Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.41.2.12
      1  1.41.2.12   thorpej /*	$NetBSD: ffs_alloc.c,v 1.41.2.12 2002/12/29 20:57:18 thorpej Exp $	*/
      2        1.2       cgd 
      3        1.1   mycroft /*
      4        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6        1.1   mycroft  *
      7        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8        1.1   mycroft  * modification, are permitted provided that the following conditions
      9        1.1   mycroft  * are met:
     10        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15        1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16        1.1   mycroft  *    must display the following acknowledgement:
     17        1.1   mycroft  *	This product includes software developed by the University of
     18        1.1   mycroft  *	California, Berkeley and its contributors.
     19        1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21        1.1   mycroft  *    without specific prior written permission.
     22        1.1   mycroft  *
     23        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33        1.1   mycroft  * SUCH DAMAGE.
     34        1.1   mycroft  *
     35       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36        1.1   mycroft  */
     37   1.41.2.6   nathanw 
     38   1.41.2.6   nathanw #include <sys/cdefs.h>
     39  1.41.2.12   thorpej __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.41.2.12 2002/12/29 20:57:18 thorpej Exp $");
     40       1.17       mrg 
     41   1.41.2.3   nathanw #if defined(_KERNEL_OPT)
     42       1.27   thorpej #include "opt_ffs.h"
     43       1.21    scottr #include "opt_quota.h"
     44       1.22    scottr #endif
     45        1.1   mycroft 
     46        1.1   mycroft #include <sys/param.h>
     47        1.1   mycroft #include <sys/systm.h>
     48        1.1   mycroft #include <sys/buf.h>
     49        1.1   mycroft #include <sys/proc.h>
     50        1.1   mycroft #include <sys/vnode.h>
     51        1.1   mycroft #include <sys/mount.h>
     52        1.1   mycroft #include <sys/kernel.h>
     53        1.1   mycroft #include <sys/syslog.h>
     54       1.29       mrg 
     55        1.1   mycroft #include <ufs/ufs/quota.h>
     56       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     57        1.1   mycroft #include <ufs/ufs/inode.h>
     58        1.9  christos #include <ufs/ufs/ufs_extern.h>
     59       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     60        1.1   mycroft 
     61        1.1   mycroft #include <ufs/ffs/fs.h>
     62        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     63        1.1   mycroft 
     64       1.30      fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     65   1.41.2.5   nathanw static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
     66   1.41.2.8   nathanw #ifdef XXXUBC
     67       1.30      fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     68   1.41.2.8   nathanw #endif
     69   1.41.2.5   nathanw static ino_t ffs_dirpref __P((struct inode *));
     70       1.30      fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71       1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     72   1.41.2.5   nathanw static u_long ffs_hashalloc __P((struct inode *, int, long, int,
     73   1.41.2.5   nathanw     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     74       1.30      fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     75       1.30      fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     76       1.30      fvdl 				      ufs_daddr_t, int));
     77       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     78   1.41.2.8   nathanw #ifdef XXXUBC
     79       1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80       1.18      fvdl #endif
     81   1.41.2.8   nathanw #endif
     82       1.23  drochner 
     83       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     84       1.34  jdolecek int ffs_log_changeopt = 0;
     85       1.34  jdolecek 
     86       1.23  drochner /* in ffs_tables.c */
     87       1.40  jdolecek extern const int inside[], around[];
     88       1.40  jdolecek extern const u_char * const fragtbl[];
     89        1.1   mycroft 
     90        1.1   mycroft /*
     91        1.1   mycroft  * Allocate a block in the file system.
     92        1.1   mycroft  *
     93        1.1   mycroft  * The size of the requested block is given, which must be some
     94        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     95        1.1   mycroft  * A preference may be optionally specified. If a preference is given
     96        1.1   mycroft  * the following hierarchy is used to allocate a block:
     97        1.1   mycroft  *   1) allocate the requested block.
     98        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     99        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    100        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    101        1.1   mycroft  *      available block is located.
    102   1.41.2.5   nathanw  * If no block preference is given the following hierarchy is used
    103        1.1   mycroft  * to allocate a block:
    104        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    105        1.1   mycroft  *      inode for the file.
    106        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    107        1.1   mycroft  *      available block is located.
    108        1.1   mycroft  */
    109        1.9  christos int
    110        1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    111       1.33  augustss 	struct inode *ip;
    112       1.18      fvdl 	ufs_daddr_t lbn, bpref;
    113        1.1   mycroft 	int size;
    114        1.1   mycroft 	struct ucred *cred;
    115       1.18      fvdl 	ufs_daddr_t *bnp;
    116        1.1   mycroft {
    117       1.37       chs 	struct fs *fs = ip->i_fs;
    118       1.18      fvdl 	ufs_daddr_t bno;
    119        1.9  christos 	int cg;
    120        1.9  christos #ifdef QUOTA
    121        1.9  christos 	int error;
    122        1.9  christos #endif
    123        1.1   mycroft 
    124       1.37       chs #ifdef UVM_PAGE_TRKOWN
    125   1.41.2.5   nathanw 	if (ITOV(ip)->v_type == VREG &&
    126   1.41.2.5   nathanw 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    127       1.37       chs 		struct vm_page *pg;
    128   1.41.2.5   nathanw 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    129   1.41.2.5   nathanw 		voff_t off = trunc_page(lblktosize(fs, lbn));
    130   1.41.2.5   nathanw 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    131       1.37       chs 
    132       1.37       chs 		simple_lock(&uobj->vmobjlock);
    133       1.37       chs 		while (off < endoff) {
    134       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    135       1.37       chs 			KASSERT(pg != NULL);
    136  1.41.2.10   nathanw 			KASSERT(pg->owner == curproc->p_pid);
    137       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    138       1.37       chs 			off += PAGE_SIZE;
    139       1.37       chs 		}
    140       1.37       chs 		simple_unlock(&uobj->vmobjlock);
    141       1.37       chs 	}
    142       1.37       chs #endif
    143       1.37       chs 
    144        1.1   mycroft 	*bnp = 0;
    145        1.1   mycroft #ifdef DIAGNOSTIC
    146        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    147       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    148        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    149        1.1   mycroft 		panic("ffs_alloc: bad size");
    150        1.1   mycroft 	}
    151        1.1   mycroft 	if (cred == NOCRED)
    152  1.41.2.11   nathanw 		panic("ffs_alloc: missing credential");
    153        1.1   mycroft #endif /* DIAGNOSTIC */
    154        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    155        1.1   mycroft 		goto nospace;
    156        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    157        1.1   mycroft 		goto nospace;
    158        1.1   mycroft #ifdef QUOTA
    159        1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    160        1.1   mycroft 		return (error);
    161        1.1   mycroft #endif
    162        1.1   mycroft 	if (bpref >= fs->fs_size)
    163        1.1   mycroft 		bpref = 0;
    164        1.1   mycroft 	if (bpref == 0)
    165        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    166        1.1   mycroft 	else
    167        1.1   mycroft 		cg = dtog(fs, bpref);
    168       1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    169        1.9  christos 	    			     ffs_alloccg);
    170        1.1   mycroft 	if (bno > 0) {
    171       1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    172        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    173        1.1   mycroft 		*bnp = bno;
    174        1.1   mycroft 		return (0);
    175        1.1   mycroft 	}
    176        1.1   mycroft #ifdef QUOTA
    177        1.1   mycroft 	/*
    178        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    179        1.1   mycroft 	 */
    180        1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    181        1.1   mycroft #endif
    182        1.1   mycroft nospace:
    183        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    184        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    185        1.1   mycroft 	return (ENOSPC);
    186        1.1   mycroft }
    187        1.1   mycroft 
    188        1.1   mycroft /*
    189        1.1   mycroft  * Reallocate a fragment to a bigger size
    190        1.1   mycroft  *
    191        1.1   mycroft  * The number and size of the old block is given, and a preference
    192        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    193        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    194        1.1   mycroft  * invoked to get an appropriate block.
    195        1.1   mycroft  */
    196        1.9  christos int
    197       1.37       chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    198       1.33  augustss 	struct inode *ip;
    199       1.18      fvdl 	ufs_daddr_t lbprev;
    200       1.18      fvdl 	ufs_daddr_t bpref;
    201        1.1   mycroft 	int osize, nsize;
    202        1.1   mycroft 	struct ucred *cred;
    203        1.1   mycroft 	struct buf **bpp;
    204       1.37       chs 	ufs_daddr_t *blknop;
    205        1.1   mycroft {
    206       1.37       chs 	struct fs *fs = ip->i_fs;
    207        1.1   mycroft 	struct buf *bp;
    208        1.1   mycroft 	int cg, request, error;
    209       1.18      fvdl 	ufs_daddr_t bprev, bno;
    210       1.25   thorpej 
    211       1.37       chs #ifdef UVM_PAGE_TRKOWN
    212       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    213       1.37       chs 		struct vm_page *pg;
    214   1.41.2.5   nathanw 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    215       1.37       chs 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    216       1.37       chs 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    217       1.37       chs 
    218       1.37       chs 		simple_lock(&uobj->vmobjlock);
    219       1.37       chs 		while (off < endoff) {
    220       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    221       1.37       chs 			KASSERT(pg != NULL);
    222  1.41.2.10   nathanw 			KASSERT(pg->owner == curproc->p_pid);
    223       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    224       1.37       chs 			off += PAGE_SIZE;
    225       1.37       chs 		}
    226       1.37       chs 		simple_unlock(&uobj->vmobjlock);
    227       1.37       chs 	}
    228       1.37       chs #endif
    229       1.37       chs 
    230        1.1   mycroft #ifdef DIAGNOSTIC
    231        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    232        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    233       1.13  christos 		printf(
    234        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    235        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    236        1.1   mycroft 		panic("ffs_realloccg: bad size");
    237        1.1   mycroft 	}
    238        1.1   mycroft 	if (cred == NOCRED)
    239  1.41.2.11   nathanw 		panic("ffs_realloccg: missing credential");
    240        1.1   mycroft #endif /* DIAGNOSTIC */
    241        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    242        1.1   mycroft 		goto nospace;
    243       1.30      fvdl 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    244       1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    245        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    246        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    247        1.1   mycroft 	}
    248        1.1   mycroft 	/*
    249        1.1   mycroft 	 * Allocate the extra space in the buffer.
