 mycroft */
878 1.1 mycroft static daddr_t
879 1.1 mycroft ffs_alloccgblk(fs, cgp, bpref)
880 1.1 mycroft register struct fs *fs;
881 1.1 mycroft register struct cg *cgp;
882 1.1 mycroft daddr_t bpref;
883 1.1 mycroft {
884 1.1 mycroft daddr_t bno, blkno;
885 1.1 mycroft int cylno, pos, delta;
886 1.1 mycroft short *cylbp;
887 1.1 mycroft register int i;
888 1.1 mycroft
889 1.1 mycroft if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
890 1.1 mycroft bpref = cgp->cg_rotor;
891 1.1 mycroft goto norot;
892 1.1 mycroft }
893 1.1 mycroft bpref = blknum(fs, bpref);
894 1.1 mycroft bpref = dtogd(fs, bpref);
895 1.1 mycroft /*
896 1.1 mycroft * if the requested block is available, use it
897 1.1 mycroft */
898 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
899 1.1 mycroft bno = bpref;
900 1.1 mycroft goto gotit;
901 1.1 mycroft }
902 1.1 mycroft /*
903 1.1 mycroft * check for a block available on the same cylinder
904 1.1 mycroft */
905 1.1 mycroft cylno = cbtocylno(fs, bpref);
906 1.1 mycroft if (cg_blktot(cgp)[cylno] == 0)
907 1.1 mycroft goto norot;
908 1.1 mycroft if (fs->fs_cpc == 0) {
909 1.1 mycroft /*
910 1.1 mycroft * Block layout information is not available.
911 1.1 mycroft * Leaving bpref unchanged means we take the
912 1.1 mycroft * next available free block following the one
913 1.1 mycroft * we just allocated. Hopefully this will at
914 1.1 mycroft * least hit a track cache on drives of unknown
915 1.1 mycroft * geometry (e.g. SCSI).
916 1.1 mycroft */
917 1.1 mycroft goto norot;
918 1.1 mycroft }
919 1.1 mycroft /*
920 1.1 mycroft * check the summary information to see if a block is
921 1.1 mycroft * available in the requested cylinder starting at the
922 1.1 mycroft * requested rotational position and proceeding around.
923 1.1 mycroft */
924 1.1 mycroft cylbp = cg_blks(fs, cgp, cylno);
925 1.1 mycroft pos = cbtorpos(fs, bpref);
926 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
927 1.1 mycroft if (cylbp[i] > 0)
928 1.1 mycroft break;
929 1.1 mycroft if (i == fs->fs_nrpos)
930 1.1 mycroft for (i = 0; i < pos; i++)
931 1.1 mycroft if (cylbp[i] > 0)
932 1.1 mycroft break;
933 1.1 mycroft if (cylbp[i] > 0) {
934 1.1 mycroft /*
935 1.1 mycroft * found a rotational position, now find the actual
936 1.1 mycroft * block. A panic if none is actually there.
937 1.1 mycroft */
938 1.1 mycroft pos = cylno % fs->fs_cpc;
939 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
940 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
941 1.1 mycroft printf("pos = %d, i = %d, fs = %s\n",
942 1.1 mycroft pos, i, fs->fs_fsmnt);
943 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
944 1.1 mycroft }
945 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
946 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
947 1.1 mycroft bno = blkstofrags(fs, (bno + i));
948 1.1 mycroft goto gotit;
949 1.1 mycroft }
950 1.1 mycroft delta = fs_rotbl(fs)[i];
951 1.1 mycroft if (delta <= 0 ||
952 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
953 1.1 mycroft break;
954 1.1 mycroft i += delta;
955 1.1 mycroft }
956 1.1 mycroft printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
957 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
958 1.1 mycroft }
959 1.1 mycroft norot:
960 1.1 mycroft /*
961 1.1 mycroft * no blocks in the requested cylinder, so take next
962 1.1 mycroft * available one in this cylinder group.
