Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.4
      1  1.4      cgd /*	$NetBSD: ffs_alloc.c,v 1.4 1994/10/20 04:20:55 cgd Exp $	*/
      2  1.2      cgd 
      3  1.1  mycroft /*
      4  1.1  mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5  1.1  mycroft  *	The Regents of the University of California.  All rights reserved.
      6  1.1  mycroft  *
      7  1.1  mycroft  * Redistribution and use in source and binary forms, with or without
      8  1.1  mycroft  * modification, are permitted provided that the following conditions
      9  1.1  mycroft  * are met:
     10  1.1  mycroft  * 1. Redistributions of source code must retain the above copyright
     11  1.1  mycroft  *    notice, this list of conditions and the following disclaimer.
     12  1.1  mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  mycroft  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  mycroft  *    documentation and/or other materials provided with the distribution.
     15  1.1  mycroft  * 3. All advertising materials mentioning features or use of this software
     16  1.1  mycroft  *    must display the following acknowledgement:
     17  1.1  mycroft  *	This product includes software developed by the University of
     18  1.1  mycroft  *	California, Berkeley and its contributors.
     19  1.1  mycroft  * 4. Neither the name of the University nor the names of its contributors
     20  1.1  mycroft  *    may be used to endorse or promote products derived from this software
     21  1.1  mycroft  *    without specific prior written permission.
     22  1.1  mycroft  *
     23  1.1  mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.1  mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.1  mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.1  mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.1  mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.1  mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.1  mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.1  mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.1  mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.1  mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.1  mycroft  * SUCH DAMAGE.
     34  1.1  mycroft  *
     35  1.2      cgd  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
     36  1.1  mycroft  */
     37  1.1  mycroft 
     38  1.1  mycroft #include <sys/param.h>
     39  1.1  mycroft #include <sys/systm.h>
     40  1.1  mycroft #include <sys/buf.h>
     41  1.1  mycroft #include <sys/proc.h>
     42  1.1  mycroft #include <sys/vnode.h>
     43  1.1  mycroft #include <sys/mount.h>
     44  1.1  mycroft #include <sys/kernel.h>
     45  1.1  mycroft #include <sys/syslog.h>
     46  1.1  mycroft 
     47  1.1  mycroft #include <vm/vm.h>
     48  1.1  mycroft 
     49  1.1  mycroft #include <ufs/ufs/quota.h>
     50  1.1  mycroft #include <ufs/ufs/inode.h>
     51  1.1  mycroft 
     52  1.1  mycroft #include <ufs/ffs/fs.h>
     53  1.1  mycroft #include <ufs/ffs/ffs_extern.h>
     54  1.1  mycroft 
     55  1.1  mycroft extern u_long nextgennumber;
     56  1.1  mycroft 
     57  1.1  mycroft static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     58  1.1  mycroft static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     59  1.1  mycroft static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     60  1.1  mycroft static ino_t	ffs_dirpref __P((struct fs *));
     61  1.1  mycroft static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     62  1.1  mycroft static void	ffs_fserr __P((struct fs *, u_int, char *));
     63  1.1  mycroft static u_long	ffs_hashalloc
     64  1.4      cgd 		    __P((struct inode *, int, long, int, u_int32_t (*)()));
     65  1.1  mycroft static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     66  1.1  mycroft static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     67  1.1  mycroft 
     68  1.1  mycroft /*
     69  1.1  mycroft  * Allocate a block in the file system.
     70  1.1  mycroft  *
     71  1.1  mycroft  * The size of the requested block is given, which must be some
     72  1.1  mycroft  * multiple of fs_fsize and <= fs_bsize.
     73  1.1  mycroft  * A preference may be optionally specified. If a preference is given
     74  1.1  mycroft  * the following hierarchy is used to allocate a block:
     75  1.1  mycroft  *   1) allocate the requested block.
     76  1.1  mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     77  1.1  mycroft  *   3) allocate a block in the same cylinder group.
     78  1.1  mycroft  *   4) quadradically rehash into other cylinder groups, until an
     79  1.1  mycroft  *      available block is located.
     80  1.1  mycroft  * If no block preference is given the following heirarchy is used
     81  1.1  mycroft  * to allocate a block:
     82  1.1  mycroft  *   1) allocate a block in the cylinder group that contains the
     83  1.1  mycroft  *      inode for the file.
     84  1.1  mycroft  *   2) quadradically rehash into other cylinder groups, until an
     85  1.1  mycroft  *      available block is located.
     86  1.1  mycroft  */
     87  1.1  mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     88  1.1  mycroft 	register struct inode *ip;
     89  1.1  mycroft 	daddr_t lbn, bpref;
     90  1.1  mycroft 	int size;
     91  1.1  mycroft 	struct ucred *cred;
     92  1.1  mycroft 	daddr_t *bnp;
     93  1.1  mycroft {
     94  1.1  mycroft 	register struct fs *fs;
     95  1.1  mycroft 	daddr_t bno;
     96  1.1  mycroft 	int cg, error;
     97  1.1  mycroft 
     98  1.1  mycroft 	*bnp = 0;
     99  1.1  mycroft 	fs = ip->i_fs;
    100  1.1  mycroft #ifdef DIAGNOSTIC
    101  1.1  mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    102  1.1  mycroft 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    103  1.1  mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    104  1.1  mycroft 		panic("ffs_alloc: bad size");
    105  1.1  mycroft 	}
    106  1.1  mycroft 	if (cred == NOCRED)
    107  1.1  mycroft 		panic("ffs_alloc: missing credential\n");
    108  1.1  mycroft #endif /* DIAGNOSTIC */
    109  1.1  mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    110  1.1  mycroft 		goto nospace;
    111  1.1  mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    112  1.1  mycroft 		goto nospace;
    113  1.1  mycroft #ifdef QUOTA
    114  1.1  mycroft 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
    115  1.1  mycroft 		return (error);
    116  1.1  mycroft #endif
    117  1.1  mycroft 	if (bpref >= fs->fs_size)
    118  1.1  mycroft 		bpref = 0;
    119  1.1  mycroft 	if (bpref == 0)
    120  1.1  mycroft 		cg = ino_to_cg(fs, ip->i_number);
    121  1.1  mycroft 	else
    122  1.1  mycroft 		cg = dtog(fs, bpref);
    123  1.1  mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    124  1.4      cgd 	    (u_int32_t (*)())ffs_alloccg);
    125  1.1  mycroft 	if (bno > 0) {
    126  1.1  mycroft 		ip->i_blocks += btodb(size);
    127  1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    128  1.1  mycroft 		*bnp = bno;
    129  1.1  mycroft 		return (0);
    130  1.1  mycroft 	}
    131  1.1  mycroft #ifdef QUOTA
    132  1.1  mycroft 	/*
    133  1.1  mycroft 	 * Restore user's disk quota because allocation failed.
    134  1.1  mycroft 	 */
    135  1.1  mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    136  1.1  mycroft #endif
    137  1.1  mycroft nospace:
    138  1.1  mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    139  1.1  mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    140  1.1  mycroft 	return (ENOSPC);
    141  1.1  mycroft }
    142  1.1  mycroft 
    143  1.1  mycroft /*
    144  1.1  mycroft  * Reallocate a fragment to a bigger size
    145  1.1  mycroft  *
    146  1.1  mycroft  * The number and size of the old block is given, and a preference
    147  1.1  mycroft  * and new size is also specified. The allocator attempts to extend
    148  1.1  mycroft  * the original block. Failing that, the regular block allocator is
    149  1.1  mycroft  * invoked to get an appropriate block.
    150  1.1  mycroft  */
    151  1.1  mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    152  1.1  mycroft 	register struct inode *ip;
    153  1.1  mycroft 	daddr_t lbprev;
    154  1.1  mycroft 	daddr_t bpref;
    155  1.1  mycroft 	int osize, nsize;
    156  1.1  mycroft 	struct ucred *cred;
    157  1.1  mycroft 	struct buf **bpp;
    158  1.1  mycroft {
    159  1.1  mycroft 	register struct fs *fs;
    160  1.1  mycroft 	struct buf *bp;
    161  1.1  mycroft 	int cg, request, error;
    162  1.1  mycroft 	daddr_t bprev, bno;
    163  1.1  mycroft 
    164  1.1  mycroft 	*bpp = 0;
    165  1.1  mycroft 	fs = ip->i_fs;
    166  1.1  mycroft #ifdef DIAGNOSTIC
    167  1.1  mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    168  1.1  mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    169  1.1  mycroft 		printf(
    170  1.1  mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    171  1.1  mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    172  1.1  mycroft 		panic("ffs_realloccg: bad size");
    173  1.1  mycroft 	}
    174  1.1  mycroft 	if (cred == NOCRED)
    175  1.1  mycroft 		panic("ffs_realloccg: missing credential\n");
    176  1.1  mycroft #endif /* DIAGNOSTIC */
    177  1.1  mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    178  1.1  mycroft 		goto nospace;
    179  1.1  mycroft 	if ((bprev = ip->i_db[lbprev]) == 0) {
    180  1.1  mycroft 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    181  1.1  mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    182  1.1  mycroft 		panic("ffs_realloccg: bad bprev");
    183  1.1  mycroft 	}
    184  1.1  mycroft 	/*
    185  1.1  mycroft 	 * Allocate the extra space in the buffer.
