Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.49
      1  1.49     lukem /*	$NetBSD: ffs_alloc.c,v 1.49 2001/08/31 03:38:45 lukem Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8   1.1   mycroft  * modification, are permitted provided that the following conditions
      9   1.1   mycroft  * are met:
     10   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15   1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16   1.1   mycroft  *    must display the following acknowledgement:
     17   1.1   mycroft  *	This product includes software developed by the University of
     18   1.1   mycroft  *	California, Berkeley and its contributors.
     19   1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21   1.1   mycroft  *    without specific prior written permission.
     22   1.1   mycroft  *
     23   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1   mycroft  * SUCH DAMAGE.
     34   1.1   mycroft  *
     35  1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36   1.1   mycroft  */
     37  1.17       mrg 
     38  1.43       mrg #if defined(_KERNEL_OPT)
     39  1.27   thorpej #include "opt_ffs.h"
     40  1.21    scottr #include "opt_quota.h"
     41  1.22    scottr #endif
     42   1.1   mycroft 
     43   1.1   mycroft #include <sys/param.h>
     44   1.1   mycroft #include <sys/systm.h>
     45   1.1   mycroft #include <sys/buf.h>
     46   1.1   mycroft #include <sys/proc.h>
     47   1.1   mycroft #include <sys/vnode.h>
     48   1.1   mycroft #include <sys/mount.h>
     49   1.1   mycroft #include <sys/kernel.h>
     50   1.1   mycroft #include <sys/syslog.h>
     51  1.29       mrg 
     52   1.1   mycroft #include <ufs/ufs/quota.h>
     53  1.19    bouyer #include <ufs/ufs/ufsmount.h>
     54   1.1   mycroft #include <ufs/ufs/inode.h>
     55   1.9  christos #include <ufs/ufs/ufs_extern.h>
     56  1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     57   1.1   mycroft 
     58   1.1   mycroft #include <ufs/ffs/fs.h>
     59   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     60   1.1   mycroft 
     61  1.30      fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     62  1.30      fvdl static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     63  1.30      fvdl 					ufs_daddr_t));
     64  1.30      fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     65  1.42  sommerfe static ino_t ffs_dirpref __P((struct fs *, ino_t));
     66  1.30      fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     67  1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     68  1.30      fvdl static u_long ffs_hashalloc
     69  1.30      fvdl 		__P((struct inode *, int, long, int,
     70  1.30      fvdl 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     71  1.30      fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     72  1.30      fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     73  1.30      fvdl 				      ufs_daddr_t, int));
     74  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     75  1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     76  1.18      fvdl #endif
     77  1.23  drochner 
     78  1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     79  1.34  jdolecek int ffs_log_changeopt = 0;
     80  1.34  jdolecek 
     81  1.23  drochner /* in ffs_tables.c */
     82  1.40  jdolecek extern const int inside[], around[];
     83  1.40  jdolecek extern const u_char * const fragtbl[];
     84   1.1   mycroft 
     85   1.1   mycroft /*
     86   1.1   mycroft  * Allocate a block in the file system.
     87   1.1   mycroft  *
     88   1.1   mycroft  * The size of the requested block is given, which must be some
     89   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     90   1.1   mycroft  * A preference may be optionally specified. If a preference is given
     91   1.1   mycroft  * the following hierarchy is used to allocate a block:
     92   1.1   mycroft  *   1) allocate the requested block.
     93   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     94   1.1   mycroft  *   3) allocate a block in the same cylinder group.
     95   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     96   1.1   mycroft  *      available block is located.
     97  1.47       wiz  * If no block preference is given the following hierarchy is used
     98   1.1   mycroft  * to allocate a block:
     99   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    100   1.1   mycroft  *      inode for the file.
    101   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    102   1.1   mycroft  *      available block is located.
    103   1.1   mycroft  */
    104   1.9  christos int
    105   1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    106  1.33  augustss 	struct inode *ip;
    107  1.18      fvdl 	ufs_daddr_t lbn, bpref;
    108   1.1   mycroft 	int size;
    109   1.1   mycroft 	struct ucred *cred;
    110  1.18      fvdl 	ufs_daddr_t *bnp;
    111   1.1   mycroft {
    112  1.37       chs 	struct fs *fs = ip->i_fs;
    113  1.18      fvdl 	ufs_daddr_t bno;
    114   1.9  christos 	int cg;
    115   1.9  christos #ifdef QUOTA
    116   1.9  christos 	int error;
    117   1.9  christos #endif
    118   1.1   mycroft 
    119  1.37       chs #ifdef UVM_PAGE_TRKOWN
    120  1.37       chs 	if (ITOV(ip)->v_type == VREG && lbn > 0) {
    121  1.37       chs 		struct vm_page *pg;
    122  1.37       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    123  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    124  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    125  1.37       chs 
    126  1.37       chs 		simple_lock(&uobj->vmobjlock);
    127  1.37       chs 		while (off < endoff) {
    128  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    129  1.37       chs 			KASSERT(pg != NULL);
    130  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    131  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    132  1.37       chs 			off += PAGE_SIZE;
    133  1.37       chs 		}
    134  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    135  1.37       chs 	}
    136  1.37       chs #endif
    137  1.37       chs 
    138   1.1   mycroft 	*bnp = 0;
    139   1.1   mycroft #ifdef DIAGNOSTIC
    140   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    141  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    142   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    143   1.1   mycroft 		panic("ffs_alloc: bad size");
    144   1.1   mycroft 	}
    145   1.1   mycroft 	if (cred == NOCRED)
    146   1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    147   1.1   mycroft #endif /* DIAGNOSTIC */
    148   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    149   1.1   mycroft 		goto nospace;
    150   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    151   1.1   mycroft 		goto nospace;
    152   1.1   mycroft #ifdef QUOTA
    153   1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    154   1.1   mycroft 		return (error);
    155   1.1   mycroft #endif
    156   1.1   mycroft 	if (bpref >= fs->fs_size)
    157   1.1   mycroft 		bpref = 0;
    158   1.1   mycroft 	if (bpref == 0)
    159   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    160   1.1   mycroft 	else
    161   1.1   mycroft 		cg = dtog(fs, bpref);
    162  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    163   1.9  christos 	    			     ffs_alloccg);
    164   1.1   mycroft 	if (bno > 0) {
    165  1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    166   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    167   1.1   mycroft 		*bnp = bno;
    168   1.1   mycroft 		return (0);
    169   1.1   mycroft 	}
    170   1.1   mycroft #ifdef QUOTA
    171   1.1   mycroft 	/*
    172   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    173   1.1   mycroft 	 */
    174   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    175   1.1   mycroft #endif
    176   1.1   mycroft nospace:
    177   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    178   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    179   1.1   mycroft 	return (ENOSPC);
    180   1.1   mycroft }
    181   1.1   mycroft 
    182   1.1   mycroft /*
    183   1.1   mycroft  * Reallocate a fragment to a bigger size
    184   1.1   mycroft  *
    185   1.1   mycroft  * The number and size of the old block is given, and a preference
    186   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    187   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    188   1.1   mycroft  * invoked to get an appropriate block.
    189   1.1   mycroft  */
    190   1.9  christos int
    191  1.37       chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    192  1.33  augustss 	struct inode *ip;
    193  1.18      fvdl 	ufs_daddr_t lbprev;
    194  1.18      fvdl 	ufs_daddr_t bpref;
    195   1.1   mycroft 	int osize, nsize;
    196   1.1   mycroft 	struct ucred *cred;
    197   1.1   mycroft 	struct buf **bpp;
    198  1.37       chs 	ufs_daddr_t *blknop;
    199   1.1   mycroft {
    200  1.37       chs 	struct fs *fs = ip->i_fs;
    201   1.1   mycroft 	struct buf *bp;
    202   1.1   mycroft 	int cg, request, error;
    203  1.18      fvdl 	ufs_daddr_t bprev, bno;
    204  1.25   thorpej 
    205  1.37       chs #ifdef UVM_PAGE_TRKOWN
    206  1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    207  1.37       chs 		struct vm_page *pg;
    208  1.37       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uvm.u_obj;
    209  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    210  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    211  1.37       chs 
    212  1.37       chs 		simple_lock(&uobj->vmobjlock);
    213  1.37       chs 		while (off < endoff) {
    214  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    215  1.37       chs 			KASSERT(pg != NULL);
    216  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    217  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    218  1.37       chs 			off += PAGE_SIZE;
    219  1.37       chs 		}
    220  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    221  1.37       chs 	}
    222  1.37       chs #endif
    223  1.37       chs 
    224   1.1   mycroft #ifdef DIAGNOSTIC
    225   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    226   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    227  1.13  christos 		printf(
    228   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    229   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    230   1.1   mycroft 		panic("ffs_realloccg: bad size");
    231   1.1   mycroft 	}
    232   1.1   mycroft 	if (cred == NOCRED)
    233   1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    234   1.1   mycroft #endif /* DIAGNOSTIC */
    235   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    236   1.1   mycroft 		goto nospace;
    237  1.30      fvdl 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    238  1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    239   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    240   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    241   1.1   mycroft 	}
    242   1.1   mycroft 	/*
    243   1.1   mycroft 	 * Allocate the extra space in the buffer.
