ffs_alloc.c revision 1.54 1 1.54 mycroft /* $NetBSD: ffs_alloc.c,v 1.54 2002/04/10 08:05:11 mycroft Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.53 lukem
38 1.53 lukem #include <sys/cdefs.h>
39 1.54 mycroft __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.54 2002/04/10 08:05:11 mycroft Exp $");
40 1.17 mrg
41 1.43 mrg #if defined(_KERNEL_OPT)
42 1.27 thorpej #include "opt_ffs.h"
43 1.21 scottr #include "opt_quota.h"
44 1.22 scottr #endif
45 1.1 mycroft
46 1.1 mycroft #include <sys/param.h>
47 1.1 mycroft #include <sys/systm.h>
48 1.1 mycroft #include <sys/buf.h>
49 1.1 mycroft #include <sys/proc.h>
50 1.1 mycroft #include <sys/vnode.h>
51 1.1 mycroft #include <sys/mount.h>
52 1.1 mycroft #include <sys/kernel.h>
53 1.1 mycroft #include <sys/syslog.h>
54 1.29 mrg
55 1.1 mycroft #include <ufs/ufs/quota.h>
56 1.19 bouyer #include <ufs/ufs/ufsmount.h>
57 1.1 mycroft #include <ufs/ufs/inode.h>
58 1.9 christos #include <ufs/ufs/ufs_extern.h>
59 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
60 1.1 mycroft
61 1.1 mycroft #include <ufs/ffs/fs.h>
62 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
63 1.1 mycroft
64 1.30 fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 1.51 chs static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66 1.30 fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
67 1.50 lukem static ino_t ffs_dirpref __P((struct inode *));
68 1.30 fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
69 1.30 fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
70 1.51 chs static u_long ffs_hashalloc __P((struct inode *, int, long, int,
71 1.51 chs ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
72 1.30 fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
73 1.30 fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
74 1.30 fvdl ufs_daddr_t, int));
75 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
76 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
77 1.18 fvdl #endif
78 1.23 drochner
79 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
80 1.34 jdolecek int ffs_log_changeopt = 0;
81 1.34 jdolecek
82 1.23 drochner /* in ffs_tables.c */
83 1.40 jdolecek extern const int inside[], around[];
84 1.40 jdolecek extern const u_char * const fragtbl[];
85 1.1 mycroft
86 1.1 mycroft /*
87 1.1 mycroft * Allocate a block in the file system.
88 1.1 mycroft *
89 1.1 mycroft * The size of the requested block is given, which must be some
90 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
91 1.1 mycroft * A preference may be optionally specified. If a preference is given
92 1.1 mycroft * the following hierarchy is used to allocate a block:
93 1.1 mycroft * 1) allocate the requested block.
94 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
95 1.1 mycroft * 3) allocate a block in the same cylinder group.
96 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
97 1.1 mycroft * available block is located.
98 1.47 wiz * If no block preference is given the following hierarchy is used
99 1.1 mycroft * to allocate a block:
100 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
101 1.1 mycroft * inode for the file.
102 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
103 1.1 mycroft * available block is located.
104 1.1 mycroft */
105 1.9 christos int
106 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
107 1.33 augustss struct inode *ip;
108 1.18 fvdl ufs_daddr_t lbn, bpref;
109 1.1 mycroft int size;
110 1.1 mycroft struct ucred *cred;
111 1.18 fvdl ufs_daddr_t *bnp;
112 1.1 mycroft {
113 1.37 chs struct fs *fs = ip->i_fs;
114 1.18 fvdl ufs_daddr_t bno;
115 1.9 christos int cg;
116 1.9 christos #ifdef QUOTA
117 1.9 christos int error;
118 1.9 christos #endif
119 1.1 mycroft
120 1.37 chs #ifdef UVM_PAGE_TRKOWN
121 1.51 chs if (ITOV(ip)->v_type == VREG &&
122 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
123 1.37 chs struct vm_page *pg;
124 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
125 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
126 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
127 1.37 chs
128 1.37 chs simple_lock(&uobj->vmobjlock);
129 1.37 chs while (off < endoff) {
130 1.37 chs pg = uvm_pagelookup(uobj, off);
131 1.37 chs KASSERT(pg != NULL);
132 1.37 chs KASSERT(pg->owner == curproc->p_pid);
133 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
134 1.37 chs off += PAGE_SIZE;
135 1.37 chs }
136 1.37 chs simple_unlock(&uobj->vmobjlock);
137 1.37 chs }
138 1.37 chs #endif
139 1.37 chs
140 1.1 mycroft *bnp = 0;
141 1.1 mycroft #ifdef DIAGNOSTIC
142 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
143 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
144 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
145 1.1 mycroft panic("ffs_alloc: bad size");
146 1.1 mycroft }
147 1.1 mycroft if (cred == NOCRED)
148 1.1 mycroft panic("ffs_alloc: missing credential\n");
149 1.1 mycroft #endif /* DIAGNOSTIC */
150 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
151 1.1 mycroft goto nospace;
152 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
153 1.1 mycroft goto nospace;
154 1.1 mycroft #ifdef QUOTA
155 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
156 1.1 mycroft return (error);
157 1.1 mycroft #endif
158 1.1 mycroft if (bpref >= fs->fs_size)
159 1.1 mycroft bpref = 0;
160 1.1 mycroft if (bpref == 0)
161 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
162 1.1 mycroft else
163 1.1 mycroft cg = dtog(fs, bpref);
164 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
165 1.9 christos ffs_alloccg);
166 1.1 mycroft if (bno > 0) {
167 1.15 bouyer ip->i_ffs_blocks += btodb(size);
168 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
169 1.1 mycroft *bnp = bno;
170 1.1 mycroft return (0);
171 1.1 mycroft }
172 1.1 mycroft #ifdef QUOTA
173 1.1 mycroft /*
174 1.1 mycroft * Restore user's disk quota because allocation failed.
175 1.1 mycroft */
176 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
177 1.1 mycroft #endif
178 1.1 mycroft nospace:
179 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
180 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
181 1.1 mycroft return (ENOSPC);
182 1.1 mycroft }
183 1.1 mycroft
184 1.1 mycroft /*
185 1.1 mycroft * Reallocate a fragment to a bigger size
186 1.1 mycroft *
187 1.1 mycroft * The number and size of the old block is given, and a preference
188 1.1 mycroft * and new size is also specified. The allocator attempts to extend
189 1.1 mycroft * the original block. Failing that, the regular block allocator is
190 1.1 mycroft * invoked to get an appropriate block.
191 1.1 mycroft */
192 1.9 christos int
193 1.37 chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
194 1.33 augustss struct inode *ip;
195 1.18 fvdl ufs_daddr_t lbprev;
196 1.18 fvdl ufs_daddr_t bpref;
197 1.1 mycroft int osize, nsize;
198 1.1 mycroft struct ucred *cred;
199 1.1 mycroft struct buf **bpp;
200 1.37 chs ufs_daddr_t *blknop;
201 1.1 mycroft {
202 1.37 chs struct fs *fs = ip->i_fs;
203 1.1 mycroft struct buf *bp;
204 1.1 mycroft int cg, request, error;
205 1.18 fvdl ufs_daddr_t bprev, bno;
206 1.25 thorpej
207 1.37 chs #ifdef UVM_PAGE_TRKOWN
208 1.37 chs if (ITOV(ip)->v_type == VREG) {
209 1.37 chs struct vm_page *pg;
210 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
211 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
212 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
213 1.37 chs
214 1.37 chs simple_lock(&uobj->vmobjlock);
215 1.37 chs while (off < endoff) {
216 1.37 chs pg = uvm_pagelookup(uobj, off);
217 1.37 chs KASSERT(pg != NULL);
218 1.37 chs KASSERT(pg->owner == curproc->p_pid);
219 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
220 1.37 chs off += PAGE_SIZE;
221 1.37 chs }
222 1.37 chs simple_unlock(&uobj->vmobjlock);
223 1.37 chs }
224 1.37 chs #endif
225 1.37 chs
226 1.1 mycroft #ifdef DIAGNOSTIC
227 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
228 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
229 1.13 christos printf(
230 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
231 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
232 1.1 mycroft panic("ffs_realloccg: bad size");
233 1.1 mycroft }
234 1.1 mycroft if (cred == NOCRED)
235 1.1 mycroft panic("ffs_realloccg: missing credential\n");
236 1.1 mycroft #endif /* DIAGNOSTIC */
237 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
238 1.1 mycroft goto nospace;
239 1.30 fvdl if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
240 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
241 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
242 1.1 mycroft panic("ffs_realloccg: bad bprev");
243 1.1 mycroft }
244 1.1 mycroft /*
245 1.1 mycroft * Allocate the extra space in the buffer.