    186  1.1  mycroft 	 */
    187  1.1  mycroft 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
    188  1.1  mycroft 		brelse(bp);
    189  1.1  mycroft 		return (error);
    190  1.1  mycroft 	}
    191  1.1  mycroft #ifdef QUOTA
    192  1.1  mycroft 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
    193  1.1  mycroft 		brelse(bp);
    194  1.1  mycroft 		return (error);
    195  1.1  mycroft 	}
    196  1.1  mycroft #endif
    197  1.1  mycroft 	/*
    198  1.1  mycroft 	 * Check for extension in the existing location.
    199  1.1  mycroft 	 */
    200  1.1  mycroft 	cg = dtog(fs, bprev);
    201  1.1  mycroft 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
    202  1.1  mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    203  1.1  mycroft 			panic("bad blockno");
    204  1.1  mycroft 		ip->i_blocks += btodb(nsize - osize);
    205  1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    206  1.1  mycroft 		allocbuf(bp, nsize);
    207  1.1  mycroft 		bp->b_flags |= B_DONE;
    208  1.1  mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    209  1.1  mycroft 		*bpp = bp;
    210  1.1  mycroft 		return (0);
    211  1.1  mycroft 	}
    212  1.1  mycroft 	/*
    213  1.1  mycroft 	 * Allocate a new disk location.
    214  1.1  mycroft 	 */
    215  1.1  mycroft 	if (bpref >= fs->fs_size)
    216  1.1  mycroft 		bpref = 0;
    217  1.1  mycroft 	switch ((int)fs->fs_optim) {
    218  1.1  mycroft 	case FS_OPTSPACE:
    219  1.1  mycroft 		/*
    220  1.1  mycroft 		 * Allocate an exact sized fragment. Although this makes
    221  1.1  mycroft 		 * best use of space, we will waste time relocating it if
    222  1.1  mycroft 		 * the file continues to grow. If the fragmentation is
    223  1.1  mycroft 		 * less than half of the minimum free reserve, we choose
    224  1.1  mycroft 		 * to begin optimizing for time.
    225  1.1  mycroft 		 */
    226  1.1  mycroft 		request = nsize;
    227  1.1  mycroft 		if (fs->fs_minfree < 5 ||
    228  1.1  mycroft 		    fs->fs_cstotal.cs_nffree >
    229  1.1  mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    230  1.1  mycroft 			break;
    231  1.1  mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    232  1.1  mycroft 			fs->fs_fsmnt);
    233  1.1  mycroft 		fs->fs_optim = FS_OPTTIME;
    234  1.1  mycroft 		break;
    235  1.1  mycroft 	case FS_OPTTIME:
    236  1.1  mycroft 		/*
    237  1.1  mycroft 		 * At this point we have discovered a file that is trying to
    238  1.1  mycroft 		 * grow a small fragment to a larger fragment. To save time,
    239  1.1  mycroft 		 * we allocate a full sized block, then free the unused portion.
    240  1.1  mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    241  1.1  mycroft 		 * above will be able to grow it in place without further
    242  1.1  mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    243  1.1  mycroft 		 * grow within 2% of the free reserve, we choose to begin
    244  1.1  mycroft 		 * optimizing for space.
    245  1.1  mycroft 		 */
    246  1.1  mycroft 		request = fs->fs_bsize;
    247  1.1  mycroft 		if (fs->fs_cstotal.cs_nffree <
    248  1.1  mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    249  1.1  mycroft 			break;
    250  1.1  mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    251  1.1  mycroft 			fs->fs_fsmnt);
    252  1.1  mycroft 		fs->fs_optim = FS_OPTSPACE;
    253  1.1  mycroft 		break;
    254  1.1  mycroft 	default:
    255  1.1  mycroft 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    256  1.1  mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    257  1.1  mycroft 		panic("ffs_realloccg: bad optim");
    258  1.1  mycroft 		/* NOTREACHED */
    259  1.1  mycroft 	}
    260  1.1  mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    261  1.4      cgd 	    (u_int32_t (*)())ffs_alloccg);
    262  1.1  mycroft 	if (bno > 0) {
    263  1.1  mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    264  1.1  mycroft 		(void) vnode_pager_uncache(ITOV(ip));
    265  1.1  mycroft 		ffs_blkfree(ip, bprev, (long)osize);
    266  1.1  mycroft 		if (nsize < request)
    267  1.1  mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    268  1.1  mycroft 			    (long)(request - nsize));
    269  1.1  mycroft 		ip->i_blocks += btodb(nsize - osize);
    270  1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271  1.1  mycroft 		allocbuf(bp, nsize);
    272  1.1  mycroft 		bp->b_flags |= B_DONE;
    273  1.1  mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    274  1.1  mycroft 		*bpp = bp;
    275  1.1  mycroft 		return (0);
    276  1.1  mycroft 	}
    277  1.1  mycroft #ifdef QUOTA
    278  1.1  mycroft 	/*
    279  1.1  mycroft 	 * Restore user's disk quota because allocation failed.
    280  1.1  mycroft 	 */
    281  1.1  mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    282  1.1  mycroft #endif
    283  1.1  mycroft 	brelse(bp);
    284  1.1  mycroft nospace:
    285  1.1  mycroft 	/*
    286  1.1  mycroft 	 * no space available
    287  1.1  mycroft 	 */
    288  1.1  mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    289  1.1  mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290  1.1  mycroft 	return (ENOSPC);
    291  1.1  mycroft }
    292  1.1  mycroft 
    293  1.1  mycroft /*
    294  1.1  mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    295  1.1  mycroft  *
    296  1.1  mycroft  * The vnode and an array of buffer pointers for a range of sequential
    297  1.1  mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    298  1.1  mycroft  * to find a range of sequential blocks starting as close as possible to
    299  1.1  mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    300  1.1  mycroft  * block immediately preceeding the current range. If successful, the
    301  1.1  mycroft  * physical block numbers in the buffer pointers and in the inode are
    302  1.1  mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    303  1.1  mycroft  * is left unchanged. The success in doing the reallocation is returned.
    304  1.1  mycroft  * Note that the error return is not reflected back to the user. Rather
    305  1.1  mycroft  * the previous block allocation will be used.
    306  1.1  mycroft  */
    307  1.3  mycroft #ifdef DEBUG
    308  1.1  mycroft #include <sys/sysctl.h>
    309  1.1  mycroft int doasyncfree = 1;
    310  1.1  mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    311  1.3  mycroft #else
    312  1.3  mycroft #define doasyncfree 1
    313  1.1  mycroft #endif
    314  1.1  mycroft 
    315  1.1  mycroft int
    316  1.1  mycroft ffs_reallocblks(ap)
    317  1.1  mycroft 	struct vop_reallocblks_args /* {
    318  1.1  mycroft 		struct vnode *a_vp;
    319  1.1  mycroft 		struct cluster_save *a_buflist;
    320  1.1  mycroft 	} */ *ap;
    321  1.1  mycroft {
    322  1.1  mycroft 	struct fs *fs;
    323  1.1  mycroft 	struct inode *ip;
    324  1.1  mycroft 	struct vnode *vp;
    325  1.1  mycroft 	struct buf *sbp, *ebp;
    326  1.1  mycroft 	daddr_t *bap, *sbap, *ebap;
    327  1.1  mycroft 	struct cluster_save *buflist;
    328  1.1  mycroft 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
    329  1.1  mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    330  1.1  mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    331  1.1  mycroft 
    332  1.1  mycroft 	vp = ap->a_vp;
    333  1.1  mycroft 	ip = VTOI(vp);
    334  1.1  mycroft 	fs = ip->i_fs;
    335  1.1  mycroft 	if (fs->fs_contigsumsize <= 0)
    336  1.1  mycroft 		return (ENOSPC);
    337  1.1  mycroft 	buflist = ap->a_buflist;
    338  1.1  mycroft 	len = buflist->bs_nchildren;
    339  1.1  mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    340  1.1  mycroft 	end_lbn = start_lbn + len - 1;
    341  1.1  mycroft #ifdef DIAGNOSTIC
    342  1.1  mycroft 	for (i = 1; i < len; i++)
    343  1.1  mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    344  1.1  mycroft 			panic("ffs_reallocblks: non-cluster");
    345  1.1  mycroft #endif
    346  1.1  mycroft 	/*
    347  1.1  mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    348  1.1  mycroft 	 * the filesystem has decided to move and do not force it back to
    349  1.1  mycroft 	 * the previous cylinder group.
    350  1.1  mycroft 	 */
    351  1.1  mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    352  1.1  mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    353  1.1  mycroft 		return (ENOSPC);
    354  1.1  mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    355  1.1  mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    356  1.1  mycroft 		return (ENOSPC);
    357  1.1  mycroft 	/*
    358  1.1  mycroft 	 * Get the starting offset and block map for the first block.
    359  1.1  mycroft 	 */
    360  1.1  mycroft 	if (start_lvl == 0) {
    361  1.1  mycroft 		sbap = &ip->i_db[0];
    362  1.1  mycroft 		soff = start_lbn;
    363  1.1  mycroft 	} else {
    364  1.1  mycroft 		idp = &start_ap[start_lvl - 1];
    365  1.1  mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    366  1.1  mycroft 			brelse(sbp);
    367  1.1  mycroft 			return (ENOSPC);
    368  1.1  mycroft 		}
    369  1.1  mycroft 		sbap = (daddr_t *)sbp->b_data;
    370  1.1  mycroft 		soff = idp->in_off;
    371  1.1  mycroft 	}
    372  1.1  mycroft 	/*
    373  1.1  mycroft 	 * Find the preferred location for the cluster.
    374  1.1  mycroft 	 */
    375  1.1  mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    376  1.1  mycroft 	/*
    377  1.1  mycroft 	 * If the block range spans two block maps, get the second map.