963 1.1 mycroft */
964 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
965 1.1 mycroft if (bno < 0)
966 1.1 mycroft return (NULL);
967 1.1 mycroft cgp->cg_rotor = bno;
968 1.1 mycroft gotit:
969 1.1 mycroft blkno = fragstoblks(fs, bno);
970 1.1 mycroft ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
971 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, -1);
972 1.1 mycroft cgp->cg_cs.cs_nbfree--;
973 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
974 1.1 mycroft fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
975 1.1 mycroft cylno = cbtocylno(fs, bno);
976 1.1 mycroft cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
977 1.1 mycroft cg_blktot(cgp)[cylno]--;
978 1.1 mycroft fs->fs_fmod = 1;
979 1.1 mycroft return (cgp->cg_cgx * fs->fs_fpg + bno);
980 1.1 mycroft }
981 1.1 mycroft
982 1.1 mycroft /*
983 1.1 mycroft * Determine whether a cluster can be allocated.
984 1.1 mycroft *
985 1.1 mycroft * We do not currently check for optimal rotational layout if there
986 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
987 1.1 mycroft * take the first one that we find following bpref.
988 1.1 mycroft */
989 1.1 mycroft static daddr_t
990 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
991 1.1 mycroft struct inode *ip;
992 1.1 mycroft int cg;
993 1.1 mycroft daddr_t bpref;
994 1.1 mycroft int len;
995 1.1 mycroft {
996 1.1 mycroft register struct fs *fs;
997 1.1 mycroft register struct cg *cgp;
998 1.1 mycroft struct buf *bp;
999 1.1 mycroft int i, run, bno, bit, map;
1000 1.1 mycroft u_char *mapp;
1001 1.1 mycroft
1002 1.1 mycroft fs = ip->i_fs;
1003 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree < len)
1004 1.1 mycroft return (NULL);
1005 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1006 1.1 mycroft NOCRED, &bp))
1007 1.1 mycroft goto fail;
1008 1.1 mycroft cgp = (struct cg *)bp->b_data;
1009 1.1 mycroft if (!cg_chkmagic(cgp))
1010 1.1 mycroft goto fail;
1011 1.1 mycroft /*
1012 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1013 1.1 mycroft * available in this cylinder group.
1014 1.1 mycroft */
1015 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1016 1.1 mycroft if (cg_clustersum(cgp)[i] > 0)
1017 1.1 mycroft break;
1018 1.1 mycroft if (i > fs->fs_contigsumsize)
1019 1.1 mycroft goto fail;
1020 1.1 mycroft /*
1021 1.1 mycroft * Search the cluster map to find a big enough cluster.
1022 1.1 mycroft * We take the first one that we find, even if it is larger
1023 1.1 mycroft * than we need as we prefer to get one close to the previous
1024 1.1 mycroft * block allocation. We do not search before the current
1025 1.1 mycroft * preference point as we do not want to allocate a block
1026 1.1 mycroft * that is allocated before the previous one (as we will
1027 1.1 mycroft * then have to wait for another pass of the elevator
1028 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1029 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1030 1.1 mycroft */
1031 1.1 mycroft if (dtog(fs, bpref) != cg)
1032 1.1 mycroft bpref = 0;
1033 1.1 mycroft else
1034 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1035 1.1 mycroft mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1036 1.1 mycroft map = *mapp++;
1037 1.1 mycroft bit = 1 << (bpref % NBBY);
1038 1.1 mycroft for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1039 1.1 mycroft if ((map & bit) == 0) {
1040 1.1 mycroft run = 0;
1041 1.1 mycroft } else {
1042 1.1 mycroft run++;
1043 1.1 mycroft if (run == len)
1044 1.1 mycroft break;
1045 1.1 mycroft }
1046 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1047 1.1 mycroft bit <<= 1;
1048 1.1 mycroft } else {
1049 1.1 mycroft map = *mapp++;
1050 1.1 mycroft bit = 1;
1051 1.1 mycroft }
1052 1.1 mycroft }
1053 1.1 mycroft if (i == cgp->cg_nclusterblks)
1054 1.1 mycroft goto fail;
1055 1.1 mycroft /*
1056 1.1 mycroft * Allocate the cluster that we have found.