    250        1.1   mycroft 	 */
    251       1.37       chs 	if (bpp != NULL &&
    252       1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    253        1.1   mycroft 		brelse(bp);
    254        1.1   mycroft 		return (error);
    255        1.1   mycroft 	}
    256        1.1   mycroft #ifdef QUOTA
    257        1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    258   1.41.2.3   nathanw 		if (bpp != NULL) {
    259   1.41.2.3   nathanw 			brelse(bp);
    260   1.41.2.3   nathanw 		}
    261        1.1   mycroft 		return (error);
    262        1.1   mycroft 	}
    263        1.1   mycroft #endif
    264        1.1   mycroft 	/*
    265        1.1   mycroft 	 * Check for extension in the existing location.
    266        1.1   mycroft 	 */
    267        1.1   mycroft 	cg = dtog(fs, bprev);
    268        1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    269       1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    270        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271       1.37       chs 
    272       1.37       chs 		if (bpp != NULL) {
    273       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    274       1.37       chs 				panic("bad blockno");
    275       1.37       chs 			allocbuf(bp, nsize);
    276       1.37       chs 			bp->b_flags |= B_DONE;
    277       1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    278       1.37       chs 			*bpp = bp;
    279       1.37       chs 		}
    280       1.37       chs 		if (blknop != NULL) {
    281       1.37       chs 			*blknop = bno;
    282       1.37       chs 		}
    283        1.1   mycroft 		return (0);
    284        1.1   mycroft 	}
    285        1.1   mycroft 	/*
    286        1.1   mycroft 	 * Allocate a new disk location.
    287        1.1   mycroft 	 */
    288        1.1   mycroft 	if (bpref >= fs->fs_size)
    289        1.1   mycroft 		bpref = 0;
    290        1.1   mycroft 	switch ((int)fs->fs_optim) {
    291        1.1   mycroft 	case FS_OPTSPACE:
    292        1.1   mycroft 		/*
    293        1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    294        1.1   mycroft 		 * best use of space, we will waste time relocating it if
    295        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    296        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    297        1.1   mycroft 		 * to begin optimizing for time.
    298        1.1   mycroft 		 */
    299        1.1   mycroft 		request = nsize;
    300        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    301        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    302        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    303        1.1   mycroft 			break;
    304       1.34  jdolecek 
    305       1.34  jdolecek 		if (ffs_log_changeopt) {
    306       1.34  jdolecek 			log(LOG_NOTICE,
    307       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    308       1.34  jdolecek 				fs->fs_fsmnt);
    309       1.34  jdolecek 		}
    310       1.34  jdolecek 
    311        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    312        1.1   mycroft 		break;
    313        1.1   mycroft 	case FS_OPTTIME:
    314        1.1   mycroft 		/*
    315        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    316        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    317        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    318        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    319        1.1   mycroft 		 * above will be able to grow it in place without further
    320        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    321        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    322        1.1   mycroft 		 * optimizing for space.
    323        1.1   mycroft 		 */
    324        1.1   mycroft 		request = fs->fs_bsize;
    325        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    326        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    327        1.1   mycroft 			break;
    328       1.34  jdolecek 
    329       1.34  jdolecek 		if (ffs_log_changeopt) {
    330       1.34  jdolecek 			log(LOG_NOTICE,
    331       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    332       1.34  jdolecek 				fs->fs_fsmnt);
    333       1.34  jdolecek 		}
    334       1.34  jdolecek 
    335        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    336        1.1   mycroft 		break;
    337        1.1   mycroft 	default:
    338       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    339        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    340        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    341        1.1   mycroft 		/* NOTREACHED */
    342        1.1   mycroft 	}
    343       1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    344        1.9  christos 	    			     ffs_alloccg);
    345        1.1   mycroft 	if (bno > 0) {
    346       1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    347       1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    348        1.1   mycroft 		if (nsize < request)
    349        1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    350        1.1   mycroft 			    (long)(request - nsize));
    351       1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    352        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    353       1.37       chs 		if (bpp != NULL) {
    354       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    355       1.37       chs 			allocbuf(bp, nsize);
    356       1.37       chs 			bp->b_flags |= B_DONE;
    357       1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    358       1.37       chs 			*bpp = bp;
    359       1.37       chs 		}
    360       1.37       chs 		if (blknop != NULL) {
    361       1.37       chs 			*blknop = bno;
    362       1.37       chs 		}
    363        1.1   mycroft 		return (0);
    364        1.1   mycroft 	}
    365        1.1   mycroft #ifdef QUOTA
    366        1.1   mycroft 	/*
    367        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    368        1.1   mycroft 	 */
    369        1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    370        1.1   mycroft #endif
    371       1.37       chs 	if (bpp != NULL) {
    372       1.37       chs 		brelse(bp);
    373       1.37       chs 	}
    374       1.37       chs 
    375        1.1   mycroft nospace:
    376        1.1   mycroft 	/*
    377        1.1   mycroft 	 * no space available
    378        1.1   mycroft 	 */
    379        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    380        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    381        1.1   mycroft 	return (ENOSPC);
    382        1.1   mycroft }
    383        1.1   mycroft 
    384        1.1   mycroft /*
    385        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    386        1.1   mycroft  *
    387        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    388        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    389        1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    390        1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    391   1.41.2.4   nathanw  * block immediately preceding the current range. If successful, the
    392        1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    393        1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    394        1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    395        1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    396        1.1   mycroft  * the previous block allocation will be used.
    397        1.1   mycroft  */
    398   1.41.2.8   nathanw #ifdef XXXUBC
    399        1.3   mycroft #ifdef DEBUG
    400        1.1   mycroft #include <sys/sysctl.h>
    401        1.5   mycroft int prtrealloc = 0;
    402        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    403        1.1   mycroft #endif
    404   1.41.2.8   nathanw #endif
    405        1.1   mycroft 
    406       1.18      fvdl int doasyncfree = 1;
    407       1.18      fvdl 
    408        1.1   mycroft int
    409        1.9  christos ffs_reallocblks(v)
    410        1.9  christos 	void *v;
    411        1.9  christos {
    412   1.41.2.8   nathanw #ifdef XXXUBC
    413        1.1   mycroft 	struct vop_reallocblks_args /* {
    414        1.1   mycroft 		struct vnode *a_vp;
    415        1.1   mycroft 		struct cluster_save *a_buflist;
    416        1.9  christos 	} */ *ap = v;
    417        1.1   mycroft 	struct fs *fs;
    418        1.1   mycroft 	struct inode *ip;
    419        1.1   mycroft 	struct vnode *vp;
    420        1.1   mycroft 	struct buf *sbp, *ebp;
    421       1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    422        1.1   mycroft 	struct cluster_save *buflist;
    423       1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    424        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    425        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    426   1.41.2.8   nathanw #endif /* XXXUBC */
    427        1.1   mycroft 
    428       1.37       chs 	/* XXXUBC don't reallocblks for now */
    429       1.37       chs 	return ENOSPC;
    430       1.37       chs 
    431   1.41.2.8   nathanw #ifdef XXXUBC
    432        1.1   mycroft 	vp = ap->a_vp;
    433        1.1   mycroft 	ip = VTOI(vp);
    434        1.1   mycroft 	fs = ip->i_fs;
    435        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    436        1.1   mycroft 		return (ENOSPC);
    437        1.1   mycroft 	buflist = ap->a_buflist;
    438        1.1   mycroft 	len = buflist->bs_nchildren;
    439        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    440        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    441        1.1   mycroft #ifdef DIAGNOSTIC
    442       1.18      fvdl 	for (i = 0; i < len; i++)
    443       1.18      fvdl 		if (!ffs_checkblk(ip,
    444       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    445       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    446        1.1   mycroft 	for (i = 1; i < len; i++)
    447        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    448       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    449       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    450       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    451       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    452       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    453       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    454        1.1   mycroft #endif
    455        1.1   mycroft 	/*
    456        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    457        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    458        1.1   mycroft 	 * the previous cylinder group.
    459        1.1   mycroft 	 */
    460        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    461        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    462        1.1   mycroft 		return (ENOSPC);
    463        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    464        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    465        1.1   mycroft 		return (ENOSPC);
    466        1.1   mycroft 	/*
    467        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    468        1.1   mycroft 	 */
    469        1.1   mycroft 	if (start_lvl == 0) {
    470       1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    471        1.1   mycroft 		soff = start_lbn;
    472        1.1   mycroft 	} else {
    473        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    474        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    475        1.1   mycroft 			brelse(sbp);
    476        1.1   mycroft 			return (ENOSPC);
    477        1.1   mycroft 		}
    478       1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    479        1.1   mycroft 		soff = idp->in_off;
    480        1.1   mycroft 	}
    481        1.1   mycroft 	/*
    482        1.1   mycroft 	 * Find the preferred location for the cluster.