    244   1.1   mycroft 	 */
    245  1.37       chs 	if (bpp != NULL &&
    246  1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    247   1.1   mycroft 		brelse(bp);
    248   1.1   mycroft 		return (error);
    249   1.1   mycroft 	}
    250   1.1   mycroft #ifdef QUOTA
    251   1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    252  1.44       chs 		if (bpp != NULL) {
    253  1.44       chs 			brelse(bp);
    254  1.44       chs 		}
    255   1.1   mycroft 		return (error);
    256   1.1   mycroft 	}
    257   1.1   mycroft #endif
    258   1.1   mycroft 	/*
    259   1.1   mycroft 	 * Check for extension in the existing location.
    260   1.1   mycroft 	 */
    261   1.1   mycroft 	cg = dtog(fs, bprev);
    262   1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    263  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    264   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    265  1.37       chs 
    266  1.37       chs 		if (bpp != NULL) {
    267  1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    268  1.37       chs 				panic("bad blockno");
    269  1.37       chs 			allocbuf(bp, nsize);
    270  1.37       chs 			bp->b_flags |= B_DONE;
    271  1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    272  1.37       chs 			*bpp = bp;
    273  1.37       chs 		}
    274  1.37       chs 		if (blknop != NULL) {
    275  1.37       chs 			*blknop = bno;
    276  1.37       chs 		}
    277   1.1   mycroft 		return (0);
    278   1.1   mycroft 	}
    279   1.1   mycroft 	/*
    280   1.1   mycroft 	 * Allocate a new disk location.
    281   1.1   mycroft 	 */
    282   1.1   mycroft 	if (bpref >= fs->fs_size)
    283   1.1   mycroft 		bpref = 0;
    284   1.1   mycroft 	switch ((int)fs->fs_optim) {
    285   1.1   mycroft 	case FS_OPTSPACE:
    286   1.1   mycroft 		/*
    287   1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    288   1.1   mycroft 		 * best use of space, we will waste time relocating it if
    289   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    290   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    291   1.1   mycroft 		 * to begin optimizing for time.
    292   1.1   mycroft 		 */
    293   1.1   mycroft 		request = nsize;
    294   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    295   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    296   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    297   1.1   mycroft 			break;
    298  1.34  jdolecek 
    299  1.34  jdolecek 		if (ffs_log_changeopt) {
    300  1.34  jdolecek 			log(LOG_NOTICE,
    301  1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    302  1.34  jdolecek 				fs->fs_fsmnt);
    303  1.34  jdolecek 		}
    304  1.34  jdolecek 
    305   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    306   1.1   mycroft 		break;
    307   1.1   mycroft 	case FS_OPTTIME:
    308   1.1   mycroft 		/*
    309   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    310   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    311   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    312   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    313   1.1   mycroft 		 * above will be able to grow it in place without further
    314   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    315   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    316   1.1   mycroft 		 * optimizing for space.
    317   1.1   mycroft 		 */
    318   1.1   mycroft 		request = fs->fs_bsize;
    319   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    320   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    321   1.1   mycroft 			break;
    322  1.34  jdolecek 
    323  1.34  jdolecek 		if (ffs_log_changeopt) {
    324  1.34  jdolecek 			log(LOG_NOTICE,
    325  1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    326  1.34  jdolecek 				fs->fs_fsmnt);
    327  1.34  jdolecek 		}
    328  1.34  jdolecek 
    329   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    330   1.1   mycroft 		break;
    331   1.1   mycroft 	default:
    332  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    333   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    334   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    335   1.1   mycroft 		/* NOTREACHED */
    336   1.1   mycroft 	}
    337  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    338   1.9  christos 	    			     ffs_alloccg);
    339   1.1   mycroft 	if (bno > 0) {
    340  1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    341  1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    342   1.1   mycroft 		if (nsize < request)
    343   1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    344   1.1   mycroft 			    (long)(request - nsize));
    345  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    346   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    347  1.37       chs 		if (bpp != NULL) {
    348  1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    349  1.37       chs 			allocbuf(bp, nsize);
    350  1.37       chs 			bp->b_flags |= B_DONE;
    351  1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    352  1.37       chs 			*bpp = bp;
    353  1.37       chs 		}
    354  1.37       chs 		if (blknop != NULL) {
    355  1.37       chs 			*blknop = bno;
    356  1.37       chs 		}
    357   1.1   mycroft 		return (0);
    358   1.1   mycroft 	}
    359   1.1   mycroft #ifdef QUOTA
    360   1.1   mycroft 	/*
    361   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    362   1.1   mycroft 	 */
    363   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    364   1.1   mycroft #endif
    365  1.37       chs 	if (bpp != NULL) {
    366  1.37       chs 		brelse(bp);
    367  1.37       chs 	}
    368  1.37       chs 
    369   1.1   mycroft nospace:
    370   1.1   mycroft 	/*
    371   1.1   mycroft 	 * no space available
    372   1.1   mycroft 	 */
    373   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    374   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    375   1.1   mycroft 	return (ENOSPC);
    376   1.1   mycroft }
    377   1.1   mycroft 
    378   1.1   mycroft /*
    379   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    380   1.1   mycroft  *
    381   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    382   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    383   1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    384   1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    385  1.46       wiz  * block immediately preceding the current range. If successful, the
    386   1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    387   1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    388   1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    389   1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    390   1.1   mycroft  * the previous block allocation will be used.
    391   1.1   mycroft  */
    392   1.3   mycroft #ifdef DEBUG
    393   1.1   mycroft #include <sys/sysctl.h>
    394   1.5   mycroft int prtrealloc = 0;
    395   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    396   1.1   mycroft #endif
    397   1.1   mycroft 
    398  1.18      fvdl int doasyncfree = 1;
    399  1.18      fvdl 
    400   1.1   mycroft int
    401   1.9  christos ffs_reallocblks(v)
    402   1.9  christos 	void *v;
    403   1.9  christos {
    404   1.1   mycroft 	struct vop_reallocblks_args /* {
    405   1.1   mycroft 		struct vnode *a_vp;
    406   1.1   mycroft 		struct cluster_save *a_buflist;
    407   1.9  christos 	} */ *ap = v;
    408   1.1   mycroft 	struct fs *fs;
    409   1.1   mycroft 	struct inode *ip;
    410   1.1   mycroft 	struct vnode *vp;
    411   1.1   mycroft 	struct buf *sbp, *ebp;
    412  1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    413   1.1   mycroft 	struct cluster_save *buflist;
    414  1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    415   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    416   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    417   1.1   mycroft 
    418  1.37       chs 	/* XXXUBC don't reallocblks for now */
    419  1.37       chs 	return ENOSPC;
    420  1.37       chs 
    421   1.1   mycroft 	vp = ap->a_vp;
    422   1.1   mycroft 	ip = VTOI(vp);
    423   1.1   mycroft 	fs = ip->i_fs;
    424   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    425   1.1   mycroft 		return (ENOSPC);
    426   1.1   mycroft 	buflist = ap->a_buflist;
    427   1.1   mycroft 	len = buflist->bs_nchildren;
    428   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    429   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    430   1.1   mycroft #ifdef DIAGNOSTIC
    431  1.18      fvdl 	for (i = 0; i < len; i++)
    432  1.18      fvdl 		if (!ffs_checkblk(ip,
    433  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    434  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    435   1.1   mycroft 	for (i = 1; i < len; i++)
    436   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    437  1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    438  1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    439  1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    440  1.18      fvdl 	for (i = 1; i < len - 1; i++)
    441  1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    442  1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    443   1.1   mycroft #endif
    444   1.1   mycroft 	/*
    445   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    446   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    447   1.1   mycroft 	 * the previous cylinder group.
    448   1.1   mycroft 	 */
    449   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    450   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    451   1.1   mycroft 		return (ENOSPC);
    452   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    453   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    454   1.1   mycroft 		return (ENOSPC);
    455   1.1   mycroft 	/*
    456   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    457   1.1   mycroft 	 */
    458   1.1   mycroft 	if (start_lvl == 0) {
    459  1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    460   1.1   mycroft 		soff = start_lbn;
    461   1.1   mycroft 	} else {
    462   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    463   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    464   1.1   mycroft 			brelse(sbp);
    465   1.1   mycroft 			return (ENOSPC);
    466   1.1   mycroft 		}
    467  1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    468   1.1   mycroft 		soff = idp->in_off;
    469   1.1   mycroft 	}
    470   1.1   mycroft 	/*
    471   1.1   mycroft 	 * Find the preferred location for the cluster.
