Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.55
      1  1.55      matt /*	$NetBSD: ffs_alloc.c,v 1.55 2002/05/14 02:46:22 matt Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8   1.1   mycroft  * modification, are permitted provided that the following conditions
      9   1.1   mycroft  * are met:
     10   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15   1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16   1.1   mycroft  *    must display the following acknowledgement:
     17   1.1   mycroft  *	This product includes software developed by the University of
     18   1.1   mycroft  *	California, Berkeley and its contributors.
     19   1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21   1.1   mycroft  *    without specific prior written permission.
     22   1.1   mycroft  *
     23   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1   mycroft  * SUCH DAMAGE.
     34   1.1   mycroft  *
     35  1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36   1.1   mycroft  */
     37  1.53     lukem 
     38  1.53     lukem #include <sys/cdefs.h>
     39  1.55      matt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.55 2002/05/14 02:46:22 matt Exp $");
     40  1.17       mrg 
     41  1.43       mrg #if defined(_KERNEL_OPT)
     42  1.27   thorpej #include "opt_ffs.h"
     43  1.21    scottr #include "opt_quota.h"
     44  1.22    scottr #endif
     45   1.1   mycroft 
     46   1.1   mycroft #include <sys/param.h>
     47   1.1   mycroft #include <sys/systm.h>
     48   1.1   mycroft #include <sys/buf.h>
     49   1.1   mycroft #include <sys/proc.h>
     50   1.1   mycroft #include <sys/vnode.h>
     51   1.1   mycroft #include <sys/mount.h>
     52   1.1   mycroft #include <sys/kernel.h>
     53   1.1   mycroft #include <sys/syslog.h>
     54  1.29       mrg 
     55   1.1   mycroft #include <ufs/ufs/quota.h>
     56  1.19    bouyer #include <ufs/ufs/ufsmount.h>
     57   1.1   mycroft #include <ufs/ufs/inode.h>
     58   1.9  christos #include <ufs/ufs/ufs_extern.h>
     59  1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     60   1.1   mycroft 
     61   1.1   mycroft #include <ufs/ffs/fs.h>
     62   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     63   1.1   mycroft 
     64  1.30      fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     65  1.51       chs static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
     66  1.55      matt #ifdef XXXUBC
     67  1.30      fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     68  1.55      matt #endif
     69  1.50     lukem static ino_t ffs_dirpref __P((struct inode *));
     70  1.30      fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71  1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     72  1.51       chs static u_long ffs_hashalloc __P((struct inode *, int, long, int,
     73  1.51       chs     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     74  1.30      fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     75  1.30      fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     76  1.30      fvdl 				      ufs_daddr_t, int));
     77  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     78  1.55      matt #ifdef XXXUBC
     79  1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80  1.18      fvdl #endif
     81  1.55      matt #endif
     82  1.23  drochner 
     83  1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     84  1.34  jdolecek int ffs_log_changeopt = 0;
     85  1.34  jdolecek 
     86  1.23  drochner /* in ffs_tables.c */
     87  1.40  jdolecek extern const int inside[], around[];
     88  1.40  jdolecek extern const u_char * const fragtbl[];
     89   1.1   mycroft 
     90   1.1   mycroft /*
     91   1.1   mycroft  * Allocate a block in the file system.
     92   1.1   mycroft  *
     93   1.1   mycroft  * The size of the requested block is given, which must be some
     94   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     95   1.1   mycroft  * A preference may be optionally specified. If a preference is given
     96   1.1   mycroft  * the following hierarchy is used to allocate a block:
     97   1.1   mycroft  *   1) allocate the requested block.
     98   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     99   1.1   mycroft  *   3) allocate a block in the same cylinder group.
    100   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    101   1.1   mycroft  *      available block is located.
    102  1.47       wiz  * If no block preference is given the following hierarchy is used
    103   1.1   mycroft  * to allocate a block:
    104   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    105   1.1   mycroft  *      inode for the file.
    106   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    107   1.1   mycroft  *      available block is located.