246 1.1 mycroft */
247 1.37 chs if (bpp != NULL &&
248 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
249 1.1 mycroft brelse(bp);
250 1.1 mycroft return (error);
251 1.1 mycroft }
252 1.1 mycroft #ifdef QUOTA
253 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
254 1.44 chs if (bpp != NULL) {
255 1.44 chs brelse(bp);
256 1.44 chs }
257 1.1 mycroft return (error);
258 1.1 mycroft }
259 1.1 mycroft #endif
260 1.1 mycroft /*
261 1.1 mycroft * Check for extension in the existing location.
262 1.1 mycroft */
263 1.1 mycroft cg = dtog(fs, bprev);
264 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
265 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
266 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
267 1.37 chs
268 1.37 chs if (bpp != NULL) {
269 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
270 1.37 chs panic("bad blockno");
271 1.37 chs allocbuf(bp, nsize);
272 1.37 chs bp->b_flags |= B_DONE;
273 1.37 chs memset(bp->b_data + osize, 0, nsize - osize);
274 1.37 chs *bpp = bp;
275 1.37 chs }
276 1.37 chs if (blknop != NULL) {
277 1.37 chs *blknop = bno;
278 1.37 chs }
279 1.1 mycroft return (0);
280 1.1 mycroft }
281 1.1 mycroft /*
282 1.1 mycroft * Allocate a new disk location.
283 1.1 mycroft */
284 1.1 mycroft if (bpref >= fs->fs_size)
285 1.1 mycroft bpref = 0;
286 1.1 mycroft switch ((int)fs->fs_optim) {
287 1.1 mycroft case FS_OPTSPACE:
288 1.1 mycroft /*
289 1.1 mycroft * Allocate an exact sized fragment. Although this makes
290 1.1 mycroft * best use of space, we will waste time relocating it if
291 1.1 mycroft * the file continues to grow. If the fragmentation is
292 1.1 mycroft * less than half of the minimum free reserve, we choose
293 1.1 mycroft * to begin optimizing for time.
294 1.1 mycroft */
295 1.1 mycroft request = nsize;
296 1.1 mycroft if (fs->fs_minfree < 5 ||
297 1.1 mycroft fs->fs_cstotal.cs_nffree >
298 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
299 1.1 mycroft break;
300 1.34 jdolecek
301 1.34 jdolecek if (ffs_log_changeopt) {
302 1.34 jdolecek log(LOG_NOTICE,
303 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
304 1.34 jdolecek fs->fs_fsmnt);
305 1.34 jdolecek }
306 1.34 jdolecek
307 1.1 mycroft fs->fs_optim = FS_OPTTIME;
308 1.1 mycroft break;
309 1.1 mycroft case FS_OPTTIME:
310 1.1 mycroft /*
311 1.1 mycroft * At this point we have discovered a file that is trying to
312 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
313 1.1 mycroft * we allocate a full sized block, then free the unused portion.
314 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
315 1.1 mycroft * above will be able to grow it in place without further
316 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
317 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
318 1.1 mycroft * optimizing for space.
319 1.1 mycroft */
320 1.1 mycroft request = fs->fs_bsize;
321 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
322 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
323 1.1 mycroft break;
324 1.34 jdolecek
325 1.34 jdolecek if (ffs_log_changeopt) {
326 1.34 jdolecek log(LOG_NOTICE,
327 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
328 1.34 jdolecek fs->fs_fsmnt);
329 1.34 jdolecek }
330 1.34 jdolecek
331 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
332 1.1 mycroft break;
333 1.1 mycroft default:
334 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
335 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
336 1.1 mycroft panic("ffs_realloccg: bad optim");
337 1.1 mycroft /* NOTREACHED */
338 1.1 mycroft }
339 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
340 1.9 christos ffs_alloccg);
341 1.1 mycroft if (bno > 0) {
342 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
343 1.30 fvdl ffs_blkfree(ip, bprev, (long)osize);
344 1.1 mycroft if (nsize < request)
345 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
346 1.1 mycroft (long)(request - nsize));
347 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
348 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
349 1.37 chs if (bpp != NULL) {
350 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
351 1.37 chs allocbuf(bp, nsize);
352 1.37 chs bp->b_flags |= B_DONE;
353 1.37 chs memset(bp->b_data + osize, 0, (u_int)nsize - osize);
354 1.37 chs *bpp = bp;
355 1.37 chs }
356 1.37 chs if (blknop != NULL) {
357 1.37 chs *blknop = bno;
358 1.37 chs }
359 1.1 mycroft return (0);
360 1.1 mycroft }
361 1.1 mycroft #ifdef QUOTA
362 1.1 mycroft /*
363 1.1 mycroft * Restore user's disk quota because allocation failed.
364 1.1 mycroft */
365 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
366 1.1 mycroft #endif
367 1.37 chs if (bpp != NULL) {
368 1.37 chs brelse(bp);
369 1.37 chs }
370 1.37 chs
371 1.1 mycroft nospace:
372 1.1 mycroft /*
373 1.1 mycroft * no space available
374 1.1 mycroft */
375 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
376 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
377 1.1 mycroft return (ENOSPC);
378 1.1 mycroft }
379 1.1 mycroft
380 1.1 mycroft /*
381 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
382 1.1 mycroft *
383 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
384 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
385 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
386 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
387 1.46 wiz * block immediately preceding the current range. If successful, the
388 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
389 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
390 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
391 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
392 1.1 mycroft * the previous block allocation will be used.
393 1.1 mycroft */
394 1.3 mycroft #ifdef DEBUG
395 1.1 mycroft #include <sys/sysctl.h>
396 1.5 mycroft int prtrealloc = 0;
397 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
398 1.1 mycroft #endif
399 1.1 mycroft
400 1.18 fvdl int doasyncfree = 1;
401 1.18 fvdl
402 1.1 mycroft int
403 1.9 christos ffs_reallocblks(v)
404 1.9 christos void *v;
405 1.9 christos {
406 1.1 mycroft struct vop_reallocblks_args /* {
407 1.1 mycroft struct vnode *a_vp;
408 1.1 mycroft struct cluster_save *a_buflist;
409 1.9 christos } */ *ap = v;
410 1.1 mycroft struct fs *fs;
411 1.1 mycroft struct inode *ip;
412 1.1 mycroft struct vnode *vp;
413 1.1 mycroft struct buf *sbp, *ebp;
414 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
415 1.1 mycroft struct cluster_save *buflist;
416 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
417 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
418 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
419 1.1 mycroft
420 1.37 chs /* XXXUBC don't reallocblks for now */
421 1.37 chs return ENOSPC;
422 1.37 chs
423 1.1 mycroft vp = ap->a_vp;
424 1.1 mycroft ip = VTOI(vp);
425 1.1 mycroft fs = ip->i_fs;
426 1.1 mycroft if (fs->fs_contigsumsize <= 0)
427 1.1 mycroft return (ENOSPC);
428 1.1 mycroft buflist = ap->a_buflist;
429 1.1 mycroft len = buflist->bs_nchildren;
430 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
431 1.1 mycroft end_lbn = start_lbn + len - 1;
432 1.1 mycroft #ifdef DIAGNOSTIC
433 1.18 fvdl for (i = 0; i < len; i++)
434 1.18 fvdl if (!ffs_checkblk(ip,
435 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
436 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
437 1.1 mycroft for (i = 1; i < len; i++)
438 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
439 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
440 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
441 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
442 1.18 fvdl for (i = 1; i < len - 1; i++)
443 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
444 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
445 1.1 mycroft #endif
446 1.1 mycroft /*
447 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
448 1.1 mycroft * the filesystem has decided to move and do not force it back to
449 1.1 mycroft * the previous cylinder group.
450 1.1 mycroft */
451 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
452 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
453 1.1 mycroft return (ENOSPC);
454 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
455 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
456 1.1 mycroft return (ENOSPC);
457 1.1 mycroft /*
458 1.1 mycroft * Get the starting offset and block map for the first block.
459 1.1 mycroft */
460 1.1 mycroft if (start_lvl == 0) {
461 1.15 bouyer sbap = &ip->i_ffs_db[0];
462 1.1 mycroft soff = start_lbn;
463 1.1 mycroft } else {
464 1.1 mycroft idp = &start_ap[start_lvl - 1];
465 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
466 1.1 mycroft brelse(sbp);
467 1.1 mycroft return (ENOSPC);
468 1.1 mycroft }
469 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
470 1.1 mycroft soff = idp->in_off;
471 1.1 mycroft }
472 1.1 mycroft /*
473 1.1 mycroft * Find the preferred location for the cluster.
474 1.1 mycroft */
475 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
476 1.1 mycroft /*
477 1.1 mycroft * If the block range spans two block maps, get the second map.