    483        1.1   mycroft 	 */
    484        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    485        1.1   mycroft 	/*
    486        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    487        1.1   mycroft 	 */
    488        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    489        1.1   mycroft 		ssize = len;
    490        1.1   mycroft 	} else {
    491        1.1   mycroft #ifdef DIAGNOSTIC
    492        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    493        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    494        1.1   mycroft #endif
    495        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    496        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    497        1.1   mycroft 			goto fail;
    498       1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    499        1.1   mycroft 	}
    500        1.1   mycroft 	/*
    501        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    502        1.1   mycroft 	 */
    503       1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    504        1.9  christos 	    len, ffs_clusteralloc)) == 0)
    505        1.1   mycroft 		goto fail;
    506        1.1   mycroft 	/*
    507        1.1   mycroft 	 * We have found a new contiguous block.
    508        1.1   mycroft 	 *
    509        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    510        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    511        1.1   mycroft 	 * with the file.
    512        1.1   mycroft 	 */
    513        1.5   mycroft #ifdef DEBUG
    514        1.5   mycroft 	if (prtrealloc)
    515       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    516        1.5   mycroft 		    start_lbn, end_lbn);
    517        1.5   mycroft #endif
    518        1.1   mycroft 	blkno = newblk;
    519        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    520       1.30      fvdl 		ufs_daddr_t ba;
    521       1.30      fvdl 
    522       1.30      fvdl 		if (i == ssize) {
    523        1.1   mycroft 			bap = ebap;
    524       1.30      fvdl 			soff = -i;
    525       1.30      fvdl 		}
    526       1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    527        1.1   mycroft #ifdef DIAGNOSTIC
    528       1.18      fvdl 		if (!ffs_checkblk(ip,
    529       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    530       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    531       1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    532        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    533        1.1   mycroft #endif
    534        1.5   mycroft #ifdef DEBUG
    535        1.5   mycroft 		if (prtrealloc)
    536       1.30      fvdl 			printf(" %d,", ba);
    537        1.5   mycroft #endif
    538       1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    539       1.30      fvdl  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    540       1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    541       1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    542       1.30      fvdl  				    buflist->bs_children[i]);
    543       1.30      fvdl  			else
    544       1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    545       1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    546       1.30      fvdl  				    ba, buflist->bs_children[i]);
    547       1.30      fvdl  		}
    548       1.30      fvdl 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    549        1.1   mycroft 	}
    550        1.1   mycroft 	/*
    551        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    552        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    553        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    554        1.1   mycroft 	 * they are almost never written, but if we are concerned about
    555        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    556        1.1   mycroft 	 *
    557        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    558        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    559        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    560        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    561        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    562        1.1   mycroft 	 * synchronous write only when it has been cleared.
    563        1.1   mycroft 	 */
    564       1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    565        1.1   mycroft 		if (doasyncfree)
    566        1.1   mycroft 			bdwrite(sbp);
    567        1.1   mycroft 		else
    568        1.1   mycroft 			bwrite(sbp);
    569        1.1   mycroft 	} else {
    570        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    571       1.28   mycroft 		if (!doasyncfree)
    572       1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    573        1.1   mycroft 	}
    574       1.25   thorpej 	if (ssize < len) {
    575        1.1   mycroft 		if (doasyncfree)
    576        1.1   mycroft 			bdwrite(ebp);
    577        1.1   mycroft 		else
    578        1.1   mycroft 			bwrite(ebp);
    579       1.25   thorpej 	}
    580        1.1   mycroft 	/*
    581        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    582        1.1   mycroft 	 */
    583        1.5   mycroft #ifdef DEBUG
    584        1.5   mycroft 	if (prtrealloc)
    585       1.13  christos 		printf("\n\tnew:");
    586        1.5   mycroft #endif
    587        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    588       1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    589       1.30      fvdl 			ffs_blkfree(ip,
    590       1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    591       1.30      fvdl 			    fs->fs_bsize);
    592        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    593        1.5   mycroft #ifdef DEBUG
    594       1.18      fvdl 		if (!ffs_checkblk(ip,
    595       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    596       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    597        1.5   mycroft 		if (prtrealloc)
    598       1.13  christos 			printf(" %d,", blkno);
    599        1.5   mycroft #endif
    600        1.5   mycroft 	}
    601        1.5   mycroft #ifdef DEBUG
    602        1.5   mycroft 	if (prtrealloc) {
    603        1.5   mycroft 		prtrealloc--;
    604       1.13  christos 		printf("\n");
    605        1.1   mycroft 	}
    606        1.5   mycroft #endif
    607        1.1   mycroft 	return (0);
    608        1.1   mycroft 
    609        1.1   mycroft fail:
    610        1.1   mycroft 	if (ssize < len)
    611        1.1   mycroft 		brelse(ebp);
    612       1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    613        1.1   mycroft 		brelse(sbp);
    614        1.1   mycroft 	return (ENOSPC);
    615   1.41.2.8   nathanw #endif /* XXXUBC */
    616        1.1   mycroft }
    617        1.1   mycroft 
    618        1.1   mycroft /*
    619        1.1   mycroft  * Allocate an inode in the file system.
    620        1.1   mycroft  *
    621        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    622        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    623        1.1   mycroft  *   1) allocate the preferred inode.
    624        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    625        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    626        1.1   mycroft  *      available inode is located.
    627   1.41.2.5   nathanw  * If no inode preference is given the following hierarchy is used
    628        1.1   mycroft  * to allocate an inode:
    629        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    630        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    631        1.1   mycroft  *      available inode is located.
    632        1.1   mycroft  */
    633        1.9  christos int
    634        1.9  christos ffs_valloc(v)
    635        1.9  christos 	void *v;
    636        1.9  christos {
    637        1.1   mycroft 	struct vop_valloc_args /* {
    638        1.1   mycroft 		struct vnode *a_pvp;
    639        1.1   mycroft 		int a_mode;
    640        1.1   mycroft 		struct ucred *a_cred;
    641        1.1   mycroft 		struct vnode **a_vpp;
    642        1.9  christos 	} */ *ap = v;
    643       1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    644       1.33  augustss 	struct inode *pip;
    645       1.33  augustss 	struct fs *fs;
    646       1.33  augustss 	struct inode *ip;
    647        1.1   mycroft 	mode_t mode = ap->a_mode;
    648        1.1   mycroft 	ino_t ino, ipref;
    649        1.1   mycroft 	int cg, error;
    650        1.1   mycroft 
    651        1.1   mycroft 	*ap->a_vpp = NULL;
    652        1.1   mycroft 	pip = VTOI(pvp);
    653        1.1   mycroft 	fs = pip->i_fs;
    654        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    655        1.1   mycroft 		goto noinodes;
    656        1.1   mycroft 
    657        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    658   1.41.2.5   nathanw 		ipref = ffs_dirpref(pip);
    659   1.41.2.5   nathanw 	else
    660   1.41.2.5   nathanw 		ipref = pip->i_number;
    661        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    662        1.1   mycroft 		ipref = 0;
    663        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    664   1.41.2.5   nathanw 	/*
    665   1.41.2.5   nathanw 	 * Track number of dirs created one after another
    666   1.41.2.5   nathanw 	 * in a same cg without intervening by files.
    667   1.41.2.5   nathanw 	 */
    668   1.41.2.5   nathanw 	if ((mode & IFMT) == IFDIR) {
    669   1.41.2.5   nathanw 		if (fs->fs_contigdirs[cg] < 65535)
    670   1.41.2.5   nathanw 			fs->fs_contigdirs[cg]++;
    671   1.41.2.5   nathanw 	} else {
    672   1.41.2.5   nathanw 		if (fs->fs_contigdirs[cg] > 0)
    673   1.41.2.5   nathanw 			fs->fs_contigdirs[cg]--;
    674   1.41.2.5   nathanw 	}
    675        1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    676        1.1   mycroft 	if (ino == 0)
    677        1.1   mycroft 		goto noinodes;
    678        1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    679        1.1   mycroft 	if (error) {
    680        1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    681        1.1   mycroft 		return (error);
    682        1.1   mycroft 	}
    683        1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    684       1.15    bouyer 	if (ip->i_ffs_mode) {
    685       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    686       1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    687        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    688        1.1   mycroft 	}
    689       1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    690       1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    691       1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    692       1.15    bouyer 		ip->i_ffs_blocks = 0;
    693        1.1   mycroft 	}
    694  1.41.2.12   thorpej 	ip->i_flag &= ~IN_SPACECOUNTED;
    695       1.15    bouyer 	ip->i_ffs_flags = 0;
    696        1.1   mycroft 	/*
    697        1.1   mycroft 	 * Set up a new generation number for this inode.
    698        1.1   mycroft 	 */
    699       1.15    bouyer 	ip->i_ffs_gen++;
    700        1.1   mycroft 	return (0);
    701        1.1   mycroft noinodes:
    702        1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    703        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    704        1.1   mycroft 	return (ENOSPC);
    705        1.1   mycroft }
    706        1.1   mycroft 
    707        1.1   mycroft /*
    708   1.41.2.5   nathanw  * Find a cylinder group in which to place a directory.
    709   1.41.2.2   nathanw  *
    710   1.41.2.5   nathanw  * The policy implemented by this algorithm is to allocate a
    711   1.41.2.5   nathanw  * directory inode in the same cylinder group as its parent
    712   1.41.2.5   nathanw  * directory, but also to reserve space for its files inodes
    713   1.41.2.5   nathanw  * and data. Restrict the number of directories which may be
    714   1.41.2.5   nathanw  * allocated one after another in the same cylinder group
    715   1.41.2.5   nathanw  * without intervening allocation of files.