1057 1.1 mycroft */
1058 1.1 mycroft bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1059 1.1 mycroft len = blkstofrags(fs, len);
1060 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1061 1.1 mycroft if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1062 1.1 mycroft panic("ffs_clusteralloc: lost block");
1063 1.1 mycroft brelse(bp);
1064 1.1 mycroft return (bno);
1065 1.1 mycroft
1066 1.1 mycroft fail:
1067 1.1 mycroft brelse(bp);
1068 1.1 mycroft return (0);
1069 1.1 mycroft }
1070 1.1 mycroft
1071 1.1 mycroft /*
1072 1.1 mycroft * Determine whether an inode can be allocated.
1073 1.1 mycroft *
1074 1.1 mycroft * Check to see if an inode is available, and if it is,
1075 1.1 mycroft * allocate it using the following policy:
1076 1.1 mycroft * 1) allocate the requested inode.
1077 1.1 mycroft * 2) allocate the next available inode after the requested
1078 1.1 mycroft * inode in the specified cylinder group.
1079 1.1 mycroft */
1080 1.1 mycroft static ino_t
1081 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1082 1.1 mycroft struct inode *ip;
1083 1.1 mycroft int cg;
1084 1.1 mycroft daddr_t ipref;
1085 1.1 mycroft int mode;
1086 1.1 mycroft {
1087 1.1 mycroft register struct fs *fs;
1088 1.1 mycroft register struct cg *cgp;
1089 1.1 mycroft struct buf *bp;
1090 1.1 mycroft int error, start, len, loc, map, i;
1091 1.1 mycroft
1092 1.1 mycroft fs = ip->i_fs;
1093 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1094 1.1 mycroft return (NULL);
1095 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1096 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1097 1.1 mycroft if (error) {
1098 1.1 mycroft brelse(bp);
1099 1.1 mycroft return (NULL);
1100 1.1 mycroft }
1101 1.1 mycroft cgp = (struct cg *)bp->b_data;
1102 1.1 mycroft if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1103 1.1 mycroft brelse(bp);
1104 1.1 mycroft return (NULL);
1105 1.1 mycroft }
1106 1.1 mycroft cgp->cg_time = time.tv_sec;
1107 1.1 mycroft if (ipref) {
1108 1.1 mycroft ipref %= fs->fs_ipg;
1109 1.1 mycroft if (isclr(cg_inosused(cgp), ipref))
1110 1.1 mycroft goto gotit;
1111 1.1 mycroft }
1112 1.1 mycroft start = cgp->cg_irotor / NBBY;
1113 1.1 mycroft len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1114 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1115 1.1 mycroft if (loc == 0) {
1116 1.1 mycroft len = start + 1;
1117 1.1 mycroft start = 0;
1118 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1119 1.1 mycroft if (loc == 0) {
1120 1.1 mycroft printf("cg = %d, irotor = %d, fs = %s\n",
1121 1.1 mycroft cg, cgp->cg_irotor, fs->fs_fsmnt);
1122 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1123 1.1 mycroft /* NOTREACHED */
1124 1.1 mycroft }
1125 1.1 mycroft }
1126 1.1 mycroft i = start + len - loc;
1127 1.1 mycroft map = cg_inosused(cgp)[i];
1128 1.1 mycroft ipref = i * NBBY;
1129 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1130 1.1 mycroft if ((map & i) == 0) {
1131 1.1 mycroft cgp->cg_irotor = ipref;
1132 1.1 mycroft goto gotit;
1133 1.1 mycroft }
1134 1.1 mycroft }
1135 1.1 mycroft printf("fs = %s\n", fs->fs_fsmnt);
1136 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1137 1.1 mycroft /* NOTREACHED */
1138 1.1 mycroft gotit:
1139 1.1 mycroft setbit(cg_inosused(cgp), ipref);
1140 1.1 mycroft cgp->cg_cs.cs_nifree--;
1141 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1142 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree--;
1143 1.1 mycroft fs->fs_fmod = 1;
1144 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1145 1.1 mycroft cgp->cg_cs.cs_ndir++;
1146 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1147 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1148 1.1 mycroft }
1149 1.1 mycroft bdwrite(bp);
1150 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1151 1.1 mycroft }
1152 1.1 mycroft
1153 1.1 mycroft /*
1154 1.1 mycroft * Free a block or fragment.