478 1.1 mycroft */
479 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
480 1.1 mycroft ssize = len;
481 1.1 mycroft } else {
482 1.1 mycroft #ifdef DIAGNOSTIC
483 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
484 1.1 mycroft panic("ffs_reallocblk: start == end");
485 1.1 mycroft #endif
486 1.1 mycroft ssize = len - (idp->in_off + 1);
487 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
488 1.1 mycroft goto fail;
489 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
490 1.1 mycroft }
491 1.1 mycroft /*
492 1.1 mycroft * Search the block map looking for an allocation of the desired size.
493 1.1 mycroft */
494 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
495 1.9 christos len, ffs_clusteralloc)) == 0)
496 1.1 mycroft goto fail;
497 1.1 mycroft /*
498 1.1 mycroft * We have found a new contiguous block.
499 1.1 mycroft *
500 1.1 mycroft * First we have to replace the old block pointers with the new
501 1.1 mycroft * block pointers in the inode and indirect blocks associated
502 1.1 mycroft * with the file.
503 1.1 mycroft */
504 1.5 mycroft #ifdef DEBUG
505 1.5 mycroft if (prtrealloc)
506 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
507 1.5 mycroft start_lbn, end_lbn);
508 1.5 mycroft #endif
509 1.1 mycroft blkno = newblk;
510 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
511 1.30 fvdl ufs_daddr_t ba;
512 1.30 fvdl
513 1.30 fvdl if (i == ssize) {
514 1.1 mycroft bap = ebap;
515 1.30 fvdl soff = -i;
516 1.30 fvdl }
517 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
518 1.1 mycroft #ifdef DIAGNOSTIC
519 1.18 fvdl if (!ffs_checkblk(ip,
520 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
521 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
522 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
523 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
524 1.1 mycroft #endif
525 1.5 mycroft #ifdef DEBUG
526 1.5 mycroft if (prtrealloc)
527 1.30 fvdl printf(" %d,", ba);
528 1.5 mycroft #endif
529 1.30 fvdl if (DOINGSOFTDEP(vp)) {
530 1.30 fvdl if (sbap == &ip->i_ffs_db[0] && i < ssize)
531 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
532 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
533 1.30 fvdl buflist->bs_children[i]);
534 1.30 fvdl else
535 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
536 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
537 1.30 fvdl ba, buflist->bs_children[i]);
538 1.30 fvdl }
539 1.30 fvdl *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
540 1.1 mycroft }
541 1.1 mycroft /*
542 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
543 1.1 mycroft * For strict correctness, the writes should be synchronous since
544 1.1 mycroft * the old block values may have been written to disk. In practise
545 1.1 mycroft * they are almost never written, but if we are concerned about
546 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
547 1.1 mycroft *
548 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
549 1.1 mycroft * that shows whether the associated buffers and inodes have
550 1.1 mycroft * been written. The flag should be set when the cluster is
551 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
552 1.1 mycroft * We can then check below to see if it is set, and do the
553 1.1 mycroft * synchronous write only when it has been cleared.
554 1.1 mycroft */
555 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
556 1.1 mycroft if (doasyncfree)
557 1.1 mycroft bdwrite(sbp);
558 1.1 mycroft else
559 1.1 mycroft bwrite(sbp);
560 1.1 mycroft } else {
561 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
562 1.28 mycroft if (!doasyncfree)
563 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
564 1.1 mycroft }
565 1.25 thorpej if (ssize < len) {
566 1.1 mycroft if (doasyncfree)
567 1.1 mycroft bdwrite(ebp);
568 1.1 mycroft else
569 1.1 mycroft bwrite(ebp);
570 1.25 thorpej }
571 1.1 mycroft /*
572 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
573 1.1 mycroft */
574 1.5 mycroft #ifdef DEBUG
575 1.5 mycroft if (prtrealloc)
576 1.13 christos printf("\n\tnew:");
577 1.5 mycroft #endif
578 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
579 1.30 fvdl if (!DOINGSOFTDEP(vp))
580 1.30 fvdl ffs_blkfree(ip,
581 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
582 1.30 fvdl fs->fs_bsize);
583 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
584 1.5 mycroft #ifdef DEBUG
585 1.18 fvdl if (!ffs_checkblk(ip,
586 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
587 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
588 1.5 mycroft if (prtrealloc)
589 1.13 christos printf(" %d,", blkno);
590 1.5 mycroft #endif
591 1.5 mycroft }
592 1.5 mycroft #ifdef DEBUG
593 1.5 mycroft if (prtrealloc) {
594 1.5 mycroft prtrealloc--;
595 1.13 christos printf("\n");
596 1.1 mycroft }
597 1.5 mycroft #endif
598 1.1 mycroft return (0);
599 1.1 mycroft
600 1.1 mycroft fail:
601 1.1 mycroft if (ssize < len)
602 1.1 mycroft brelse(ebp);
603 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
604 1.1 mycroft brelse(sbp);
605 1.1 mycroft return (ENOSPC);
606 1.1 mycroft }
607 1.1 mycroft
608 1.1 mycroft /*
609 1.1 mycroft * Allocate an inode in the file system.
610 1.1 mycroft *
611 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
612 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
613 1.1 mycroft * 1) allocate the preferred inode.
614 1.1 mycroft * 2) allocate an inode in the same cylinder group.
615 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
616 1.1 mycroft * available inode is located.
617 1.47 wiz * If no inode preference is given the following hierarchy is used
618 1.1 mycroft * to allocate an inode:
619 1.1 mycroft * 1) allocate an inode in cylinder group 0.
620 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
621 1.1 mycroft * available inode is located.
622 1.1 mycroft */
623 1.9 christos int
624 1.9 christos ffs_valloc(v)
625 1.9 christos void *v;
626 1.9 christos {
627 1.1 mycroft struct vop_valloc_args /* {
628 1.1 mycroft struct vnode *a_pvp;
629 1.1 mycroft int a_mode;
630 1.1 mycroft struct ucred *a_cred;
631 1.1 mycroft struct vnode **a_vpp;
632 1.9 christos } */ *ap = v;
633 1.33 augustss struct vnode *pvp = ap->a_pvp;
634 1.33 augustss struct inode *pip;
635 1.33 augustss struct fs *fs;
636 1.33 augustss struct inode *ip;
637 1.1 mycroft mode_t mode = ap->a_mode;
638 1.1 mycroft ino_t ino, ipref;
639 1.1 mycroft int cg, error;
640 1.1 mycroft
641 1.1 mycroft *ap->a_vpp = NULL;
642 1.1 mycroft pip = VTOI(pvp);
643 1.1 mycroft fs = pip->i_fs;
644 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
645 1.1 mycroft goto noinodes;
646 1.1 mycroft
647 1.1 mycroft if ((mode & IFMT) == IFDIR)
648 1.50 lukem ipref = ffs_dirpref(pip);
649 1.50 lukem else
650 1.50 lukem ipref = pip->i_number;
651 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
652 1.1 mycroft ipref = 0;
653 1.1 mycroft cg = ino_to_cg(fs, ipref);
654 1.50 lukem /*
655 1.50 lukem * Track number of dirs created one after another
656 1.50 lukem * in a same cg without intervening by files.
657 1.50 lukem */
658 1.50 lukem if ((mode & IFMT) == IFDIR) {
659 1.50 lukem if (fs->fs_contigdirs[cg] < 65535)
660 1.50 lukem fs->fs_contigdirs[cg]++;
661 1.50 lukem } else {
662 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
663 1.50 lukem fs->fs_contigdirs[cg]--;
664 1.50 lukem }
665 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
666 1.1 mycroft if (ino == 0)
667 1.1 mycroft goto noinodes;
668 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
669 1.1 mycroft if (error) {
670 1.1 mycroft VOP_VFREE(pvp, ino, mode);
671 1.1 mycroft return (error);
672 1.1 mycroft }
673 1.1 mycroft ip = VTOI(*ap->a_vpp);
674 1.15 bouyer if (ip->i_ffs_mode) {
675 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
676 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
677 1.1 mycroft panic("ffs_valloc: dup alloc");
678 1.1 mycroft }
679 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
680 1.13 christos printf("free inode %s/%d had %d blocks\n",
681 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
682 1.15 bouyer ip->i_ffs_blocks = 0;
683 1.1 mycroft }
684 1.15 bouyer ip->i_ffs_flags = 0;
685 1.1 mycroft /*
686 1.1 mycroft * Set up a new generation number for this inode.
687 1.1 mycroft */
688 1.15 bouyer ip->i_ffs_gen++;
689 1.1 mycroft return (0);
690 1.1 mycroft noinodes:
691 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
692 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
693 1.1 mycroft return (ENOSPC);
694 1.1 mycroft }
695 1.1 mycroft
696 1.1 mycroft /*
697 1.50 lukem * Find a cylinder group in which to place a directory.
