Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.50.2.1
      1  1.50.2.1      fvdl /*	$NetBSD: ffs_alloc.c,v 1.50.2.1 2001/10/01 12:48:20 fvdl Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1   mycroft  *
      7       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8       1.1   mycroft  * modification, are permitted provided that the following conditions
      9       1.1   mycroft  * are met:
     10       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15       1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16       1.1   mycroft  *    must display the following acknowledgement:
     17       1.1   mycroft  *	This product includes software developed by the University of
     18       1.1   mycroft  *	California, Berkeley and its contributors.
     19       1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21       1.1   mycroft  *    without specific prior written permission.
     22       1.1   mycroft  *
     23       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.1   mycroft  * SUCH DAMAGE.
     34       1.1   mycroft  *
     35      1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36       1.1   mycroft  */
     37      1.17       mrg 
     38      1.43       mrg #if defined(_KERNEL_OPT)
     39      1.27   thorpej #include "opt_ffs.h"
     40      1.21    scottr #include "opt_quota.h"
     41      1.22    scottr #endif
     42       1.1   mycroft 
     43       1.1   mycroft #include <sys/param.h>
     44       1.1   mycroft #include <sys/systm.h>
     45       1.1   mycroft #include <sys/buf.h>
     46       1.1   mycroft #include <sys/proc.h>
     47       1.1   mycroft #include <sys/vnode.h>
     48       1.1   mycroft #include <sys/mount.h>
     49       1.1   mycroft #include <sys/kernel.h>
     50       1.1   mycroft #include <sys/syslog.h>
     51      1.29       mrg 
     52       1.1   mycroft #include <ufs/ufs/quota.h>
     53      1.19    bouyer #include <ufs/ufs/ufsmount.h>
     54       1.1   mycroft #include <ufs/ufs/inode.h>
     55       1.9  christos #include <ufs/ufs/ufs_extern.h>
     56      1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     57       1.1   mycroft 
     58       1.1   mycroft #include <ufs/ffs/fs.h>
     59       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     60       1.1   mycroft 
     61      1.30      fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     62  1.50.2.1      fvdl static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
     63      1.30      fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     64      1.50     lukem static ino_t ffs_dirpref __P((struct inode *));
     65      1.30      fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     66      1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     67  1.50.2.1      fvdl static u_long ffs_hashalloc __P((struct inode *, int, long, int,
     68  1.50.2.1      fvdl     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     69      1.30      fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     70      1.30      fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     71      1.30      fvdl 				      ufs_daddr_t, int));
     72      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     73      1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     74      1.18      fvdl #endif
     75      1.23  drochner 
     76      1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     77      1.34  jdolecek int ffs_log_changeopt = 0;
     78      1.34  jdolecek 
     79      1.23  drochner /* in ffs_tables.c */
     80      1.40  jdolecek extern const int inside[], around[];
     81      1.40  jdolecek extern const u_char * const fragtbl[];
     82       1.1   mycroft 
     83       1.1   mycroft /*
     84       1.1   mycroft  * Allocate a block in the file system.
     85       1.1   mycroft  *
     86       1.1   mycroft  * The size of the requested block is given, which must be some
     87       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     88       1.1   mycroft  * A preference may be optionally specified. If a preference is given
     89       1.1   mycroft  * the following hierarchy is used to allocate a block:
     90       1.1   mycroft  *   1) allocate the requested block.
     91       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     92       1.1   mycroft  *   3) allocate a block in the same cylinder group.
     93       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     94       1.1   mycroft  *      available block is located.
     95      1.47       wiz  * If no block preference is given the following hierarchy is used
     96       1.1   mycroft  * to allocate a block:
     97       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
     98       1.1   mycroft  *      inode for the file.
     99       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    100       1.1   mycroft  *      available block is located.
    101       1.1   mycroft  */
    102       1.9  christos int
    103       1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    104      1.33  augustss 	struct inode *ip;
    105      1.18      fvdl 	ufs_daddr_t lbn, bpref;
    106       1.1   mycroft 	int size;
    107       1.1   mycroft 	struct ucred *cred;
    108      1.18      fvdl 	ufs_daddr_t *bnp;
    109       1.1   mycroft {
    110      1.37       chs 	struct fs *fs = ip->i_fs;
    111      1.18      fvdl 	ufs_daddr_t bno;
    112       1.9  christos 	int cg;
    113       1.9  christos #ifdef QUOTA
    114       1.9  christos 	int error;
    115       1.9  christos #endif
    116       1.1   mycroft 
    117      1.37       chs #ifdef UVM_PAGE_TRKOWN
    118  1.50.2.1      fvdl 	if (ITOV(ip)->v_type == VREG &&
    119  1.50.2.1      fvdl 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    120      1.37       chs 		struct vm_page *pg;
    121  1.50.2.1      fvdl 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    122      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    123      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    124      1.37       chs 
    125      1.37       chs 		simple_lock(&uobj->vmobjlock);
    126      1.37       chs 		while (off < endoff) {
    127      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    128      1.37       chs 			KASSERT(pg != NULL);
    129      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    130      1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    131      1.37       chs 			off += PAGE_SIZE;
    132      1.37       chs 		}
    133      1.37       chs 		simple_unlock(&uobj->vmobjlock);
    134      1.37       chs 	}
    135      1.37       chs #endif
    136      1.37       chs 
    137       1.1   mycroft 	*bnp = 0;
    138       1.1   mycroft #ifdef DIAGNOSTIC
    139       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    140      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    141       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    142       1.1   mycroft 		panic("ffs_alloc: bad size");
    143       1.1   mycroft 	}
    144       1.1   mycroft 	if (cred == NOCRED)
    145       1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    146       1.1   mycroft #endif /* DIAGNOSTIC */
    147       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    148       1.1   mycroft 		goto nospace;
    149       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    150       1.1   mycroft 		goto nospace;
    151       1.1   mycroft #ifdef QUOTA
    152       1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    153       1.1   mycroft 		return (error);
    154       1.1   mycroft #endif
    155       1.1   mycroft 	if (bpref >= fs->fs_size)
    156       1.1   mycroft 		bpref = 0;
    157       1.1   mycroft 	if (bpref == 0)
    158       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    159       1.1   mycroft 	else
    160       1.1   mycroft 		cg = dtog(fs, bpref);
    161      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    162       1.9  christos 	    			     ffs_alloccg);
    163       1.1   mycroft 	if (bno > 0) {
    164      1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    165       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    166       1.1   mycroft 		*bnp = bno;
    167       1.1   mycroft 		return (0);
    168       1.1   mycroft 	}
    169       1.1   mycroft #ifdef QUOTA
    170       1.1   mycroft 	/*
    171       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    172       1.1   mycroft 	 */
    173       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    174       1.1   mycroft #endif
    175       1.1   mycroft nospace:
    176       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    177       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    178       1.1   mycroft 	return (ENOSPC);
    179       1.1   mycroft }
    180       1.1   mycroft 
    181       1.1   mycroft /*
    182       1.1   mycroft  * Reallocate a fragment to a bigger size
    183       1.1   mycroft  *
    184       1.1   mycroft  * The number and size of the old block is given, and a preference
    185       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    186       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    187       1.1   mycroft  * invoked to get an appropriate block.
    188       1.1   mycroft  */
    189       1.9  christos int
    190      1.37       chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    191      1.33  augustss 	struct inode *ip;
    192      1.18      fvdl 	ufs_daddr_t lbprev;
    193      1.18      fvdl 	ufs_daddr_t bpref;
    194       1.1   mycroft 	int osize, nsize;
    195       1.1   mycroft 	struct ucred *cred;
    196       1.1   mycroft 	struct buf **bpp;
    197      1.37       chs 	ufs_daddr_t *blknop;
    198       1.1   mycroft {
    199      1.37       chs 	struct fs *fs = ip->i_fs;
    200       1.1   mycroft 	struct buf *bp;
    201       1.1   mycroft 	int cg, request, error;
    202      1.18      fvdl 	ufs_daddr_t bprev, bno;
    203      1.25   thorpej 
    204      1.37       chs #ifdef UVM_PAGE_TRKOWN
    205      1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    206      1.37       chs 		struct vm_page *pg;
    207  1.50.2.1      fvdl 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    208      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    209      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    210      1.37       chs 
    211      1.37       chs 		simple_lock(&uobj->vmobjlock);
    212      1.37       chs 		while (off < endoff) {
    213      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    214      1.37       chs 			KASSERT(pg != NULL);
    215      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    216      1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    217      1.37       chs 			off += PAGE_SIZE;
    218      1.37       chs 		}
    219      1.37       chs 		simple_unlock(&uobj->vmobjlock);
    220      1.37       chs 	}
    221      1.37       chs #endif
    222      1.37       chs 
    223       1.1   mycroft #ifdef DIAGNOSTIC
    224       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    225       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    226      1.13  christos 		printf(
    227       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    228       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    229       1.1   mycroft 		panic("ffs_realloccg: bad size");
    230       1.1   mycroft 	}
    231       1.1   mycroft 	if (cred == NOCRED)
    232       1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    233       1.1   mycroft #endif /* DIAGNOSTIC */
    234       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    235       1.1   mycroft 		goto nospace;
    236      1.30      fvdl 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    237      1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    238       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    239       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    240       1.1   mycroft 	}
    241       1.1   mycroft 	/*
    242       1.1   mycroft 	 * Allocate the extra space in the buffer.