1155 1.1 mycroft *
1156 1.1 mycroft * The specified block or fragment is placed back in the
1157 1.1 mycroft * free map. If a fragment is deallocated, a possible
1158 1.1 mycroft * block reassembly is checked.
1159 1.1 mycroft */
1160 1.1 mycroft ffs_blkfree(ip, bno, size)
1161 1.1 mycroft register struct inode *ip;
1162 1.1 mycroft daddr_t bno;
1163 1.1 mycroft long size;
1164 1.1 mycroft {
1165 1.1 mycroft register struct fs *fs;
1166 1.1 mycroft register struct cg *cgp;
1167 1.1 mycroft struct buf *bp;
1168 1.1 mycroft daddr_t blkno;
1169 1.1 mycroft int i, error, cg, blk, frags, bbase;
1170 1.1 mycroft
1171 1.1 mycroft fs = ip->i_fs;
1172 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1173 1.1 mycroft printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1174 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1175 1.1 mycroft panic("blkfree: bad size");
1176 1.1 mycroft }
1177 1.1 mycroft cg = dtog(fs, bno);
1178 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1179 1.1 mycroft printf("bad block %d, ino %d\n", bno, ip->i_number);
1180 1.1 mycroft ffs_fserr(fs, ip->i_uid, "bad block");
1181 1.1 mycroft return;
1182 1.1 mycroft }
1183 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1184 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1185 1.1 mycroft if (error) {
1186 1.1 mycroft brelse(bp);
1187 1.1 mycroft return;
1188 1.1 mycroft }
1189 1.1 mycroft cgp = (struct cg *)bp->b_data;
1190 1.1 mycroft if (!cg_chkmagic(cgp)) {
1191 1.1 mycroft brelse(bp);
1192 1.1 mycroft return;
1193 1.1 mycroft }
1194 1.1 mycroft cgp->cg_time = time.tv_sec;
1195 1.1 mycroft bno = dtogd(fs, bno);
1196 1.1 mycroft if (size == fs->fs_bsize) {
1197 1.1 mycroft blkno = fragstoblks(fs, bno);
1198 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1199 1.1 mycroft printf("dev = 0x%x, block = %d, fs = %s\n",
1200 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1201 1.1 mycroft panic("blkfree: freeing free block");
1202 1.1 mycroft }
1203 1.1 mycroft ffs_setblock(fs, cg_blksfree(cgp), blkno);
1204 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1205 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1206 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1207 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1208 1.1 mycroft i = cbtocylno(fs, bno);
1209 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1210 1.1 mycroft cg_blktot(cgp)[i]++;
1211 1.1 mycroft } else {
1212 1.1 mycroft bbase = bno - fragnum(fs, bno);
1213 1.1 mycroft /*
1214 1.1 mycroft * decrement the counts associated with the old frags
1215 1.1 mycroft */
1216 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1217 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1218 1.1 mycroft /*
1219 1.1 mycroft * deallocate the fragment
1220 1.1 mycroft */
1221 1.1 mycroft frags = numfrags(fs, size);
1222 1.1 mycroft for (i = 0; i < frags; i++) {
1223 1.1 mycroft if (isset(cg_blksfree(cgp), bno + i)) {
1224 1.1 mycroft printf("dev = 0x%x, block = %d, fs = %s\n",
1225 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1226 1.1 mycroft panic("blkfree: freeing free frag");
1227 1.1 mycroft }
1228 1.1 mycroft setbit(cg_blksfree(cgp), bno + i);
1229 1.1 mycroft }
1230 1.1 mycroft cgp->cg_cs.cs_nffree += i;
1231 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1232 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
1233 1.1 mycroft /*
1234 1.1 mycroft * add back in counts associated with the new frags
1235 1.1 mycroft */