698 1.42 sommerfe *
699 1.50 lukem * The policy implemented by this algorithm is to allocate a
700 1.50 lukem * directory inode in the same cylinder group as its parent
701 1.50 lukem * directory, but also to reserve space for its files inodes
702 1.50 lukem * and data. Restrict the number of directories which may be
703 1.50 lukem * allocated one after another in the same cylinder group
704 1.50 lukem * without intervening allocation of files.
705 1.42 sommerfe *
706 1.50 lukem * If we allocate a first level directory then force allocation
707 1.50 lukem * in another cylinder group.
708 1.1 mycroft */
709 1.1 mycroft static ino_t
710 1.50 lukem ffs_dirpref(pip)
711 1.50 lukem struct inode *pip;
712 1.1 mycroft {
713 1.50 lukem register struct fs *fs;
714 1.50 lukem int cg, prefcg, dirsize, cgsize;
715 1.50 lukem int avgifree, avgbfree, avgndir, curdirsize;
716 1.50 lukem int minifree, minbfree, maxndir;
717 1.50 lukem int mincg, minndir;
718 1.50 lukem int maxcontigdirs;
719 1.50 lukem
720 1.50 lukem fs = pip->i_fs;
721 1.1 mycroft
722 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
723 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
724 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
725 1.50 lukem
726 1.50 lukem /*
727 1.50 lukem * Force allocation in another cg if creating a first level dir.
728 1.50 lukem */
729 1.50 lukem if (ITOV(pip)->v_flag & VROOT) {
730 1.50 lukem prefcg = random() % fs->fs_ncg;
731 1.50 lukem mincg = prefcg;
732 1.50 lukem minndir = fs->fs_ipg;
733 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
734 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
735 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
736 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
737 1.42 sommerfe mincg = cg;
738 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
739 1.42 sommerfe }
740 1.50 lukem for (cg = 0; cg < prefcg; cg++)
741 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
742 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
743 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
744 1.50 lukem mincg = cg;
745 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
746 1.42 sommerfe }
747 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
748 1.42 sommerfe }
749 1.50 lukem
750 1.50 lukem /*
751 1.50 lukem * Count various limits which used for
752 1.50 lukem * optimal allocation of a directory inode.
753 1.50 lukem */
754 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
755 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
756 1.50 lukem if (minifree < 0)
757 1.50 lukem minifree = 0;
758 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
759 1.50 lukem if (minbfree < 0)
760 1.50 lukem minbfree = 0;
761 1.50 lukem cgsize = fs->fs_fsize * fs->fs_fpg;
762 1.50 lukem dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
763 1.50 lukem curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
764 1.50 lukem if (dirsize < curdirsize)
765 1.50 lukem dirsize = curdirsize;
766 1.50 lukem maxcontigdirs = min(cgsize / dirsize, 255);
767 1.50 lukem if (fs->fs_avgfpdir > 0)
768 1.50 lukem maxcontigdirs = min(maxcontigdirs,
769 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
770 1.50 lukem if (maxcontigdirs == 0)
771 1.50 lukem maxcontigdirs = 1;
772 1.50 lukem
773 1.50 lukem /*
774 1.50 lukem * Limit number of dirs in one cg and reserve space for
775 1.50 lukem * regular files, but only if we have no deficit in
776 1.50 lukem * inodes or space.
777 1.50 lukem */
778 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
779 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
780 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
781 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
782 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
783 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
784 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
785 1.50 lukem }
786 1.50 lukem for (cg = 0; cg < prefcg; cg++)
787 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
788 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
789 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
790 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
791 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
792 1.50 lukem }
793 1.50 lukem /*
794 1.50 lukem * This is a backstop when we are deficient in space.
795 1.50 lukem */
796 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
797 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
798 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
799 1.50 lukem for (cg = 0; cg < prefcg; cg++)
800 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
801 1.50 lukem break;
802 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
803 1.1 mycroft }
804 1.1 mycroft
805 1.1 mycroft /*
806 1.1 mycroft * Select the desired position for the next block in a file. The file is
807 1.1 mycroft * logically divided into sections. The first section is composed of the
808 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
809 1.1 mycroft *
810 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
811 1.1 mycroft * request a block in the same cylinder group as the inode that describes
812 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
813 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
814 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
815 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
816 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
817 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
818 1.1 mycroft * continues until a cylinder group with greater than the average number
819 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
820 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
821 1.1 mycroft * here a best guess is made based upon the logical block number being
822 1.1 mycroft * allocated.
823 1.1 mycroft *
824 1.1 mycroft * If a section is already partially allocated, the policy is to
825 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
826 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
827 1.1 mycroft * so that the disk head will be in transit between them for at least
828 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
829 1.1 mycroft * schedule another I/O transfer.
830 1.1 mycroft */
831 1.18 fvdl ufs_daddr_t
832 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
833 1.1 mycroft struct inode *ip;
834 1.18 fvdl ufs_daddr_t lbn;
835 1.1 mycroft int indx;
836 1.18 fvdl ufs_daddr_t *bap;
837 1.1 mycroft {
838 1.33 augustss struct fs *fs;
839 1.33 augustss int cg;
840 1.1 mycroft int avgbfree, startcg;
841 1.18 fvdl ufs_daddr_t nextblk;
842 1.1 mycroft
843 1.1 mycroft fs = ip->i_fs;
844 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
845 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
846 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
847 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
848 1.1 mycroft }
849 1.1 mycroft /*
850 1.1 mycroft * Find a cylinder with greater than average number of
851 1.1 mycroft * unused data blocks.
852 1.1 mycroft */
853 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
854 1.1 mycroft startcg =
855 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
856 1.1 mycroft else
857 1.19 bouyer startcg = dtog(fs,
858 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
859 1.1 mycroft startcg %= fs->fs_ncg;
860 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
861 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
862 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
863 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
864 1.1 mycroft }
865 1.52 lukem for (cg = 0; cg < startcg; cg++)
866 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
867 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
868 1.1 mycroft }
869 1.35 thorpej return (0);
870 1.1 mycroft }
871 1.1 mycroft /*
872 1.1 mycroft * One or more previous blocks have been laid out. If less
873 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
874 1.1 mycroft * next block is requested contiguously, otherwise it is
875 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
876 1.1 mycroft */
877 1.30 fvdl nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
878 1.19 bouyer if (indx < fs->fs_maxcontig ||
879 1.30 fvdl ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
880 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
881 1.1 mycroft return (nextblk);
882 1.1 mycroft if (fs->fs_rotdelay != 0)
883 1.1 mycroft /*
884 1.1 mycroft * Here we convert ms of delay to frags as:
885 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
886 1.1 mycroft * ((sect/frag) * (ms/sec))
887 1.1 mycroft * then round up to the next block.
888 1.1 mycroft */
889 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
890 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
891 1.1 mycroft return (nextblk);
892 1.1 mycroft }
893 1.1 mycroft
894 1.1 mycroft /*
895 1.1 mycroft * Implement the cylinder overflow algorithm.
896 1.1 mycroft *
897 1.1 mycroft * The policy implemented by this algorithm is:
898 1.1 mycroft * 1) allocate the block in its requested cylinder group.
899 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
900 1.1 mycroft * 3) brute force search for a free block.
901 1.1 mycroft */
902 1.1 mycroft /*VARARGS5*/
903 1.1 mycroft static u_long
904 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
905 1.1 mycroft struct inode *ip;
906 1.1 mycroft int cg;
907 1.1 mycroft long pref;
908 1.1 mycroft int size; /* size for data blocks, mode for inodes */
909 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
910 1.1 mycroft {
911 1.33 augustss struct fs *fs;
912 1.1 mycroft long result;
913 1.1 mycroft int i, icg = cg;
914 1.1 mycroft
915 1.1 mycroft fs = ip->i_fs;
916 1.1 mycroft /*
917 1.1 mycroft * 1: preferred cylinder group
918 1.1 mycroft */
919 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
920 1.1 mycroft if (result)
921 1.1 mycroft return (result);
922 1.1 mycroft /*
923 1.1 mycroft * 2: quadratic rehash
924 1.1 mycroft */
925 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
926 1.1 mycroft cg += i;
927 1.1 mycroft if (cg >= fs->fs_ncg)
928 1.1 mycroft cg -= fs->fs_ncg;
929 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
930 1.1 mycroft if (result)
931 1.1 mycroft return (result);
932 1.1 mycroft }
933 1.1 mycroft /*
934 1.1 mycroft * 3: brute force search
935 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
936 1.1 mycroft * and 1 is always checked in the quadratic rehash.
937 1.1 mycroft */
938 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
939 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
940 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
941 1.1 mycroft if (result)
942 1.1 mycroft return (result);
943 1.1 mycroft cg++;
944 1.1 mycroft if (cg == fs->fs_ncg)
945 1.1 mycroft cg = 0;
946 1.1 mycroft }
947 1.35 thorpej return (0);
948 1.1 mycroft }
949 1.1 mycroft
950 1.1 mycroft /*
951 1.1 mycroft * Determine whether a fragment can be extended.