    243       1.1   mycroft 	 */
    244      1.37       chs 	if (bpp != NULL &&
    245      1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    246       1.1   mycroft 		brelse(bp);
    247       1.1   mycroft 		return (error);
    248       1.1   mycroft 	}
    249       1.1   mycroft #ifdef QUOTA
    250       1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    251      1.44       chs 		if (bpp != NULL) {
    252      1.44       chs 			brelse(bp);
    253      1.44       chs 		}
    254       1.1   mycroft 		return (error);
    255       1.1   mycroft 	}
    256       1.1   mycroft #endif
    257       1.1   mycroft 	/*
    258       1.1   mycroft 	 * Check for extension in the existing location.
    259       1.1   mycroft 	 */
    260       1.1   mycroft 	cg = dtog(fs, bprev);
    261       1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    262      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    263       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264      1.37       chs 
    265      1.37       chs 		if (bpp != NULL) {
    266      1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    267      1.37       chs 				panic("bad blockno");
    268      1.37       chs 			allocbuf(bp, nsize);
    269      1.37       chs 			bp->b_flags |= B_DONE;
    270      1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    271      1.37       chs 			*bpp = bp;
    272      1.37       chs 		}
    273      1.37       chs 		if (blknop != NULL) {
    274      1.37       chs 			*blknop = bno;
    275      1.37       chs 		}
    276       1.1   mycroft 		return (0);
    277       1.1   mycroft 	}
    278       1.1   mycroft 	/*
    279       1.1   mycroft 	 * Allocate a new disk location.
    280       1.1   mycroft 	 */
    281       1.1   mycroft 	if (bpref >= fs->fs_size)
    282       1.1   mycroft 		bpref = 0;
    283       1.1   mycroft 	switch ((int)fs->fs_optim) {
    284       1.1   mycroft 	case FS_OPTSPACE:
    285       1.1   mycroft 		/*
    286       1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    287       1.1   mycroft 		 * best use of space, we will waste time relocating it if
    288       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    289       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    290       1.1   mycroft 		 * to begin optimizing for time.
    291       1.1   mycroft 		 */
    292       1.1   mycroft 		request = nsize;
    293       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    294       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    295       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    296       1.1   mycroft 			break;
    297      1.34  jdolecek 
    298      1.34  jdolecek 		if (ffs_log_changeopt) {
    299      1.34  jdolecek 			log(LOG_NOTICE,
    300      1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    301      1.34  jdolecek 				fs->fs_fsmnt);
    302      1.34  jdolecek 		}
    303      1.34  jdolecek 
    304       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    305       1.1   mycroft 		break;
    306       1.1   mycroft 	case FS_OPTTIME:
    307       1.1   mycroft 		/*
    308       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    309       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    310       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    311       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    312       1.1   mycroft 		 * above will be able to grow it in place without further
    313       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    314       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    315       1.1   mycroft 		 * optimizing for space.
    316       1.1   mycroft 		 */
    317       1.1   mycroft 		request = fs->fs_bsize;
    318       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    319       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    320       1.1   mycroft 			break;
    321      1.34  jdolecek 
    322      1.34  jdolecek 		if (ffs_log_changeopt) {
    323      1.34  jdolecek 			log(LOG_NOTICE,
    324      1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    325      1.34  jdolecek 				fs->fs_fsmnt);
    326      1.34  jdolecek 		}
    327      1.34  jdolecek 
    328       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    329       1.1   mycroft 		break;
    330       1.1   mycroft 	default:
    331      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    332       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    333       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    334       1.1   mycroft 		/* NOTREACHED */
    335       1.1   mycroft 	}
    336      1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    337       1.9  christos 	    			     ffs_alloccg);
    338       1.1   mycroft 	if (bno > 0) {
    339      1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    340      1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    341       1.1   mycroft 		if (nsize < request)
    342       1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    343       1.1   mycroft 			    (long)(request - nsize));
    344      1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    345       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    346      1.37       chs 		if (bpp != NULL) {
    347      1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    348      1.37       chs 			allocbuf(bp, nsize);
    349      1.37       chs 			bp->b_flags |= B_DONE;
    350      1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    351      1.37       chs 			*bpp = bp;
    352      1.37       chs 		}
    353      1.37       chs 		if (blknop != NULL) {
    354      1.37       chs 			*blknop = bno;
    355      1.37       chs 		}
    356       1.1   mycroft 		return (0);
    357       1.1   mycroft 	}
    358       1.1   mycroft #ifdef QUOTA
    359       1.1   mycroft 	/*
    360       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    361       1.1   mycroft 	 */
    362       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    363       1.1   mycroft #endif
    364      1.37       chs 	if (bpp != NULL) {
    365      1.37       chs 		brelse(bp);
    366      1.37       chs 	}
    367      1.37       chs 
    368       1.1   mycroft nospace:
    369       1.1   mycroft 	/*
    370       1.1   mycroft 	 * no space available
    371       1.1   mycroft 	 */
    372       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    373       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    374       1.1   mycroft 	return (ENOSPC);
    375       1.1   mycroft }
    376       1.1   mycroft 
    377       1.1   mycroft /*
    378       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    379       1.1   mycroft  *
    380       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    381       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    382       1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    383       1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    384      1.46       wiz  * block immediately preceding the current range. If successful, the
    385       1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    386       1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    387       1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    388       1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    389       1.1   mycroft  * the previous block allocation will be used.
    390       1.1   mycroft  */
    391       1.3   mycroft #ifdef DEBUG
    392       1.1   mycroft #include <sys/sysctl.h>
    393       1.5   mycroft int prtrealloc = 0;
    394       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    395       1.1   mycroft #endif
    396       1.1   mycroft 
    397      1.18      fvdl int doasyncfree = 1;
    398      1.18      fvdl 
    399       1.1   mycroft int
    400       1.9  christos ffs_reallocblks(v)
    401       1.9  christos 	void *v;
    402       1.9  christos {
    403       1.1   mycroft 	struct vop_reallocblks_args /* {
    404       1.1   mycroft 		struct vnode *a_vp;
    405       1.1   mycroft 		struct cluster_save *a_buflist;
    406       1.9  christos 	} */ *ap = v;
    407       1.1   mycroft 	struct fs *fs;
    408       1.1   mycroft 	struct inode *ip;
    409       1.1   mycroft 	struct vnode *vp;
    410       1.1   mycroft 	struct buf *sbp, *ebp;
    411      1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    412       1.1   mycroft 	struct cluster_save *buflist;
    413      1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    414       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    415       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    416       1.1   mycroft 
    417      1.37       chs 	/* XXXUBC don't reallocblks for now */
    418      1.37       chs 	return ENOSPC;
    419      1.37       chs 
    420       1.1   mycroft 	vp = ap->a_vp;
    421       1.1   mycroft 	ip = VTOI(vp);
    422       1.1   mycroft 	fs = ip->i_fs;
    423       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    424       1.1   mycroft 		return (ENOSPC);
    425       1.1   mycroft 	buflist = ap->a_buflist;
    426       1.1   mycroft 	len = buflist->bs_nchildren;
    427       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    428       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    429       1.1   mycroft #ifdef DIAGNOSTIC
    430      1.18      fvdl 	for (i = 0; i < len; i++)
    431      1.18      fvdl 		if (!ffs_checkblk(ip,
    432      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    433      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    434       1.1   mycroft 	for (i = 1; i < len; i++)
    435       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    436      1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    437      1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    438      1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    439      1.18      fvdl 	for (i = 1; i < len - 1; i++)
    440      1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    441      1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    442       1.1   mycroft #endif
    443       1.1   mycroft 	/*
    444       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    445       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    446       1.1   mycroft 	 * the previous cylinder group.
    447       1.1   mycroft 	 */
    448       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    449       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    450       1.1   mycroft 		return (ENOSPC);
    451       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    452       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    453       1.1   mycroft 		return (ENOSPC);
    454       1.1   mycroft 	/*
    455       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    456       1.1   mycroft 	 */
    457       1.1   mycroft 	if (start_lvl == 0) {
    458      1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    459       1.1   mycroft 		soff = start_lbn;
    460       1.1   mycroft 	} else {
    461       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    462       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    463       1.1   mycroft 			brelse(sbp);
    464       1.1   mycroft 			return (ENOSPC);
    465       1.1   mycroft 		}
    466      1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    467       1.1   mycroft 		soff = idp->in_off;
    468       1.1   mycroft 	}
    469       1.1   mycroft 	/*
    470       1.1   mycroft 	 * Find the preferred location for the cluster.