    716   1.41.2.2   nathanw  *
    717   1.41.2.5   nathanw  * If we allocate a first level directory then force allocation
    718   1.41.2.5   nathanw  * in another cylinder group.
    719        1.1   mycroft  */
    720        1.1   mycroft static ino_t
    721   1.41.2.5   nathanw ffs_dirpref(pip)
    722   1.41.2.5   nathanw 	struct inode *pip;
    723        1.1   mycroft {
    724   1.41.2.5   nathanw 	register struct fs *fs;
    725   1.41.2.5   nathanw 	int cg, prefcg, dirsize, cgsize;
    726   1.41.2.5   nathanw 	int avgifree, avgbfree, avgndir, curdirsize;
    727   1.41.2.5   nathanw 	int minifree, minbfree, maxndir;
    728   1.41.2.5   nathanw 	int mincg, minndir;
    729   1.41.2.5   nathanw 	int maxcontigdirs;
    730   1.41.2.5   nathanw 
    731   1.41.2.5   nathanw 	fs = pip->i_fs;
    732        1.1   mycroft 
    733        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    734   1.41.2.5   nathanw 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    735   1.41.2.5   nathanw 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    736   1.41.2.5   nathanw 
    737   1.41.2.5   nathanw 	/*
    738   1.41.2.5   nathanw 	 * Force allocation in another cg if creating a first level dir.
    739   1.41.2.5   nathanw 	 */
    740   1.41.2.5   nathanw 	if (ITOV(pip)->v_flag & VROOT) {
    741   1.41.2.5   nathanw 		prefcg = random() % fs->fs_ncg;
    742   1.41.2.5   nathanw 		mincg = prefcg;
    743   1.41.2.5   nathanw 		minndir = fs->fs_ipg;
    744   1.41.2.5   nathanw 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    745   1.41.2.5   nathanw 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    746   1.41.2.5   nathanw 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    747   1.41.2.5   nathanw 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    748   1.41.2.2   nathanw 				mincg = cg;
    749   1.41.2.5   nathanw 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    750   1.41.2.2   nathanw 			}
    751   1.41.2.5   nathanw 		for (cg = 0; cg < prefcg; cg++)
    752   1.41.2.5   nathanw 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    753   1.41.2.5   nathanw 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    754   1.41.2.5   nathanw 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    755   1.41.2.5   nathanw 				mincg = cg;
    756   1.41.2.5   nathanw 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    757   1.41.2.2   nathanw 			}
    758   1.41.2.5   nathanw 		return ((ino_t)(fs->fs_ipg * mincg));
    759   1.41.2.2   nathanw 	}
    760   1.41.2.5   nathanw 
    761   1.41.2.5   nathanw 	/*
    762   1.41.2.5   nathanw 	 * Count various limits which used for
    763   1.41.2.5   nathanw 	 * optimal allocation of a directory inode.
    764   1.41.2.5   nathanw 	 */
    765   1.41.2.5   nathanw 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    766   1.41.2.5   nathanw 	minifree = avgifree - fs->fs_ipg / 4;
    767   1.41.2.5   nathanw 	if (minifree < 0)
    768   1.41.2.5   nathanw 		minifree = 0;
    769   1.41.2.7   nathanw 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    770   1.41.2.5   nathanw 	if (minbfree < 0)
    771   1.41.2.5   nathanw 		minbfree = 0;
    772   1.41.2.5   nathanw 	cgsize = fs->fs_fsize * fs->fs_fpg;
    773   1.41.2.5   nathanw 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    774   1.41.2.5   nathanw 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    775   1.41.2.5   nathanw 	if (dirsize < curdirsize)
    776   1.41.2.5   nathanw 		dirsize = curdirsize;
    777   1.41.2.5   nathanw 	maxcontigdirs = min(cgsize / dirsize, 255);
    778   1.41.2.5   nathanw 	if (fs->fs_avgfpdir > 0)
    779   1.41.2.5   nathanw 		maxcontigdirs = min(maxcontigdirs,
    780   1.41.2.5   nathanw 				    fs->fs_ipg / fs->fs_avgfpdir);
    781   1.41.2.5   nathanw 	if (maxcontigdirs == 0)
    782   1.41.2.5   nathanw 		maxcontigdirs = 1;
    783   1.41.2.5   nathanw 
    784   1.41.2.5   nathanw 	/*
    785   1.41.2.5   nathanw 	 * Limit number of dirs in one cg and reserve space for
    786   1.41.2.5   nathanw 	 * regular files, but only if we have no deficit in
    787   1.41.2.5   nathanw 	 * inodes or space.
    788   1.41.2.5   nathanw 	 */
    789   1.41.2.5   nathanw 	prefcg = ino_to_cg(fs, pip->i_number);
    790   1.41.2.5   nathanw 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    791   1.41.2.5   nathanw 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    792   1.41.2.5   nathanw 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    793   1.41.2.5   nathanw 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    794   1.41.2.5   nathanw 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    795   1.41.2.5   nathanw 				return ((ino_t)(fs->fs_ipg * cg));
    796   1.41.2.5   nathanw 		}
    797   1.41.2.5   nathanw 	for (cg = 0; cg < prefcg; cg++)
    798   1.41.2.5   nathanw 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    799   1.41.2.5   nathanw 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    800   1.41.2.5   nathanw 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    801   1.41.2.5   nathanw 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    802   1.41.2.5   nathanw 				return ((ino_t)(fs->fs_ipg * cg));
    803   1.41.2.5   nathanw 		}
    804   1.41.2.5   nathanw 	/*
    805   1.41.2.5   nathanw 	 * This is a backstop when we are deficient in space.
    806   1.41.2.5   nathanw 	 */
    807   1.41.2.5   nathanw 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    808   1.41.2.5   nathanw 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    809   1.41.2.5   nathanw 			return ((ino_t)(fs->fs_ipg * cg));
    810   1.41.2.5   nathanw 	for (cg = 0; cg < prefcg; cg++)
    811   1.41.2.5   nathanw 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    812   1.41.2.5   nathanw 			break;
    813   1.41.2.5   nathanw 	return ((ino_t)(fs->fs_ipg * cg));
    814        1.1   mycroft }
    815        1.1   mycroft 
    816        1.1   mycroft /*
    817        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    818        1.1   mycroft  * logically divided into sections. The first section is composed of the
    819        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    820        1.1   mycroft  *
    821        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    822        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    823        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    824        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    825        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    826        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    827        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    828        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    829        1.1   mycroft  * continues until a cylinder group with greater than the average number
    830        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    831        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    832        1.1   mycroft  * here a best guess is made based upon the logical block number being
    833        1.1   mycroft  * allocated.
    834        1.1   mycroft  *
    835        1.1   mycroft  * If a section is already partially allocated, the policy is to
    836        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    837        1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    838        1.1   mycroft  * so that the disk head will be in transit between them for at least
    839        1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    840        1.1   mycroft  * schedule another I/O transfer.
    841        1.1   mycroft  */
    842       1.18      fvdl ufs_daddr_t
    843        1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    844        1.1   mycroft 	struct inode *ip;
    845       1.18      fvdl 	ufs_daddr_t lbn;
    846        1.1   mycroft 	int indx;
    847       1.18      fvdl 	ufs_daddr_t *bap;
    848        1.1   mycroft {
    849       1.33  augustss 	struct fs *fs;
    850       1.33  augustss 	int cg;
    851        1.1   mycroft 	int avgbfree, startcg;
    852       1.18      fvdl 	ufs_daddr_t nextblk;
    853        1.1   mycroft 
    854        1.1   mycroft 	fs = ip->i_fs;
    855        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    856       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    857        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    858        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    859        1.1   mycroft 		}
    860        1.1   mycroft 		/*
    861        1.1   mycroft 		 * Find a cylinder with greater than average number of
    862        1.1   mycroft 		 * unused data blocks.
    863        1.1   mycroft 		 */
    864        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    865        1.1   mycroft 			startcg =
    866        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    867        1.1   mycroft 		else
    868       1.19    bouyer 			startcg = dtog(fs,
    869       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    870        1.1   mycroft 		startcg %= fs->fs_ncg;
    871        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    872        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    873        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    874        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    875        1.1   mycroft 			}
    876   1.41.2.5   nathanw 		for (cg = 0; cg < startcg; cg++)
    877        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    878        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    879        1.1   mycroft 			}
    880       1.35   thorpej 		return (0);
    881        1.1   mycroft 	}
    882        1.1   mycroft 	/*
    883        1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    884        1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    885        1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    886        1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    887        1.1   mycroft 	 */
    888       1.30      fvdl 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    889       1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    890       1.30      fvdl 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    891        1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    892        1.1   mycroft 		return (nextblk);
    893        1.1   mycroft 	if (fs->fs_rotdelay != 0)
    894        1.1   mycroft 		/*
    895        1.1   mycroft 		 * Here we convert ms of delay to frags as:
    896        1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    897        1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    898        1.1   mycroft 		 * then round up to the next block.
    899        1.1   mycroft 		 */
    900        1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    901        1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    902        1.1   mycroft 	return (nextblk);
    903        1.1   mycroft }
    904        1.1   mycroft 
    905        1.1   mycroft /*
    906        1.1   mycroft  * Implement the cylinder overflow algorithm.
    907        1.1   mycroft  *
    908        1.1   mycroft  * The policy implemented by this algorithm is:
    909        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    910        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    911        1.1   mycroft  *   3) brute force search for a free block.