952 1.1 mycroft *
953 1.1 mycroft * Check to see if the necessary fragments are available, and
954 1.1 mycroft * if they are, allocate them.
955 1.1 mycroft */
956 1.18 fvdl static ufs_daddr_t
957 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
958 1.1 mycroft struct inode *ip;
959 1.1 mycroft int cg;
960 1.1 mycroft long bprev;
961 1.1 mycroft int osize, nsize;
962 1.1 mycroft {
963 1.33 augustss struct fs *fs;
964 1.33 augustss struct cg *cgp;
965 1.1 mycroft struct buf *bp;
966 1.1 mycroft long bno;
967 1.1 mycroft int frags, bbase;
968 1.1 mycroft int i, error;
969 1.1 mycroft
970 1.1 mycroft fs = ip->i_fs;
971 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
972 1.35 thorpej return (0);
973 1.1 mycroft frags = numfrags(fs, nsize);
974 1.1 mycroft bbase = fragnum(fs, bprev);
975 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
976 1.1 mycroft /* cannot extend across a block boundary */
977 1.35 thorpej return (0);
978 1.1 mycroft }
979 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
980 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
981 1.1 mycroft if (error) {
982 1.1 mycroft brelse(bp);
983 1.35 thorpej return (0);
984 1.1 mycroft }
985 1.1 mycroft cgp = (struct cg *)bp->b_data;
986 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
987 1.1 mycroft brelse(bp);
988 1.35 thorpej return (0);
989 1.1 mycroft }
990 1.30 fvdl cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
991 1.1 mycroft bno = dtogd(fs, bprev);
992 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
993 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
994 1.1 mycroft brelse(bp);
995 1.35 thorpej return (0);
996 1.1 mycroft }
997 1.1 mycroft /*
998 1.1 mycroft * the current fragment can be extended
999 1.1 mycroft * deduct the count on fragment being extended into
1000 1.1 mycroft * increase the count on the remaining fragment (if any)
1001 1.1 mycroft * allocate the extended piece
1002 1.1 mycroft */
1003 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1004 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1005 1.1 mycroft break;
1006 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1007 1.1 mycroft if (i != frags)
1008 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1009 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1010 1.30 fvdl clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1011 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1012 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1013 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1014 1.1 mycroft }
1015 1.1 mycroft fs->fs_fmod = 1;
1016 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1017 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1018 1.1 mycroft bdwrite(bp);
1019 1.1 mycroft return (bprev);
1020 1.1 mycroft }
1021 1.1 mycroft
1022 1.1 mycroft /*
1023 1.1 mycroft * Determine whether a block can be allocated.
1024 1.1 mycroft *
1025 1.1 mycroft * Check to see if a block of the appropriate size is available,
1026 1.1 mycroft * and if it is, allocate it.
1027 1.1 mycroft */
1028 1.18 fvdl static ufs_daddr_t
1029 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
1030 1.1 mycroft struct inode *ip;
1031 1.1 mycroft int cg;
1032 1.18 fvdl ufs_daddr_t bpref;
1033 1.1 mycroft int size;
1034 1.1 mycroft {
1035 1.30 fvdl struct cg *cgp;
1036 1.1 mycroft struct buf *bp;
1037 1.30 fvdl ufs_daddr_t bno, blkno;
1038 1.30 fvdl int error, frags, allocsiz, i;
1039 1.30 fvdl struct fs *fs = ip->i_fs;
1040 1.30 fvdl #ifdef FFS_EI
1041 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1042 1.30 fvdl #endif
1043 1.1 mycroft
1044 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1045 1.35 thorpej return (0);
1046 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1047 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1048 1.1 mycroft if (error) {
1049 1.1 mycroft brelse(bp);
1050 1.35 thorpej return (0);
1051 1.1 mycroft }
1052 1.1 mycroft cgp = (struct cg *)bp->b_data;
1053 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1054 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1055 1.1 mycroft brelse(bp);
1056 1.35 thorpej return (0);
1057 1.1 mycroft }
1058 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1059 1.1 mycroft if (size == fs->fs_bsize) {
1060 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
1061 1.1 mycroft bdwrite(bp);
1062 1.1 mycroft return (bno);
1063 1.1 mycroft }
1064 1.1 mycroft /*
1065 1.1 mycroft * check to see if any fragments are already available
1066 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1067 1.1 mycroft * it down to a smaller size if necessary
1068 1.1 mycroft */
1069 1.1 mycroft frags = numfrags(fs, size);
1070 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1071 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1072 1.1 mycroft break;
1073 1.1 mycroft if (allocsiz == fs->fs_frag) {
1074 1.1 mycroft /*
1075 1.1 mycroft * no fragments were available, so a block will be
1076 1.1 mycroft * allocated, and hacked up
1077 1.1 mycroft */
1078 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
1079 1.1 mycroft brelse(bp);
1080 1.35 thorpej return (0);
1081 1.1 mycroft }
1082 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
1083 1.1 mycroft bpref = dtogd(fs, bno);
1084 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1085 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
1086 1.1 mycroft i = fs->fs_frag - frags;
1087 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1088 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1089 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1090 1.1 mycroft fs->fs_fmod = 1;
1091 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1092 1.1 mycroft bdwrite(bp);
1093 1.1 mycroft return (bno);
1094 1.1 mycroft }
1095 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1096 1.30 fvdl #if 0
1097 1.30 fvdl /*
1098 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1099 1.30 fvdl * also: returning NULL as ufs_daddr_t ?
1100 1.30 fvdl */
1101 1.1 mycroft if (bno < 0) {
1102 1.1 mycroft brelse(bp);
1103 1.35 thorpej return (0);
1104 1.1 mycroft }
1105 1.30 fvdl #endif
1106 1.1 mycroft for (i = 0; i < frags; i++)
1107 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
1108 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1109 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1110 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1111 1.1 mycroft fs->fs_fmod = 1;
1112 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1113 1.1 mycroft if (frags != allocsiz)
1114 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1115 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1116 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1117 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1118 1.1 mycroft bdwrite(bp);
1119 1.30 fvdl return blkno;
1120 1.1 mycroft }
1121 1.1 mycroft
1122 1.1 mycroft /*
1123 1.1 mycroft * Allocate a block in a cylinder group.
1124 1.1 mycroft *
1125 1.1 mycroft * This algorithm implements the following policy:
1126 1.1 mycroft * 1) allocate the requested block.
1127 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1128 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1129 1.1 mycroft * specified cylinder group.
1130 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1131 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1132 1.1 mycroft */
1133 1.18 fvdl static ufs_daddr_t
1134 1.30 fvdl ffs_alloccgblk(ip, bp, bpref)
1135 1.30 fvdl struct inode *ip;
1136 1.30 fvdl struct buf *bp;
1137 1.18 fvdl ufs_daddr_t bpref;
1138 1.1 mycroft {
1139 1.30 fvdl struct cg *cgp;
1140 1.18 fvdl ufs_daddr_t bno, blkno;
1141 1.1 mycroft int cylno, pos, delta;
1142 1.1 mycroft short *cylbp;
1143 1.33 augustss int i;
1144 1.30 fvdl struct fs *fs = ip->i_fs;
1145 1.30 fvdl #ifdef FFS_EI
1146 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1147 1.30 fvdl #endif
1148 1.1 mycroft
1149 1.30 fvdl cgp = (struct cg *)bp->b_data;
1150 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1151 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1152 1.1 mycroft goto norot;
1153 1.1 mycroft }
1154 1.1 mycroft bpref = blknum(fs, bpref);
1155 1.1 mycroft bpref = dtogd(fs, bpref);
1156 1.1 mycroft /*
1157 1.1 mycroft * if the requested block is available, use it
1158 1.1 mycroft */
1159 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1160 1.19 bouyer fragstoblks(fs, bpref))) {
1161 1.1 mycroft bno = bpref;
1162 1.1 mycroft goto gotit;
1163 1.1 mycroft }
1164 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1165 1.1 mycroft /*
1166 1.1 mycroft * Block layout information is not available.
1167 1.1 mycroft * Leaving bpref unchanged means we take the
1168 1.1 mycroft * next available free block following the one
1169 1.1 mycroft * we just allocated. Hopefully this will at
1170 1.1 mycroft * least hit a track cache on drives of unknown
1171 1.1 mycroft * geometry (e.g. SCSI).
1172 1.1 mycroft */
1173 1.1 mycroft goto norot;
1174 1.1 mycroft }
1175 1.6 mycroft /*
1176 1.6 mycroft * check for a block available on the same cylinder
1177 1.6 mycroft */
1178 1.6 mycroft cylno = cbtocylno(fs, bpref);
1179 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
1180 1.6 mycroft goto norot;
1181 1.1 mycroft /*
1182 1.1 mycroft * check the summary information to see if a block is
1183 1.1 mycroft * available in the requested cylinder starting at the
1184 1.1 mycroft * requested rotational position and proceeding around.