    471       1.1   mycroft 	 */
    472       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    473       1.1   mycroft 	/*
    474       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    475       1.1   mycroft 	 */
    476       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    477       1.1   mycroft 		ssize = len;
    478       1.1   mycroft 	} else {
    479       1.1   mycroft #ifdef DIAGNOSTIC
    480       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    481       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    482       1.1   mycroft #endif
    483       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    484       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    485       1.1   mycroft 			goto fail;
    486      1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    487       1.1   mycroft 	}
    488       1.1   mycroft 	/*
    489       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    490       1.1   mycroft 	 */
    491      1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    492       1.9  christos 	    len, ffs_clusteralloc)) == 0)
    493       1.1   mycroft 		goto fail;
    494       1.1   mycroft 	/*
    495       1.1   mycroft 	 * We have found a new contiguous block.
    496       1.1   mycroft 	 *
    497       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    498       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    499       1.1   mycroft 	 * with the file.
    500       1.1   mycroft 	 */
    501       1.5   mycroft #ifdef DEBUG
    502       1.5   mycroft 	if (prtrealloc)
    503      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    504       1.5   mycroft 		    start_lbn, end_lbn);
    505       1.5   mycroft #endif
    506       1.1   mycroft 	blkno = newblk;
    507       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    508      1.30      fvdl 		ufs_daddr_t ba;
    509      1.30      fvdl 
    510      1.30      fvdl 		if (i == ssize) {
    511       1.1   mycroft 			bap = ebap;
    512      1.30      fvdl 			soff = -i;
    513      1.30      fvdl 		}
    514      1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    515       1.1   mycroft #ifdef DIAGNOSTIC
    516      1.18      fvdl 		if (!ffs_checkblk(ip,
    517      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    518      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    519      1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    520       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    521       1.1   mycroft #endif
    522       1.5   mycroft #ifdef DEBUG
    523       1.5   mycroft 		if (prtrealloc)
    524      1.30      fvdl 			printf(" %d,", ba);
    525       1.5   mycroft #endif
    526      1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    527      1.30      fvdl  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    528      1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    529      1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    530      1.30      fvdl  				    buflist->bs_children[i]);
    531      1.30      fvdl  			else
    532      1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    533      1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    534      1.30      fvdl  				    ba, buflist->bs_children[i]);
    535      1.30      fvdl  		}
    536      1.30      fvdl 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    537       1.1   mycroft 	}
    538       1.1   mycroft 	/*
    539       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    540       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    541       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    542       1.1   mycroft 	 * they are almost never written, but if we are concerned about
    543       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    544       1.1   mycroft 	 *
    545       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    546       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    547       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    548       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    549       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    550       1.1   mycroft 	 * synchronous write only when it has been cleared.
    551       1.1   mycroft 	 */
    552      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    553       1.1   mycroft 		if (doasyncfree)
    554       1.1   mycroft 			bdwrite(sbp);
    555       1.1   mycroft 		else
    556       1.1   mycroft 			bwrite(sbp);
    557       1.1   mycroft 	} else {
    558       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    559      1.28   mycroft 		if (!doasyncfree)
    560      1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    561       1.1   mycroft 	}
    562      1.25   thorpej 	if (ssize < len) {
    563       1.1   mycroft 		if (doasyncfree)
    564       1.1   mycroft 			bdwrite(ebp);
    565       1.1   mycroft 		else
    566       1.1   mycroft 			bwrite(ebp);
    567      1.25   thorpej 	}
    568       1.1   mycroft 	/*
    569       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    570       1.1   mycroft 	 */
    571       1.5   mycroft #ifdef DEBUG
    572       1.5   mycroft 	if (prtrealloc)
    573      1.13  christos 		printf("\n\tnew:");
    574       1.5   mycroft #endif
    575       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    576      1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    577      1.30      fvdl 			ffs_blkfree(ip,
    578      1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    579      1.30      fvdl 			    fs->fs_bsize);
    580       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    581       1.5   mycroft #ifdef DEBUG
    582      1.18      fvdl 		if (!ffs_checkblk(ip,
    583      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    584      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    585       1.5   mycroft 		if (prtrealloc)
    586      1.13  christos 			printf(" %d,", blkno);
    587       1.5   mycroft #endif
    588       1.5   mycroft 	}
    589       1.5   mycroft #ifdef DEBUG
    590       1.5   mycroft 	if (prtrealloc) {
    591       1.5   mycroft 		prtrealloc--;
    592      1.13  christos 		printf("\n");
    593       1.1   mycroft 	}
    594       1.5   mycroft #endif
    595       1.1   mycroft 	return (0);
    596       1.1   mycroft 
    597       1.1   mycroft fail:
    598       1.1   mycroft 	if (ssize < len)
    599       1.1   mycroft 		brelse(ebp);
    600      1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    601       1.1   mycroft 		brelse(sbp);
    602       1.1   mycroft 	return (ENOSPC);
    603       1.1   mycroft }
    604       1.1   mycroft 
    605       1.1   mycroft /*
    606       1.1   mycroft  * Allocate an inode in the file system.
    607       1.1   mycroft  *
    608       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    609       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    610       1.1   mycroft  *   1) allocate the preferred inode.
    611       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    612       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    613       1.1   mycroft  *      available inode is located.
    614      1.47       wiz  * If no inode preference is given the following hierarchy is used
    615       1.1   mycroft  * to allocate an inode:
    616       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    617       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    618       1.1   mycroft  *      available inode is located.
    619       1.1   mycroft  */
    620       1.9  christos int
    621       1.9  christos ffs_valloc(v)
    622       1.9  christos 	void *v;
    623       1.9  christos {
    624       1.1   mycroft 	struct vop_valloc_args /* {
    625       1.1   mycroft 		struct vnode *a_pvp;
    626       1.1   mycroft 		int a_mode;
    627       1.1   mycroft 		struct ucred *a_cred;
    628       1.1   mycroft 		struct vnode **a_vpp;
    629       1.9  christos 	} */ *ap = v;
    630      1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    631      1.33  augustss 	struct inode *pip;
    632      1.33  augustss 	struct fs *fs;
    633      1.33  augustss 	struct inode *ip;
    634       1.1   mycroft 	mode_t mode = ap->a_mode;
    635       1.1   mycroft 	ino_t ino, ipref;
    636       1.1   mycroft 	int cg, error;
    637       1.1   mycroft 
    638       1.1   mycroft 	*ap->a_vpp = NULL;
    639       1.1   mycroft 	pip = VTOI(pvp);
    640       1.1   mycroft 	fs = pip->i_fs;
    641       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    642       1.1   mycroft 		goto noinodes;
    643       1.1   mycroft 
    644       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    645      1.50     lukem 		ipref = ffs_dirpref(pip);
    646      1.50     lukem 	else
    647      1.50     lukem 		ipref = pip->i_number;
    648       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    649       1.1   mycroft 		ipref = 0;
    650       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    651      1.50     lukem 	/*
    652      1.50     lukem 	 * Track number of dirs created one after another
    653      1.50     lukem 	 * in a same cg without intervening by files.
    654      1.50     lukem 	 */
    655      1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    656      1.50     lukem 		if (fs->fs_contigdirs[cg] < 65535)
    657      1.50     lukem 			fs->fs_contigdirs[cg]++;
    658      1.50     lukem 	} else {
    659      1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    660      1.50     lukem 			fs->fs_contigdirs[cg]--;
    661      1.50     lukem 	}
    662       1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    663       1.1   mycroft 	if (ino == 0)
    664       1.1   mycroft 		goto noinodes;
    665       1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    666       1.1   mycroft 	if (error) {
    667       1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    668       1.1   mycroft 		return (error);
    669       1.1   mycroft 	}
    670       1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    671      1.15    bouyer 	if (ip->i_ffs_mode) {
    672      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    673      1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    674       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    675       1.1   mycroft 	}
    676      1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    677      1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    678      1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    679      1.15    bouyer 		ip->i_ffs_blocks = 0;
    680       1.1   mycroft 	}
    681      1.15    bouyer 	ip->i_ffs_flags = 0;
    682       1.1   mycroft 	/*
    683       1.1   mycroft 	 * Set up a new generation number for this inode.
    684       1.1   mycroft 	 */
    685      1.15    bouyer 	ip->i_ffs_gen++;
    686       1.1   mycroft 	return (0);
    687       1.1   mycroft noinodes:
    688       1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    689       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    690       1.1   mycroft 	return (ENOSPC);
    691       1.1   mycroft }
    692       1.1   mycroft 
    693       1.1   mycroft /*
    694      1.50     lukem  * Find a cylinder group in which to place a directory.
    695      1.42  sommerfe  *
    696      1.50     lukem  * The policy implemented by this algorithm is to allocate a
    697      1.50     lukem  * directory inode in the same cylinder group as its parent
    698      1.50     lukem  * directory, but also to reserve space for its files inodes
    699      1.50     lukem  * and data. Restrict the number of directories which may be
    700      1.50     lukem  * allocated one after another in the same cylinder group
    701      1.50     lukem  * without intervening allocation of files.