    472   1.1   mycroft 	 */
    473   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    474   1.1   mycroft 	/*
    475   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    476   1.1   mycroft 	 */
    477   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    478   1.1   mycroft 		ssize = len;
    479   1.1   mycroft 	} else {
    480   1.1   mycroft #ifdef DIAGNOSTIC
    481   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    482   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    483   1.1   mycroft #endif
    484   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    485   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    486   1.1   mycroft 			goto fail;
    487  1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    488   1.1   mycroft 	}
    489   1.1   mycroft 	/*
    490   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    491   1.1   mycroft 	 */
    492  1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    493   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    494   1.1   mycroft 		goto fail;
    495   1.1   mycroft 	/*
    496   1.1   mycroft 	 * We have found a new contiguous block.
    497   1.1   mycroft 	 *
    498   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    499   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    500   1.1   mycroft 	 * with the file.
    501   1.1   mycroft 	 */
    502   1.5   mycroft #ifdef DEBUG
    503   1.5   mycroft 	if (prtrealloc)
    504  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    505   1.5   mycroft 		    start_lbn, end_lbn);
    506   1.5   mycroft #endif
    507   1.1   mycroft 	blkno = newblk;
    508   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    509  1.30      fvdl 		ufs_daddr_t ba;
    510  1.30      fvdl 
    511  1.30      fvdl 		if (i == ssize) {
    512   1.1   mycroft 			bap = ebap;
    513  1.30      fvdl 			soff = -i;
    514  1.30      fvdl 		}
    515  1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    516   1.1   mycroft #ifdef DIAGNOSTIC
    517  1.18      fvdl 		if (!ffs_checkblk(ip,
    518  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    519  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    520  1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    521   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    522   1.1   mycroft #endif
    523   1.5   mycroft #ifdef DEBUG
    524   1.5   mycroft 		if (prtrealloc)
    525  1.30      fvdl 			printf(" %d,", ba);
    526   1.5   mycroft #endif
    527  1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    528  1.30      fvdl  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    529  1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    530  1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    531  1.30      fvdl  				    buflist->bs_children[i]);
    532  1.30      fvdl  			else
    533  1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    534  1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    535  1.30      fvdl  				    ba, buflist->bs_children[i]);
    536  1.30      fvdl  		}
    537  1.30      fvdl 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    538   1.1   mycroft 	}
    539   1.1   mycroft 	/*
    540   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    541   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    542   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    543   1.1   mycroft 	 * they are almost never written, but if we are concerned about
    544   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    545   1.1   mycroft 	 *
    546   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    547   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    548   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    549   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    550   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    551   1.1   mycroft 	 * synchronous write only when it has been cleared.
    552   1.1   mycroft 	 */
    553  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    554   1.1   mycroft 		if (doasyncfree)
    555   1.1   mycroft 			bdwrite(sbp);
    556   1.1   mycroft 		else
    557   1.1   mycroft 			bwrite(sbp);
    558   1.1   mycroft 	} else {
    559   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    560  1.28   mycroft 		if (!doasyncfree)
    561  1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    562   1.1   mycroft 	}
    563  1.25   thorpej 	if (ssize < len) {
    564   1.1   mycroft 		if (doasyncfree)
    565   1.1   mycroft 			bdwrite(ebp);
    566   1.1   mycroft 		else
    567   1.1   mycroft 			bwrite(ebp);
    568  1.25   thorpej 	}
    569   1.1   mycroft 	/*
    570   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    571   1.1   mycroft 	 */
    572   1.5   mycroft #ifdef DEBUG
    573   1.5   mycroft 	if (prtrealloc)
    574  1.13  christos 		printf("\n\tnew:");
    575   1.5   mycroft #endif
    576   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    577  1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    578  1.30      fvdl 			ffs_blkfree(ip,
    579  1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    580  1.30      fvdl 			    fs->fs_bsize);
    581   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    582   1.5   mycroft #ifdef DEBUG
    583  1.18      fvdl 		if (!ffs_checkblk(ip,
    584  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    585  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    586   1.5   mycroft 		if (prtrealloc)
    587  1.13  christos 			printf(" %d,", blkno);
    588   1.5   mycroft #endif
    589   1.5   mycroft 	}
    590   1.5   mycroft #ifdef DEBUG
    591   1.5   mycroft 	if (prtrealloc) {
    592   1.5   mycroft 		prtrealloc--;
    593  1.13  christos 		printf("\n");
    594   1.1   mycroft 	}
    595   1.5   mycroft #endif
    596   1.1   mycroft 	return (0);
    597   1.1   mycroft 
    598   1.1   mycroft fail:
    599   1.1   mycroft 	if (ssize < len)
    600   1.1   mycroft 		brelse(ebp);
    601  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    602   1.1   mycroft 		brelse(sbp);
    603   1.1   mycroft 	return (ENOSPC);
    604   1.1   mycroft }
    605   1.1   mycroft 
    606   1.1   mycroft /*
    607   1.1   mycroft  * Allocate an inode in the file system.
    608   1.1   mycroft  *
    609   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    610   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    611   1.1   mycroft  *   1) allocate the preferred inode.
    612   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    613   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    614   1.1   mycroft  *      available inode is located.
    615  1.47       wiz  * If no inode preference is given the following hierarchy is used
    616   1.1   mycroft  * to allocate an inode:
    617   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    618   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    619   1.1   mycroft  *      available inode is located.
    620   1.1   mycroft  */
    621   1.9  christos int
    622   1.9  christos ffs_valloc(v)
    623   1.9  christos 	void *v;
    624   1.9  christos {
    625   1.1   mycroft 	struct vop_valloc_args /* {
    626   1.1   mycroft 		struct vnode *a_pvp;
    627   1.1   mycroft 		int a_mode;
    628   1.1   mycroft 		struct ucred *a_cred;
    629   1.1   mycroft 		struct vnode **a_vpp;
    630   1.9  christos 	} */ *ap = v;
    631  1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    632  1.33  augustss 	struct inode *pip;
    633  1.33  augustss 	struct fs *fs;
    634  1.33  augustss 	struct inode *ip;
    635   1.1   mycroft 	mode_t mode = ap->a_mode;
    636   1.1   mycroft 	ino_t ino, ipref;
    637   1.1   mycroft 	int cg, error;
    638   1.1   mycroft 
    639   1.1   mycroft 	*ap->a_vpp = NULL;
    640   1.1   mycroft 	pip = VTOI(pvp);
    641   1.1   mycroft 	fs = pip->i_fs;
    642   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    643   1.1   mycroft 		goto noinodes;
    644   1.1   mycroft 
    645  1.42  sommerfe 	ipref = pip->i_number;
    646   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    647  1.42  sommerfe 		ipref = ffs_dirpref(fs, ipref);
    648   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    649   1.1   mycroft 		ipref = 0;
    650   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    651   1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    652   1.1   mycroft 	if (ino == 0)
    653   1.1   mycroft 		goto noinodes;
    654   1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    655   1.1   mycroft 	if (error) {
    656   1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    657   1.1   mycroft 		return (error);
    658   1.1   mycroft 	}
    659   1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    660  1.15    bouyer 	if (ip->i_ffs_mode) {
    661  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    662  1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    663   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    664   1.1   mycroft 	}
    665  1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    666  1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    667  1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    668  1.15    bouyer 		ip->i_ffs_blocks = 0;
    669   1.1   mycroft 	}
    670  1.15    bouyer 	ip->i_ffs_flags = 0;
    671   1.1   mycroft 	/*
    672   1.1   mycroft 	 * Set up a new generation number for this inode.
    673   1.1   mycroft 	 */
    674  1.15    bouyer 	ip->i_ffs_gen++;
    675   1.1   mycroft 	return (0);
    676   1.1   mycroft noinodes:
    677   1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    678   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    679   1.1   mycroft 	return (ENOSPC);
    680   1.1   mycroft }
    681   1.1   mycroft 
    682   1.1   mycroft /*
    683  1.42  sommerfe  * Find a cylinder in which to place a directory.
    684  1.42  sommerfe  *
    685  1.42  sommerfe  * The policy implemented by this algorithm is to select from among
    686  1.42  sommerfe  * those cylinder groups with above the average number of free inodes
    687  1.42  sommerfe  * and a "reasonable" number of free blocks, the one with the smallest
    688  1.42  sommerfe  * number of directories.  If there are no cylinder groups with a
    689  1.42  sommerfe  * reasonable number of free blocks, we select a CG with *any* free
    690  1.42  sommerfe  * blocks or free frags.
    691  1.42  sommerfe  *
    692  1.42  sommerfe  * "Reasonable" here is arbitrarily defined as "at least 25% of the
    693  1.42  sommerfe  * average amount of free space."