    912        1.1   mycroft  */
    913        1.1   mycroft /*VARARGS5*/
    914        1.1   mycroft static u_long
    915        1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    916        1.1   mycroft 	struct inode *ip;
    917        1.1   mycroft 	int cg;
    918        1.1   mycroft 	long pref;
    919        1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    920       1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    921        1.1   mycroft {
    922       1.33  augustss 	struct fs *fs;
    923        1.1   mycroft 	long result;
    924        1.1   mycroft 	int i, icg = cg;
    925        1.1   mycroft 
    926        1.1   mycroft 	fs = ip->i_fs;
    927        1.1   mycroft 	/*
    928        1.1   mycroft 	 * 1: preferred cylinder group
    929        1.1   mycroft 	 */
    930        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    931        1.1   mycroft 	if (result)
    932        1.1   mycroft 		return (result);
    933        1.1   mycroft 	/*
    934        1.1   mycroft 	 * 2: quadratic rehash
    935        1.1   mycroft 	 */
    936        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    937        1.1   mycroft 		cg += i;
    938        1.1   mycroft 		if (cg >= fs->fs_ncg)
    939        1.1   mycroft 			cg -= fs->fs_ncg;
    940        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    941        1.1   mycroft 		if (result)
    942        1.1   mycroft 			return (result);
    943        1.1   mycroft 	}
    944        1.1   mycroft 	/*
    945        1.1   mycroft 	 * 3: brute force search
    946        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    947        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    948        1.1   mycroft 	 */
    949        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    950        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    951        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    952        1.1   mycroft 		if (result)
    953        1.1   mycroft 			return (result);
    954        1.1   mycroft 		cg++;
    955        1.1   mycroft 		if (cg == fs->fs_ncg)
    956        1.1   mycroft 			cg = 0;
    957        1.1   mycroft 	}
    958       1.35   thorpej 	return (0);
    959        1.1   mycroft }
    960        1.1   mycroft 
    961        1.1   mycroft /*
    962        1.1   mycroft  * Determine whether a fragment can be extended.
    963        1.1   mycroft  *
    964        1.1   mycroft  * Check to see if the necessary fragments are available, and
    965        1.1   mycroft  * if they are, allocate them.
    966        1.1   mycroft  */
    967       1.18      fvdl static ufs_daddr_t
    968        1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    969        1.1   mycroft 	struct inode *ip;
    970        1.1   mycroft 	int cg;
    971        1.1   mycroft 	long bprev;
    972        1.1   mycroft 	int osize, nsize;
    973        1.1   mycroft {
    974       1.33  augustss 	struct fs *fs;
    975       1.33  augustss 	struct cg *cgp;
    976        1.1   mycroft 	struct buf *bp;
    977        1.1   mycroft 	long bno;
    978        1.1   mycroft 	int frags, bbase;
    979        1.1   mycroft 	int i, error;
    980        1.1   mycroft 
    981        1.1   mycroft 	fs = ip->i_fs;
    982        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    983       1.35   thorpej 		return (0);
    984        1.1   mycroft 	frags = numfrags(fs, nsize);
    985        1.1   mycroft 	bbase = fragnum(fs, bprev);
    986        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    987        1.1   mycroft 		/* cannot extend across a block boundary */
    988       1.35   thorpej 		return (0);
    989        1.1   mycroft 	}
    990        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    991        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    992        1.1   mycroft 	if (error) {
    993        1.1   mycroft 		brelse(bp);
    994       1.35   thorpej 		return (0);
    995        1.1   mycroft 	}
    996        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    997       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    998        1.1   mycroft 		brelse(bp);
    999       1.35   thorpej 		return (0);
   1000        1.1   mycroft 	}
   1001       1.30      fvdl 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1002        1.1   mycroft 	bno = dtogd(fs, bprev);
   1003        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1004       1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
   1005        1.1   mycroft 			brelse(bp);
   1006       1.35   thorpej 			return (0);
   1007        1.1   mycroft 		}
   1008        1.1   mycroft 	/*
   1009        1.1   mycroft 	 * the current fragment can be extended
   1010        1.1   mycroft 	 * deduct the count on fragment being extended into
   1011        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1012        1.1   mycroft 	 * allocate the extended piece
   1013        1.1   mycroft 	 */
   1014        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1015       1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1016        1.1   mycroft 			break;
   1017       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1018        1.1   mycroft 	if (i != frags)
   1019       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1020        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1021       1.30      fvdl 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
   1022       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1023        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1024        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1025        1.1   mycroft 	}
   1026        1.1   mycroft 	fs->fs_fmod = 1;
   1027       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1028       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1029        1.1   mycroft 	bdwrite(bp);
   1030        1.1   mycroft 	return (bprev);
   1031        1.1   mycroft }
   1032        1.1   mycroft 
   1033        1.1   mycroft /*
   1034        1.1   mycroft  * Determine whether a block can be allocated.
   1035        1.1   mycroft  *
   1036        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1037        1.1   mycroft  * and if it is, allocate it.
   1038        1.1   mycroft  */
   1039       1.18      fvdl static ufs_daddr_t
   1040        1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
   1041        1.1   mycroft 	struct inode *ip;
   1042        1.1   mycroft 	int cg;
   1043       1.18      fvdl 	ufs_daddr_t bpref;
   1044        1.1   mycroft 	int size;
   1045        1.1   mycroft {
   1046       1.30      fvdl 	struct cg *cgp;
   1047        1.1   mycroft 	struct buf *bp;
   1048       1.30      fvdl 	ufs_daddr_t bno, blkno;
   1049       1.30      fvdl 	int error, frags, allocsiz, i;
   1050       1.30      fvdl 	struct fs *fs = ip->i_fs;
   1051       1.30      fvdl #ifdef FFS_EI
   1052       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1053       1.30      fvdl #endif
   1054        1.1   mycroft 
   1055        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1056       1.35   thorpej 		return (0);
   1057        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1058        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1059        1.1   mycroft 	if (error) {
   1060        1.1   mycroft 		brelse(bp);
   1061       1.35   thorpej 		return (0);
   1062        1.1   mycroft 	}
   1063        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1064       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1065        1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1066        1.1   mycroft 		brelse(bp);
   1067       1.35   thorpej 		return (0);
   1068        1.1   mycroft 	}
   1069       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1070        1.1   mycroft 	if (size == fs->fs_bsize) {
   1071       1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1072        1.1   mycroft 		bdwrite(bp);
   1073        1.1   mycroft 		return (bno);
   1074        1.1   mycroft 	}
   1075        1.1   mycroft 	/*
   1076        1.1   mycroft 	 * check to see if any fragments are already available
   1077        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1078        1.1   mycroft 	 * it down to a smaller size if necessary
   1079        1.1   mycroft 	 */
   1080        1.1   mycroft 	frags = numfrags(fs, size);
   1081        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1082        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1083        1.1   mycroft 			break;
   1084        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1085        1.1   mycroft 		/*
   1086        1.1   mycroft 		 * no fragments were available, so a block will be
   1087        1.1   mycroft 		 * allocated, and hacked up
   1088        1.1   mycroft 		 */
   1089        1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1090        1.1   mycroft 			brelse(bp);
   1091       1.35   thorpej 			return (0);
   1092        1.1   mycroft 		}
   1093       1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1094        1.1   mycroft 		bpref = dtogd(fs, bno);
   1095        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1096       1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1097        1.1   mycroft 		i = fs->fs_frag - frags;
   1098       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1099        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1100       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1101        1.1   mycroft 		fs->fs_fmod = 1;
   1102       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1103        1.1   mycroft 		bdwrite(bp);
   1104        1.1   mycroft 		return (bno);
   1105        1.1   mycroft 	}
   1106       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1107       1.30      fvdl #if 0
   1108       1.30      fvdl 	/*
   1109       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1110       1.30      fvdl 	 *          also: returning NULL as ufs_daddr_t ?
   1111       1.30      fvdl 	 */
   1112        1.1   mycroft 	if (bno < 0) {
   1113        1.1   mycroft 		brelse(bp);
   1114       1.35   thorpej 		return (0);
   1115        1.1   mycroft 	}
   1116       1.30      fvdl #endif
   1117        1.1   mycroft 	for (i = 0; i < frags; i++)
   1118       1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1119       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1120        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1121        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1122        1.1   mycroft 	fs->fs_fmod = 1;
   1123       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1124        1.1   mycroft 	if (frags != allocsiz)
   1125       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1126       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1127       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1128       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1129        1.1   mycroft 	bdwrite(bp);
   1130       1.30      fvdl 	return blkno;
   1131        1.1   mycroft }
   1132        1.1   mycroft 
   1133        1.1   mycroft /*
   1134        1.1   mycroft  * Allocate a block in a cylinder group.
   1135        1.1   mycroft  *
   1136        1.1   mycroft  * This algorithm implements the following policy:
   1137        1.1   mycroft  *   1) allocate the requested block.
   1138        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1139        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1140        1.1   mycroft  *      specified cylinder group.