    702      1.42  sommerfe  *
    703      1.50     lukem  * If we allocate a first level directory then force allocation
    704      1.50     lukem  * in another cylinder group.
    705       1.1   mycroft  */
    706       1.1   mycroft static ino_t
    707      1.50     lukem ffs_dirpref(pip)
    708      1.50     lukem 	struct inode *pip;
    709       1.1   mycroft {
    710      1.50     lukem 	register struct fs *fs;
    711      1.50     lukem 	int cg, prefcg, dirsize, cgsize;
    712      1.50     lukem 	int avgifree, avgbfree, avgndir, curdirsize;
    713      1.50     lukem 	int minifree, minbfree, maxndir;
    714      1.50     lukem 	int mincg, minndir;
    715      1.50     lukem 	int maxcontigdirs;
    716      1.50     lukem 
    717      1.50     lukem 	fs = pip->i_fs;
    718       1.1   mycroft 
    719       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    720      1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    721      1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    722      1.50     lukem 
    723      1.50     lukem 	/*
    724      1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    725      1.50     lukem 	 */
    726      1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    727      1.50     lukem 		prefcg = random() % fs->fs_ncg;
    728      1.50     lukem 		mincg = prefcg;
    729      1.50     lukem 		minndir = fs->fs_ipg;
    730      1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    731      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    732      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    733      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    734      1.42  sommerfe 				mincg = cg;
    735      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    736      1.42  sommerfe 			}
    737      1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    738      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    739      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    740      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    741      1.50     lukem 				mincg = cg;
    742      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    743      1.42  sommerfe 			}
    744      1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    745      1.42  sommerfe 	}
    746      1.50     lukem 
    747      1.50     lukem 	/*
    748      1.50     lukem 	 * Count various limits which used for
    749      1.50     lukem 	 * optimal allocation of a directory inode.
    750      1.50     lukem 	 */
    751      1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    752      1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    753      1.50     lukem 	if (minifree < 0)
    754      1.50     lukem 		minifree = 0;
    755      1.50     lukem 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
    756      1.50     lukem 	if (minbfree < 0)
    757      1.50     lukem 		minbfree = 0;
    758      1.50     lukem 	cgsize = fs->fs_fsize * fs->fs_fpg;
    759      1.50     lukem 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    760      1.50     lukem 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    761      1.50     lukem 	if (dirsize < curdirsize)
    762      1.50     lukem 		dirsize = curdirsize;
    763      1.50     lukem 	maxcontigdirs = min(cgsize / dirsize, 255);
    764      1.50     lukem 	if (fs->fs_avgfpdir > 0)
    765      1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    766      1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    767      1.50     lukem 	if (maxcontigdirs == 0)
    768      1.50     lukem 		maxcontigdirs = 1;
    769      1.50     lukem 
    770      1.50     lukem 	/*
    771      1.50     lukem 	 * Limit number of dirs in one cg and reserve space for
    772      1.50     lukem 	 * regular files, but only if we have no deficit in
    773      1.50     lukem 	 * inodes or space.
    774      1.50     lukem 	 */
    775      1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    776      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    777      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    778      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    779      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    780      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    781      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    782      1.50     lukem 		}
    783      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    784      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    785      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    786      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    787      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    788      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    789      1.50     lukem 		}
    790      1.50     lukem 	/*
    791      1.50     lukem 	 * This is a backstop when we are deficient in space.
    792      1.50     lukem 	 */
    793      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    794      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    795      1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    796      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    797      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    798      1.50     lukem 			break;
    799      1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    800       1.1   mycroft }
    801       1.1   mycroft 
    802       1.1   mycroft /*
    803       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    804       1.1   mycroft  * logically divided into sections. The first section is composed of the
    805       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    806       1.1   mycroft  *
    807       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    808       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    809       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    810       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    811       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    812       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    813       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    814       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    815       1.1   mycroft  * continues until a cylinder group with greater than the average number
    816       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    817       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    818       1.1   mycroft  * here a best guess is made based upon the logical block number being
    819       1.1   mycroft  * allocated.
    820       1.1   mycroft  *
    821       1.1   mycroft  * If a section is already partially allocated, the policy is to
    822       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    823       1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    824       1.1   mycroft  * so that the disk head will be in transit between them for at least
    825       1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    826       1.1   mycroft  * schedule another I/O transfer.
    827       1.1   mycroft  */
    828      1.18      fvdl ufs_daddr_t
    829       1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    830       1.1   mycroft 	struct inode *ip;
    831      1.18      fvdl 	ufs_daddr_t lbn;
    832       1.1   mycroft 	int indx;
    833      1.18      fvdl 	ufs_daddr_t *bap;
    834       1.1   mycroft {
    835      1.33  augustss 	struct fs *fs;
    836      1.33  augustss 	int cg;
    837       1.1   mycroft 	int avgbfree, startcg;
    838      1.18      fvdl 	ufs_daddr_t nextblk;
    839       1.1   mycroft 
    840       1.1   mycroft 	fs = ip->i_fs;
    841       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    842      1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    843       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    844       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    845       1.1   mycroft 		}
    846       1.1   mycroft 		/*
    847       1.1   mycroft 		 * Find a cylinder with greater than average number of
    848       1.1   mycroft 		 * unused data blocks.
    849       1.1   mycroft 		 */
    850       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    851       1.1   mycroft 			startcg =
    852       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    853       1.1   mycroft 		else
    854      1.19    bouyer 			startcg = dtog(fs,
    855      1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    856       1.1   mycroft 		startcg %= fs->fs_ncg;
    857       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    858       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    859       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    860       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    861       1.1   mycroft 			}
    862  1.50.2.1      fvdl 		for (cg = 0; cg < startcg; cg++)
    863       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    864       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    865       1.1   mycroft 			}
    866      1.35   thorpej 		return (0);
    867       1.1   mycroft 	}
    868       1.1   mycroft 	/*
    869       1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    870       1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    871       1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    872       1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    873       1.1   mycroft 	 */
    874      1.30      fvdl 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    875      1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    876      1.30      fvdl 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    877       1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    878       1.1   mycroft 		return (nextblk);
    879       1.1   mycroft 	if (fs->fs_rotdelay != 0)
    880       1.1   mycroft 		/*
    881       1.1   mycroft 		 * Here we convert ms of delay to frags as:
    882       1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    883       1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    884       1.1   mycroft 		 * then round up to the next block.
    885       1.1   mycroft 		 */
    886       1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    887       1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    888       1.1   mycroft 	return (nextblk);
    889       1.1   mycroft }
    890       1.1   mycroft 
    891       1.1   mycroft /*
    892       1.1   mycroft  * Implement the cylinder overflow algorithm.
    893       1.1   mycroft  *
    894       1.1   mycroft  * The policy implemented by this algorithm is:
    895       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    896       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    897       1.1   mycroft  *   3) brute force search for a free block.
    898       1.1   mycroft  */
    899       1.1   mycroft /*VARARGS5*/
    900       1.1   mycroft static u_long
    901       1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    902       1.1   mycroft 	struct inode *ip;
    903       1.1   mycroft 	int cg;
    904       1.1   mycroft 	long pref;
    905       1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    906      1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    907       1.1   mycroft {
    908      1.33  augustss 	struct fs *fs;
    909       1.1   mycroft 	long result;
    910       1.1   mycroft 	int i, icg = cg;
    911       1.1   mycroft 
    912       1.1   mycroft 	fs = ip->i_fs;
    913       1.1   mycroft 	/*
    914       1.1   mycroft 	 * 1: preferred cylinder group
    915       1.1   mycroft 	 */
    916       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    917       1.1   mycroft 	if (result)
    918       1.1   mycroft 		return (result);
    919       1.1   mycroft 	/*
    920       1.1   mycroft 	 * 2: quadratic rehash
    921       1.1   mycroft 	 */
    922       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    923       1.1   mycroft 		cg += i;
    924       1.1   mycroft 		if (cg >= fs->fs_ncg)
    925       1.1   mycroft 			cg -= fs->fs_ncg;
    926       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    927       1.1   mycroft 		if (result)
    928       1.1   mycroft 			return (result);
    929       1.1   mycroft 	}
    930       1.1   mycroft 	/*
    931       1.1   mycroft 	 * 3: brute force search
    932       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    933       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    934       1.1   mycroft 	 */
    935       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    936       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    937       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    938       1.1   mycroft 		if (result)
    939       1.1   mycroft 			return (result);
    940       1.1   mycroft 		cg++;
    941       1.1   mycroft 		if (cg == fs->fs_ncg)
    942       1.1   mycroft 			cg = 0;
    943       1.1   mycroft 	}
    944      1.35   thorpej 	return (0);
    945       1.1   mycroft }
    946       1.1   mycroft 
    947       1.1   mycroft /*
    948       1.1   mycroft  * Determine whether a fragment can be extended.