    694   1.1   mycroft  *
    695  1.42  sommerfe  * This complex policy is intended to avoid pathological (linear
    696  1.42  sommerfe  * search) allocation performance when a filesystem contains many
    697  1.42  sommerfe  * small cylinder groups with few directory inodes and no free blocks;
    698  1.42  sommerfe  * this was observed in practice with the old allocation policy (which
    699  1.42  sommerfe  * ignored the distribution of free blocks).  Under the old policy,
    700  1.42  sommerfe  * when a new filesystem is populated with a number of files somewhat
    701  1.42  sommerfe  * larger than the CG size, and then a second tree containing a large
    702  1.42  sommerfe  * number of files and directories is created, mkdir() performance
    703  1.42  sommerfe  * would degrade catastrophically, taking many seconds and involving
    704  1.42  sommerfe  * thousands of disk reads to complete.
    705  1.42  sommerfe  *
    706  1.42  sommerfe  * XXX TODO: we currently ignore our "ipref" argument; we may want to
    707  1.42  sommerfe  * add a heuristic to determine whether to place a directory in the
    708  1.42  sommerfe  * same CG as its parent to reduce the amount of seeking required in
    709  1.42  sommerfe  * the course of tree-walks.
    710   1.1   mycroft  */
    711   1.1   mycroft static ino_t
    712  1.42  sommerfe ffs_dirpref(fs, ipref)
    713  1.33  augustss 	struct fs *fs;
    714  1.42  sommerfe 	ino_t ipref;
    715   1.1   mycroft {
    716  1.42  sommerfe 	int cg, minndir, mincg, avgifree, bfreethresh;
    717  1.42  sommerfe 	int minndirf, mincgf;
    718  1.42  sommerfe 	struct csum *cs;
    719   1.1   mycroft 
    720   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    721  1.42  sommerfe 	bfreethresh = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    722  1.42  sommerfe 	bfreethresh >>= 2;
    723   1.1   mycroft 	minndir = fs->fs_ipg;
    724  1.42  sommerfe 	minndirf = fs->fs_ipg;
    725   1.1   mycroft 	mincg = 0;
    726  1.42  sommerfe 	mincgf = 0;
    727  1.42  sommerfe 	for (cg = 0; cg < fs->fs_ncg; cg++) {
    728  1.42  sommerfe 		cs = &fs->fs_cs(fs, cg);
    729  1.42  sommerfe 		if (cs->cs_nifree >= avgifree) {
    730  1.42  sommerfe 			if ((cs->cs_ndir < minndir) &&
    731  1.42  sommerfe 			    (cs->cs_nbfree > bfreethresh)) {
    732  1.42  sommerfe 				mincg = cg;
    733  1.42  sommerfe 				minndir = cs->cs_ndir;
    734  1.42  sommerfe 			}
    735  1.42  sommerfe 			if ((cs->cs_ndir < minndirf) &&
    736  1.42  sommerfe 			    ((cs->cs_nffree + cs->cs_nbfree) > 0)) {
    737  1.42  sommerfe 				mincgf = cg;
    738  1.42  sommerfe 				minndirf = cs->cs_ndir;
    739  1.42  sommerfe 			}
    740   1.1   mycroft 		}
    741  1.42  sommerfe 	}
    742  1.42  sommerfe 	if (minndir == fs->fs_ipg)
    743  1.42  sommerfe 		mincg = mincgf;
    744   1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    745   1.1   mycroft }
    746   1.1   mycroft 
    747   1.1   mycroft /*
    748   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    749   1.1   mycroft  * logically divided into sections. The first section is composed of the
    750   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    751   1.1   mycroft  *
    752   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    753   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    754   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    755   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    756   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    757   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    758   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    759   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    760   1.1   mycroft  * continues until a cylinder group with greater than the average number
    761   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    762   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    763   1.1   mycroft  * here a best guess is made based upon the logical block number being
    764   1.1   mycroft  * allocated.
    765   1.1   mycroft  *
    766   1.1   mycroft  * If a section is already partially allocated, the policy is to
    767   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    768   1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    769   1.1   mycroft  * so that the disk head will be in transit between them for at least
    770   1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    771   1.1   mycroft  * schedule another I/O transfer.
    772   1.1   mycroft  */
    773  1.18      fvdl ufs_daddr_t
    774   1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    775   1.1   mycroft 	struct inode *ip;
    776  1.18      fvdl 	ufs_daddr_t lbn;
    777   1.1   mycroft 	int indx;
    778  1.18      fvdl 	ufs_daddr_t *bap;
    779   1.1   mycroft {
    780  1.33  augustss 	struct fs *fs;
    781  1.33  augustss 	int cg;
    782   1.1   mycroft 	int avgbfree, startcg;
    783  1.18      fvdl 	ufs_daddr_t nextblk;
    784   1.1   mycroft 
    785   1.1   mycroft 	fs = ip->i_fs;
    786   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    787  1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    788   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    789   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    790   1.1   mycroft 		}
    791   1.1   mycroft 		/*
    792   1.1   mycroft 		 * Find a cylinder with greater than average number of
    793   1.1   mycroft 		 * unused data blocks.
    794   1.1   mycroft 		 */
    795   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    796   1.1   mycroft 			startcg =
    797   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    798   1.1   mycroft 		else
    799  1.19    bouyer 			startcg = dtog(fs,
    800  1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    801   1.1   mycroft 		startcg %= fs->fs_ncg;
    802   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    803   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    804   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    805   1.1   mycroft 				fs->fs_cgrotor = cg;
    806   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    807   1.1   mycroft 			}
    808   1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    809   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    810   1.1   mycroft 				fs->fs_cgrotor = cg;
    811   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    812   1.1   mycroft 			}
    813  1.35   thorpej 		return (0);
    814   1.1   mycroft 	}
    815   1.1   mycroft 	/*
    816   1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    817   1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    818   1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    819   1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    820   1.1   mycroft 	 */
    821  1.30      fvdl 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    822  1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    823  1.30      fvdl 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    824   1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    825   1.1   mycroft 		return (nextblk);
    826   1.1   mycroft 	if (fs->fs_rotdelay != 0)
    827   1.1   mycroft 		/*
    828   1.1   mycroft 		 * Here we convert ms of delay to frags as:
    829   1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    830   1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    831   1.1   mycroft 		 * then round up to the next block.
    832   1.1   mycroft 		 */
    833   1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    834   1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    835   1.1   mycroft 	return (nextblk);
    836   1.1   mycroft }
    837   1.1   mycroft 
    838   1.1   mycroft /*
    839   1.1   mycroft  * Implement the cylinder overflow algorithm.
    840   1.1   mycroft  *
    841   1.1   mycroft  * The policy implemented by this algorithm is:
    842   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    843   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    844   1.1   mycroft  *   3) brute force search for a free block.
    845   1.1   mycroft  */
    846   1.1   mycroft /*VARARGS5*/
    847   1.1   mycroft static u_long
    848   1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    849   1.1   mycroft 	struct inode *ip;
    850   1.1   mycroft 	int cg;
    851   1.1   mycroft 	long pref;
    852   1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    853  1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    854   1.1   mycroft {
    855  1.33  augustss 	struct fs *fs;
    856   1.1   mycroft 	long result;
    857   1.1   mycroft 	int i, icg = cg;
    858   1.1   mycroft 
    859   1.1   mycroft 	fs = ip->i_fs;
    860   1.1   mycroft 	/*
    861   1.1   mycroft 	 * 1: preferred cylinder group
    862   1.1   mycroft 	 */
    863   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    864   1.1   mycroft 	if (result)
    865   1.1   mycroft 		return (result);
    866   1.1   mycroft 	/*
    867   1.1   mycroft 	 * 2: quadratic rehash
    868   1.1   mycroft 	 */
    869   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    870   1.1   mycroft 		cg += i;
    871   1.1   mycroft 		if (cg >= fs->fs_ncg)
    872   1.1   mycroft 			cg -= fs->fs_ncg;
    873   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    874   1.1   mycroft 		if (result)
    875   1.1   mycroft 			return (result);
    876   1.1   mycroft 	}
    877   1.1   mycroft 	/*
    878   1.1   mycroft 	 * 3: brute force search
    879   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    880   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    881   1.1   mycroft 	 */
    882   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    883   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    884   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    885   1.1   mycroft 		if (result)
    886   1.1   mycroft 			return (result);
    887   1.1   mycroft 		cg++;
    888   1.1   mycroft 		if (cg == fs->fs_ncg)
    889   1.1   mycroft 			cg = 0;
    890   1.1   mycroft 	}
    891  1.35   thorpej 	return (0);
    892   1.1   mycroft }
    893   1.1   mycroft 
    894   1.1   mycroft /*
    895   1.1   mycroft  * Determine whether a fragment can be extended.
    896   1.1   mycroft  *
    897   1.1   mycroft  * Check to see if the necessary fragments are available, and
    898   1.1   mycroft  * if they are, allocate them.