    378  1.1  mycroft 	 */
    379  1.1  mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    380  1.1  mycroft 		ssize = len;
    381  1.1  mycroft 	} else {
    382  1.1  mycroft #ifdef DIAGNOSTIC
    383  1.1  mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    384  1.1  mycroft 			panic("ffs_reallocblk: start == end");
    385  1.1  mycroft #endif
    386  1.1  mycroft 		ssize = len - (idp->in_off + 1);
    387  1.1  mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    388  1.1  mycroft 			goto fail;
    389  1.1  mycroft 		ebap = (daddr_t *)ebp->b_data;
    390  1.1  mycroft 	}
    391  1.1  mycroft 	/*
    392  1.1  mycroft 	 * Search the block map looking for an allocation of the desired size.
    393  1.1  mycroft 	 */
    394  1.1  mycroft 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    395  1.4      cgd 	    len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
    396  1.1  mycroft 		goto fail;
    397  1.1  mycroft 	/*
    398  1.1  mycroft 	 * We have found a new contiguous block.
    399  1.1  mycroft 	 *
    400  1.1  mycroft 	 * First we have to replace the old block pointers with the new
    401  1.1  mycroft 	 * block pointers in the inode and indirect blocks associated
    402  1.1  mycroft 	 * with the file.
    403  1.1  mycroft 	 */
    404  1.1  mycroft 	blkno = newblk;
    405  1.1  mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    406  1.1  mycroft 		if (i == ssize)
    407  1.1  mycroft 			bap = ebap;
    408  1.1  mycroft #ifdef DIAGNOSTIC
    409  1.1  mycroft 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
    410  1.1  mycroft 			panic("ffs_reallocblks: alloc mismatch");
    411  1.1  mycroft #endif
    412  1.1  mycroft 		*bap++ = blkno;
    413  1.1  mycroft 	}
    414  1.1  mycroft 	/*
    415  1.1  mycroft 	 * Next we must write out the modified inode and indirect blocks.
    416  1.1  mycroft 	 * For strict correctness, the writes should be synchronous since
    417  1.1  mycroft 	 * the old block values may have been written to disk. In practise
    418  1.1  mycroft 	 * they are almost never written, but if we are concerned about
    419  1.1  mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    420  1.1  mycroft 	 *
    421  1.1  mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    422  1.1  mycroft 	 * that shows whether the associated buffers and inodes have
    423  1.1  mycroft 	 * been written. The flag should be set when the cluster is
    424  1.1  mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    425  1.1  mycroft 	 * We can then check below to see if it is set, and do the
    426  1.1  mycroft 	 * synchronous write only when it has been cleared.
    427  1.1  mycroft 	 */
    428  1.1  mycroft 	if (sbap != &ip->i_db[0]) {
    429  1.1  mycroft 		if (doasyncfree)
    430  1.1  mycroft 			bdwrite(sbp);
    431  1.1  mycroft 		else
    432  1.1  mycroft 			bwrite(sbp);
    433  1.1  mycroft 	} else {
    434  1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    435  1.1  mycroft 		if (!doasyncfree)
    436  1.1  mycroft 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
    437  1.1  mycroft 	}
    438  1.1  mycroft 	if (ssize < len)
    439  1.1  mycroft 		if (doasyncfree)
    440  1.1  mycroft 			bdwrite(ebp);
    441  1.1  mycroft 		else
    442  1.1  mycroft 			bwrite(ebp);
    443  1.1  mycroft 	/*
    444  1.1  mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    445  1.1  mycroft 	 */
    446  1.1  mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    447  1.1  mycroft 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    448  1.1  mycroft 		    fs->fs_bsize);
    449  1.1  mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    450  1.1  mycroft 	}
    451  1.1  mycroft 	return (0);
    452  1.1  mycroft 
    453  1.1  mycroft fail:
    454  1.1  mycroft 	if (ssize < len)
    455  1.1  mycroft 		brelse(ebp);
    456  1.1  mycroft 	if (sbap != &ip->i_db[0])
    457  1.1  mycroft 		brelse(sbp);
    458  1.1  mycroft 	return (ENOSPC);
    459  1.1  mycroft }
    460  1.1  mycroft 
    461  1.1  mycroft /*
    462  1.1  mycroft  * Allocate an inode in the file system.
    463  1.1  mycroft  *
    464  1.1  mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    465  1.1  mycroft  * If allocating in a directory, the following hierarchy is followed:
    466  1.1  mycroft  *   1) allocate the preferred inode.
    467  1.1  mycroft  *   2) allocate an inode in the same cylinder group.
    468  1.1  mycroft  *   3) quadradically rehash into other cylinder groups, until an
    469  1.1  mycroft  *      available inode is located.
    470  1.1  mycroft  * If no inode preference is given the following heirarchy is used
    471  1.1  mycroft  * to allocate an inode:
    472  1.1  mycroft  *   1) allocate an inode in cylinder group 0.
    473  1.1  mycroft  *   2) quadradically rehash into other cylinder groups, until an
    474  1.1  mycroft  *      available inode is located.
    475  1.1  mycroft  */
    476  1.1  mycroft ffs_valloc(ap)
    477  1.1  mycroft 	struct vop_valloc_args /* {
    478  1.1  mycroft 		struct vnode *a_pvp;
    479  1.1  mycroft 		int a_mode;
    480  1.1  mycroft 		struct ucred *a_cred;
    481  1.1  mycroft 		struct vnode **a_vpp;
    482  1.1  mycroft 	} */ *ap;
    483  1.1  mycroft {
    484  1.1  mycroft 	register struct vnode *pvp = ap->a_pvp;
    485  1.1  mycroft 	register struct inode *pip;
    486  1.1  mycroft 	register struct fs *fs;
    487  1.1  mycroft 	register struct inode *ip;
    488  1.1  mycroft 	mode_t mode = ap->a_mode;
    489  1.1  mycroft 	ino_t ino, ipref;
    490  1.1  mycroft 	int cg, error;
    491  1.1  mycroft 
    492  1.1  mycroft 	*ap->a_vpp = NULL;
    493  1.1  mycroft 	pip = VTOI(pvp);
    494  1.1  mycroft 	fs = pip->i_fs;
    495  1.1  mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    496  1.1  mycroft 		goto noinodes;
    497  1.1  mycroft 
    498  1.1  mycroft 	if ((mode & IFMT) == IFDIR)
    499  1.1  mycroft 		ipref = ffs_dirpref(fs);
    500  1.1  mycroft 	else
    501  1.1  mycroft 		ipref = pip->i_number;
    502  1.1  mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    503  1.1  mycroft 		ipref = 0;
    504  1.1  mycroft 	cg = ino_to_cg(fs, ipref);
    505  1.1  mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    506  1.1  mycroft 	if (ino == 0)
    507  1.1  mycroft 		goto noinodes;
    508  1.1  mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    509  1.1  mycroft 	if (error) {
    510  1.1  mycroft 		VOP_VFREE(pvp, ino, mode);
    511  1.1  mycroft 		return (error);
    512  1.1  mycroft 	}
    513  1.1  mycroft 	ip = VTOI(*ap->a_vpp);
    514  1.1  mycroft 	if (ip->i_mode) {
    515  1.1  mycroft 		printf("mode = 0%o, inum = %d, fs = %s\n",
    516  1.1  mycroft 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    517  1.1  mycroft 		panic("ffs_valloc: dup alloc");
    518  1.1  mycroft 	}
    519  1.1  mycroft 	if (ip->i_blocks) {				/* XXX */
    520  1.1  mycroft 		printf("free inode %s/%d had %d blocks\n",
    521  1.1  mycroft 		    fs->fs_fsmnt, ino, ip->i_blocks);
    522  1.1  mycroft 		ip->i_blocks = 0;
    523  1.1  mycroft 	}
    524  1.1  mycroft 	ip->i_flags = 0;
    525  1.1  mycroft 	/*
    526  1.1  mycroft 	 * Set up a new generation number for this inode.
    527  1.1  mycroft 	 */
    528  1.1  mycroft 	if (++nextgennumber < (u_long)time.tv_sec)
    529  1.1  mycroft 		nextgennumber = time.tv_sec;
    530  1.1  mycroft 	ip->i_gen = nextgennumber;
    531  1.1  mycroft 	return (0);
    532  1.1  mycroft noinodes:
    533  1.1  mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    534  1.1  mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    535  1.1  mycroft 	return (ENOSPC);
    536  1.1  mycroft }
    537  1.1  mycroft 
    538  1.1  mycroft /*
    539  1.1  mycroft  * Find a cylinder to place a directory.
    540  1.1  mycroft  *
    541  1.1  mycroft  * The policy implemented by this algorithm is to select from
    542  1.1  mycroft  * among those cylinder groups with above the average number of
    543  1.1  mycroft  * free inodes, the one with the smallest number of directories.