   1141        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1142        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1143        1.1   mycroft  */
   1144       1.18      fvdl static ufs_daddr_t
   1145       1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1146       1.30      fvdl 	struct inode *ip;
   1147       1.30      fvdl 	struct buf *bp;
   1148       1.18      fvdl 	ufs_daddr_t bpref;
   1149        1.1   mycroft {
   1150       1.30      fvdl 	struct cg *cgp;
   1151       1.18      fvdl 	ufs_daddr_t bno, blkno;
   1152        1.1   mycroft 	int cylno, pos, delta;
   1153        1.1   mycroft 	short *cylbp;
   1154       1.33  augustss 	int i;
   1155       1.30      fvdl 	struct fs *fs = ip->i_fs;
   1156       1.30      fvdl #ifdef FFS_EI
   1157       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1158       1.30      fvdl #endif
   1159        1.1   mycroft 
   1160       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1161       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1162       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1163        1.1   mycroft 		goto norot;
   1164        1.1   mycroft 	}
   1165        1.1   mycroft 	bpref = blknum(fs, bpref);
   1166        1.1   mycroft 	bpref = dtogd(fs, bpref);
   1167        1.1   mycroft 	/*
   1168        1.1   mycroft 	 * if the requested block is available, use it
   1169        1.1   mycroft 	 */
   1170       1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1171       1.19    bouyer 		fragstoblks(fs, bpref))) {
   1172        1.1   mycroft 		bno = bpref;
   1173        1.1   mycroft 		goto gotit;
   1174        1.1   mycroft 	}
   1175       1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1176        1.1   mycroft 		/*
   1177        1.1   mycroft 		 * Block layout information is not available.
   1178        1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1179        1.1   mycroft 		 * next available free block following the one
   1180        1.1   mycroft 		 * we just allocated. Hopefully this will at
   1181        1.1   mycroft 		 * least hit a track cache on drives of unknown
   1182        1.1   mycroft 		 * geometry (e.g. SCSI).
   1183        1.1   mycroft 		 */
   1184        1.1   mycroft 		goto norot;
   1185        1.1   mycroft 	}
   1186        1.6   mycroft 	/*
   1187        1.6   mycroft 	 * check for a block available on the same cylinder
   1188        1.6   mycroft 	 */
   1189        1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1190       1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1191        1.6   mycroft 		goto norot;
   1192        1.1   mycroft 	/*
   1193        1.1   mycroft 	 * check the summary information to see if a block is
   1194        1.1   mycroft 	 * available in the requested cylinder starting at the
   1195        1.1   mycroft 	 * requested rotational position and proceeding around.
   1196        1.1   mycroft 	 */
   1197       1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1198        1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1199        1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1200       1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1201        1.1   mycroft 			break;
   1202        1.1   mycroft 	if (i == fs->fs_nrpos)
   1203        1.1   mycroft 		for (i = 0; i < pos; i++)
   1204       1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1205        1.1   mycroft 				break;
   1206       1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1207        1.1   mycroft 		/*
   1208        1.1   mycroft 		 * found a rotational position, now find the actual
   1209        1.1   mycroft 		 * block. A panic if none is actually there.
   1210        1.1   mycroft 		 */
   1211        1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1212        1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1213        1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1214       1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1215        1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1216        1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1217        1.1   mycroft 		}
   1218        1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1219       1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1220        1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1221        1.1   mycroft 				goto gotit;
   1222        1.1   mycroft 			}
   1223        1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1224        1.1   mycroft 			if (delta <= 0 ||
   1225        1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1226        1.1   mycroft 				break;
   1227        1.1   mycroft 			i += delta;
   1228        1.1   mycroft 		}
   1229       1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1230        1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1231        1.1   mycroft 	}
   1232        1.1   mycroft norot:
   1233        1.1   mycroft 	/*
   1234        1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1235        1.1   mycroft 	 * available one in this cylinder group.
   1236        1.1   mycroft 	 */
   1237       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1238        1.1   mycroft 	if (bno < 0)
   1239       1.35   thorpej 		return (0);
   1240       1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1241        1.1   mycroft gotit:
   1242        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1243       1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1244       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1245       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1246        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1247       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1248        1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1249       1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1250       1.30      fvdl 	    needswap);
   1251       1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1252        1.1   mycroft 	fs->fs_fmod = 1;
   1253       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1254       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1255       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1256       1.30      fvdl 	return (blkno);
   1257        1.1   mycroft }
   1258        1.1   mycroft 
   1259   1.41.2.8   nathanw #ifdef XXXUBC
   1260        1.1   mycroft /*
   1261        1.1   mycroft  * Determine whether a cluster can be allocated.
   1262        1.1   mycroft  *
   1263        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1264        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1265        1.1   mycroft  * take the first one that we find following bpref.
   1266        1.1   mycroft  */
   1267       1.18      fvdl static ufs_daddr_t
   1268        1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1269        1.1   mycroft 	struct inode *ip;
   1270        1.1   mycroft 	int cg;
   1271       1.18      fvdl 	ufs_daddr_t bpref;
   1272        1.1   mycroft 	int len;
   1273        1.1   mycroft {
   1274       1.33  augustss 	struct fs *fs;
   1275       1.33  augustss 	struct cg *cgp;
   1276        1.1   mycroft 	struct buf *bp;
   1277       1.18      fvdl 	int i, got, run, bno, bit, map;
   1278        1.1   mycroft 	u_char *mapp;
   1279        1.5   mycroft 	int32_t *lp;
   1280        1.1   mycroft 
   1281        1.1   mycroft 	fs = ip->i_fs;
   1282        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1283       1.35   thorpej 		return (0);
   1284        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1285        1.1   mycroft 	    NOCRED, &bp))
   1286        1.1   mycroft 		goto fail;
   1287        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1288       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1289        1.1   mycroft 		goto fail;
   1290        1.1   mycroft 	/*
   1291        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1292        1.1   mycroft 	 * available in this cylinder group.
   1293        1.1   mycroft 	 */
   1294       1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1295        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1296       1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1297        1.1   mycroft 			break;
   1298        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1299        1.5   mycroft 		/*
   1300        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1301        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1302        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1303        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1304        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1305        1.5   mycroft 		 */
   1306       1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1307        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1308       1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1309        1.5   mycroft 				break;
   1310        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1311        1.1   mycroft 		goto fail;
   1312        1.5   mycroft 	}
   1313        1.1   mycroft 	/*
   1314        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1315        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1316        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1317        1.1   mycroft 	 * block allocation. We do not search before the current
   1318        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1319        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1320        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1321        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1322        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1323        1.1   mycroft 	 */
   1324        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1325        1.1   mycroft 		bpref = 0;
   1326        1.1   mycroft 	else
   1327        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1328       1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1329        1.1   mycroft 	map = *mapp++;
   1330        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1331       1.19    bouyer 	for (run = 0, got = bpref;
   1332       1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1333        1.1   mycroft 		if ((map & bit) == 0) {
   1334        1.1   mycroft 			run = 0;
   1335        1.1   mycroft 		} else {
   1336        1.1   mycroft 			run++;
   1337        1.1   mycroft 			if (run == len)
   1338        1.1   mycroft 				break;
   1339        1.1   mycroft 		}
   1340       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1341        1.1   mycroft 			bit <<= 1;
   1342        1.1   mycroft 		} else {
   1343        1.1   mycroft 			map = *mapp++;
   1344        1.1   mycroft 			bit = 1;
   1345        1.1   mycroft 		}
   1346        1.1   mycroft 	}
   1347       1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1348        1.1   mycroft 		goto fail;
   1349        1.1   mycroft 	/*
   1350        1.1   mycroft 	 * Allocate the cluster that we have found.
   1351        1.1   mycroft 	 */
   1352       1.30      fvdl #ifdef DIAGNOSTIC
   1353       1.18      fvdl 	for (i = 1; i <= len; i++)
   1354       1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1355       1.30      fvdl 		    got - run + i))
   1356       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1357       1.30      fvdl #endif
   1358       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1359       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1360       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1361        1.1   mycroft 	len = blkstofrags(fs, len);
   1362        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1363       1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1364        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1365        1.8       cgd 	bdwrite(bp);
   1366        1.1   mycroft 	return (bno);
   1367        1.1   mycroft 
   1368        1.1   mycroft fail:
   1369        1.1   mycroft 	brelse(bp);
   1370        1.1   mycroft 	return (0);
   1371        1.1   mycroft }
   1372   1.41.2.8   nathanw #endif /* XXXUBC */
   1373        1.1   mycroft 
   1374        1.1   mycroft /*
   1375        1.1   mycroft  * Determine whether an inode can be allocated.
   1376        1.1   mycroft  *
   1377        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1378        1.1   mycroft  * allocate it using the following policy:
   1379        1.1   mycroft  *   1) allocate the requested inode.
   1380        1.1   mycroft  *   2) allocate the next available inode after the requested
   1381        1.1   mycroft  *      inode in the specified cylinder group.