    899   1.1   mycroft  */
    900  1.18      fvdl static ufs_daddr_t
    901   1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    902   1.1   mycroft 	struct inode *ip;
    903   1.1   mycroft 	int cg;
    904   1.1   mycroft 	long bprev;
    905   1.1   mycroft 	int osize, nsize;
    906   1.1   mycroft {
    907  1.33  augustss 	struct fs *fs;
    908  1.33  augustss 	struct cg *cgp;
    909   1.1   mycroft 	struct buf *bp;
    910   1.1   mycroft 	long bno;
    911   1.1   mycroft 	int frags, bbase;
    912   1.1   mycroft 	int i, error;
    913   1.1   mycroft 
    914   1.1   mycroft 	fs = ip->i_fs;
    915   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    916  1.35   thorpej 		return (0);
    917   1.1   mycroft 	frags = numfrags(fs, nsize);
    918   1.1   mycroft 	bbase = fragnum(fs, bprev);
    919   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    920   1.1   mycroft 		/* cannot extend across a block boundary */
    921  1.35   thorpej 		return (0);
    922   1.1   mycroft 	}
    923   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    924   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    925   1.1   mycroft 	if (error) {
    926   1.1   mycroft 		brelse(bp);
    927  1.35   thorpej 		return (0);
    928   1.1   mycroft 	}
    929   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    930  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    931   1.1   mycroft 		brelse(bp);
    932  1.35   thorpej 		return (0);
    933   1.1   mycroft 	}
    934  1.30      fvdl 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    935   1.1   mycroft 	bno = dtogd(fs, bprev);
    936   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    937  1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    938   1.1   mycroft 			brelse(bp);
    939  1.35   thorpej 			return (0);
    940   1.1   mycroft 		}
    941   1.1   mycroft 	/*
    942   1.1   mycroft 	 * the current fragment can be extended
    943   1.1   mycroft 	 * deduct the count on fragment being extended into
    944   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    945   1.1   mycroft 	 * allocate the extended piece
    946   1.1   mycroft 	 */
    947   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    948  1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    949   1.1   mycroft 			break;
    950  1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    951   1.1   mycroft 	if (i != frags)
    952  1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    953   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    954  1.30      fvdl 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    955  1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    956   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    957   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    958   1.1   mycroft 	}
    959   1.1   mycroft 	fs->fs_fmod = 1;
    960  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
    961  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
    962   1.1   mycroft 	bdwrite(bp);
    963   1.1   mycroft 	return (bprev);
    964   1.1   mycroft }
    965   1.1   mycroft 
    966   1.1   mycroft /*
    967   1.1   mycroft  * Determine whether a block can be allocated.
    968   1.1   mycroft  *
    969   1.1   mycroft  * Check to see if a block of the appropriate size is available,
    970   1.1   mycroft  * and if it is, allocate it.
    971   1.1   mycroft  */
    972  1.18      fvdl static ufs_daddr_t
    973   1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    974   1.1   mycroft 	struct inode *ip;
    975   1.1   mycroft 	int cg;
    976  1.18      fvdl 	ufs_daddr_t bpref;
    977   1.1   mycroft 	int size;
    978   1.1   mycroft {
    979  1.30      fvdl 	struct cg *cgp;
    980   1.1   mycroft 	struct buf *bp;
    981  1.30      fvdl 	ufs_daddr_t bno, blkno;
    982  1.30      fvdl 	int error, frags, allocsiz, i;
    983  1.30      fvdl 	struct fs *fs = ip->i_fs;
    984  1.30      fvdl #ifdef FFS_EI
    985  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
    986  1.30      fvdl #endif
    987   1.1   mycroft 
    988   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    989  1.35   thorpej 		return (0);
    990   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    991   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    992   1.1   mycroft 	if (error) {
    993   1.1   mycroft 		brelse(bp);
    994  1.35   thorpej 		return (0);
    995   1.1   mycroft 	}
    996   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    997  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
    998   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    999   1.1   mycroft 		brelse(bp);
   1000  1.35   thorpej 		return (0);
   1001   1.1   mycroft 	}
   1002  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1003   1.1   mycroft 	if (size == fs->fs_bsize) {
   1004  1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1005   1.1   mycroft 		bdwrite(bp);
   1006   1.1   mycroft 		return (bno);
   1007   1.1   mycroft 	}
   1008   1.1   mycroft 	/*
   1009   1.1   mycroft 	 * check to see if any fragments are already available
   1010   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1011   1.1   mycroft 	 * it down to a smaller size if necessary
   1012   1.1   mycroft 	 */
   1013   1.1   mycroft 	frags = numfrags(fs, size);
   1014   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1015   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1016   1.1   mycroft 			break;
   1017   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1018   1.1   mycroft 		/*
   1019   1.1   mycroft 		 * no fragments were available, so a block will be
   1020   1.1   mycroft 		 * allocated, and hacked up
   1021   1.1   mycroft 		 */
   1022   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1023   1.1   mycroft 			brelse(bp);
   1024  1.35   thorpej 			return (0);
   1025   1.1   mycroft 		}
   1026  1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1027   1.1   mycroft 		bpref = dtogd(fs, bno);
   1028   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1029  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1030   1.1   mycroft 		i = fs->fs_frag - frags;
   1031  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1032   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1033  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1034   1.1   mycroft 		fs->fs_fmod = 1;
   1035  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1036   1.1   mycroft 		bdwrite(bp);
   1037   1.1   mycroft 		return (bno);
   1038   1.1   mycroft 	}
   1039  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1040  1.30      fvdl #if 0
   1041  1.30      fvdl 	/*
   1042  1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1043  1.30      fvdl 	 *          also: returning NULL as ufs_daddr_t ?
   1044  1.30      fvdl 	 */
   1045   1.1   mycroft 	if (bno < 0) {
   1046   1.1   mycroft 		brelse(bp);
   1047  1.35   thorpej 		return (0);
   1048   1.1   mycroft 	}
   1049  1.30      fvdl #endif
   1050   1.1   mycroft 	for (i = 0; i < frags; i++)
   1051  1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1052  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1053   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1054   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1055   1.1   mycroft 	fs->fs_fmod = 1;
   1056  1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1057   1.1   mycroft 	if (frags != allocsiz)
   1058  1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1059  1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1060  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1061  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1062   1.1   mycroft 	bdwrite(bp);
   1063  1.30      fvdl 	return blkno;
   1064   1.1   mycroft }
   1065   1.1   mycroft 
   1066   1.1   mycroft /*
   1067   1.1   mycroft  * Allocate a block in a cylinder group.
   1068   1.1   mycroft  *
   1069   1.1   mycroft  * This algorithm implements the following policy:
   1070   1.1   mycroft  *   1) allocate the requested block.
   1071   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1072   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1073   1.1   mycroft  *      specified cylinder group.
   1074   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1075   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1076   1.1   mycroft  */
   1077  1.18      fvdl static ufs_daddr_t
   1078  1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1079  1.30      fvdl 	struct inode *ip;
   1080  1.30      fvdl 	struct buf *bp;
   1081  1.18      fvdl 	ufs_daddr_t bpref;
   1082   1.1   mycroft {
   1083  1.30      fvdl 	struct cg *cgp;
   1084  1.18      fvdl 	ufs_daddr_t bno, blkno;
   1085   1.1   mycroft 	int cylno, pos, delta;
   1086   1.1   mycroft 	short *cylbp;
   1087  1.33  augustss 	int i;
   1088  1.30      fvdl 	struct fs *fs = ip->i_fs;
   1089  1.30      fvdl #ifdef FFS_EI
   1090  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1091  1.30      fvdl #endif
   1092   1.1   mycroft 
   1093  1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1094  1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1095  1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1096   1.1   mycroft 		goto norot;
   1097   1.1   mycroft 	}
   1098   1.1   mycroft 	bpref = blknum(fs, bpref);
   1099   1.1   mycroft 	bpref = dtogd(fs, bpref);
   1100   1.1   mycroft 	/*
   1101   1.1   mycroft 	 * if the requested block is available, use it
   1102   1.1   mycroft 	 */
   1103  1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1104  1.19    bouyer 		fragstoblks(fs, bpref))) {
   1105   1.1   mycroft 		bno = bpref;
   1106   1.1   mycroft 		goto gotit;
   1107   1.1   mycroft 	}
   1108  1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1109   1.1   mycroft 		/*
   1110   1.1   mycroft 		 * Block layout information is not available.
   1111   1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1112   1.1   mycroft 		 * next available free block following the one
   1113   1.1   mycroft 		 * we just allocated. Hopefully this will at
   1114   1.1   mycroft 		 * least hit a track cache on drives of unknown
   1115   1.1   mycroft 		 * geometry (e.g. SCSI).