    949       1.1   mycroft  *
    950       1.1   mycroft  * Check to see if the necessary fragments are available, and
    951       1.1   mycroft  * if they are, allocate them.
    952       1.1   mycroft  */
    953      1.18      fvdl static ufs_daddr_t
    954       1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    955       1.1   mycroft 	struct inode *ip;
    956       1.1   mycroft 	int cg;
    957       1.1   mycroft 	long bprev;
    958       1.1   mycroft 	int osize, nsize;
    959       1.1   mycroft {
    960      1.33  augustss 	struct fs *fs;
    961      1.33  augustss 	struct cg *cgp;
    962       1.1   mycroft 	struct buf *bp;
    963       1.1   mycroft 	long bno;
    964       1.1   mycroft 	int frags, bbase;
    965       1.1   mycroft 	int i, error;
    966       1.1   mycroft 
    967       1.1   mycroft 	fs = ip->i_fs;
    968       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    969      1.35   thorpej 		return (0);
    970       1.1   mycroft 	frags = numfrags(fs, nsize);
    971       1.1   mycroft 	bbase = fragnum(fs, bprev);
    972       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    973       1.1   mycroft 		/* cannot extend across a block boundary */
    974      1.35   thorpej 		return (0);
    975       1.1   mycroft 	}
    976       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    977       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    978       1.1   mycroft 	if (error) {
    979       1.1   mycroft 		brelse(bp);
    980      1.35   thorpej 		return (0);
    981       1.1   mycroft 	}
    982       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    983      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    984       1.1   mycroft 		brelse(bp);
    985      1.35   thorpej 		return (0);
    986       1.1   mycroft 	}
    987      1.30      fvdl 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    988       1.1   mycroft 	bno = dtogd(fs, bprev);
    989       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    990      1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    991       1.1   mycroft 			brelse(bp);
    992      1.35   thorpej 			return (0);
    993       1.1   mycroft 		}
    994       1.1   mycroft 	/*
    995       1.1   mycroft 	 * the current fragment can be extended
    996       1.1   mycroft 	 * deduct the count on fragment being extended into
    997       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    998       1.1   mycroft 	 * allocate the extended piece
    999       1.1   mycroft 	 */
   1000       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1001      1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1002       1.1   mycroft 			break;
   1003      1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1004       1.1   mycroft 	if (i != frags)
   1005      1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1006       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1007      1.30      fvdl 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
   1008      1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1009       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1010       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1011       1.1   mycroft 	}
   1012       1.1   mycroft 	fs->fs_fmod = 1;
   1013      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1014      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1015       1.1   mycroft 	bdwrite(bp);
   1016       1.1   mycroft 	return (bprev);
   1017       1.1   mycroft }
   1018       1.1   mycroft 
   1019       1.1   mycroft /*
   1020       1.1   mycroft  * Determine whether a block can be allocated.
   1021       1.1   mycroft  *
   1022       1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1023       1.1   mycroft  * and if it is, allocate it.
   1024       1.1   mycroft  */
   1025      1.18      fvdl static ufs_daddr_t
   1026       1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
   1027       1.1   mycroft 	struct inode *ip;
   1028       1.1   mycroft 	int cg;
   1029      1.18      fvdl 	ufs_daddr_t bpref;
   1030       1.1   mycroft 	int size;
   1031       1.1   mycroft {
   1032      1.30      fvdl 	struct cg *cgp;
   1033       1.1   mycroft 	struct buf *bp;
   1034      1.30      fvdl 	ufs_daddr_t bno, blkno;
   1035      1.30      fvdl 	int error, frags, allocsiz, i;
   1036      1.30      fvdl 	struct fs *fs = ip->i_fs;
   1037      1.30      fvdl #ifdef FFS_EI
   1038      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1039      1.30      fvdl #endif
   1040       1.1   mycroft 
   1041       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1042      1.35   thorpej 		return (0);
   1043       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1044       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1045       1.1   mycroft 	if (error) {
   1046       1.1   mycroft 		brelse(bp);
   1047      1.35   thorpej 		return (0);
   1048       1.1   mycroft 	}
   1049       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1050      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1051       1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1052       1.1   mycroft 		brelse(bp);
   1053      1.35   thorpej 		return (0);
   1054       1.1   mycroft 	}
   1055      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1056       1.1   mycroft 	if (size == fs->fs_bsize) {
   1057      1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1058       1.1   mycroft 		bdwrite(bp);
   1059       1.1   mycroft 		return (bno);
   1060       1.1   mycroft 	}
   1061       1.1   mycroft 	/*
   1062       1.1   mycroft 	 * check to see if any fragments are already available
   1063       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1064       1.1   mycroft 	 * it down to a smaller size if necessary
   1065       1.1   mycroft 	 */
   1066       1.1   mycroft 	frags = numfrags(fs, size);
   1067       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1068       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1069       1.1   mycroft 			break;
   1070       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1071       1.1   mycroft 		/*
   1072       1.1   mycroft 		 * no fragments were available, so a block will be
   1073       1.1   mycroft 		 * allocated, and hacked up
   1074       1.1   mycroft 		 */
   1075       1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1076       1.1   mycroft 			brelse(bp);
   1077      1.35   thorpej 			return (0);
   1078       1.1   mycroft 		}
   1079      1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1080       1.1   mycroft 		bpref = dtogd(fs, bno);
   1081       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1082      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1083       1.1   mycroft 		i = fs->fs_frag - frags;
   1084      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1085       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1086      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1087       1.1   mycroft 		fs->fs_fmod = 1;
   1088      1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1089       1.1   mycroft 		bdwrite(bp);
   1090       1.1   mycroft 		return (bno);
   1091       1.1   mycroft 	}
   1092      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1093      1.30      fvdl #if 0
   1094      1.30      fvdl 	/*
   1095      1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1096      1.30      fvdl 	 *          also: returning NULL as ufs_daddr_t ?
   1097      1.30      fvdl 	 */
   1098       1.1   mycroft 	if (bno < 0) {
   1099       1.1   mycroft 		brelse(bp);
   1100      1.35   thorpej 		return (0);
   1101       1.1   mycroft 	}
   1102      1.30      fvdl #endif
   1103       1.1   mycroft 	for (i = 0; i < frags; i++)
   1104      1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1105      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1106       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1107       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1108       1.1   mycroft 	fs->fs_fmod = 1;
   1109      1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1110       1.1   mycroft 	if (frags != allocsiz)
   1111      1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1112      1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1113      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1114      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1115       1.1   mycroft 	bdwrite(bp);
   1116      1.30      fvdl 	return blkno;
   1117       1.1   mycroft }
   1118       1.1   mycroft 
   1119       1.1   mycroft /*
   1120       1.1   mycroft  * Allocate a block in a cylinder group.
   1121       1.1   mycroft  *
   1122       1.1   mycroft  * This algorithm implements the following policy:
   1123       1.1   mycroft  *   1) allocate the requested block.
   1124       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1125       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1126       1.1   mycroft  *      specified cylinder group.
   1127       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1128       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1129       1.1   mycroft  */
   1130      1.18      fvdl static ufs_daddr_t
   1131      1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1132      1.30      fvdl 	struct inode *ip;
   1133      1.30      fvdl 	struct buf *bp;
   1134      1.18      fvdl 	ufs_daddr_t bpref;
   1135       1.1   mycroft {
   1136      1.30      fvdl 	struct cg *cgp;
   1137      1.18      fvdl 	ufs_daddr_t bno, blkno;
   1138       1.1   mycroft 	int cylno, pos, delta;
   1139       1.1   mycroft 	short *cylbp;
   1140      1.33  augustss 	int i;
   1141      1.30      fvdl 	struct fs *fs = ip->i_fs;
   1142      1.30      fvdl #ifdef FFS_EI
   1143      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1144      1.30      fvdl #endif
   1145       1.1   mycroft 
   1146      1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1147      1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1148      1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1149       1.1   mycroft 		goto norot;
   1150       1.1   mycroft 	}
   1151       1.1   mycroft 	bpref = blknum(fs, bpref);
   1152       1.1   mycroft 	bpref = dtogd(fs, bpref);
   1153       1.1   mycroft 	/*
   1154       1.1   mycroft 	 * if the requested block is available, use it
   1155       1.1   mycroft 	 */
   1156      1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1157      1.19    bouyer 		fragstoblks(fs, bpref))) {
   1158       1.1   mycroft 		bno = bpref;
   1159       1.1   mycroft 		goto gotit;
   1160       1.1   mycroft 	}
   1161      1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1162       1.1   mycroft 		/*
   1163       1.1   mycroft 		 * Block layout information is not available.
   1164       1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1165       1.1   mycroft 		 * next available free block following the one
   1166       1.1   mycroft 		 * we just allocated. Hopefully this will at
   1167       1.1   mycroft 		 * least hit a track cache on drives of unknown
   1168       1.1   mycroft 		 * geometry (e.g. SCSI).