1185 1.1 mycroft */
1186 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
1187 1.1 mycroft pos = cbtorpos(fs, bpref);
1188 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
1189 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1190 1.1 mycroft break;
1191 1.1 mycroft if (i == fs->fs_nrpos)
1192 1.1 mycroft for (i = 0; i < pos; i++)
1193 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1194 1.1 mycroft break;
1195 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1196 1.1 mycroft /*
1197 1.1 mycroft * found a rotational position, now find the actual
1198 1.1 mycroft * block. A panic if none is actually there.
1199 1.1 mycroft */
1200 1.1 mycroft pos = cylno % fs->fs_cpc;
1201 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1202 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1203 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1204 1.1 mycroft pos, i, fs->fs_fsmnt);
1205 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1206 1.1 mycroft }
1207 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1208 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1209 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1210 1.1 mycroft goto gotit;
1211 1.1 mycroft }
1212 1.1 mycroft delta = fs_rotbl(fs)[i];
1213 1.1 mycroft if (delta <= 0 ||
1214 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1215 1.1 mycroft break;
1216 1.1 mycroft i += delta;
1217 1.1 mycroft }
1218 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1219 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1220 1.1 mycroft }
1221 1.1 mycroft norot:
1222 1.1 mycroft /*
1223 1.1 mycroft * no blocks in the requested cylinder, so take next
1224 1.1 mycroft * available one in this cylinder group.
1225 1.1 mycroft */
1226 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1227 1.1 mycroft if (bno < 0)
1228 1.35 thorpej return (0);
1229 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1230 1.1 mycroft gotit:
1231 1.1 mycroft blkno = fragstoblks(fs, bno);
1232 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1233 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1234 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1235 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1236 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1237 1.1 mycroft cylno = cbtocylno(fs, bno);
1238 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1239 1.30 fvdl needswap);
1240 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1241 1.1 mycroft fs->fs_fmod = 1;
1242 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1243 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1244 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1245 1.30 fvdl return (blkno);
1246 1.1 mycroft }
1247 1.1 mycroft
1248 1.1 mycroft /*
1249 1.1 mycroft * Determine whether a cluster can be allocated.
1250 1.1 mycroft *
1251 1.1 mycroft * We do not currently check for optimal rotational layout if there
1252 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1253 1.1 mycroft * take the first one that we find following bpref.
1254 1.1 mycroft */
1255 1.18 fvdl static ufs_daddr_t
1256 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1257 1.1 mycroft struct inode *ip;
1258 1.1 mycroft int cg;
1259 1.18 fvdl ufs_daddr_t bpref;
1260 1.1 mycroft int len;
1261 1.1 mycroft {
1262 1.33 augustss struct fs *fs;
1263 1.33 augustss struct cg *cgp;
1264 1.1 mycroft struct buf *bp;
1265 1.18 fvdl int i, got, run, bno, bit, map;
1266 1.1 mycroft u_char *mapp;
1267 1.5 mycroft int32_t *lp;
1268 1.1 mycroft
1269 1.1 mycroft fs = ip->i_fs;
1270 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1271 1.35 thorpej return (0);
1272 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1273 1.1 mycroft NOCRED, &bp))
1274 1.1 mycroft goto fail;
1275 1.1 mycroft cgp = (struct cg *)bp->b_data;
1276 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1277 1.1 mycroft goto fail;
1278 1.1 mycroft /*
1279 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1280 1.1 mycroft * available in this cylinder group.
1281 1.1 mycroft */
1282 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1283 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1284 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1285 1.1 mycroft break;
1286 1.5 mycroft if (i > fs->fs_contigsumsize) {
1287 1.5 mycroft /*
1288 1.5 mycroft * This is the first time looking for a cluster in this
1289 1.5 mycroft * cylinder group. Update the cluster summary information
1290 1.5 mycroft * to reflect the true maximum sized cluster so that
1291 1.5 mycroft * future cluster allocation requests can avoid reading
1292 1.5 mycroft * the cylinder group map only to find no clusters.
1293 1.5 mycroft */
1294 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1295 1.5 mycroft for (i = len - 1; i > 0; i--)
1296 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1297 1.5 mycroft break;
1298 1.5 mycroft fs->fs_maxcluster[cg] = i;
1299 1.1 mycroft goto fail;
1300 1.5 mycroft }
1301 1.1 mycroft /*
1302 1.1 mycroft * Search the cluster map to find a big enough cluster.
1303 1.1 mycroft * We take the first one that we find, even if it is larger
1304 1.1 mycroft * than we need as we prefer to get one close to the previous
1305 1.1 mycroft * block allocation. We do not search before the current
1306 1.1 mycroft * preference point as we do not want to allocate a block
1307 1.1 mycroft * that is allocated before the previous one (as we will
1308 1.1 mycroft * then have to wait for another pass of the elevator
1309 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1310 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1311 1.1 mycroft */
1312 1.1 mycroft if (dtog(fs, bpref) != cg)
1313 1.1 mycroft bpref = 0;
1314 1.1 mycroft else
1315 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1316 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1317 1.1 mycroft map = *mapp++;
1318 1.1 mycroft bit = 1 << (bpref % NBBY);
1319 1.19 bouyer for (run = 0, got = bpref;
1320 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1321 1.1 mycroft if ((map & bit) == 0) {
1322 1.1 mycroft run = 0;
1323 1.1 mycroft } else {
1324 1.1 mycroft run++;
1325 1.1 mycroft if (run == len)
1326 1.1 mycroft break;
1327 1.1 mycroft }
1328 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1329 1.1 mycroft bit <<= 1;
1330 1.1 mycroft } else {
1331 1.1 mycroft map = *mapp++;
1332 1.1 mycroft bit = 1;
1333 1.1 mycroft }
1334 1.1 mycroft }
1335 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1336 1.1 mycroft goto fail;
1337 1.1 mycroft /*
1338 1.1 mycroft * Allocate the cluster that we have found.
1339 1.1 mycroft */
1340 1.30 fvdl #ifdef DIAGNOSTIC
1341 1.18 fvdl for (i = 1; i <= len; i++)
1342 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1343 1.30 fvdl got - run + i))
1344 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1345 1.30 fvdl #endif
1346 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1347 1.18 fvdl if (dtog(fs, bno) != cg)
1348 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1349 1.1 mycroft len = blkstofrags(fs, len);
1350 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1351 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1352 1.1 mycroft panic("ffs_clusteralloc: lost block");
1353 1.8 cgd bdwrite(bp);
1354 1.1 mycroft return (bno);
1355 1.1 mycroft
1356 1.1 mycroft fail:
1357 1.1 mycroft brelse(bp);
1358 1.1 mycroft return (0);
1359 1.1 mycroft }
1360 1.1 mycroft
1361 1.1 mycroft /*
1362 1.1 mycroft * Determine whether an inode can be allocated.
1363 1.1 mycroft *
1364 1.1 mycroft * Check to see if an inode is available, and if it is,
1365 1.1 mycroft * allocate it using the following policy:
1366 1.1 mycroft * 1) allocate the requested inode.
1367 1.1 mycroft * 2) allocate the next available inode after the requested
1368 1.1 mycroft * inode in the specified cylinder group.
1369 1.1 mycroft */
1370 1.18 fvdl static ufs_daddr_t
1371 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1372 1.1 mycroft struct inode *ip;
1373 1.1 mycroft int cg;
1374 1.18 fvdl ufs_daddr_t ipref;
1375 1.1 mycroft int mode;
1376 1.1 mycroft {
1377 1.33 augustss struct cg *cgp;
1378 1.1 mycroft struct buf *bp;
1379 1.1 mycroft int error, start, len, loc, map, i;
1380 1.33 augustss struct fs *fs = ip->i_fs;
1381 1.19 bouyer #ifdef FFS_EI
1382 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1383 1.19 bouyer #endif
1384 1.1 mycroft
1385 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1386 1.35 thorpej return (0);
1387 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1388 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1389 1.1 mycroft if (error) {
1390 1.1 mycroft brelse(bp);
1391 1.35 thorpej return (0);
1392 1.1 mycroft }
1393 1.1 mycroft cgp = (struct cg *)bp->b_data;
1394 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1395 1.1 mycroft brelse(bp);
1396 1.35 thorpej return (0);
1397 1.1 mycroft }
1398 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1399 1.1 mycroft if (ipref) {
1400 1.1 mycroft ipref %= fs->fs_ipg;
1401 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1402 1.1 mycroft goto gotit;
1403 1.1 mycroft }
1404 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1405 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1406 1.19 bouyer NBBY);
1407 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1408 1.1 mycroft if (loc == 0) {
1409 1.1 mycroft len = start + 1;
1410 1.1 mycroft start = 0;
1411 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1412 1.1 mycroft if (loc == 0) {
1413 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1414 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1415 1.19 bouyer fs->fs_fsmnt);
1416 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1417 1.1 mycroft /* NOTREACHED */
1418 1.1 mycroft }
1419 1.1 mycroft }
1420 1.1 mycroft i = start + len - loc;
1421 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1422 1.1 mycroft ipref = i * NBBY;
1423 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1424 1.1 mycroft if ((map & i) == 0) {
1425 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1426 1.1 mycroft goto gotit;
1427 1.1 mycroft }
1428 1.1 mycroft }
1429 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1430 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1431 1.1 mycroft /* NOTREACHED */
1432 1.1 mycroft gotit:
1433 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1434 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1435 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1436 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1437 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1438 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1439 1.1 mycroft fs->fs_fmod = 1;
1440 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1441 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1442 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1443 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1444 1.1 mycroft }
1445 1.1 mycroft bdwrite(bp);
1446 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1447 1.1 mycroft }
1448 1.1 mycroft
1449 1.1 mycroft /*
1450 1.1 mycroft * Free a block or fragment.