   1116   1.1   mycroft 		 */
   1117   1.1   mycroft 		goto norot;
   1118   1.1   mycroft 	}
   1119   1.6   mycroft 	/*
   1120   1.6   mycroft 	 * check for a block available on the same cylinder
   1121   1.6   mycroft 	 */
   1122   1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1123  1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1124   1.6   mycroft 		goto norot;
   1125   1.1   mycroft 	/*
   1126   1.1   mycroft 	 * check the summary information to see if a block is
   1127   1.1   mycroft 	 * available in the requested cylinder starting at the
   1128   1.1   mycroft 	 * requested rotational position and proceeding around.
   1129   1.1   mycroft 	 */
   1130  1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1131   1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1132   1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1133  1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1134   1.1   mycroft 			break;
   1135   1.1   mycroft 	if (i == fs->fs_nrpos)
   1136   1.1   mycroft 		for (i = 0; i < pos; i++)
   1137  1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1138   1.1   mycroft 				break;
   1139  1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1140   1.1   mycroft 		/*
   1141   1.1   mycroft 		 * found a rotational position, now find the actual
   1142   1.1   mycroft 		 * block. A panic if none is actually there.
   1143   1.1   mycroft 		 */
   1144   1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1145   1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1146   1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1147  1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1148   1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1149   1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1150   1.1   mycroft 		}
   1151   1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1152  1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1153   1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1154   1.1   mycroft 				goto gotit;
   1155   1.1   mycroft 			}
   1156   1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1157   1.1   mycroft 			if (delta <= 0 ||
   1158   1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1159   1.1   mycroft 				break;
   1160   1.1   mycroft 			i += delta;
   1161   1.1   mycroft 		}
   1162  1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1163   1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1164   1.1   mycroft 	}
   1165   1.1   mycroft norot:
   1166   1.1   mycroft 	/*
   1167   1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1168   1.1   mycroft 	 * available one in this cylinder group.
   1169   1.1   mycroft 	 */
   1170  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1171   1.1   mycroft 	if (bno < 0)
   1172  1.35   thorpej 		return (0);
   1173  1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1174   1.1   mycroft gotit:
   1175   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1176  1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1177  1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1178  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1179   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1180  1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1181   1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1182  1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1183  1.30      fvdl 	    needswap);
   1184  1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1185   1.1   mycroft 	fs->fs_fmod = 1;
   1186  1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1187  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1188  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1189  1.30      fvdl 	return (blkno);
   1190   1.1   mycroft }
   1191   1.1   mycroft 
   1192   1.1   mycroft /*
   1193   1.1   mycroft  * Determine whether a cluster can be allocated.
   1194   1.1   mycroft  *
   1195   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1196   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1197   1.1   mycroft  * take the first one that we find following bpref.
   1198   1.1   mycroft  */
   1199  1.18      fvdl static ufs_daddr_t
   1200   1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1201   1.1   mycroft 	struct inode *ip;
   1202   1.1   mycroft 	int cg;
   1203  1.18      fvdl 	ufs_daddr_t bpref;
   1204   1.1   mycroft 	int len;
   1205   1.1   mycroft {
   1206  1.33  augustss 	struct fs *fs;
   1207  1.33  augustss 	struct cg *cgp;
   1208   1.1   mycroft 	struct buf *bp;
   1209  1.18      fvdl 	int i, got, run, bno, bit, map;
   1210   1.1   mycroft 	u_char *mapp;
   1211   1.5   mycroft 	int32_t *lp;
   1212   1.1   mycroft 
   1213   1.1   mycroft 	fs = ip->i_fs;
   1214   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1215  1.35   thorpej 		return (0);
   1216   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1217   1.1   mycroft 	    NOCRED, &bp))
   1218   1.1   mycroft 		goto fail;
   1219   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1220  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1221   1.1   mycroft 		goto fail;
   1222   1.1   mycroft 	/*
   1223   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1224   1.1   mycroft 	 * available in this cylinder group.
   1225   1.1   mycroft 	 */
   1226  1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1227   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1228  1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1229   1.1   mycroft 			break;
   1230   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1231   1.5   mycroft 		/*
   1232   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1233   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1234   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1235   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1236   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1237   1.5   mycroft 		 */
   1238  1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1239   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1240  1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1241   1.5   mycroft 				break;
   1242   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1243   1.1   mycroft 		goto fail;
   1244   1.5   mycroft 	}
   1245   1.1   mycroft 	/*
   1246   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1247   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1248   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1249   1.1   mycroft 	 * block allocation. We do not search before the current
   1250   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1251   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1252   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1253   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1254   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1255   1.1   mycroft 	 */
   1256   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1257   1.1   mycroft 		bpref = 0;
   1258   1.1   mycroft 	else
   1259   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1260  1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1261   1.1   mycroft 	map = *mapp++;
   1262   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1263  1.19    bouyer 	for (run = 0, got = bpref;
   1264  1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1265   1.1   mycroft 		if ((map & bit) == 0) {
   1266   1.1   mycroft 			run = 0;
   1267   1.1   mycroft 		} else {
   1268   1.1   mycroft 			run++;
   1269   1.1   mycroft 			if (run == len)
   1270   1.1   mycroft 				break;
   1271   1.1   mycroft 		}
   1272  1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1273   1.1   mycroft 			bit <<= 1;
   1274   1.1   mycroft 		} else {
   1275   1.1   mycroft 			map = *mapp++;
   1276   1.1   mycroft 			bit = 1;
   1277   1.1   mycroft 		}
   1278   1.1   mycroft 	}
   1279  1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1280   1.1   mycroft 		goto fail;
   1281   1.1   mycroft 	/*
   1282   1.1   mycroft 	 * Allocate the cluster that we have found.
   1283   1.1   mycroft 	 */
   1284  1.30      fvdl #ifdef DIAGNOSTIC
   1285  1.18      fvdl 	for (i = 1; i <= len; i++)
   1286  1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1287  1.30      fvdl 		    got - run + i))
   1288  1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1289  1.30      fvdl #endif
   1290  1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1291  1.18      fvdl 	if (dtog(fs, bno) != cg)
   1292  1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1293   1.1   mycroft 	len = blkstofrags(fs, len);
   1294   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1295  1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1296   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1297   1.8       cgd 	bdwrite(bp);
   1298   1.1   mycroft 	return (bno);
   1299   1.1   mycroft 
   1300   1.1   mycroft fail:
   1301   1.1   mycroft 	brelse(bp);
   1302   1.1   mycroft 	return (0);
   1303   1.1   mycroft }
   1304   1.1   mycroft 
   1305   1.1   mycroft /*
   1306   1.1   mycroft  * Determine whether an inode can be allocated.
   1307   1.1   mycroft  *
   1308   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1309   1.1   mycroft  * allocate it using the following policy:
   1310   1.1   mycroft  *   1) allocate the requested inode.
   1311   1.1   mycroft  *   2) allocate the next available inode after the requested
   1312   1.1   mycroft  *      inode in the specified cylinder group.
   1313   1.1   mycroft  */
   1314  1.18      fvdl static ufs_daddr_t
   1315   1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1316   1.1   mycroft 	struct inode *ip;
   1317   1.1   mycroft 	int cg;
   1318  1.18      fvdl 	ufs_daddr_t ipref;
   1319   1.1   mycroft 	int mode;
   1320   1.1   mycroft {
   1321  1.33  augustss 	struct cg *cgp;
   1322   1.1   mycroft 	struct buf *bp;
   1323   1.1   mycroft 	int error, start, len, loc, map, i;
   1324  1.33  augustss 	struct fs *fs = ip->i_fs;
   1325  1.19    bouyer #ifdef FFS_EI
   1326  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1327  1.19    bouyer #endif
   1328   1.1   mycroft 
   1329   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1330  1.35   thorpej 		return (0);
   1331   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1332   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1333   1.1   mycroft 	if (error) {
   1334   1.1   mycroft 		brelse(bp);
   1335  1.35   thorpej 		return (0);
   1336   1.1   mycroft 	}
   1337   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1338  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1339   1.1   mycroft 		brelse(bp);
   1340  1.35   thorpej 		return (0);
   1341   1.1   mycroft 	}
   1342  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1343   1.1   mycroft 	if (ipref) {
   1344   1.1   mycroft 		ipref %= fs->fs_ipg;
   1345  1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1346   1.1   mycroft 			goto gotit;
   1347   1.1   mycroft 	}
   1348  1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1349  1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1350  1.19    bouyer 		NBBY);
   1351  1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1352   1.1   mycroft 	if (loc == 0) {
   1353   1.1   mycroft 		len = start + 1;
   1354   1.1   mycroft 		start = 0;
   1355  1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1356   1.1   mycroft 		if (loc == 0) {
   1357  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1358  1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1359  1.19    bouyer 				fs->fs_fsmnt);
   1360   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1361   1.1   mycroft 			/* NOTREACHED */
   1362   1.1   mycroft 		}
   1363   1.1   mycroft 	}
   1364   1.1   mycroft 	i = start + len - loc;
   1365  1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1366   1.1   mycroft 	ipref = i * NBBY;
   1367   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1368   1.1   mycroft 		if ((map & i) == 0) {
   1369  1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1370   1.1   mycroft 			goto gotit;
   1371   1.1   mycroft 		}
   1372   1.1   mycroft 	}
   1373  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1374   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1375   1.1   mycroft 	/* NOTREACHED */
   1376   1.1   mycroft gotit:
   1377  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1378  1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1379  1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1380  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1381   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1382  1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1383   1.1   mycroft 	fs->fs_fmod = 1;
   1384   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1385  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1386   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1387   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1388   1.1   mycroft 	}
   1389   1.1   mycroft 	bdwrite(bp);
   1390   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1391   1.1   mycroft }
   1392   1.1   mycroft 
   1393   1.1   mycroft /*
   1394   1.1   mycroft  * Free a block or fragment.