    544  1.1  mycroft  */
    545  1.1  mycroft static ino_t
    546  1.1  mycroft ffs_dirpref(fs)
    547  1.1  mycroft 	register struct fs *fs;
    548  1.1  mycroft {
    549  1.1  mycroft 	int cg, minndir, mincg, avgifree;
    550  1.1  mycroft 
    551  1.1  mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    552  1.1  mycroft 	minndir = fs->fs_ipg;
    553  1.1  mycroft 	mincg = 0;
    554  1.1  mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    555  1.1  mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    556  1.1  mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    557  1.1  mycroft 			mincg = cg;
    558  1.1  mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    559  1.1  mycroft 		}
    560  1.1  mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    561  1.1  mycroft }
    562  1.1  mycroft 
    563  1.1  mycroft /*
    564  1.1  mycroft  * Select the desired position for the next block in a file.  The file is
    565  1.1  mycroft  * logically divided into sections. The first section is composed of the
    566  1.1  mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    567  1.1  mycroft  *
    568  1.1  mycroft  * If no blocks have been allocated in the first section, the policy is to
    569  1.1  mycroft  * request a block in the same cylinder group as the inode that describes
    570  1.1  mycroft  * the file. If no blocks have been allocated in any other section, the
    571  1.1  mycroft  * policy is to place the section in a cylinder group with a greater than
    572  1.1  mycroft  * average number of free blocks.  An appropriate cylinder group is found
    573  1.1  mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    574  1.1  mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    575  1.1  mycroft  * cylinder group from which the previous allocation was made. The sweep
    576  1.1  mycroft  * continues until a cylinder group with greater than the average number
    577  1.1  mycroft  * of free blocks is found. If the allocation is for the first block in an
    578  1.1  mycroft  * indirect block, the information on the previous allocation is unavailable;
    579  1.1  mycroft  * here a best guess is made based upon the logical block number being
    580  1.1  mycroft  * allocated.
    581  1.1  mycroft  *
    582  1.1  mycroft  * If a section is already partially allocated, the policy is to
    583  1.1  mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    584  1.1  mycroft  * contiguous blocks and the beginning of the next is physically separated
    585  1.1  mycroft  * so that the disk head will be in transit between them for at least
    586  1.1  mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    587  1.1  mycroft  * schedule another I/O transfer.
    588  1.1  mycroft  */
    589  1.1  mycroft daddr_t
    590  1.1  mycroft ffs_blkpref(ip, lbn, indx, bap)
    591  1.1  mycroft 	struct inode *ip;
    592  1.1  mycroft 	daddr_t lbn;
    593  1.1  mycroft 	int indx;
    594  1.1  mycroft 	daddr_t *bap;
    595  1.1  mycroft {
    596  1.1  mycroft 	register struct fs *fs;
    597  1.1  mycroft 	register int cg;
    598  1.1  mycroft 	int avgbfree, startcg;
    599  1.1  mycroft 	daddr_t nextblk;
    600  1.1  mycroft 
    601  1.1  mycroft 	fs = ip->i_fs;
    602  1.1  mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    603  1.1  mycroft 		if (lbn < NDADDR) {
    604  1.1  mycroft 			cg = ino_to_cg(fs, ip->i_number);
    605  1.1  mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    606  1.1  mycroft 		}
    607  1.1  mycroft 		/*
    608  1.1  mycroft 		 * Find a cylinder with greater than average number of
    609  1.1  mycroft 		 * unused data blocks.
    610  1.1  mycroft 		 */
    611  1.1  mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    612  1.1  mycroft 			startcg =
    613  1.1  mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    614  1.1  mycroft 		else
    615  1.1  mycroft 			startcg = dtog(fs, bap[indx - 1]) + 1;
    616  1.1  mycroft 		startcg %= fs->fs_ncg;
    617  1.1  mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    618  1.1  mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    619  1.1  mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    620  1.1  mycroft 				fs->fs_cgrotor = cg;
    621  1.1  mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    622  1.1  mycroft 			}
    623  1.1  mycroft 		for (cg = 0; cg <= startcg; cg++)
    624  1.1  mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    625  1.1  mycroft 				fs->fs_cgrotor = cg;
    626  1.1  mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    627  1.1  mycroft 			}
    628  1.1  mycroft 		return (NULL);
    629  1.1  mycroft 	}
    630  1.1  mycroft 	/*
    631  1.1  mycroft 	 * One or more previous blocks have been laid out. If less
    632  1.1  mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    633  1.1  mycroft 	 * next block is requested contiguously, otherwise it is
    634  1.1  mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    635  1.1  mycroft 	 */
    636  1.1  mycroft 	nextblk = bap[indx - 1] + fs->fs_frag;
    637  1.1  mycroft 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    638  1.1  mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    639  1.1  mycroft 		return (nextblk);
    640  1.1  mycroft 	if (fs->fs_rotdelay != 0)
    641  1.1  mycroft 		/*
    642  1.1  mycroft 		 * Here we convert ms of delay to frags as:
    643  1.1  mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    644  1.1  mycroft 		 *	((sect/frag) * (ms/sec))
    645  1.1  mycroft 		 * then round up to the next block.
    646  1.1  mycroft 		 */
    647  1.1  mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    648  1.1  mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    649  1.1  mycroft 	return (nextblk);
    650  1.1  mycroft }
    651  1.1  mycroft 
    652  1.1  mycroft /*
    653  1.1  mycroft  * Implement the cylinder overflow algorithm.
    654  1.1  mycroft  *
    655  1.1  mycroft  * The policy implemented by this algorithm is:
    656  1.1  mycroft  *   1) allocate the block in its requested cylinder group.
    657  1.1  mycroft  *   2) quadradically rehash on the cylinder group number.
    658  1.1  mycroft  *   3) brute force search for a free block.
    659  1.1  mycroft  */
    660  1.1  mycroft /*VARARGS5*/
    661  1.1  mycroft static u_long
    662  1.1  mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    663  1.1  mycroft 	struct inode *ip;
    664  1.1  mycroft 	int cg;
    665  1.1  mycroft 	long pref;
    666  1.1  mycroft 	int size;	/* size for data blocks, mode for inodes */
    667  1.4      cgd 	u_int32_t (*allocator)();
    668  1.1  mycroft {
    669  1.1  mycroft 	register struct fs *fs;
    670  1.1  mycroft 	long result;
    671  1.1  mycroft 	int i, icg = cg;
    672  1.1  mycroft 
    673  1.1  mycroft 	fs = ip->i_fs;
    674  1.1  mycroft 	/*
    675  1.1  mycroft 	 * 1: preferred cylinder group
    676  1.1  mycroft 	 */
    677  1.1  mycroft 	result = (*allocator)(ip, cg, pref, size);
    678  1.1  mycroft 	if (result)
    679  1.1  mycroft 		return (result);
    680  1.1  mycroft 	/*
    681  1.1  mycroft 	 * 2: quadratic rehash
    682  1.1  mycroft 	 */
    683  1.1  mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    684  1.1  mycroft 		cg += i;
    685  1.1  mycroft 		if (cg >= fs->fs_ncg)
    686  1.1  mycroft 			cg -= fs->fs_ncg;
    687  1.1  mycroft 		result = (*allocator)(ip, cg, 0, size);
    688  1.1  mycroft 		if (result)
    689  1.1  mycroft 			return (result);
    690  1.1  mycroft 	}
    691  1.1  mycroft 	/*
    692  1.1  mycroft 	 * 3: brute force search
    693  1.1  mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    694  1.1  mycroft 	 * and 1 is always checked in the quadratic rehash.
    695  1.1  mycroft 	 */
    696  1.1  mycroft 	cg = (icg + 2) % fs->fs_ncg;
    697  1.1  mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    698  1.1  mycroft 		result = (*allocator)(ip, cg, 0, size);
    699  1.1  mycroft 		if (result)
    700  1.1  mycroft 			return (result);
    701  1.1  mycroft 		cg++;
    702  1.1  mycroft 		if (cg == fs->fs_ncg)
    703  1.1  mycroft 			cg = 0;
    704  1.1  mycroft 	}
    705  1.1  mycroft 	return (NULL);
    706  1.1  mycroft }
    707  1.1  mycroft 
    708  1.1  mycroft /*
    709  1.1  mycroft  * Determine whether a fragment can be extended.
    710  1.1  mycroft  *
    711  1.1  mycroft  * Check to see if the necessary fragments are available, and
    712  1.1  mycroft  * if they are, allocate them.
    713  1.1  mycroft  */
    714  1.1  mycroft static daddr_t
    715  1.1  mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    716  1.1  mycroft 	struct inode *ip;
    717  1.1  mycroft 	int cg;
    718  1.1  mycroft 	long bprev;
    719  1.1  mycroft 	int osize, nsize;
    720  1.1  mycroft {
    721  1.1  mycroft 	register struct fs *fs;
    722  1.1  mycroft 	register struct cg *cgp;
    723  1.1  mycroft 	struct buf *bp;
    724  1.1  mycroft 	long bno;
    725  1.1  mycroft 	int frags, bbase;
    726  1.1  mycroft 	int i, error;
    727  1.1  mycroft 
    728  1.1  mycroft 	fs = ip->i_fs;
    729  1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    730  1.1  mycroft 		return (NULL);
    731  1.1  mycroft 	frags = numfrags(fs, nsize);
    732  1.1  mycroft 	bbase = fragnum(fs, bprev);
    733  1.1  mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    734  1.1  mycroft 		/* cannot extend across a block boundary */
    735  1.1  mycroft 		return (NULL);
    736  1.1  mycroft 	}
    737  1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    738  1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    739  1.1  mycroft 	if (error) {
    740  1.1  mycroft 		brelse(bp);
    741  1.1  mycroft 		return (NULL);
    742  1.1  mycroft 	}
    743  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
    744  1.1  mycroft 	if (!cg_chkmagic(cgp)) {
    745  1.1  mycroft 		brelse(bp);
    746  1.1  mycroft 		return (NULL);
    747  1.1  mycroft 	}
    748  1.1  mycroft 	cgp->cg_time = time.tv_sec;
    749  1.1  mycroft 	bno = dtogd(fs, bprev);
    750  1.1  mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    751  1.1  mycroft 		if (isclr(cg_blksfree(cgp), bno + i)) {
    752  1.1  mycroft 			brelse(bp);
    753  1.1  mycroft 			return (NULL);
    754  1.1  mycroft 		}
    755  1.1  mycroft 	/*
    756  1.1  mycroft 	 * the current fragment can be extended
    757  1.1  mycroft 	 * deduct the count on fragment being extended into
    758  1.1  mycroft 	 * increase the count on the remaining fragment (if any)
    759  1.1  mycroft 	 * allocate the extended piece
    760  1.1  mycroft 	 */
    761  1.1  mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    762  1.1  mycroft 		if (isclr(cg_blksfree(cgp), bno + i))
    763  1.1  mycroft 			break;
    764  1.1  mycroft 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    765  1.1  mycroft 	if (i != frags)
    766  1.1  mycroft 		cgp->cg_frsum[i - frags]++;
    767  1.1  mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    768  1.1  mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    769  1.1  mycroft 		cgp->cg_cs.cs_nffree--;
    770  1.1  mycroft 		fs->fs_cstotal.cs_nffree--;
    771  1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    772  1.1  mycroft 	}
    773  1.1  mycroft 	fs->fs_fmod = 1;
    774  1.1  mycroft 	bdwrite(bp);
    775  1.1  mycroft 	return (bprev);
    776  1.1  mycroft }
    777  1.1  mycroft 
    778  1.1  mycroft /*
    779  1.1  mycroft  * Determine whether a block can be allocated.