1451 1.1 mycroft *
1452 1.1 mycroft * The specified block or fragment is placed back in the
1453 1.1 mycroft * free map. If a fragment is deallocated, a possible
1454 1.1 mycroft * block reassembly is checked.
1455 1.1 mycroft */
1456 1.9 christos void
1457 1.1 mycroft ffs_blkfree(ip, bno, size)
1458 1.33 augustss struct inode *ip;
1459 1.18 fvdl ufs_daddr_t bno;
1460 1.1 mycroft long size;
1461 1.1 mycroft {
1462 1.33 augustss struct cg *cgp;
1463 1.1 mycroft struct buf *bp;
1464 1.18 fvdl ufs_daddr_t blkno;
1465 1.1 mycroft int i, error, cg, blk, frags, bbase;
1466 1.33 augustss struct fs *fs = ip->i_fs;
1467 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1468 1.1 mycroft
1469 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1470 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1471 1.30 fvdl printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1472 1.30 fvdl ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1473 1.1 mycroft panic("blkfree: bad size");
1474 1.1 mycroft }
1475 1.1 mycroft cg = dtog(fs, bno);
1476 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1477 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1478 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1479 1.1 mycroft return;
1480 1.1 mycroft }
1481 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1482 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1483 1.1 mycroft if (error) {
1484 1.1 mycroft brelse(bp);
1485 1.1 mycroft return;
1486 1.1 mycroft }
1487 1.1 mycroft cgp = (struct cg *)bp->b_data;
1488 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1489 1.1 mycroft brelse(bp);
1490 1.1 mycroft return;
1491 1.1 mycroft }
1492 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1493 1.1 mycroft bno = dtogd(fs, bno);
1494 1.1 mycroft if (size == fs->fs_bsize) {
1495 1.1 mycroft blkno = fragstoblks(fs, bno);
1496 1.30 fvdl if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1497 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1498 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1499 1.1 mycroft panic("blkfree: freeing free block");
1500 1.1 mycroft }
1501 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1502 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1503 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1504 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1505 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1506 1.1 mycroft i = cbtocylno(fs, bno);
1507 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1508 1.30 fvdl needswap);
1509 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1510 1.1 mycroft } else {
1511 1.1 mycroft bbase = bno - fragnum(fs, bno);
1512 1.1 mycroft /*
1513 1.1 mycroft * decrement the counts associated with the old frags
1514 1.1 mycroft */
1515 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1516 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1517 1.1 mycroft /*
1518 1.1 mycroft * deallocate the fragment
1519 1.1 mycroft */
1520 1.1 mycroft frags = numfrags(fs, size);
1521 1.1 mycroft for (i = 0; i < frags; i++) {
1522 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1523 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1524 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1525 1.1 mycroft panic("blkfree: freeing free frag");
1526 1.1 mycroft }
1527 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1528 1.1 mycroft }
1529 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1530 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1531 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1532 1.1 mycroft /*
1533 1.1 mycroft * add back in counts associated with the new frags
1534 1.1 mycroft */
1535 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1536 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1537 1.1 mycroft /*
1538 1.1 mycroft * if a complete block has been reassembled, account for it
1539 1.1 mycroft */
1540 1.1 mycroft blkno = fragstoblks(fs, bbase);
1541 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1542 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1543 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1544 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1545 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1546 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1547 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1548 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1549 1.1 mycroft i = cbtocylno(fs, bbase);
1550 1.30 fvdl ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1551 1.30 fvdl bbase)], 1,
1552 1.30 fvdl needswap);
1553 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1554 1.1 mycroft }
1555 1.1 mycroft }
1556 1.1 mycroft fs->fs_fmod = 1;
1557 1.1 mycroft bdwrite(bp);
1558 1.1 mycroft }
1559 1.1 mycroft
1560 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1561 1.18 fvdl /*
1562 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1563 1.18 fvdl * fragment is allocated, false if it is free.
1564 1.18 fvdl */
1565 1.18 fvdl static int
1566 1.18 fvdl ffs_checkblk(ip, bno, size)
1567 1.18 fvdl struct inode *ip;
1568 1.18 fvdl ufs_daddr_t bno;
1569 1.18 fvdl long size;
1570 1.18 fvdl {
1571 1.18 fvdl struct fs *fs;
1572 1.18 fvdl struct cg *cgp;
1573 1.18 fvdl struct buf *bp;
1574 1.18 fvdl int i, error, frags, free;
1575 1.18 fvdl
1576 1.18 fvdl fs = ip->i_fs;
1577 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1578 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1579 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1580 1.18 fvdl panic("checkblk: bad size");
1581 1.18 fvdl }
1582 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1583 1.18 fvdl panic("checkblk: bad block %d", bno);
1584 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1585 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1586 1.18 fvdl if (error) {
1587 1.18 fvdl brelse(bp);
1588 1.18 fvdl return 0;
1589 1.18 fvdl }
1590 1.18 fvdl cgp = (struct cg *)bp->b_data;
1591 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1592 1.18 fvdl brelse(bp);
1593 1.18 fvdl return 0;
1594 1.18 fvdl }
1595 1.18 fvdl bno = dtogd(fs, bno);
1596 1.18 fvdl if (size == fs->fs_bsize) {
1597 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1598 1.19 bouyer fragstoblks(fs, bno));
1599 1.18 fvdl } else {
1600 1.18 fvdl frags = numfrags(fs, size);
1601 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1602 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1603 1.18 fvdl free++;
1604 1.18 fvdl if (free != 0 && free != frags)
1605 1.18 fvdl panic("checkblk: partially free fragment");
1606 1.18 fvdl }
1607 1.18 fvdl brelse(bp);
1608 1.18 fvdl return (!free);
1609 1.18 fvdl }
1610 1.18 fvdl #endif /* DIAGNOSTIC */
1611 1.18 fvdl
1612 1.1 mycroft /*
1613 1.1 mycroft * Free an inode.
1614 1.30 fvdl */
1615 1.30 fvdl int
1616 1.30 fvdl ffs_vfree(v)
1617 1.30 fvdl void *v;
1618 1.30 fvdl {
1619 1.30 fvdl struct vop_vfree_args /* {
1620 1.30 fvdl struct vnode *a_pvp;
1621 1.30 fvdl ino_t a_ino;
1622 1.30 fvdl int a_mode;
1623 1.30 fvdl } */ *ap = v;
1624 1.30 fvdl
1625 1.30 fvdl if (DOINGSOFTDEP(ap->a_pvp)) {
1626 1.30 fvdl softdep_freefile(ap);
1627 1.30 fvdl return (0);
1628 1.30 fvdl }
1629 1.30 fvdl return (ffs_freefile(ap));
1630 1.30 fvdl }
1631 1.30 fvdl
1632 1.30 fvdl /*
1633 1.30 fvdl * Do the actual free operation.
1634 1.1 mycroft * The specified inode is placed back in the free map.