   1382        1.1   mycroft  */
   1383       1.18      fvdl static ufs_daddr_t
   1384        1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1385        1.1   mycroft 	struct inode *ip;
   1386        1.1   mycroft 	int cg;
   1387       1.18      fvdl 	ufs_daddr_t ipref;
   1388        1.1   mycroft 	int mode;
   1389        1.1   mycroft {
   1390       1.33  augustss 	struct cg *cgp;
   1391        1.1   mycroft 	struct buf *bp;
   1392        1.1   mycroft 	int error, start, len, loc, map, i;
   1393       1.33  augustss 	struct fs *fs = ip->i_fs;
   1394       1.19    bouyer #ifdef FFS_EI
   1395       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1396       1.19    bouyer #endif
   1397        1.1   mycroft 
   1398        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1399       1.35   thorpej 		return (0);
   1400        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1401        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1402        1.1   mycroft 	if (error) {
   1403        1.1   mycroft 		brelse(bp);
   1404       1.35   thorpej 		return (0);
   1405        1.1   mycroft 	}
   1406        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1407       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1408        1.1   mycroft 		brelse(bp);
   1409       1.35   thorpej 		return (0);
   1410        1.1   mycroft 	}
   1411       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1412        1.1   mycroft 	if (ipref) {
   1413        1.1   mycroft 		ipref %= fs->fs_ipg;
   1414       1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1415        1.1   mycroft 			goto gotit;
   1416        1.1   mycroft 	}
   1417       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1418       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1419       1.19    bouyer 		NBBY);
   1420       1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1421        1.1   mycroft 	if (loc == 0) {
   1422        1.1   mycroft 		len = start + 1;
   1423        1.1   mycroft 		start = 0;
   1424       1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1425        1.1   mycroft 		if (loc == 0) {
   1426       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1427       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1428       1.19    bouyer 				fs->fs_fsmnt);
   1429        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1430        1.1   mycroft 			/* NOTREACHED */
   1431        1.1   mycroft 		}
   1432        1.1   mycroft 	}
   1433        1.1   mycroft 	i = start + len - loc;
   1434       1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1435        1.1   mycroft 	ipref = i * NBBY;
   1436        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1437        1.1   mycroft 		if ((map & i) == 0) {
   1438       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1439        1.1   mycroft 			goto gotit;
   1440        1.1   mycroft 		}
   1441        1.1   mycroft 	}
   1442       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1443        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1444        1.1   mycroft 	/* NOTREACHED */
   1445        1.1   mycroft gotit:
   1446       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1447       1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1448       1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1449       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1450        1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1451       1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1452        1.1   mycroft 	fs->fs_fmod = 1;
   1453        1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1454       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1455        1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1456        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1457        1.1   mycroft 	}
   1458        1.1   mycroft 	bdwrite(bp);
   1459        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1460        1.1   mycroft }
   1461        1.1   mycroft 
   1462        1.1   mycroft /*
   1463        1.1   mycroft  * Free a block or fragment.
   1464        1.1   mycroft  *
   1465        1.1   mycroft  * The specified block or fragment is placed back in the
   1466        1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1467        1.1   mycroft  * block reassembly is checked.
   1468        1.1   mycroft  */
   1469        1.9  christos void
   1470        1.1   mycroft ffs_blkfree(ip, bno, size)
   1471       1.33  augustss 	struct inode *ip;
   1472       1.18      fvdl 	ufs_daddr_t bno;
   1473        1.1   mycroft 	long size;
   1474        1.1   mycroft {
   1475       1.33  augustss 	struct cg *cgp;
   1476        1.1   mycroft 	struct buf *bp;
   1477       1.18      fvdl 	ufs_daddr_t blkno;
   1478        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1479       1.33  augustss 	struct fs *fs = ip->i_fs;
   1480       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1481        1.1   mycroft 
   1482       1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1483       1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1484       1.30      fvdl 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1485       1.30      fvdl 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1486        1.1   mycroft 		panic("blkfree: bad size");
   1487        1.1   mycroft 	}
   1488        1.1   mycroft 	cg = dtog(fs, bno);
   1489        1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1490       1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1491       1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1492        1.1   mycroft 		return;
   1493        1.1   mycroft 	}
   1494        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1495        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1496        1.1   mycroft 	if (error) {
   1497        1.1   mycroft 		brelse(bp);
   1498        1.1   mycroft 		return;
   1499        1.1   mycroft 	}
   1500        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1501       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1502        1.1   mycroft 		brelse(bp);
   1503        1.1   mycroft 		return;
   1504        1.1   mycroft 	}
   1505       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1506        1.1   mycroft 	bno = dtogd(fs, bno);
   1507        1.1   mycroft 	if (size == fs->fs_bsize) {
   1508        1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1509       1.30      fvdl 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1510       1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1511        1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1512        1.1   mycroft 			panic("blkfree: freeing free block");
   1513        1.1   mycroft 		}
   1514       1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1515       1.30      fvdl 		ffs_clusteracct(fs, cgp, blkno, 1);
   1516       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1517        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1518        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1519        1.1   mycroft 		i = cbtocylno(fs, bno);
   1520       1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1521       1.30      fvdl 		    needswap);
   1522       1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1523        1.1   mycroft 	} else {
   1524        1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1525        1.1   mycroft 		/*
   1526        1.1   mycroft 		 * decrement the counts associated with the old frags
   1527        1.1   mycroft 		 */
   1528       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1529       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1530        1.1   mycroft 		/*
   1531        1.1   mycroft 		 * deallocate the fragment
   1532        1.1   mycroft 		 */
   1533        1.1   mycroft 		frags = numfrags(fs, size);
   1534        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1535       1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1536       1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1537        1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1538        1.1   mycroft 				panic("blkfree: freeing free frag");
   1539        1.1   mycroft 			}
   1540       1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1541        1.1   mycroft 		}
   1542       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1543        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1544       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1545        1.1   mycroft 		/*
   1546        1.1   mycroft 		 * add back in counts associated with the new frags
   1547        1.1   mycroft 		 */
   1548       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1549       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1550        1.1   mycroft 		/*
   1551        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1552        1.1   mycroft 		 */
   1553        1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1554       1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1555       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1556        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1557        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1558       1.30      fvdl 			ffs_clusteracct(fs, cgp, blkno, 1);
   1559       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1560        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1561        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1562        1.1   mycroft 			i = cbtocylno(fs, bbase);
   1563       1.30      fvdl 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1564       1.30      fvdl 								bbase)], 1,
   1565       1.30      fvdl 			    needswap);
   1566       1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1567        1.1   mycroft 		}
   1568        1.1   mycroft 	}
   1569        1.1   mycroft 	fs->fs_fmod = 1;
   1570        1.1   mycroft 	bdwrite(bp);
   1571        1.1   mycroft }
   1572        1.1   mycroft 
   1573       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1574   1.41.2.8   nathanw #ifdef XXXUBC
   1575       1.18      fvdl /*
   1576       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1577       1.18      fvdl  * fragment is allocated, false if it is free.
   1578       1.18      fvdl  */
   1579       1.18      fvdl static int
   1580       1.18      fvdl ffs_checkblk(ip, bno, size)
   1581       1.18      fvdl 	struct inode *ip;
   1582       1.18      fvdl 	ufs_daddr_t bno;
   1583       1.18      fvdl 	long size;
   1584       1.18      fvdl {
   1585       1.18      fvdl 	struct fs *fs;
   1586       1.18      fvdl 	struct cg *cgp;
   1587       1.18      fvdl 	struct buf *bp;
   1588       1.18      fvdl 	int i, error, frags, free;
   1589       1.18      fvdl 
   1590       1.18      fvdl 	fs = ip->i_fs;
   1591       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1592       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1593       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1594       1.18      fvdl 		panic("checkblk: bad size");
   1595       1.18      fvdl 	}
   1596       1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1597       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1598       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1599       1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1600       1.18      fvdl 	if (error) {
   1601       1.18      fvdl 		brelse(bp);
   1602       1.18      fvdl 		return 0;
   1603       1.18      fvdl 	}
   1604       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1605       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1606       1.18      fvdl 		brelse(bp);
   1607       1.18      fvdl 		return 0;
   1608       1.18      fvdl 	}
   1609       1.18      fvdl 	bno = dtogd(fs, bno);
   1610       1.18      fvdl 	if (size == fs->fs_bsize) {
   1611       1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1612       1.19    bouyer 			fragstoblks(fs, bno));
   1613       1.18      fvdl 	} else {
   1614       1.18      fvdl 		frags = numfrags(fs, size);
   1615       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1616       1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1617       1.18      fvdl 				free++;
   1618       1.18      fvdl 		if (free != 0 && free != frags)
   1619       1.18      fvdl 			panic("checkblk: partially free fragment");
   1620       1.18      fvdl 	}
   1621       1.18      fvdl 	brelse(bp);
   1622       1.18      fvdl 	return (!free);
   1623       1.18      fvdl }
   1624   1.41.2.8   nathanw #endif /* XXXUBC */
   1625       1.18      fvdl #endif /* DIAGNOSTIC */
   1626       1.18      fvdl 
   1627        1.1   mycroft /*
   1628        1.1   mycroft  * Free an inode.
   1629       1.30      fvdl  */
   1630       1.30      fvdl int
   1631       1.30      fvdl ffs_vfree(v)
   1632       1.30      fvdl 	void *v;
   1633       1.30      fvdl {
   1634       1.30      fvdl 	struct vop_vfree_args /* {
   1635       1.30      fvdl 		struct vnode *a_pvp;
   1636       1.30      fvdl 		ino_t a_ino;
   1637       1.30      fvdl 		int a_mode;
   1638       1.30      fvdl 	} */ *ap = v;
   1639       1.30      fvdl 
   1640       1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1641       1.30      fvdl 		softdep_freefile(ap);
   1642       1.30      fvdl 		return (0);
   1643       1.30      fvdl 	}
   1644       1.30      fvdl 	return (ffs_freefile(ap));
   1645       1.30      fvdl }
   1646       1.30      fvdl 
   1647       1.30      fvdl /*
   1648       1.30      fvdl  * Do the actual free operation.
   1649        1.1   mycroft  * The specified inode is placed back in the free map.