    780  1.1  mycroft  *
    781  1.1  mycroft  * Check to see if a block of the appropriate size is available,
    782  1.1  mycroft  * and if it is, allocate it.
    783  1.1  mycroft  */
    784  1.1  mycroft static daddr_t
    785  1.1  mycroft ffs_alloccg(ip, cg, bpref, size)
    786  1.1  mycroft 	struct inode *ip;
    787  1.1  mycroft 	int cg;
    788  1.1  mycroft 	daddr_t bpref;
    789  1.1  mycroft 	int size;
    790  1.1  mycroft {
    791  1.1  mycroft 	register struct fs *fs;
    792  1.1  mycroft 	register struct cg *cgp;
    793  1.1  mycroft 	struct buf *bp;
    794  1.1  mycroft 	register int i;
    795  1.1  mycroft 	int error, bno, frags, allocsiz;
    796  1.1  mycroft 
    797  1.1  mycroft 	fs = ip->i_fs;
    798  1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    799  1.1  mycroft 		return (NULL);
    800  1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    801  1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    802  1.1  mycroft 	if (error) {
    803  1.1  mycroft 		brelse(bp);
    804  1.1  mycroft 		return (NULL);
    805  1.1  mycroft 	}
    806  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
    807  1.1  mycroft 	if (!cg_chkmagic(cgp) ||
    808  1.1  mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    809  1.1  mycroft 		brelse(bp);
    810  1.1  mycroft 		return (NULL);
    811  1.1  mycroft 	}
    812  1.1  mycroft 	cgp->cg_time = time.tv_sec;
    813  1.1  mycroft 	if (size == fs->fs_bsize) {
    814  1.1  mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    815  1.1  mycroft 		bdwrite(bp);
    816  1.1  mycroft 		return (bno);
    817  1.1  mycroft 	}
    818  1.1  mycroft 	/*
    819  1.1  mycroft 	 * check to see if any fragments are already available
    820  1.1  mycroft 	 * allocsiz is the size which will be allocated, hacking
    821  1.1  mycroft 	 * it down to a smaller size if necessary
    822  1.1  mycroft 	 */
    823  1.1  mycroft 	frags = numfrags(fs, size);
    824  1.1  mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    825  1.1  mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    826  1.1  mycroft 			break;
    827  1.1  mycroft 	if (allocsiz == fs->fs_frag) {
    828  1.1  mycroft 		/*
    829  1.1  mycroft 		 * no fragments were available, so a block will be
    830  1.1  mycroft 		 * allocated, and hacked up
    831  1.1  mycroft 		 */
    832  1.1  mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    833  1.1  mycroft 			brelse(bp);
    834  1.1  mycroft 			return (NULL);
    835  1.1  mycroft 		}
    836  1.1  mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    837  1.1  mycroft 		bpref = dtogd(fs, bno);
    838  1.1  mycroft 		for (i = frags; i < fs->fs_frag; i++)
    839  1.1  mycroft 			setbit(cg_blksfree(cgp), bpref + i);
    840  1.1  mycroft 		i = fs->fs_frag - frags;
    841  1.1  mycroft 		cgp->cg_cs.cs_nffree += i;
    842  1.1  mycroft 		fs->fs_cstotal.cs_nffree += i;
    843  1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
    844  1.1  mycroft 		fs->fs_fmod = 1;
    845  1.1  mycroft 		cgp->cg_frsum[i]++;
    846  1.1  mycroft 		bdwrite(bp);
    847  1.1  mycroft 		return (bno);
    848  1.1  mycroft 	}
    849  1.1  mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    850  1.1  mycroft 	if (bno < 0) {
    851  1.1  mycroft 		brelse(bp);
    852  1.1  mycroft 		return (NULL);
    853  1.1  mycroft 	}
    854  1.1  mycroft 	for (i = 0; i < frags; i++)
    855  1.1  mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    856  1.1  mycroft 	cgp->cg_cs.cs_nffree -= frags;
    857  1.1  mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    858  1.1  mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    859  1.1  mycroft 	fs->fs_fmod = 1;
    860  1.1  mycroft 	cgp->cg_frsum[allocsiz]--;
    861  1.1  mycroft 	if (frags != allocsiz)
    862  1.1  mycroft 		cgp->cg_frsum[allocsiz - frags]++;
    863  1.1  mycroft 	bdwrite(bp);
    864  1.1  mycroft 	return (cg * fs->fs_fpg + bno);
    865  1.1  mycroft }
    866  1.1  mycroft 
    867  1.1  mycroft /*
    868  1.1  mycroft  * Allocate a block in a cylinder group.
    869  1.1  mycroft  *
    870  1.1  mycroft  * This algorithm implements the following policy:
    871  1.1  mycroft  *   1) allocate the requested block.
    872  1.1  mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    873  1.1  mycroft  *   3) allocate the next available block on the block rotor for the
    874  1.1  mycroft  *      specified cylinder group.
    875  1.1  mycroft  * Note that this routine only allocates fs_bsize blocks; these
    876  1.1  mycroft  * blocks may be fragmented by the routine that allocates them.
    877  1.1  mycroft  */
    878  1.1  mycroft static daddr_t
    879  1.1  mycroft ffs_alloccgblk(fs, cgp, bpref)
    880  1.1  mycroft 	register struct fs *fs;
    881  1.1  mycroft 	register struct cg *cgp;
    882  1.1  mycroft 	daddr_t bpref;
    883  1.1  mycroft {
    884  1.1  mycroft 	daddr_t bno, blkno;
    885  1.1  mycroft 	int cylno, pos, delta;
    886  1.1  mycroft 	short *cylbp;
    887  1.1  mycroft 	register int i;
    888  1.1  mycroft 
    889  1.1  mycroft 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    890  1.1  mycroft 		bpref = cgp->cg_rotor;
    891  1.1  mycroft 		goto norot;
    892  1.1  mycroft 	}
    893  1.1  mycroft 	bpref = blknum(fs, bpref);
    894  1.1  mycroft 	bpref = dtogd(fs, bpref);
    895  1.1  mycroft 	/*
    896  1.1  mycroft 	 * if the requested block is available, use it
    897  1.1  mycroft 	 */
    898  1.1  mycroft 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    899  1.1  mycroft 		bno = bpref;
    900  1.1  mycroft 		goto gotit;
    901  1.1  mycroft 	}
    902  1.1  mycroft 	/*
    903  1.1  mycroft 	 * check for a block available on the same cylinder
    904  1.1  mycroft 	 */
    905  1.1  mycroft 	cylno = cbtocylno(fs, bpref);
    906  1.1  mycroft 	if (cg_blktot(cgp)[cylno] == 0)
    907  1.1  mycroft 		goto norot;
    908  1.1  mycroft 	if (fs->fs_cpc == 0) {
    909  1.1  mycroft 		/*
    910  1.1  mycroft 		 * Block layout information is not available.
    911  1.1  mycroft 		 * Leaving bpref unchanged means we take the
    912  1.1  mycroft 		 * next available free block following the one
    913  1.1  mycroft 		 * we just allocated. Hopefully this will at
    914  1.1  mycroft 		 * least hit a track cache on drives of unknown
    915  1.1  mycroft 		 * geometry (e.g. SCSI).
    916  1.1  mycroft 		 */
    917  1.1  mycroft 		goto norot;
    918  1.1  mycroft 	}
    919  1.1  mycroft 	/*
    920  1.1  mycroft 	 * check the summary information to see if a block is
    921  1.1  mycroft 	 * available in the requested cylinder starting at the
    922  1.1  mycroft 	 * requested rotational position and proceeding around.
    923  1.1  mycroft 	 */
    924  1.1  mycroft 	cylbp = cg_blks(fs, cgp, cylno);
    925  1.1  mycroft 	pos = cbtorpos(fs, bpref);
    926  1.1  mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
    927  1.1  mycroft 		if (cylbp[i] > 0)
    928  1.1  mycroft 			break;
    929  1.1  mycroft 	if (i == fs->fs_nrpos)
    930  1.1  mycroft 		for (i = 0; i < pos; i++)
    931  1.1  mycroft 			if (cylbp[i] > 0)
    932  1.1  mycroft 				break;
    933  1.1  mycroft 	if (cylbp[i] > 0) {
    934  1.1  mycroft 		/*
    935  1.1  mycroft 		 * found a rotational position, now find the actual
    936  1.1  mycroft 		 * block. A panic if none is actually there.