   1169       1.1   mycroft 		 */
   1170       1.1   mycroft 		goto norot;
   1171       1.1   mycroft 	}
   1172       1.6   mycroft 	/*
   1173       1.6   mycroft 	 * check for a block available on the same cylinder
   1174       1.6   mycroft 	 */
   1175       1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1176      1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1177       1.6   mycroft 		goto norot;
   1178       1.1   mycroft 	/*
   1179       1.1   mycroft 	 * check the summary information to see if a block is
   1180       1.1   mycroft 	 * available in the requested cylinder starting at the
   1181       1.1   mycroft 	 * requested rotational position and proceeding around.
   1182       1.1   mycroft 	 */
   1183      1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1184       1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1185       1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1186      1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1187       1.1   mycroft 			break;
   1188       1.1   mycroft 	if (i == fs->fs_nrpos)
   1189       1.1   mycroft 		for (i = 0; i < pos; i++)
   1190      1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1191       1.1   mycroft 				break;
   1192      1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1193       1.1   mycroft 		/*
   1194       1.1   mycroft 		 * found a rotational position, now find the actual
   1195       1.1   mycroft 		 * block. A panic if none is actually there.
   1196       1.1   mycroft 		 */
   1197       1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1198       1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1199       1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1200      1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1201       1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1202       1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1203       1.1   mycroft 		}
   1204       1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1205      1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1206       1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1207       1.1   mycroft 				goto gotit;
   1208       1.1   mycroft 			}
   1209       1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1210       1.1   mycroft 			if (delta <= 0 ||
   1211       1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1212       1.1   mycroft 				break;
   1213       1.1   mycroft 			i += delta;
   1214       1.1   mycroft 		}
   1215      1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1216       1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1217       1.1   mycroft 	}
   1218       1.1   mycroft norot:
   1219       1.1   mycroft 	/*
   1220       1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1221       1.1   mycroft 	 * available one in this cylinder group.
   1222       1.1   mycroft 	 */
   1223      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1224       1.1   mycroft 	if (bno < 0)
   1225      1.35   thorpej 		return (0);
   1226      1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1227       1.1   mycroft gotit:
   1228       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1229      1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1230      1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1231      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1232       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1233      1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1234       1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1235      1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1236      1.30      fvdl 	    needswap);
   1237      1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1238       1.1   mycroft 	fs->fs_fmod = 1;
   1239      1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1240      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1241      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1242      1.30      fvdl 	return (blkno);
   1243       1.1   mycroft }
   1244       1.1   mycroft 
   1245       1.1   mycroft /*
   1246       1.1   mycroft  * Determine whether a cluster can be allocated.
   1247       1.1   mycroft  *
   1248       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1249       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1250       1.1   mycroft  * take the first one that we find following bpref.
   1251       1.1   mycroft  */
   1252      1.18      fvdl static ufs_daddr_t
   1253       1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1254       1.1   mycroft 	struct inode *ip;
   1255       1.1   mycroft 	int cg;
   1256      1.18      fvdl 	ufs_daddr_t bpref;
   1257       1.1   mycroft 	int len;
   1258       1.1   mycroft {
   1259      1.33  augustss 	struct fs *fs;
   1260      1.33  augustss 	struct cg *cgp;
   1261       1.1   mycroft 	struct buf *bp;
   1262      1.18      fvdl 	int i, got, run, bno, bit, map;
   1263       1.1   mycroft 	u_char *mapp;
   1264       1.5   mycroft 	int32_t *lp;
   1265       1.1   mycroft 
   1266       1.1   mycroft 	fs = ip->i_fs;
   1267       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1268      1.35   thorpej 		return (0);
   1269       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1270       1.1   mycroft 	    NOCRED, &bp))
   1271       1.1   mycroft 		goto fail;
   1272       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1273      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1274       1.1   mycroft 		goto fail;
   1275       1.1   mycroft 	/*
   1276       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1277       1.1   mycroft 	 * available in this cylinder group.
   1278       1.1   mycroft 	 */
   1279      1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1280       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1281      1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1282       1.1   mycroft 			break;
   1283       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1284       1.5   mycroft 		/*
   1285       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1286       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1287       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1288       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1289       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1290       1.5   mycroft 		 */
   1291      1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1292       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1293      1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1294       1.5   mycroft 				break;
   1295       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1296       1.1   mycroft 		goto fail;
   1297       1.5   mycroft 	}
   1298       1.1   mycroft 	/*
   1299       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1300       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1301       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1302       1.1   mycroft 	 * block allocation. We do not search before the current
   1303       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1304       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1305       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1306       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1307       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1308       1.1   mycroft 	 */
   1309       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1310       1.1   mycroft 		bpref = 0;
   1311       1.1   mycroft 	else
   1312       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1313      1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1314       1.1   mycroft 	map = *mapp++;
   1315       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1316      1.19    bouyer 	for (run = 0, got = bpref;
   1317      1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1318       1.1   mycroft 		if ((map & bit) == 0) {
   1319       1.1   mycroft 			run = 0;
   1320       1.1   mycroft 		} else {
   1321       1.1   mycroft 			run++;
   1322       1.1   mycroft 			if (run == len)
   1323       1.1   mycroft 				break;
   1324       1.1   mycroft 		}
   1325      1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1326       1.1   mycroft 			bit <<= 1;
   1327       1.1   mycroft 		} else {
   1328       1.1   mycroft 			map = *mapp++;
   1329       1.1   mycroft 			bit = 1;
   1330       1.1   mycroft 		}
   1331       1.1   mycroft 	}
   1332      1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1333       1.1   mycroft 		goto fail;
   1334       1.1   mycroft 	/*
   1335       1.1   mycroft 	 * Allocate the cluster that we have found.
   1336       1.1   mycroft 	 */
   1337      1.30      fvdl #ifdef DIAGNOSTIC
   1338      1.18      fvdl 	for (i = 1; i <= len; i++)
   1339      1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1340      1.30      fvdl 		    got - run + i))
   1341      1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1342      1.30      fvdl #endif
   1343      1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1344      1.18      fvdl 	if (dtog(fs, bno) != cg)
   1345      1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1346       1.1   mycroft 	len = blkstofrags(fs, len);
   1347       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1348      1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1349       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1350       1.8       cgd 	bdwrite(bp);
   1351       1.1   mycroft 	return (bno);
   1352       1.1   mycroft 
   1353       1.1   mycroft fail:
   1354       1.1   mycroft 	brelse(bp);
   1355       1.1   mycroft 	return (0);
   1356       1.1   mycroft }
   1357       1.1   mycroft 
   1358       1.1   mycroft /*
   1359       1.1   mycroft  * Determine whether an inode can be allocated.
   1360       1.1   mycroft  *
   1361       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1362       1.1   mycroft  * allocate it using the following policy:
   1363       1.1   mycroft  *   1) allocate the requested inode.
   1364       1.1   mycroft  *   2) allocate the next available inode after the requested
   1365       1.1   mycroft  *      inode in the specified cylinder group.
   1366       1.1   mycroft  */
   1367      1.18      fvdl static ufs_daddr_t
   1368       1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1369       1.1   mycroft 	struct inode *ip;
   1370       1.1   mycroft 	int cg;
   1371      1.18      fvdl 	ufs_daddr_t ipref;
   1372       1.1   mycroft 	int mode;
   1373       1.1   mycroft {
   1374      1.33  augustss 	struct cg *cgp;
   1375       1.1   mycroft 	struct buf *bp;
   1376       1.1   mycroft 	int error, start, len, loc, map, i;
   1377      1.33  augustss 	struct fs *fs = ip->i_fs;
   1378      1.19    bouyer #ifdef FFS_EI
   1379      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1380      1.19    bouyer #endif
   1381       1.1   mycroft 
   1382       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1383      1.35   thorpej 		return (0);
   1384       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1385       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1386       1.1   mycroft 	if (error) {
   1387       1.1   mycroft 		brelse(bp);
   1388      1.35   thorpej 		return (0);
   1389       1.1   mycroft 	}
   1390       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1391      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1392       1.1   mycroft 		brelse(bp);
   1393      1.35   thorpej 		return (0);
   1394       1.1   mycroft 	}
   1395      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1396       1.1   mycroft 	if (ipref) {
   1397       1.1   mycroft 		ipref %= fs->fs_ipg;
   1398      1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1399       1.1   mycroft 			goto gotit;
   1400       1.1   mycroft 	}
   1401      1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1402      1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1403      1.19    bouyer 		NBBY);
   1404      1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1405       1.1   mycroft 	if (loc == 0) {
   1406       1.1   mycroft 		len = start + 1;
   1407       1.1   mycroft 		start = 0;
   1408      1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1409       1.1   mycroft 		if (loc == 0) {
   1410      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1411      1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1412      1.19    bouyer 				fs->fs_fsmnt);
   1413       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1414       1.1   mycroft 			/* NOTREACHED */
   1415       1.1   mycroft 		}
   1416       1.1   mycroft 	}
   1417       1.1   mycroft 	i = start + len - loc;
   1418      1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1419       1.1   mycroft 	ipref = i * NBBY;
   1420       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1421       1.1   mycroft 		if ((map & i) == 0) {
   1422      1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1423       1.1   mycroft 			goto gotit;
   1424       1.1   mycroft 		}
   1425       1.1   mycroft 	}
   1426      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1427       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1428       1.1   mycroft 	/* NOTREACHED */
   1429       1.1   mycroft gotit:
   1430      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1431      1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1432      1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1433      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1434       1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1435      1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1436       1.1   mycroft 	fs->fs_fmod = 1;
   1437       1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1438      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1439       1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1440       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1441       1.1   mycroft 	}
   1442       1.1   mycroft 	bdwrite(bp);
   1443       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1444       1.1   mycroft }
   1445       1.1   mycroft 
   1446       1.1   mycroft /*
   1447       1.1   mycroft  * Free a block or fragment.