   1395   1.1   mycroft  *
   1396   1.1   mycroft  * The specified block or fragment is placed back in the
   1397   1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1398   1.1   mycroft  * block reassembly is checked.
   1399   1.1   mycroft  */
   1400   1.9  christos void
   1401   1.1   mycroft ffs_blkfree(ip, bno, size)
   1402  1.33  augustss 	struct inode *ip;
   1403  1.18      fvdl 	ufs_daddr_t bno;
   1404   1.1   mycroft 	long size;
   1405   1.1   mycroft {
   1406  1.33  augustss 	struct cg *cgp;
   1407   1.1   mycroft 	struct buf *bp;
   1408  1.18      fvdl 	ufs_daddr_t blkno;
   1409   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1410  1.33  augustss 	struct fs *fs = ip->i_fs;
   1411  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1412   1.1   mycroft 
   1413  1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1414  1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1415  1.30      fvdl 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1416  1.30      fvdl 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1417   1.1   mycroft 		panic("blkfree: bad size");
   1418   1.1   mycroft 	}
   1419   1.1   mycroft 	cg = dtog(fs, bno);
   1420   1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1421  1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1422  1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1423   1.1   mycroft 		return;
   1424   1.1   mycroft 	}
   1425   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1426   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1427   1.1   mycroft 	if (error) {
   1428   1.1   mycroft 		brelse(bp);
   1429   1.1   mycroft 		return;
   1430   1.1   mycroft 	}
   1431   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1432  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1433   1.1   mycroft 		brelse(bp);
   1434   1.1   mycroft 		return;
   1435   1.1   mycroft 	}
   1436  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1437   1.1   mycroft 	bno = dtogd(fs, bno);
   1438   1.1   mycroft 	if (size == fs->fs_bsize) {
   1439   1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1440  1.30      fvdl 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1441  1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1442   1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1443   1.1   mycroft 			panic("blkfree: freeing free block");
   1444   1.1   mycroft 		}
   1445  1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1446  1.30      fvdl 		ffs_clusteracct(fs, cgp, blkno, 1);
   1447  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1448   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1449   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1450   1.1   mycroft 		i = cbtocylno(fs, bno);
   1451  1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1452  1.30      fvdl 		    needswap);
   1453  1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1454   1.1   mycroft 	} else {
   1455   1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1456   1.1   mycroft 		/*
   1457   1.1   mycroft 		 * decrement the counts associated with the old frags
   1458   1.1   mycroft 		 */
   1459  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1460  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1461   1.1   mycroft 		/*
   1462   1.1   mycroft 		 * deallocate the fragment
   1463   1.1   mycroft 		 */
   1464   1.1   mycroft 		frags = numfrags(fs, size);
   1465   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1466  1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1467  1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1468   1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1469   1.1   mycroft 				panic("blkfree: freeing free frag");
   1470   1.1   mycroft 			}
   1471  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1472   1.1   mycroft 		}
   1473  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1474   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1475  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1476   1.1   mycroft 		/*
   1477   1.1   mycroft 		 * add back in counts associated with the new frags
   1478   1.1   mycroft 		 */
   1479  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1480  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1481   1.1   mycroft 		/*
   1482   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1483   1.1   mycroft 		 */
   1484   1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1485  1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1486  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1487   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1488   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1489  1.30      fvdl 			ffs_clusteracct(fs, cgp, blkno, 1);
   1490  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1491   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1492   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1493   1.1   mycroft 			i = cbtocylno(fs, bbase);
   1494  1.30      fvdl 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1495  1.30      fvdl 								bbase)], 1,
   1496  1.30      fvdl 			    needswap);
   1497  1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1498   1.1   mycroft 		}
   1499   1.1   mycroft 	}
   1500   1.1   mycroft 	fs->fs_fmod = 1;
   1501   1.1   mycroft 	bdwrite(bp);
   1502   1.1   mycroft }
   1503   1.1   mycroft 
   1504  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1505  1.18      fvdl /*
   1506  1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1507  1.18      fvdl  * fragment is allocated, false if it is free.
   1508  1.18      fvdl  */
   1509  1.18      fvdl static int
   1510  1.18      fvdl ffs_checkblk(ip, bno, size)
   1511  1.18      fvdl 	struct inode *ip;
   1512  1.18      fvdl 	ufs_daddr_t bno;
   1513  1.18      fvdl 	long size;
   1514  1.18      fvdl {
   1515  1.18      fvdl 	struct fs *fs;
   1516  1.18      fvdl 	struct cg *cgp;
   1517  1.18      fvdl 	struct buf *bp;
   1518  1.18      fvdl 	int i, error, frags, free;
   1519  1.18      fvdl 
   1520  1.18      fvdl 	fs = ip->i_fs;
   1521  1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1522  1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1523  1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1524  1.18      fvdl 		panic("checkblk: bad size");
   1525  1.18      fvdl 	}
   1526  1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1527  1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1528  1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1529  1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1530  1.18      fvdl 	if (error) {
   1531  1.18      fvdl 		brelse(bp);
   1532  1.18      fvdl 		return 0;
   1533  1.18      fvdl 	}
   1534  1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1535  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1536  1.18      fvdl 		brelse(bp);
   1537  1.18      fvdl 		return 0;
   1538  1.18      fvdl 	}
   1539  1.18      fvdl 	bno = dtogd(fs, bno);
   1540  1.18      fvdl 	if (size == fs->fs_bsize) {
   1541  1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1542  1.19    bouyer 			fragstoblks(fs, bno));
   1543  1.18      fvdl 	} else {
   1544  1.18      fvdl 		frags = numfrags(fs, size);
   1545  1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1546  1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1547  1.18      fvdl 				free++;
   1548  1.18      fvdl 		if (free != 0 && free != frags)
   1549  1.18      fvdl 			panic("checkblk: partially free fragment");
   1550  1.18      fvdl 	}
   1551  1.18      fvdl 	brelse(bp);
   1552  1.18      fvdl 	return (!free);
   1553  1.18      fvdl }
   1554  1.18      fvdl #endif /* DIAGNOSTIC */
   1555  1.18      fvdl 
   1556   1.1   mycroft /*
   1557   1.1   mycroft  * Free an inode.
   1558  1.30      fvdl  */
   1559  1.30      fvdl int
   1560  1.30      fvdl ffs_vfree(v)
   1561  1.30      fvdl 	void *v;
   1562  1.30      fvdl {
   1563  1.30      fvdl 	struct vop_vfree_args /* {
   1564  1.30      fvdl 		struct vnode *a_pvp;
   1565  1.30      fvdl 		ino_t a_ino;
   1566  1.30      fvdl 		int a_mode;
   1567  1.30      fvdl 	} */ *ap = v;
   1568  1.30      fvdl 
   1569  1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1570  1.30      fvdl 		softdep_freefile(ap);
   1571  1.30      fvdl 		return (0);
   1572  1.30      fvdl 	}
   1573  1.30      fvdl 	return (ffs_freefile(ap));
   1574  1.30      fvdl }
   1575  1.30      fvdl 
   1576  1.30      fvdl /*
   1577  1.30      fvdl  * Do the actual free operation.
   1578   1.1   mycroft  * The specified inode is placed back in the free map.