    937  1.1  mycroft 		 */
    938  1.1  mycroft 		pos = cylno % fs->fs_cpc;
    939  1.1  mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    940  1.1  mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
    941  1.1  mycroft 			printf("pos = %d, i = %d, fs = %s\n",
    942  1.1  mycroft 			    pos, i, fs->fs_fsmnt);
    943  1.1  mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
    944  1.1  mycroft 		}
    945  1.1  mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
    946  1.1  mycroft 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    947  1.1  mycroft 				bno = blkstofrags(fs, (bno + i));
    948  1.1  mycroft 				goto gotit;
    949  1.1  mycroft 			}
    950  1.1  mycroft 			delta = fs_rotbl(fs)[i];
    951  1.1  mycroft 			if (delta <= 0 ||
    952  1.1  mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    953  1.1  mycroft 				break;
    954  1.1  mycroft 			i += delta;
    955  1.1  mycroft 		}
    956  1.1  mycroft 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    957  1.1  mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
    958  1.1  mycroft 	}
    959  1.1  mycroft norot:
    960  1.1  mycroft 	/*
    961  1.1  mycroft 	 * no blocks in the requested cylinder, so take next
    962  1.1  mycroft 	 * available one in this cylinder group.
    963  1.1  mycroft 	 */
    964  1.1  mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    965  1.1  mycroft 	if (bno < 0)
    966  1.1  mycroft 		return (NULL);
    967  1.1  mycroft 	cgp->cg_rotor = bno;
    968  1.1  mycroft gotit:
    969  1.1  mycroft 	blkno = fragstoblks(fs, bno);
    970  1.1  mycroft 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
    971  1.1  mycroft 	ffs_clusteracct(fs, cgp, blkno, -1);
    972  1.1  mycroft 	cgp->cg_cs.cs_nbfree--;
    973  1.1  mycroft 	fs->fs_cstotal.cs_nbfree--;
    974  1.1  mycroft 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
    975  1.1  mycroft 	cylno = cbtocylno(fs, bno);
    976  1.1  mycroft 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
    977  1.1  mycroft 	cg_blktot(cgp)[cylno]--;
    978  1.1  mycroft 	fs->fs_fmod = 1;
    979  1.1  mycroft 	return (cgp->cg_cgx * fs->fs_fpg + bno);
    980  1.1  mycroft }
    981  1.1  mycroft 
    982  1.1  mycroft /*
    983  1.1  mycroft  * Determine whether a cluster can be allocated.
    984  1.1  mycroft  *
    985  1.1  mycroft  * We do not currently check for optimal rotational layout if there
    986  1.1  mycroft  * are multiple choices in the same cylinder group. Instead we just
    987  1.1  mycroft  * take the first one that we find following bpref.
    988  1.1  mycroft  */
    989  1.1  mycroft static daddr_t
    990  1.1  mycroft ffs_clusteralloc(ip, cg, bpref, len)
    991  1.1  mycroft 	struct inode *ip;
    992  1.1  mycroft 	int cg;
    993  1.1  mycroft 	daddr_t bpref;
    994  1.1  mycroft 	int len;
    995  1.1  mycroft {
    996  1.1  mycroft 	register struct fs *fs;
    997  1.1  mycroft 	register struct cg *cgp;
    998  1.1  mycroft 	struct buf *bp;
    999  1.1  mycroft 	int i, run, bno, bit, map;
   1000  1.1  mycroft 	u_char *mapp;
   1001  1.1  mycroft 
   1002  1.1  mycroft 	fs = ip->i_fs;
   1003  1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree < len)
   1004  1.1  mycroft 		return (NULL);
   1005  1.1  mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1006  1.1  mycroft 	    NOCRED, &bp))
   1007  1.1  mycroft 		goto fail;
   1008  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1009  1.1  mycroft 	if (!cg_chkmagic(cgp))
   1010  1.1  mycroft 		goto fail;
   1011  1.1  mycroft 	/*
   1012  1.1  mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1013  1.1  mycroft 	 * available in this cylinder group.
   1014  1.1  mycroft 	 */
   1015  1.1  mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1016  1.1  mycroft 		if (cg_clustersum(cgp)[i] > 0)
   1017  1.1  mycroft 			break;
   1018  1.1  mycroft 	if (i > fs->fs_contigsumsize)
   1019  1.1  mycroft 		goto fail;
   1020  1.1  mycroft 	/*
   1021  1.1  mycroft 	 * Search the cluster map to find a big enough cluster.
   1022  1.1  mycroft 	 * We take the first one that we find, even if it is larger
   1023  1.1  mycroft 	 * than we need as we prefer to get one close to the previous
   1024  1.1  mycroft 	 * block allocation. We do not search before the current
   1025  1.1  mycroft 	 * preference point as we do not want to allocate a block
   1026  1.1  mycroft 	 * that is allocated before the previous one (as we will
   1027  1.1  mycroft 	 * then have to wait for another pass of the elevator
   1028  1.1  mycroft 	 * algorithm before it will be read). We prefer to fail and
   1029  1.1  mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1030  1.1  mycroft 	 */
   1031  1.1  mycroft 	if (dtog(fs, bpref) != cg)
   1032  1.1  mycroft 		bpref = 0;
   1033  1.1  mycroft 	else
   1034  1.1  mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1035  1.1  mycroft 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1036  1.1  mycroft 	map = *mapp++;
   1037  1.1  mycroft 	bit = 1 << (bpref % NBBY);
   1038  1.1  mycroft 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1039  1.1  mycroft 		if ((map & bit) == 0) {
   1040  1.1  mycroft 			run = 0;
   1041  1.1  mycroft 		} else {
   1042  1.1  mycroft 			run++;
   1043  1.1  mycroft 			if (run == len)
   1044  1.1  mycroft 				break;
   1045  1.1  mycroft 		}
   1046  1.1  mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1047  1.1  mycroft 			bit <<= 1;
   1048  1.1  mycroft 		} else {
   1049  1.1  mycroft 			map = *mapp++;
   1050  1.1  mycroft 			bit = 1;
   1051  1.1  mycroft 		}
   1052  1.1  mycroft 	}
   1053  1.1  mycroft 	if (i == cgp->cg_nclusterblks)
   1054  1.1  mycroft 		goto fail;
   1055  1.1  mycroft 	/*
   1056  1.1  mycroft 	 * Allocate the cluster that we have found.
   1057  1.1  mycroft 	 */
   1058  1.1  mycroft 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1059  1.1  mycroft 	len = blkstofrags(fs, len);
   1060  1.1  mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1061  1.1  mycroft 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1062  1.1  mycroft 			panic("ffs_clusteralloc: lost block");
   1063  1.1  mycroft 	brelse(bp);
   1064  1.1  mycroft 	return (bno);
   1065  1.1  mycroft 
   1066  1.1  mycroft fail:
   1067  1.1  mycroft 	brelse(bp);
   1068  1.1  mycroft 	return (0);
   1069  1.1  mycroft }
   1070  1.1  mycroft 
   1071  1.1  mycroft /*
   1072  1.1  mycroft  * Determine whether an inode can be allocated.
   1073  1.1  mycroft  *
   1074  1.1  mycroft  * Check to see if an inode is available, and if it is,
   1075  1.1  mycroft  * allocate it using the following policy:
   1076  1.1  mycroft  *   1) allocate the requested inode.
   1077  1.1  mycroft  *   2) allocate the next available inode after the requested
   1078  1.1  mycroft  *      inode in the specified cylinder group.
   1079  1.1  mycroft  */
   1080  1.1  mycroft static ino_t
   1081  1.1  mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1082  1.1  mycroft 	struct inode *ip;
   1083  1.1  mycroft 	int cg;
   1084  1.1  mycroft 	daddr_t ipref;
   1085  1.1  mycroft 	int mode;
   1086  1.1  mycroft {
   1087  1.1  mycroft 	register struct fs *fs;
   1088  1.1  mycroft 	register struct cg *cgp;
   1089  1.1  mycroft 	struct buf *bp;
   1090  1.1  mycroft 	int error, start, len, loc, map, i;
   1091  1.1  mycroft 
   1092  1.1  mycroft 	fs = ip->i_fs;
   1093  1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1094  1.1  mycroft 		return (NULL);
   1095  1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1096  1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1097  1.1  mycroft 	if (error) {
   1098  1.1  mycroft 		brelse(bp);
   1099  1.1  mycroft 		return (NULL);
   1100  1.1  mycroft 	}
   1101  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1102  1.1  mycroft 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1103  1.1  mycroft 		brelse(bp);
   1104  1.1  mycroft 		return (NULL);
   1105  1.1  mycroft 	}
   1106  1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1107  1.1  mycroft 	if (ipref) {
   1108  1.1  mycroft 		ipref %= fs->fs_ipg;
   1109  1.1  mycroft 		if (isclr(cg_inosused(cgp), ipref))
   1110  1.1  mycroft 			goto gotit;
   1111  1.1  mycroft 	}
   1112  1.1  mycroft 	start = cgp->cg_irotor / NBBY;
   1113  1.1  mycroft 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1114  1.1  mycroft 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1115  1.1  mycroft 	if (loc == 0) {
   1116  1.1  mycroft 		len = start + 1;
   1117  1.1  mycroft 		start = 0;
   1118  1.1  mycroft 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1119  1.1  mycroft 		if (loc == 0) {
   1120  1.1  mycroft 			printf("cg = %d, irotor = %d, fs = %s\n",
   1121  1.1  mycroft 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1122  1.1  mycroft 			panic("ffs_nodealloccg: map corrupted");
   1123  1.1  mycroft 			/* NOTREACHED */
   1124  1.1  mycroft 		}
   1125  1.1  mycroft 	}
   1126  1.1  mycroft 	i = start + len - loc;
   1127  1.1  mycroft 	map = cg_inosused(cgp)[i];
   1128  1.1  mycroft 	ipref = i * NBBY;
   1129  1.1  mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1130  1.1  mycroft 		if ((map & i) == 0) {
   1131  1.1  mycroft 			cgp->cg_irotor = ipref;
   1132  1.1  mycroft 			goto gotit;
   1133  1.1  mycroft 		}
   1134  1.1  mycroft 	}
   1135  1.1  mycroft 	printf("fs = %s\n", fs->fs_fsmnt);
   1136  1.1  mycroft 	panic("ffs_nodealloccg: block not in map");
   1137  1.1  mycroft 	/* NOTREACHED */
   1138  1.1  mycroft gotit:
   1139  1.1  mycroft 	setbit(cg_inosused(cgp), ipref);
   1140  1.1  mycroft 	cgp->cg_cs.cs_nifree--;
   1141  1.1  mycroft 	fs->fs_cstotal.cs_nifree--;
   1142  1.1  mycroft 	fs->fs_cs(fs, cg).cs_nifree--;
   1143  1.1  mycroft 	fs->fs_fmod = 1;
   1144  1.1  mycroft 	if ((mode & IFMT) == IFDIR) {
   1145  1.1  mycroft 		cgp->cg_cs.cs_ndir++;
   1146  1.1  mycroft 		fs->fs_cstotal.cs_ndir++;
   1147  1.1  mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1148  1.1  mycroft 	}
   1149  1.1  mycroft 	bdwrite(bp);
   1150  1.1  mycroft 	return (cg * fs->fs_ipg + ipref);
   1151  1.1  mycroft }
   1152  1.1  mycroft 
   1153  1.1  mycroft /*
   1154  1.1  mycroft  * Free a block or fragment.