1635 1.1 mycroft */
1636 1.1 mycroft int
1637 1.30 fvdl ffs_freefile(v)
1638 1.9 christos void *v;
1639 1.9 christos {
1640 1.1 mycroft struct vop_vfree_args /* {
1641 1.1 mycroft struct vnode *a_pvp;
1642 1.1 mycroft ino_t a_ino;
1643 1.1 mycroft int a_mode;
1644 1.9 christos } */ *ap = v;
1645 1.33 augustss struct cg *cgp;
1646 1.33 augustss struct inode *pip = VTOI(ap->a_pvp);
1647 1.33 augustss struct fs *fs = pip->i_fs;
1648 1.1 mycroft ino_t ino = ap->a_ino;
1649 1.1 mycroft struct buf *bp;
1650 1.1 mycroft int error, cg;
1651 1.19 bouyer #ifdef FFS_EI
1652 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1653 1.19 bouyer #endif
1654 1.1 mycroft
1655 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1656 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1657 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1658 1.1 mycroft cg = ino_to_cg(fs, ino);
1659 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1660 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1661 1.1 mycroft if (error) {
1662 1.1 mycroft brelse(bp);
1663 1.30 fvdl return (error);
1664 1.1 mycroft }
1665 1.1 mycroft cgp = (struct cg *)bp->b_data;
1666 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1667 1.1 mycroft brelse(bp);
1668 1.1 mycroft return (0);
1669 1.1 mycroft }
1670 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1671 1.1 mycroft ino %= fs->fs_ipg;
1672 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1673 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1674 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1675 1.1 mycroft if (fs->fs_ronly == 0)
1676 1.1 mycroft panic("ifree: freeing free inode");
1677 1.1 mycroft }
1678 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1679 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1680 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1681 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1682 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1683 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1684 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1685 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1686 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1687 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1688 1.1 mycroft }
1689 1.1 mycroft fs->fs_fmod = 1;
1690 1.1 mycroft bdwrite(bp);
1691 1.1 mycroft return (0);
1692 1.1 mycroft }
1693 1.1 mycroft
1694 1.1 mycroft /*
1695 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1696 1.1 mycroft *
1697 1.1 mycroft * It is a panic if a request is made to find a block if none are
1698 1.1 mycroft * available.
1699 1.1 mycroft */
1700 1.18 fvdl static ufs_daddr_t
1701 1.30 fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
1702 1.33 augustss struct fs *fs;
1703 1.33 augustss struct cg *cgp;
1704 1.18 fvdl ufs_daddr_t bpref;
1705 1.1 mycroft int allocsiz;
1706 1.1 mycroft {
1707 1.18 fvdl ufs_daddr_t bno;
1708 1.1 mycroft int start, len, loc, i;
1709 1.1 mycroft int blk, field, subfield, pos;
1710 1.19 bouyer int ostart, olen;
1711 1.30 fvdl #ifdef FFS_EI
1712 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1713 1.30 fvdl #endif
1714 1.1 mycroft
1715 1.1 mycroft /*
1716 1.1 mycroft * find the fragment by searching through the free block
1717 1.1 mycroft * map for an appropriate bit pattern
1718 1.1 mycroft */
1719 1.1 mycroft if (bpref)
1720 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1721 1.1 mycroft else
1722 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1723 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1724 1.19 bouyer ostart = start;
1725 1.19 bouyer olen = len;
1726 1.45 lukem loc = scanc((u_int)len,
1727 1.45 lukem (const u_char *)&cg_blksfree(cgp, needswap)[start],
1728 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1729 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1730 1.1 mycroft if (loc == 0) {
1731 1.1 mycroft len = start + 1;
1732 1.1 mycroft start = 0;
1733 1.45 lukem loc = scanc((u_int)len,
1734 1.45 lukem (const u_char *)&cg_blksfree(cgp, needswap)[0],
1735 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1736 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1737 1.1 mycroft if (loc == 0) {
1738 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1739 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1740 1.20 ross printf("offset=%d %ld\n",
1741 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1742 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1743 1.1 mycroft panic("ffs_alloccg: map corrupted");
1744 1.1 mycroft /* NOTREACHED */
1745 1.1 mycroft }
1746 1.1 mycroft }
1747 1.1 mycroft bno = (start + len - loc) * NBBY;
1748 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1749 1.1 mycroft /*
1750 1.1 mycroft * found the byte in the map
1751 1.1 mycroft * sift through the bits to find the selected frag
1752 1.1 mycroft */
1753 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1754 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1755 1.1 mycroft blk <<= 1;
1756 1.1 mycroft field = around[allocsiz];
1757 1.1 mycroft subfield = inside[allocsiz];
1758 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1759 1.1 mycroft if ((blk & field) == subfield)
1760 1.1 mycroft return (bno + pos);
1761 1.1 mycroft field <<= 1;
1762 1.1 mycroft subfield <<= 1;
1763 1.1 mycroft }
1764 1.1 mycroft }
1765 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1766 1.1 mycroft panic("ffs_alloccg: block not in map");
1767 1.1 mycroft return (-1);
1768 1.1 mycroft }
1769 1.1 mycroft
1770 1.1 mycroft /*
1771 1.1 mycroft * Update the cluster map because of an allocation or free.
1772 1.1 mycroft *
1773 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1774 1.1 mycroft */
1775 1.9 christos void
1776 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
1777 1.1 mycroft struct fs *fs;
1778 1.1 mycroft struct cg *cgp;
1779 1.18 fvdl ufs_daddr_t blkno;
1780 1.1 mycroft int cnt;
1781 1.1 mycroft {
1782 1.4 cgd int32_t *sump;
1783 1.5 mycroft int32_t *lp;
1784 1.1 mycroft u_char *freemapp, *mapp;
1785 1.1 mycroft int i, start, end, forw, back, map, bit;
1786 1.30 fvdl #ifdef FFS_EI
1787 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1788 1.30 fvdl #endif
1789 1.1 mycroft
1790 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1791 1.1 mycroft return;
1792 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1793 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1794 1.1 mycroft /*
1795 1.1 mycroft * Allocate or clear the actual block.
1796 1.1 mycroft */
1797 1.1 mycroft if (cnt > 0)
1798 1.1 mycroft setbit(freemapp, blkno);
1799 1.1 mycroft else
1800 1.1 mycroft clrbit(freemapp, blkno);
1801 1.1 mycroft /*
1802 1.1 mycroft * Find the size of the cluster going forward.
1803 1.1 mycroft */
1804 1.1 mycroft start = blkno + 1;
1805 1.1 mycroft end = start + fs->fs_contigsumsize;
1806 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1807 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1808 1.1 mycroft mapp = &freemapp[start / NBBY];
1809 1.1 mycroft map = *mapp++;
1810 1.1 mycroft bit = 1 << (start % NBBY);
1811 1.1 mycroft for (i = start; i < end; i++) {
1812 1.1 mycroft if ((map & bit) == 0)
1813 1.1 mycroft break;
1814 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1815 1.1 mycroft bit <<= 1;
1816 1.1 mycroft } else {
1817 1.1 mycroft map = *mapp++;
1818 1.1 mycroft bit = 1;
1819 1.1 mycroft }
1820 1.1 mycroft }
1821 1.1 mycroft forw = i - start;
1822 1.1 mycroft /*
1823 1.1 mycroft * Find the size of the cluster going backward.
1824 1.1 mycroft */
1825 1.1 mycroft start = blkno - 1;
1826 1.1 mycroft end = start - fs->fs_contigsumsize;
1827 1.1 mycroft if (end < 0)
1828 1.1 mycroft end = -1;
1829 1.1 mycroft mapp = &freemapp[start / NBBY];
1830 1.1 mycroft map = *mapp--;
1831 1.1 mycroft bit = 1 << (start % NBBY);
1832 1.1 mycroft for (i = start; i > end; i--) {
1833 1.1 mycroft if ((map & bit) == 0)
1834 1.1 mycroft break;
1835 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1836 1.1 mycroft bit >>= 1;
1837 1.1 mycroft } else {
1838 1.1 mycroft map = *mapp--;
1839 1.1 mycroft bit = 1 << (NBBY - 1);
1840 1.1 mycroft }
1841 1.1 mycroft }
1842 1.1 mycroft back = start - i;
1843 1.1 mycroft /*
1844 1.1 mycroft * Account for old cluster and the possibly new forward and
1845 1.1 mycroft * back clusters.
1846 1.1 mycroft */
1847 1.1 mycroft i = back + forw + 1;
1848 1.1 mycroft if (i > fs->fs_contigsumsize)
1849 1.1 mycroft i = fs->fs_contigsumsize;
1850 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1851 1.1 mycroft if (back > 0)
1852 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1853 1.1 mycroft if (forw > 0)
1854 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1855 1.19 bouyer
1856 1.5 mycroft /*
1857 1.5 mycroft * Update cluster summary information.
1858 1.5 mycroft */
1859 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1860 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1861 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1862 1.5 mycroft break;
1863 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1864 1.1 mycroft }
1865 1.1 mycroft
1866 1.1 mycroft /*
1867 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1868 1.1 mycroft *
1869 1.1 mycroft * The form of the error message is:
1870 1.1 mycroft * fs: error message
1871 1.1 mycroft */
1872 1.1 mycroft static void
1873 1.1 mycroft ffs_fserr(fs, uid, cp)
1874 1.1 mycroft struct fs *fs;
1875 1.1 mycroft u_int uid;
1876 1.1 mycroft char *cp;
1877 1.1 mycroft {
1878 1.1 mycroft
1879 1.37 chs log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1880 1.37 chs uid, curproc->p_comm, fs->fs_fsmnt, cp);
1881 1.1 mycroft }
1882