   1579   1.1   mycroft  */
   1580   1.1   mycroft int
   1581  1.30      fvdl ffs_freefile(v)
   1582   1.9  christos 	void *v;
   1583   1.9  christos {
   1584   1.1   mycroft 	struct vop_vfree_args /* {
   1585   1.1   mycroft 		struct vnode *a_pvp;
   1586   1.1   mycroft 		ino_t a_ino;
   1587   1.1   mycroft 		int a_mode;
   1588   1.9  christos 	} */ *ap = v;
   1589  1.33  augustss 	struct cg *cgp;
   1590  1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1591  1.33  augustss 	struct fs *fs = pip->i_fs;
   1592   1.1   mycroft 	ino_t ino = ap->a_ino;
   1593   1.1   mycroft 	struct buf *bp;
   1594   1.1   mycroft 	int error, cg;
   1595  1.19    bouyer #ifdef FFS_EI
   1596  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1597  1.19    bouyer #endif
   1598   1.1   mycroft 
   1599   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1600   1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1601   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1602   1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1603   1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1604   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1605   1.1   mycroft 	if (error) {
   1606   1.1   mycroft 		brelse(bp);
   1607  1.30      fvdl 		return (error);
   1608   1.1   mycroft 	}
   1609   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1610  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1611   1.1   mycroft 		brelse(bp);
   1612   1.1   mycroft 		return (0);
   1613   1.1   mycroft 	}
   1614  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1615   1.1   mycroft 	ino %= fs->fs_ipg;
   1616  1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1617  1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1618   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1619   1.1   mycroft 		if (fs->fs_ronly == 0)
   1620   1.1   mycroft 			panic("ifree: freeing free inode");
   1621   1.1   mycroft 	}
   1622  1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1623  1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1624  1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1625  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1626   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1627   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1628   1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1629  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1630   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1631   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1632   1.1   mycroft 	}
   1633   1.1   mycroft 	fs->fs_fmod = 1;
   1634   1.1   mycroft 	bdwrite(bp);
   1635   1.1   mycroft 	return (0);
   1636   1.1   mycroft }
   1637   1.1   mycroft 
   1638   1.1   mycroft /*
   1639   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1640   1.1   mycroft  *
   1641   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1642   1.1   mycroft  * available.
   1643   1.1   mycroft  */
   1644  1.18      fvdl static ufs_daddr_t
   1645  1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1646  1.33  augustss 	struct fs *fs;
   1647  1.33  augustss 	struct cg *cgp;
   1648  1.18      fvdl 	ufs_daddr_t bpref;
   1649   1.1   mycroft 	int allocsiz;
   1650   1.1   mycroft {
   1651  1.18      fvdl 	ufs_daddr_t bno;
   1652   1.1   mycroft 	int start, len, loc, i;
   1653   1.1   mycroft 	int blk, field, subfield, pos;
   1654  1.19    bouyer 	int ostart, olen;
   1655  1.30      fvdl #ifdef FFS_EI
   1656  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1657  1.30      fvdl #endif
   1658   1.1   mycroft 
   1659   1.1   mycroft 	/*
   1660   1.1   mycroft 	 * find the fragment by searching through the free block
   1661   1.1   mycroft 	 * map for an appropriate bit pattern
   1662   1.1   mycroft 	 */
   1663   1.1   mycroft 	if (bpref)
   1664   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1665   1.1   mycroft 	else
   1666  1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1667   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1668  1.19    bouyer 	ostart = start;
   1669  1.19    bouyer 	olen = len;
   1670  1.45     lukem 	loc = scanc((u_int)len,
   1671  1.45     lukem 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1672  1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1673  1.45     lukem 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1674   1.1   mycroft 	if (loc == 0) {
   1675   1.1   mycroft 		len = start + 1;
   1676   1.1   mycroft 		start = 0;
   1677  1.45     lukem 		loc = scanc((u_int)len,
   1678  1.45     lukem 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1679  1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1680  1.45     lukem 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1681   1.1   mycroft 		if (loc == 0) {
   1682  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1683  1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1684  1.20      ross 			printf("offset=%d %ld\n",
   1685  1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1686  1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1687   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1688   1.1   mycroft 			/* NOTREACHED */
   1689   1.1   mycroft 		}
   1690   1.1   mycroft 	}
   1691   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1692  1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1693   1.1   mycroft 	/*
   1694   1.1   mycroft 	 * found the byte in the map
   1695   1.1   mycroft 	 * sift through the bits to find the selected frag
   1696   1.1   mycroft 	 */
   1697   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1698  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1699   1.1   mycroft 		blk <<= 1;
   1700   1.1   mycroft 		field = around[allocsiz];
   1701   1.1   mycroft 		subfield = inside[allocsiz];
   1702   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1703   1.1   mycroft 			if ((blk & field) == subfield)
   1704   1.1   mycroft 				return (bno + pos);
   1705   1.1   mycroft 			field <<= 1;
   1706   1.1   mycroft 			subfield <<= 1;
   1707   1.1   mycroft 		}
   1708   1.1   mycroft 	}
   1709  1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1710   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1711   1.1   mycroft 	return (-1);
   1712   1.1   mycroft }
   1713   1.1   mycroft 
   1714   1.1   mycroft /*
   1715   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1716   1.1   mycroft  *
   1717   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1718   1.1   mycroft  */
   1719   1.9  christos void
   1720  1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1721   1.1   mycroft 	struct fs *fs;
   1722   1.1   mycroft 	struct cg *cgp;
   1723  1.18      fvdl 	ufs_daddr_t blkno;
   1724   1.1   mycroft 	int cnt;
   1725   1.1   mycroft {
   1726   1.4       cgd 	int32_t *sump;
   1727   1.5   mycroft 	int32_t *lp;
   1728   1.1   mycroft 	u_char *freemapp, *mapp;
   1729   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1730  1.30      fvdl #ifdef FFS_EI
   1731  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1732  1.30      fvdl #endif
   1733   1.1   mycroft 
   1734   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1735   1.1   mycroft 		return;
   1736  1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1737  1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1738   1.1   mycroft 	/*
   1739   1.1   mycroft 	 * Allocate or clear the actual block.
   1740   1.1   mycroft 	 */
   1741   1.1   mycroft 	if (cnt > 0)
   1742   1.1   mycroft 		setbit(freemapp, blkno);
   1743   1.1   mycroft 	else
   1744   1.1   mycroft 		clrbit(freemapp, blkno);
   1745   1.1   mycroft 	/*
   1746   1.1   mycroft 	 * Find the size of the cluster going forward.
   1747   1.1   mycroft 	 */
   1748   1.1   mycroft 	start = blkno + 1;
   1749   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1750  1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1751  1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1752   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1753   1.1   mycroft 	map = *mapp++;
   1754   1.1   mycroft 	bit = 1 << (start % NBBY);
   1755   1.1   mycroft 	for (i = start; i < end; i++) {
   1756   1.1   mycroft 		if ((map & bit) == 0)
   1757   1.1   mycroft 			break;
   1758   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1759   1.1   mycroft 			bit <<= 1;
   1760   1.1   mycroft 		} else {
   1761   1.1   mycroft 			map = *mapp++;
   1762   1.1   mycroft 			bit = 1;
   1763   1.1   mycroft 		}
   1764   1.1   mycroft 	}
   1765   1.1   mycroft 	forw = i - start;
   1766   1.1   mycroft 	/*
   1767   1.1   mycroft 	 * Find the size of the cluster going backward.
   1768   1.1   mycroft 	 */
   1769   1.1   mycroft 	start = blkno - 1;
   1770   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1771   1.1   mycroft 	if (end < 0)
   1772   1.1   mycroft 		end = -1;
   1773   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1774   1.1   mycroft 	map = *mapp--;
   1775   1.1   mycroft 	bit = 1 << (start % NBBY);
   1776   1.1   mycroft 	for (i = start; i > end; i--) {
   1777   1.1   mycroft 		if ((map & bit) == 0)
   1778   1.1   mycroft 			break;
   1779   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1780   1.1   mycroft 			bit >>= 1;
   1781   1.1   mycroft 		} else {
   1782   1.1   mycroft 			map = *mapp--;
   1783   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1784   1.1   mycroft 		}
   1785   1.1   mycroft 	}
   1786   1.1   mycroft 	back = start - i;
   1787   1.1   mycroft 	/*
   1788   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1789   1.1   mycroft 	 * back clusters.
   1790   1.1   mycroft 	 */
   1791   1.1   mycroft 	i = back + forw + 1;
   1792   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1793   1.1   mycroft 		i = fs->fs_contigsumsize;
   1794  1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1795   1.1   mycroft 	if (back > 0)
   1796  1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1797   1.1   mycroft 	if (forw > 0)
   1798  1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1799  1.19    bouyer 
   1800   1.5   mycroft 	/*
   1801   1.5   mycroft 	 * Update cluster summary information.
   1802   1.5   mycroft 	 */
   1803   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1804   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1805  1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1806   1.5   mycroft 			break;
   1807  1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1808   1.1   mycroft }
   1809   1.1   mycroft 
   1810   1.1   mycroft /*
   1811   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1812   1.1   mycroft  *
   1813   1.1   mycroft  * The form of the error message is:
   1814   1.1   mycroft  *	fs: error message
   1815   1.1   mycroft  */
   1816   1.1   mycroft static void
   1817   1.1   mycroft ffs_fserr(fs, uid, cp)
   1818   1.1   mycroft 	struct fs *fs;
   1819   1.1   mycroft 	u_int uid;
   1820   1.1   mycroft 	char *cp;
   1821   1.1   mycroft {
   1822   1.1   mycroft 
   1823  1.37       chs 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1824  1.37       chs 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1825   1.1   mycroft }
   1826