   1155  1.1  mycroft  *
   1156  1.1  mycroft  * The specified block or fragment is placed back in the
   1157  1.1  mycroft  * free map. If a fragment is deallocated, a possible
   1158  1.1  mycroft  * block reassembly is checked.
   1159  1.1  mycroft  */
   1160  1.1  mycroft ffs_blkfree(ip, bno, size)
   1161  1.1  mycroft 	register struct inode *ip;
   1162  1.1  mycroft 	daddr_t bno;
   1163  1.1  mycroft 	long size;
   1164  1.1  mycroft {
   1165  1.1  mycroft 	register struct fs *fs;
   1166  1.1  mycroft 	register struct cg *cgp;
   1167  1.1  mycroft 	struct buf *bp;
   1168  1.1  mycroft 	daddr_t blkno;
   1169  1.1  mycroft 	int i, error, cg, blk, frags, bbase;
   1170  1.1  mycroft 
   1171  1.1  mycroft 	fs = ip->i_fs;
   1172  1.1  mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1173  1.1  mycroft 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
   1174  1.1  mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1175  1.1  mycroft 		panic("blkfree: bad size");
   1176  1.1  mycroft 	}
   1177  1.1  mycroft 	cg = dtog(fs, bno);
   1178  1.1  mycroft 	if ((u_int)bno >= fs->fs_size) {
   1179  1.1  mycroft 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1180  1.1  mycroft 		ffs_fserr(fs, ip->i_uid, "bad block");
   1181  1.1  mycroft 		return;
   1182  1.1  mycroft 	}
   1183  1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1184  1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1185  1.1  mycroft 	if (error) {
   1186  1.1  mycroft 		brelse(bp);
   1187  1.1  mycroft 		return;
   1188  1.1  mycroft 	}
   1189  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1190  1.1  mycroft 	if (!cg_chkmagic(cgp)) {
   1191  1.1  mycroft 		brelse(bp);
   1192  1.1  mycroft 		return;
   1193  1.1  mycroft 	}
   1194  1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1195  1.1  mycroft 	bno = dtogd(fs, bno);
   1196  1.1  mycroft 	if (size == fs->fs_bsize) {
   1197  1.1  mycroft 		blkno = fragstoblks(fs, bno);
   1198  1.1  mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1199  1.1  mycroft 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1200  1.1  mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1201  1.1  mycroft 			panic("blkfree: freeing free block");
   1202  1.1  mycroft 		}
   1203  1.1  mycroft 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1204  1.1  mycroft 		ffs_clusteracct(fs, cgp, blkno, 1);
   1205  1.1  mycroft 		cgp->cg_cs.cs_nbfree++;
   1206  1.1  mycroft 		fs->fs_cstotal.cs_nbfree++;
   1207  1.1  mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1208  1.1  mycroft 		i = cbtocylno(fs, bno);
   1209  1.1  mycroft 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1210  1.1  mycroft 		cg_blktot(cgp)[i]++;
   1211  1.1  mycroft 	} else {
   1212  1.1  mycroft 		bbase = bno - fragnum(fs, bno);
   1213  1.1  mycroft 		/*
   1214  1.1  mycroft 		 * decrement the counts associated with the old frags
   1215  1.1  mycroft 		 */
   1216  1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1217  1.1  mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1218  1.1  mycroft 		/*
   1219  1.1  mycroft 		 * deallocate the fragment
   1220  1.1  mycroft 		 */
   1221  1.1  mycroft 		frags = numfrags(fs, size);
   1222  1.1  mycroft 		for (i = 0; i < frags; i++) {
   1223  1.1  mycroft 			if (isset(cg_blksfree(cgp), bno + i)) {
   1224  1.1  mycroft 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1225  1.1  mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1226  1.1  mycroft 				panic("blkfree: freeing free frag");
   1227  1.1  mycroft 			}
   1228  1.1  mycroft 			setbit(cg_blksfree(cgp), bno + i);
   1229  1.1  mycroft 		}
   1230  1.1  mycroft 		cgp->cg_cs.cs_nffree += i;
   1231  1.1  mycroft 		fs->fs_cstotal.cs_nffree += i;
   1232  1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
   1233  1.1  mycroft 		/*
   1234  1.1  mycroft 		 * add back in counts associated with the new frags
   1235  1.1  mycroft 		 */
   1236  1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1237  1.1  mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1238  1.1  mycroft 		/*
   1239  1.1  mycroft 		 * if a complete block has been reassembled, account for it
   1240  1.1  mycroft 		 */
   1241  1.1  mycroft 		blkno = fragstoblks(fs, bbase);
   1242  1.1  mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1243  1.1  mycroft 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1244  1.1  mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1245  1.1  mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1246  1.1  mycroft 			ffs_clusteracct(fs, cgp, blkno, 1);
   1247  1.1  mycroft 			cgp->cg_cs.cs_nbfree++;
   1248  1.1  mycroft 			fs->fs_cstotal.cs_nbfree++;
   1249  1.1  mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1250  1.1  mycroft 			i = cbtocylno(fs, bbase);
   1251  1.1  mycroft 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1252  1.1  mycroft 			cg_blktot(cgp)[i]++;
   1253  1.1  mycroft 		}
   1254  1.1  mycroft 	}
   1255  1.1  mycroft 	fs->fs_fmod = 1;
   1256  1.1  mycroft 	bdwrite(bp);
   1257  1.1  mycroft }
   1258  1.1  mycroft 
   1259  1.1  mycroft /*
   1260  1.1  mycroft  * Free an inode.
   1261  1.1  mycroft  *
   1262  1.1  mycroft  * The specified inode is placed back in the free map.
   1263  1.1  mycroft  */
   1264  1.1  mycroft int
   1265  1.1  mycroft ffs_vfree(ap)
   1266  1.1  mycroft 	struct vop_vfree_args /* {
   1267  1.1  mycroft 		struct vnode *a_pvp;
   1268  1.1  mycroft 		ino_t a_ino;
   1269  1.1  mycroft 		int a_mode;
   1270  1.1  mycroft 	} */ *ap;
   1271  1.1  mycroft {
   1272  1.1  mycroft 	register struct fs *fs;
   1273  1.1  mycroft 	register struct cg *cgp;
   1274  1.1  mycroft 	register struct inode *pip;
   1275  1.1  mycroft 	ino_t ino = ap->a_ino;
   1276  1.1  mycroft 	struct buf *bp;
   1277  1.1  mycroft 	int error, cg;
   1278  1.1  mycroft 
   1279  1.1  mycroft 	pip = VTOI(ap->a_pvp);
   1280  1.1  mycroft 	fs = pip->i_fs;
   1281  1.1  mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1282  1.1  mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1283  1.1  mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1284  1.1  mycroft 	cg = ino_to_cg(fs, ino);
   1285  1.1  mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1286  1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1287  1.1  mycroft 	if (error) {
   1288  1.1  mycroft 		brelse(bp);
   1289  1.1  mycroft 		return (0);
   1290  1.1  mycroft 	}
   1291  1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1292  1.1  mycroft 	if (!cg_chkmagic(cgp)) {
   1293  1.1  mycroft 		brelse(bp);
   1294  1.1  mycroft 		return (0);
   1295  1.1  mycroft 	}
   1296  1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1297  1.1  mycroft 	ino %= fs->fs_ipg;
   1298  1.1  mycroft 	if (isclr(cg_inosused(cgp), ino)) {
   1299  1.1  mycroft 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1300  1.1  mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1301  1.1  mycroft 		if (fs->fs_ronly == 0)
   1302  1.1  mycroft 			panic("ifree: freeing free inode");
   1303  1.1  mycroft 	}
   1304  1.1  mycroft 	clrbit(cg_inosused(cgp), ino);
   1305  1.1  mycroft 	if (ino < cgp->cg_irotor)
   1306  1.1  mycroft 		cgp->cg_irotor = ino;
   1307  1.1  mycroft 	cgp->cg_cs.cs_nifree++;
   1308  1.1  mycroft 	fs->fs_cstotal.cs_nifree++;
   1309  1.1  mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1310  1.1  mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1311  1.1  mycroft 		cgp->cg_cs.cs_ndir--;
   1312  1.1  mycroft 		fs->fs_cstotal.cs_ndir--;
   1313  1.1  mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1314  1.1  mycroft 	}
   1315  1.1  mycroft 	fs->fs_fmod = 1;
   1316  1.1  mycroft 	bdwrite(bp);
   1317  1.1  mycroft 	return (0);
   1318  1.1  mycroft }
   1319  1.1  mycroft 
   1320  1.1  mycroft /*
   1321  1.1  mycroft  * Find a block of the specified size in the specified cylinder group.