   1650        1.1   mycroft  */
   1651        1.1   mycroft int
   1652       1.30      fvdl ffs_freefile(v)
   1653        1.9  christos 	void *v;
   1654        1.9  christos {
   1655        1.1   mycroft 	struct vop_vfree_args /* {
   1656        1.1   mycroft 		struct vnode *a_pvp;
   1657        1.1   mycroft 		ino_t a_ino;
   1658        1.1   mycroft 		int a_mode;
   1659        1.9  christos 	} */ *ap = v;
   1660       1.33  augustss 	struct cg *cgp;
   1661       1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1662       1.33  augustss 	struct fs *fs = pip->i_fs;
   1663        1.1   mycroft 	ino_t ino = ap->a_ino;
   1664        1.1   mycroft 	struct buf *bp;
   1665        1.1   mycroft 	int error, cg;
   1666       1.19    bouyer #ifdef FFS_EI
   1667       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1668       1.19    bouyer #endif
   1669        1.1   mycroft 
   1670        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1671  1.41.2.11   nathanw 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
   1672        1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1673        1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1674        1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1675        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1676        1.1   mycroft 	if (error) {
   1677        1.1   mycroft 		brelse(bp);
   1678       1.30      fvdl 		return (error);
   1679        1.1   mycroft 	}
   1680        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1681       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1682        1.1   mycroft 		brelse(bp);
   1683        1.1   mycroft 		return (0);
   1684        1.1   mycroft 	}
   1685       1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1686        1.1   mycroft 	ino %= fs->fs_ipg;
   1687       1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1688       1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1689        1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1690        1.1   mycroft 		if (fs->fs_ronly == 0)
   1691        1.1   mycroft 			panic("ifree: freeing free inode");
   1692        1.1   mycroft 	}
   1693       1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1694       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1695       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1696       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1697        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1698        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1699        1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1700       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1701        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1702        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1703        1.1   mycroft 	}
   1704        1.1   mycroft 	fs->fs_fmod = 1;
   1705        1.1   mycroft 	bdwrite(bp);
   1706        1.1   mycroft 	return (0);
   1707        1.1   mycroft }
   1708        1.1   mycroft 
   1709        1.1   mycroft /*
   1710        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1711        1.1   mycroft  *
   1712        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1713        1.1   mycroft  * available.
   1714        1.1   mycroft  */
   1715       1.18      fvdl static ufs_daddr_t
   1716       1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1717       1.33  augustss 	struct fs *fs;
   1718       1.33  augustss 	struct cg *cgp;
   1719       1.18      fvdl 	ufs_daddr_t bpref;
   1720        1.1   mycroft 	int allocsiz;
   1721        1.1   mycroft {
   1722       1.18      fvdl 	ufs_daddr_t bno;
   1723        1.1   mycroft 	int start, len, loc, i;
   1724        1.1   mycroft 	int blk, field, subfield, pos;
   1725       1.19    bouyer 	int ostart, olen;
   1726       1.30      fvdl #ifdef FFS_EI
   1727       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1728       1.30      fvdl #endif
   1729        1.1   mycroft 
   1730        1.1   mycroft 	/*
   1731        1.1   mycroft 	 * find the fragment by searching through the free block
   1732        1.1   mycroft 	 * map for an appropriate bit pattern
   1733        1.1   mycroft 	 */
   1734        1.1   mycroft 	if (bpref)
   1735        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1736        1.1   mycroft 	else
   1737       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1738        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1739       1.19    bouyer 	ostart = start;
   1740       1.19    bouyer 	olen = len;
   1741   1.41.2.4   nathanw 	loc = scanc((u_int)len,
   1742   1.41.2.4   nathanw 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1743   1.41.2.4   nathanw 		(const u_char *)fragtbl[fs->fs_frag],
   1744   1.41.2.7   nathanw 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1745        1.1   mycroft 	if (loc == 0) {
   1746        1.1   mycroft 		len = start + 1;
   1747        1.1   mycroft 		start = 0;
   1748   1.41.2.4   nathanw 		loc = scanc((u_int)len,
   1749   1.41.2.4   nathanw 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1750   1.41.2.4   nathanw 			(const u_char *)fragtbl[fs->fs_frag],
   1751   1.41.2.7   nathanw 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1752        1.1   mycroft 		if (loc == 0) {
   1753       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1754       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1755       1.20      ross 			printf("offset=%d %ld\n",
   1756       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1757       1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1758        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1759        1.1   mycroft 			/* NOTREACHED */
   1760        1.1   mycroft 		}
   1761        1.1   mycroft 	}
   1762        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1763       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1764        1.1   mycroft 	/*
   1765        1.1   mycroft 	 * found the byte in the map
   1766        1.1   mycroft 	 * sift through the bits to find the selected frag
   1767        1.1   mycroft 	 */
   1768        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1769       1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1770        1.1   mycroft 		blk <<= 1;
   1771        1.1   mycroft 		field = around[allocsiz];
   1772        1.1   mycroft 		subfield = inside[allocsiz];
   1773        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1774        1.1   mycroft 			if ((blk & field) == subfield)
   1775        1.1   mycroft 				return (bno + pos);
   1776        1.1   mycroft 			field <<= 1;
   1777        1.1   mycroft 			subfield <<= 1;
   1778        1.1   mycroft 		}
   1779        1.1   mycroft 	}
   1780       1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1781        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1782        1.1   mycroft 	return (-1);
   1783        1.1   mycroft }
   1784        1.1   mycroft 
   1785        1.1   mycroft /*
   1786        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1787        1.1   mycroft  *
   1788        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1789        1.1   mycroft  */
   1790        1.9  christos void
   1791       1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1792        1.1   mycroft 	struct fs *fs;
   1793        1.1   mycroft 	struct cg *cgp;
   1794       1.18      fvdl 	ufs_daddr_t blkno;
   1795        1.1   mycroft 	int cnt;
   1796        1.1   mycroft {
   1797        1.4       cgd 	int32_t *sump;
   1798        1.5   mycroft 	int32_t *lp;
   1799        1.1   mycroft 	u_char *freemapp, *mapp;
   1800        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1801       1.30      fvdl #ifdef FFS_EI
   1802       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1803       1.30      fvdl #endif
   1804        1.1   mycroft 
   1805        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1806        1.1   mycroft 		return;
   1807       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1808       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1809        1.1   mycroft 	/*
   1810        1.1   mycroft 	 * Allocate or clear the actual block.
   1811        1.1   mycroft 	 */
   1812        1.1   mycroft 	if (cnt > 0)
   1813        1.1   mycroft 		setbit(freemapp, blkno);
   1814        1.1   mycroft 	else
   1815        1.1   mycroft 		clrbit(freemapp, blkno);
   1816        1.1   mycroft 	/*
   1817        1.1   mycroft 	 * Find the size of the cluster going forward.
   1818        1.1   mycroft 	 */
   1819        1.1   mycroft 	start = blkno + 1;
   1820        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1821       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1822       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1823        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1824        1.1   mycroft 	map = *mapp++;
   1825        1.1   mycroft 	bit = 1 << (start % NBBY);
   1826        1.1   mycroft 	for (i = start; i < end; i++) {
   1827        1.1   mycroft 		if ((map & bit) == 0)
   1828        1.1   mycroft 			break;
   1829        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1830        1.1   mycroft 			bit <<= 1;
   1831        1.1   mycroft 		} else {
   1832        1.1   mycroft 			map = *mapp++;
   1833        1.1   mycroft 			bit = 1;
   1834        1.1   mycroft 		}
   1835        1.1   mycroft 	}
   1836        1.1   mycroft 	forw = i - start;
   1837        1.1   mycroft 	/*
   1838        1.1   mycroft 	 * Find the size of the cluster going backward.
   1839        1.1   mycroft 	 */
   1840        1.1   mycroft 	start = blkno - 1;
   1841        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1842        1.1   mycroft 	if (end < 0)
   1843        1.1   mycroft 		end = -1;
   1844        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1845        1.1   mycroft 	map = *mapp--;
   1846        1.1   mycroft 	bit = 1 << (start % NBBY);
   1847        1.1   mycroft 	for (i = start; i > end; i--) {
   1848        1.1   mycroft 		if ((map & bit) == 0)
   1849        1.1   mycroft 			break;
   1850        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1851        1.1   mycroft 			bit >>= 1;
   1852        1.1   mycroft 		} else {
   1853        1.1   mycroft 			map = *mapp--;
   1854        1.1   mycroft 			bit = 1 << (NBBY - 1);
   1855        1.1   mycroft 		}
   1856        1.1   mycroft 	}
   1857        1.1   mycroft 	back = start - i;
   1858        1.1   mycroft 	/*
   1859        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1860        1.1   mycroft 	 * back clusters.
   1861        1.1   mycroft 	 */
   1862        1.1   mycroft 	i = back + forw + 1;
   1863        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1864        1.1   mycroft 		i = fs->fs_contigsumsize;
   1865       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1866        1.1   mycroft 	if (back > 0)
   1867       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1868        1.1   mycroft 	if (forw > 0)
   1869       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1870       1.19    bouyer 
   1871        1.5   mycroft 	/*
   1872        1.5   mycroft 	 * Update cluster summary information.
   1873        1.5   mycroft 	 */
   1874        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1875        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1876       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1877        1.5   mycroft 			break;
   1878       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1879        1.1   mycroft }
   1880        1.1   mycroft 
   1881        1.1   mycroft /*
   1882        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1883        1.1   mycroft  *
   1884        1.1   mycroft  * The form of the error message is:
   1885        1.1   mycroft  *	fs: error message
   1886        1.1   mycroft  */
   1887        1.1   mycroft static void
   1888        1.1   mycroft ffs_fserr(fs, uid, cp)
   1889        1.1   mycroft 	struct fs *fs;
   1890        1.1   mycroft 	u_int uid;
   1891        1.1   mycroft 	char *cp;
   1892        1.1   mycroft {
   1893        1.1   mycroft 
   1894       1.37       chs 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1895   1.41.2.9   nathanw 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1896        1.1   mycroft }
   1897