   1448       1.1   mycroft  *
   1449       1.1   mycroft  * The specified block or fragment is placed back in the
   1450       1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1451       1.1   mycroft  * block reassembly is checked.
   1452       1.1   mycroft  */
   1453       1.9  christos void
   1454       1.1   mycroft ffs_blkfree(ip, bno, size)
   1455      1.33  augustss 	struct inode *ip;
   1456      1.18      fvdl 	ufs_daddr_t bno;
   1457       1.1   mycroft 	long size;
   1458       1.1   mycroft {
   1459      1.33  augustss 	struct cg *cgp;
   1460       1.1   mycroft 	struct buf *bp;
   1461      1.18      fvdl 	ufs_daddr_t blkno;
   1462       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1463      1.33  augustss 	struct fs *fs = ip->i_fs;
   1464      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1465       1.1   mycroft 
   1466      1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1467      1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1468      1.30      fvdl 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1469      1.30      fvdl 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1470       1.1   mycroft 		panic("blkfree: bad size");
   1471       1.1   mycroft 	}
   1472       1.1   mycroft 	cg = dtog(fs, bno);
   1473       1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1474      1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1475      1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1476       1.1   mycroft 		return;
   1477       1.1   mycroft 	}
   1478       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1479       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1480       1.1   mycroft 	if (error) {
   1481       1.1   mycroft 		brelse(bp);
   1482       1.1   mycroft 		return;
   1483       1.1   mycroft 	}
   1484       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1485      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1486       1.1   mycroft 		brelse(bp);
   1487       1.1   mycroft 		return;
   1488       1.1   mycroft 	}
   1489      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1490       1.1   mycroft 	bno = dtogd(fs, bno);
   1491       1.1   mycroft 	if (size == fs->fs_bsize) {
   1492       1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1493      1.30      fvdl 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1494      1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1495       1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1496       1.1   mycroft 			panic("blkfree: freeing free block");
   1497       1.1   mycroft 		}
   1498      1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1499      1.30      fvdl 		ffs_clusteracct(fs, cgp, blkno, 1);
   1500      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1501       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1502       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1503       1.1   mycroft 		i = cbtocylno(fs, bno);
   1504      1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1505      1.30      fvdl 		    needswap);
   1506      1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1507       1.1   mycroft 	} else {
   1508       1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1509       1.1   mycroft 		/*
   1510       1.1   mycroft 		 * decrement the counts associated with the old frags
   1511       1.1   mycroft 		 */
   1512      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1513      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1514       1.1   mycroft 		/*
   1515       1.1   mycroft 		 * deallocate the fragment
   1516       1.1   mycroft 		 */
   1517       1.1   mycroft 		frags = numfrags(fs, size);
   1518       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1519      1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1520      1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1521       1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1522       1.1   mycroft 				panic("blkfree: freeing free frag");
   1523       1.1   mycroft 			}
   1524      1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1525       1.1   mycroft 		}
   1526      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1527       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1528      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1529       1.1   mycroft 		/*
   1530       1.1   mycroft 		 * add back in counts associated with the new frags
   1531       1.1   mycroft 		 */
   1532      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1533      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1534       1.1   mycroft 		/*
   1535       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1536       1.1   mycroft 		 */
   1537       1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1538      1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1539      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1540       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1541       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1542      1.30      fvdl 			ffs_clusteracct(fs, cgp, blkno, 1);
   1543      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1544       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1545       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1546       1.1   mycroft 			i = cbtocylno(fs, bbase);
   1547      1.30      fvdl 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1548      1.30      fvdl 								bbase)], 1,
   1549      1.30      fvdl 			    needswap);
   1550      1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1551       1.1   mycroft 		}
   1552       1.1   mycroft 	}
   1553       1.1   mycroft 	fs->fs_fmod = 1;
   1554       1.1   mycroft 	bdwrite(bp);
   1555       1.1   mycroft }
   1556       1.1   mycroft 
   1557      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1558      1.18      fvdl /*
   1559      1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1560      1.18      fvdl  * fragment is allocated, false if it is free.
   1561      1.18      fvdl  */
   1562      1.18      fvdl static int
   1563      1.18      fvdl ffs_checkblk(ip, bno, size)
   1564      1.18      fvdl 	struct inode *ip;
   1565      1.18      fvdl 	ufs_daddr_t bno;
   1566      1.18      fvdl 	long size;
   1567      1.18      fvdl {
   1568      1.18      fvdl 	struct fs *fs;
   1569      1.18      fvdl 	struct cg *cgp;
   1570      1.18      fvdl 	struct buf *bp;
   1571      1.18      fvdl 	int i, error, frags, free;
   1572      1.18      fvdl 
   1573      1.18      fvdl 	fs = ip->i_fs;
   1574      1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1575      1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1576      1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1577      1.18      fvdl 		panic("checkblk: bad size");
   1578      1.18      fvdl 	}
   1579      1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1580      1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1581      1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1582      1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1583      1.18      fvdl 	if (error) {
   1584      1.18      fvdl 		brelse(bp);
   1585      1.18      fvdl 		return 0;
   1586      1.18      fvdl 	}
   1587      1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1588      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1589      1.18      fvdl 		brelse(bp);
   1590      1.18      fvdl 		return 0;
   1591      1.18      fvdl 	}
   1592      1.18      fvdl 	bno = dtogd(fs, bno);
   1593      1.18      fvdl 	if (size == fs->fs_bsize) {
   1594      1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1595      1.19    bouyer 			fragstoblks(fs, bno));
   1596      1.18      fvdl 	} else {
   1597      1.18      fvdl 		frags = numfrags(fs, size);
   1598      1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1599      1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1600      1.18      fvdl 				free++;
   1601      1.18      fvdl 		if (free != 0 && free != frags)
   1602      1.18      fvdl 			panic("checkblk: partially free fragment");
   1603      1.18      fvdl 	}
   1604      1.18      fvdl 	brelse(bp);
   1605      1.18      fvdl 	return (!free);
   1606      1.18      fvdl }
   1607      1.18      fvdl #endif /* DIAGNOSTIC */
   1608      1.18      fvdl 
   1609       1.1   mycroft /*
   1610       1.1   mycroft  * Free an inode.
   1611      1.30      fvdl  */
   1612      1.30      fvdl int
   1613      1.30      fvdl ffs_vfree(v)
   1614      1.30      fvdl 	void *v;
   1615      1.30      fvdl {
   1616      1.30      fvdl 	struct vop_vfree_args /* {
   1617      1.30      fvdl 		struct vnode *a_pvp;
   1618      1.30      fvdl 		ino_t a_ino;
   1619      1.30      fvdl 		int a_mode;
   1620      1.30      fvdl 	} */ *ap = v;
   1621      1.30      fvdl 
   1622      1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1623      1.30      fvdl 		softdep_freefile(ap);
   1624      1.30      fvdl 		return (0);
   1625      1.30      fvdl 	}
   1626      1.30      fvdl 	return (ffs_freefile(ap));
   1627      1.30      fvdl }
   1628      1.30      fvdl 
   1629      1.30      fvdl /*
   1630      1.30      fvdl  * Do the actual free operation.
   1631       1.1   mycroft  * The specified inode is placed back in the free map.