1236 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1237 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1238 1.1 mycroft /*
1239 1.1 mycroft * if a complete block has been reassembled, account for it
1240 1.1 mycroft */
1241 1.1 mycroft blkno = fragstoblks(fs, bbase);
1242 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1243 1.1 mycroft cgp->cg_cs.cs_nffree -= fs->fs_frag;
1244 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1245 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1246 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1247 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1248 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1249 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1250 1.1 mycroft i = cbtocylno(fs, bbase);
1251 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1252 1.1 mycroft cg_blktot(cgp)[i]++;
1253 1.1 mycroft }
1254 1.1 mycroft }
1255 1.1 mycroft fs->fs_fmod = 1;
1256 1.1 mycroft bdwrite(bp);
1257 1.1 mycroft }
1258 1.1 mycroft
1259 1.1 mycroft /*
1260 1.1 mycroft * Free an inode.
1261 1.1 mycroft *
1262 1.1 mycroft * The specified inode is placed back in the free map.
1263 1.1 mycroft */
1264 1.1 mycroft int
1265 1.1 mycroft ffs_vfree(ap)
1266 1.1 mycroft struct vop_vfree_args /* {
1267 1.1 mycroft struct vnode *a_pvp;
1268 1.1 mycroft ino_t a_ino;
1269 1.1 mycroft int a_mode;
1270 1.1 mycroft } */ *ap;
1271 1.1 mycroft {
1272 1.1 mycroft register struct fs *fs;
1273 1.1 mycroft register struct cg *cgp;
1274 1.1 mycroft register struct inode *pip;
1275 1.1 mycroft ino_t ino = ap->a_ino;
1276 1.1 mycroft struct buf *bp;
1277 1.1 mycroft int error, cg;
1278 1.1 mycroft
1279 1.1 mycroft pip = VTOI(ap->a_pvp);
1280 1.1 mycroft fs = pip->i_fs;
1281 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1282 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1283 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1284 1.1 mycroft cg = ino_to_cg(fs, ino);
1285 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1286 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1287 1.1 mycroft if (error) {
1288 1.1 mycroft brelse(bp);
1289 1.1 mycroft return (0);
1290 1.1 mycroft }
1291 1.1 mycroft cgp = (struct cg *)bp->b_data;
1292 1.1 mycroft if (!cg_chkmagic(cgp)) {
1293 1.1 mycroft brelse(bp);
1294 1.1 mycroft return (0);
1295 1.1 mycroft }
1296 1.1 mycroft cgp->cg_time = time.tv_sec;
1297 1.1 mycroft ino %= fs->fs_ipg;
1298 1.1 mycroft if (isclr(cg_inosused(cgp), ino)) {
1299 1.1 mycroft printf("dev = 0x%x, ino = %d, fs = %s\n",
1300 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1301 1.1 mycroft if (fs->fs_ronly == 0)
1302 1.1 mycroft panic("ifree: freeing free inode");
1303 1.1 mycroft }
1304 1.1 mycroft clrbit(cg_inosused(cgp), ino);
1305 1.1 mycroft if (ino < cgp->cg_irotor)
1306 1.1 mycroft cgp->cg_irotor = ino;
1307 1.1 mycroft cgp->cg_cs.cs_nifree++;
1308 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1309 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1310 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1311 1.1 mycroft cgp->cg_cs.cs_ndir--;
1312 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1313 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1314 1.1 mycroft }
1315 1.1 mycroft fs->fs_fmod = 1;
1316 1.1 mycroft bdwrite(bp);
1317 1.1 mycroft return (0);
1318 1.1 mycroft }
1319 1.1 mycroft
1320 1.1 mycroft /*
1321 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1322 1.1 mycroft *
1323 1.1 mycroft * It is a panic if a request is made to find a block if none are
1324 1.1 mycroft * available.