   1322  1.1  mycroft  *
   1323  1.1  mycroft  * It is a panic if a request is made to find a block if none are
   1324  1.1  mycroft  * available.
   1325  1.1  mycroft  */
   1326  1.1  mycroft static daddr_t
   1327  1.1  mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1328  1.1  mycroft 	register struct fs *fs;
   1329  1.1  mycroft 	register struct cg *cgp;
   1330  1.1  mycroft 	daddr_t bpref;
   1331  1.1  mycroft 	int allocsiz;
   1332  1.1  mycroft {
   1333  1.1  mycroft 	daddr_t bno;
   1334  1.1  mycroft 	int start, len, loc, i;
   1335  1.1  mycroft 	int blk, field, subfield, pos;
   1336  1.1  mycroft 
   1337  1.1  mycroft 	/*
   1338  1.1  mycroft 	 * find the fragment by searching through the free block
   1339  1.1  mycroft 	 * map for an appropriate bit pattern
   1340  1.1  mycroft 	 */
   1341  1.1  mycroft 	if (bpref)
   1342  1.1  mycroft 		start = dtogd(fs, bpref) / NBBY;
   1343  1.1  mycroft 	else
   1344  1.1  mycroft 		start = cgp->cg_frotor / NBBY;
   1345  1.1  mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1346  1.1  mycroft 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1347  1.1  mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1348  1.1  mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1349  1.1  mycroft 	if (loc == 0) {
   1350  1.1  mycroft 		len = start + 1;
   1351  1.1  mycroft 		start = 0;
   1352  1.1  mycroft 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1353  1.1  mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1354  1.1  mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1355  1.1  mycroft 		if (loc == 0) {
   1356  1.1  mycroft 			printf("start = %d, len = %d, fs = %s\n",
   1357  1.1  mycroft 			    start, len, fs->fs_fsmnt);
   1358  1.1  mycroft 			panic("ffs_alloccg: map corrupted");
   1359  1.1  mycroft 			/* NOTREACHED */
   1360  1.1  mycroft 		}
   1361  1.1  mycroft 	}
   1362  1.1  mycroft 	bno = (start + len - loc) * NBBY;
   1363  1.1  mycroft 	cgp->cg_frotor = bno;
   1364  1.1  mycroft 	/*
   1365  1.1  mycroft 	 * found the byte in the map
   1366  1.1  mycroft 	 * sift through the bits to find the selected frag
   1367  1.1  mycroft 	 */
   1368  1.1  mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1369  1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1370  1.1  mycroft 		blk <<= 1;
   1371  1.1  mycroft 		field = around[allocsiz];
   1372  1.1  mycroft 		subfield = inside[allocsiz];
   1373  1.1  mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1374  1.1  mycroft 			if ((blk & field) == subfield)
   1375  1.1  mycroft 				return (bno + pos);
   1376  1.1  mycroft 			field <<= 1;
   1377  1.1  mycroft 			subfield <<= 1;
   1378  1.1  mycroft 		}
   1379  1.1  mycroft 	}
   1380  1.1  mycroft 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1381  1.1  mycroft 	panic("ffs_alloccg: block not in map");
   1382  1.1  mycroft 	return (-1);
   1383  1.1  mycroft }
   1384  1.1  mycroft 
   1385  1.1  mycroft /*
   1386  1.1  mycroft  * Update the cluster map because of an allocation or free.
   1387  1.1  mycroft  *
   1388  1.1  mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1389  1.1  mycroft  */
   1390  1.1  mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
   1391  1.1  mycroft 	struct fs *fs;
   1392  1.1  mycroft 	struct cg *cgp;
   1393  1.1  mycroft 	daddr_t blkno;
   1394  1.1  mycroft 	int cnt;
   1395  1.1  mycroft {
   1396  1.4      cgd 	int32_t *sump;
   1397  1.1  mycroft 	u_char *freemapp, *mapp;
   1398  1.1  mycroft 	int i, start, end, forw, back, map, bit;
   1399  1.1  mycroft 
   1400  1.1  mycroft 	if (fs->fs_contigsumsize <= 0)
   1401  1.1  mycroft 		return;
   1402  1.1  mycroft 	freemapp = cg_clustersfree(cgp);
   1403  1.1  mycroft 	sump = cg_clustersum(cgp);
   1404  1.1  mycroft 	/*
   1405  1.1  mycroft 	 * Allocate or clear the actual block.
   1406  1.1  mycroft 	 */
   1407  1.1  mycroft 	if (cnt > 0)
   1408  1.1  mycroft 		setbit(freemapp, blkno);
   1409  1.1  mycroft 	else
   1410  1.1  mycroft 		clrbit(freemapp, blkno);
   1411  1.1  mycroft 	/*
   1412  1.1  mycroft 	 * Find the size of the cluster going forward.
   1413  1.1  mycroft 	 */
   1414  1.1  mycroft 	start = blkno + 1;
   1415  1.1  mycroft 	end = start + fs->fs_contigsumsize;
   1416  1.1  mycroft 	if (end >= cgp->cg_nclusterblks)
   1417  1.1  mycroft 		end = cgp->cg_nclusterblks;
   1418  1.1  mycroft 	mapp = &freemapp[start / NBBY];
   1419  1.1  mycroft 	map = *mapp++;
   1420  1.1  mycroft 	bit = 1 << (start % NBBY);
   1421  1.1  mycroft 	for (i = start; i < end; i++) {
   1422  1.1  mycroft 		if ((map & bit) == 0)
   1423  1.1  mycroft 			break;
   1424  1.1  mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1425  1.1  mycroft 			bit <<= 1;
   1426  1.1  mycroft 		} else {
   1427  1.1  mycroft 			map = *mapp++;
   1428  1.1  mycroft 			bit = 1;
   1429  1.1  mycroft 		}
   1430  1.1  mycroft 	}
   1431  1.1  mycroft 	forw = i - start;
   1432  1.1  mycroft 	/*
   1433  1.1  mycroft 	 * Find the size of the cluster going backward.
   1434  1.1  mycroft 	 */
   1435  1.1  mycroft 	start = blkno - 1;
   1436  1.1  mycroft 	end = start - fs->fs_contigsumsize;
   1437  1.1  mycroft 	if (end < 0)
   1438  1.1  mycroft 		end = -1;
   1439  1.1  mycroft 	mapp = &freemapp[start / NBBY];
   1440  1.1  mycroft 	map = *mapp--;
   1441  1.1  mycroft 	bit = 1 << (start % NBBY);
   1442  1.1  mycroft 	for (i = start; i > end; i--) {
   1443  1.1  mycroft 		if ((map & bit) == 0)
   1444  1.1  mycroft 			break;
   1445  1.1  mycroft 		if ((i & (NBBY - 1)) != 0) {
   1446  1.1  mycroft 			bit >>= 1;
   1447  1.1  mycroft 		} else {
   1448  1.1  mycroft 			map = *mapp--;
   1449  1.1  mycroft 			bit = 1 << (NBBY - 1);
   1450  1.1  mycroft 		}
   1451  1.1  mycroft 	}
   1452  1.1  mycroft 	back = start - i;
   1453  1.1  mycroft 	/*
   1454  1.1  mycroft 	 * Account for old cluster and the possibly new forward and
   1455  1.1  mycroft 	 * back clusters.
   1456  1.1  mycroft 	 */
   1457  1.1  mycroft 	i = back + forw + 1;
   1458  1.1  mycroft 	if (i > fs->fs_contigsumsize)
   1459  1.1  mycroft 		i = fs->fs_contigsumsize;
   1460  1.1  mycroft 	sump[i] += cnt;
   1461  1.1  mycroft 	if (back > 0)
   1462  1.1  mycroft 		sump[back] -= cnt;
   1463  1.1  mycroft 	if (forw > 0)
   1464  1.1  mycroft 		sump[forw] -= cnt;
   1465  1.1  mycroft }
   1466  1.1  mycroft 
   1467  1.1  mycroft /*
   1468  1.1  mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1469  1.1  mycroft  *
   1470  1.1  mycroft  * The form of the error message is:
   1471  1.1  mycroft  *	fs: error message
   1472  1.1  mycroft  */
   1473  1.1  mycroft static void
   1474  1.1  mycroft ffs_fserr(fs, uid, cp)
   1475  1.1  mycroft 	struct fs *fs;
   1476  1.1  mycroft 	u_int uid;
   1477  1.1  mycroft 	char *cp;
   1478  1.1  mycroft {
   1479  1.1  mycroft 
   1480  1.1  mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1481  1.1  mycroft }
   1482