   1632       1.1   mycroft  */
   1633       1.1   mycroft int
   1634      1.30      fvdl ffs_freefile(v)
   1635       1.9  christos 	void *v;
   1636       1.9  christos {
   1637       1.1   mycroft 	struct vop_vfree_args /* {
   1638       1.1   mycroft 		struct vnode *a_pvp;
   1639       1.1   mycroft 		ino_t a_ino;
   1640       1.1   mycroft 		int a_mode;
   1641       1.9  christos 	} */ *ap = v;
   1642      1.33  augustss 	struct cg *cgp;
   1643      1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1644      1.33  augustss 	struct fs *fs = pip->i_fs;
   1645       1.1   mycroft 	ino_t ino = ap->a_ino;
   1646       1.1   mycroft 	struct buf *bp;
   1647       1.1   mycroft 	int error, cg;
   1648      1.19    bouyer #ifdef FFS_EI
   1649      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1650      1.19    bouyer #endif
   1651       1.1   mycroft 
   1652       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1653       1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1654       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1655       1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1656       1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1657       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1658       1.1   mycroft 	if (error) {
   1659       1.1   mycroft 		brelse(bp);
   1660      1.30      fvdl 		return (error);
   1661       1.1   mycroft 	}
   1662       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1663      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1664       1.1   mycroft 		brelse(bp);
   1665       1.1   mycroft 		return (0);
   1666       1.1   mycroft 	}
   1667      1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1668       1.1   mycroft 	ino %= fs->fs_ipg;
   1669      1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1670      1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1671       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1672       1.1   mycroft 		if (fs->fs_ronly == 0)
   1673       1.1   mycroft 			panic("ifree: freeing free inode");
   1674       1.1   mycroft 	}
   1675      1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1676      1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1677      1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1678      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1679       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1680       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1681       1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1682      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1683       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1684       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1685       1.1   mycroft 	}
   1686       1.1   mycroft 	fs->fs_fmod = 1;
   1687       1.1   mycroft 	bdwrite(bp);
   1688       1.1   mycroft 	return (0);
   1689       1.1   mycroft }
   1690       1.1   mycroft 
   1691       1.1   mycroft /*
   1692       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1693       1.1   mycroft  *
   1694       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1695       1.1   mycroft  * available.
   1696       1.1   mycroft  */
   1697      1.18      fvdl static ufs_daddr_t
   1698      1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1699      1.33  augustss 	struct fs *fs;
   1700      1.33  augustss 	struct cg *cgp;
   1701      1.18      fvdl 	ufs_daddr_t bpref;
   1702       1.1   mycroft 	int allocsiz;
   1703       1.1   mycroft {
   1704      1.18      fvdl 	ufs_daddr_t bno;
   1705       1.1   mycroft 	int start, len, loc, i;
   1706       1.1   mycroft 	int blk, field, subfield, pos;
   1707      1.19    bouyer 	int ostart, olen;
   1708      1.30      fvdl #ifdef FFS_EI
   1709      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1710      1.30      fvdl #endif
   1711       1.1   mycroft 
   1712       1.1   mycroft 	/*
   1713       1.1   mycroft 	 * find the fragment by searching through the free block
   1714       1.1   mycroft 	 * map for an appropriate bit pattern
   1715       1.1   mycroft 	 */
   1716       1.1   mycroft 	if (bpref)
   1717       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1718       1.1   mycroft 	else
   1719      1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1720       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1721      1.19    bouyer 	ostart = start;
   1722      1.19    bouyer 	olen = len;
   1723      1.45     lukem 	loc = scanc((u_int)len,
   1724      1.45     lukem 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1725      1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1726      1.45     lukem 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1727       1.1   mycroft 	if (loc == 0) {
   1728       1.1   mycroft 		len = start + 1;
   1729       1.1   mycroft 		start = 0;
   1730      1.45     lukem 		loc = scanc((u_int)len,
   1731      1.45     lukem 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1732      1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1733      1.45     lukem 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1734       1.1   mycroft 		if (loc == 0) {
   1735      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1736      1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1737      1.20      ross 			printf("offset=%d %ld\n",
   1738      1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1739      1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1740       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1741       1.1   mycroft 			/* NOTREACHED */
   1742       1.1   mycroft 		}
   1743       1.1   mycroft 	}
   1744       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1745      1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1746       1.1   mycroft 	/*
   1747       1.1   mycroft 	 * found the byte in the map
   1748       1.1   mycroft 	 * sift through the bits to find the selected frag
   1749       1.1   mycroft 	 */
   1750       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1751      1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1752       1.1   mycroft 		blk <<= 1;
   1753       1.1   mycroft 		field = around[allocsiz];
   1754       1.1   mycroft 		subfield = inside[allocsiz];
   1755       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1756       1.1   mycroft 			if ((blk & field) == subfield)
   1757       1.1   mycroft 				return (bno + pos);
   1758       1.1   mycroft 			field <<= 1;
   1759       1.1   mycroft 			subfield <<= 1;
   1760       1.1   mycroft 		}
   1761       1.1   mycroft 	}
   1762      1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1763       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1764       1.1   mycroft 	return (-1);
   1765       1.1   mycroft }
   1766       1.1   mycroft 
   1767       1.1   mycroft /*
   1768       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1769       1.1   mycroft  *
   1770       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1771       1.1   mycroft  */
   1772       1.9  christos void
   1773      1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1774       1.1   mycroft 	struct fs *fs;
   1775       1.1   mycroft 	struct cg *cgp;
   1776      1.18      fvdl 	ufs_daddr_t blkno;
   1777       1.1   mycroft 	int cnt;
   1778       1.1   mycroft {
   1779       1.4       cgd 	int32_t *sump;
   1780       1.5   mycroft 	int32_t *lp;
   1781       1.1   mycroft 	u_char *freemapp, *mapp;
   1782       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1783      1.30      fvdl #ifdef FFS_EI
   1784      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1785      1.30      fvdl #endif
   1786       1.1   mycroft 
   1787       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1788       1.1   mycroft 		return;
   1789      1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1790      1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1791       1.1   mycroft 	/*
   1792       1.1   mycroft 	 * Allocate or clear the actual block.
   1793       1.1   mycroft 	 */
   1794       1.1   mycroft 	if (cnt > 0)
   1795       1.1   mycroft 		setbit(freemapp, blkno);
   1796       1.1   mycroft 	else
   1797       1.1   mycroft 		clrbit(freemapp, blkno);
   1798       1.1   mycroft 	/*
   1799       1.1   mycroft 	 * Find the size of the cluster going forward.
   1800       1.1   mycroft 	 */
   1801       1.1   mycroft 	start = blkno + 1;
   1802       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1803      1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1804      1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1805       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1806       1.1   mycroft 	map = *mapp++;
   1807       1.1   mycroft 	bit = 1 << (start % NBBY);
   1808       1.1   mycroft 	for (i = start; i < end; i++) {
   1809       1.1   mycroft 		if ((map & bit) == 0)
   1810       1.1   mycroft 			break;
   1811       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1812       1.1   mycroft 			bit <<= 1;
   1813       1.1   mycroft 		} else {
   1814       1.1   mycroft 			map = *mapp++;
   1815       1.1   mycroft 			bit = 1;
   1816       1.1   mycroft 		}
   1817       1.1   mycroft 	}
   1818       1.1   mycroft 	forw = i - start;
   1819       1.1   mycroft 	/*
   1820       1.1   mycroft 	 * Find the size of the cluster going backward.
   1821       1.1   mycroft 	 */
   1822       1.1   mycroft 	start = blkno - 1;
   1823       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1824       1.1   mycroft 	if (end < 0)
   1825       1.1   mycroft 		end = -1;
   1826       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1827       1.1   mycroft 	map = *mapp--;
   1828       1.1   mycroft 	bit = 1 << (start % NBBY);
   1829       1.1   mycroft 	for (i = start; i > end; i--) {
   1830       1.1   mycroft 		if ((map & bit) == 0)
   1831       1.1   mycroft 			break;
   1832       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1833       1.1   mycroft 			bit >>= 1;
   1834       1.1   mycroft 		} else {
   1835       1.1   mycroft 			map = *mapp--;
   1836       1.1   mycroft 			bit = 1 << (NBBY - 1);
   1837       1.1   mycroft 		}
   1838       1.1   mycroft 	}
   1839       1.1   mycroft 	back = start - i;
   1840       1.1   mycroft 	/*
   1841       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1842       1.1   mycroft 	 * back clusters.
   1843       1.1   mycroft 	 */
   1844       1.1   mycroft 	i = back + forw + 1;
   1845       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1846       1.1   mycroft 		i = fs->fs_contigsumsize;
   1847      1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1848       1.1   mycroft 	if (back > 0)
   1849      1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1850       1.1   mycroft 	if (forw > 0)
   1851      1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1852      1.19    bouyer 
   1853       1.5   mycroft 	/*
   1854       1.5   mycroft 	 * Update cluster summary information.
   1855       1.5   mycroft 	 */
   1856       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1857       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1858      1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1859       1.5   mycroft 			break;
   1860      1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1861       1.1   mycroft }
   1862       1.1   mycroft 
   1863       1.1   mycroft /*
   1864       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1865       1.1   mycroft  *
   1866       1.1   mycroft  * The form of the error message is:
   1867       1.1   mycroft  *	fs: error message
   1868       1.1   mycroft  */
   1869       1.1   mycroft static void
   1870       1.1   mycroft ffs_fserr(fs, uid, cp)
   1871       1.1   mycroft 	struct fs *fs;
   1872       1.1   mycroft 	u_int uid;
   1873       1.1   mycroft 	char *cp;
   1874       1.1   mycroft {
   1875       1.1   mycroft 
   1876      1.37       chs 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1877      1.37       chs 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1878       1.1   mycroft }
   1879