1325 1.1 mycroft */
1326 1.1 mycroft static daddr_t
1327 1.1 mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
1328 1.1 mycroft register struct fs *fs;
1329 1.1 mycroft register struct cg *cgp;
1330 1.1 mycroft daddr_t bpref;
1331 1.1 mycroft int allocsiz;
1332 1.1 mycroft {
1333 1.1 mycroft daddr_t bno;
1334 1.1 mycroft int start, len, loc, i;
1335 1.1 mycroft int blk, field, subfield, pos;
1336 1.1 mycroft
1337 1.1 mycroft /*
1338 1.1 mycroft * find the fragment by searching through the free block
1339 1.1 mycroft * map for an appropriate bit pattern
1340 1.1 mycroft */
1341 1.1 mycroft if (bpref)
1342 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1343 1.1 mycroft else
1344 1.1 mycroft start = cgp->cg_frotor / NBBY;
1345 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1346 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1347 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1348 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1349 1.1 mycroft if (loc == 0) {
1350 1.1 mycroft len = start + 1;
1351 1.1 mycroft start = 0;
1352 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1353 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1354 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1355 1.1 mycroft if (loc == 0) {
1356 1.1 mycroft printf("start = %d, len = %d, fs = %s\n",
1357 1.1 mycroft start, len, fs->fs_fsmnt);
1358 1.1 mycroft panic("ffs_alloccg: map corrupted");
1359 1.1 mycroft /* NOTREACHED */
1360 1.1 mycroft }
1361 1.1 mycroft }
1362 1.1 mycroft bno = (start + len - loc) * NBBY;
1363 1.1 mycroft cgp->cg_frotor = bno;
1364 1.1 mycroft /*
1365 1.1 mycroft * found the byte in the map
1366 1.1 mycroft * sift through the bits to find the selected frag
1367 1.1 mycroft */
1368 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1369 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bno);
1370 1.1 mycroft blk <<= 1;
1371 1.1 mycroft field = around[allocsiz];
1372 1.1 mycroft subfield = inside[allocsiz];
1373 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1374 1.1 mycroft if ((blk & field) == subfield)
1375 1.1 mycroft return (bno + pos);
1376 1.1 mycroft field <<= 1;
1377 1.1 mycroft subfield <<= 1;
1378 1.1 mycroft }
1379 1.1 mycroft }
1380 1.1 mycroft printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1381 1.1 mycroft panic("ffs_alloccg: block not in map");
1382 1.1 mycroft return (-1);
1383 1.1 mycroft }
1384 1.1 mycroft
1385 1.1 mycroft /*
1386 1.1 mycroft * Update the cluster map because of an allocation or free.
1387 1.1 mycroft *
1388 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1389 1.1 mycroft */
1390 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
1391 1.1 mycroft struct fs *fs;
1392 1.1 mycroft struct cg *cgp;
1393 1.1 mycroft daddr_t blkno;
1394 1.1 mycroft int cnt;
1395 1.1 mycroft {
1396 1.4 cgd int32_t *sump;
1397 1.1 mycroft u_char *freemapp, *mapp;
1398 1.1 mycroft int i, start, end, forw, back, map, bit;
1399 1.1 mycroft
1400 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1401 1.1 mycroft return;
1402 1.1 mycroft freemapp = cg_clustersfree(cgp);
1403 1.1 mycroft sump = cg_clustersum(cgp);
1404 1.1 mycroft /*
1405 1.1 mycroft * Allocate or clear the actual block.
1406 1.1 mycroft */
1407 1.1 mycroft if (cnt > 0)
1408 1.1 mycroft setbit(freemapp, blkno);
1409 1.1 mycroft else
1410 1.1 mycroft clrbit(freemapp, blkno);
1411 1.1 mycroft /*
1412 1.1 mycroft * Find the size of the cluster going forward.
1413 1.1 mycroft */
1414 1.1 mycroft start = blkno + 1;
1415 1.1 mycroft end = start + fs->fs_contigsumsize;
1416 1.1 mycroft if (end >= cgp->cg_nclusterblks)
1417 1.1 mycroft end = cgp->cg_nclusterblks;
1418 1.1 mycroft mapp = &freemapp[start / NBBY];
1419 1.1 mycroft map = *mapp++;
1420 1.1 mycroft bit = 1 << (start % NBBY);
1421 1.1 mycroft for (i = start; i < end; i++) {
1422 1.1 mycroft if ((map & bit) == 0)
1423 1.1 mycroft break;
1424 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1425 1.1 mycroft bit <<= 1;
1426 1.1 mycroft } else {
1427 1.1 mycroft map = *mapp++;
1428 1.1 mycroft bit = 1;
1429 1.1 mycroft }
1430 1.1 mycroft }
1431 1.1 mycroft forw = i - start;
1432 1.1 mycroft /*
1433 1.1 mycroft * Find the size of the cluster going backward.
1434 1.1 mycroft */
1435 1.1 mycroft start = blkno - 1;
1436 1.1 mycroft end = start - fs->fs_contigsumsize;
1437 1.1 mycroft if (end < 0)
1438 1.1 mycroft end = -1;
1439 1.1 mycroft mapp = &freemapp[start / NBBY];
1440 1.1 mycroft map = *mapp--;
1441 1.1 mycroft bit = 1 << (start % NBBY);
1442 1.1 mycroft for (i = start; i > end; i--) {
1443 1.1 mycroft if ((map & bit) == 0)
1444 1.1 mycroft break;
1445 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1446 1.1 mycroft bit >>= 1;
1447 1.1 mycroft } else {
1448 1.1 mycroft map = *mapp--;
1449 1.1 mycroft bit = 1 << (NBBY - 1);
1450 1.1 mycroft }
1451 1.1 mycroft }
1452 1.1 mycroft back = start - i;
1453 1.1 mycroft /*
1454 1.1 mycroft * Account for old cluster and the possibly new forward and
1455 1.1 mycroft * back clusters.
1456 1.1 mycroft */
1457 1.1 mycroft i = back + forw + 1;
1458 1.1 mycroft if (i > fs->fs_contigsumsize)
1459 1.1 mycroft i = fs->fs_contigsumsize;
1460 1.1 mycroft sump[i] += cnt;
1461 1.1 mycroft if (back > 0)
1462 1.1 mycroft sump[back] -= cnt;
1463 1.1 mycroft if (forw > 0)
1464 1.1 mycroft sump[forw] -= cnt;
1465 1.1 mycroft }
1466 1.1 mycroft
1467 1.1 mycroft /*
1468 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1469 1.1 mycroft *
1470 1.1 mycroft * The form of the error message is:
1471 1.1 mycroft * fs: error message
1472 1.1 mycroft */
1473 1.1 mycroft static void
1474 1.1 mycroft ffs_fserr(fs, uid, cp)
1475 1.1 mycroft struct fs *fs;
1476 1.1 mycroft u_int uid;
1477 1.1 mycroft char *cp;
1478 1.1 mycroft {
1479 1.1 mycroft
1480 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1481 1.1 mycroft }
1482