    108   1.1   mycroft  */
    109   1.9  christos int
    110   1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    111  1.33  augustss 	struct inode *ip;
    112  1.18      fvdl 	ufs_daddr_t lbn, bpref;
    113   1.1   mycroft 	int size;
    114   1.1   mycroft 	struct ucred *cred;
    115  1.18      fvdl 	ufs_daddr_t *bnp;
    116   1.1   mycroft {
    117  1.37       chs 	struct fs *fs = ip->i_fs;
    118  1.18      fvdl 	ufs_daddr_t bno;
    119   1.9  christos 	int cg;
    120   1.9  christos #ifdef QUOTA
    121   1.9  christos 	int error;
    122   1.9  christos #endif
    123   1.1   mycroft 
    124  1.37       chs #ifdef UVM_PAGE_TRKOWN
    125  1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    126  1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    127  1.37       chs 		struct vm_page *pg;
    128  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    129  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    130  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    131  1.37       chs 
    132  1.37       chs 		simple_lock(&uobj->vmobjlock);
    133  1.37       chs 		while (off < endoff) {
    134  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    135  1.37       chs 			KASSERT(pg != NULL);
    136  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    137  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    138  1.37       chs 			off += PAGE_SIZE;
    139  1.37       chs 		}
    140  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    141  1.37       chs 	}
    142  1.37       chs #endif
    143  1.37       chs 
    144   1.1   mycroft 	*bnp = 0;
    145   1.1   mycroft #ifdef DIAGNOSTIC
    146   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    147  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    148   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    149   1.1   mycroft 		panic("ffs_alloc: bad size");
    150   1.1   mycroft 	}
    151   1.1   mycroft 	if (cred == NOCRED)
    152   1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    153   1.1   mycroft #endif /* DIAGNOSTIC */
    154   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    155   1.1   mycroft 		goto nospace;
    156   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    157   1.1   mycroft 		goto nospace;
    158   1.1   mycroft #ifdef QUOTA
    159   1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    160   1.1   mycroft 		return (error);
    161   1.1   mycroft #endif
    162   1.1   mycroft 	if (bpref >= fs->fs_size)
    163   1.1   mycroft 		bpref = 0;
    164   1.1   mycroft 	if (bpref == 0)
    165   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    166   1.1   mycroft 	else
    167   1.1   mycroft 		cg = dtog(fs, bpref);
    168  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    169   1.9  christos 	    			     ffs_alloccg);
    170   1.1   mycroft 	if (bno > 0) {
    171  1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    172   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    173   1.1   mycroft 		*bnp = bno;
    174   1.1   mycroft 		return (0);
    175   1.1   mycroft 	}
    176   1.1   mycroft #ifdef QUOTA
    177   1.1   mycroft 	/*
    178   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    179   1.1   mycroft 	 */
    180   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    181   1.1   mycroft #endif
    182   1.1   mycroft nospace:
    183   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    184   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    185   1.1   mycroft 	return (ENOSPC);
    186   1.1   mycroft }
    187   1.1   mycroft 
    188   1.1   mycroft /*
    189   1.1   mycroft  * Reallocate a fragment to a bigger size
    190   1.1   mycroft  *
    191   1.1   mycroft  * The number and size of the old block is given, and a preference
    192   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    193   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    194   1.1   mycroft  * invoked to get an appropriate block.
    195   1.1   mycroft  */
    196   1.9  christos int
    197  1.37       chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    198  1.33  augustss 	struct inode *ip;
    199  1.18      fvdl 	ufs_daddr_t lbprev;
    200  1.18      fvdl 	ufs_daddr_t bpref;
    201   1.1   mycroft 	int osize, nsize;
    202   1.1   mycroft 	struct ucred *cred;
    203   1.1   mycroft 	struct buf **bpp;
    204  1.37       chs 	ufs_daddr_t *blknop;
    205   1.1   mycroft {
    206  1.37       chs 	struct fs *fs = ip->i_fs;
    207   1.1   mycroft 	struct buf *bp;
    208   1.1   mycroft 	int cg, request, error;
    209  1.18      fvdl 	ufs_daddr_t bprev, bno;
    210  1.25   thorpej 
    211  1.37       chs #ifdef UVM_PAGE_TRKOWN
    212  1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    213  1.37       chs 		struct vm_page *pg;
    214  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    215  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    216  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    217  1.37       chs 
    218  1.37       chs 		simple_lock(&uobj->vmobjlock);
    219  1.37       chs 		while (off < endoff) {
    220  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    221  1.37       chs 			KASSERT(pg != NULL);
    222  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    223  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    224  1.37       chs 			off += PAGE_SIZE;
    225  1.37       chs 		}
    226  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    227  1.37       chs 	}
    228  1.37       chs #endif
    229  1.37       chs 
    230   1.1   mycroft #ifdef DIAGNOSTIC
    231   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    232   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    233  1.13  christos 		printf(
    234   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    235   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    236   1.1   mycroft 		panic("ffs_realloccg: bad size");
    237   1.1   mycroft 	}
    238   1.1   mycroft 	if (cred == NOCRED)
    239   1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    240   1.1   mycroft #endif /* DIAGNOSTIC */
    241   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    242   1.1   mycroft 		goto nospace;
    243  1.30      fvdl 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    244  1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    245   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    246   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    247   1.1   mycroft 	}
    248   1.1   mycroft 	/*
    249   1.1   mycroft 	 * Allocate the extra space in the buffer.
    250   1.1   mycroft 	 */
    251  1.37       chs 	if (bpp != NULL &&
    252  1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    253   1.1   mycroft 		brelse(bp);
    254   1.1   mycroft 		return (error);
    255   1.1   mycroft 	}
    256   1.1   mycroft #ifdef QUOTA
    257   1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    258  1.44       chs 		if (bpp != NULL) {
    259  1.44       chs 			brelse(bp);
    260  1.44       chs 		}
    261   1.1   mycroft 		return (error);
    262   1.1   mycroft 	}
    263   1.1   mycroft #endif
    264   1.1   mycroft 	/*
    265   1.1   mycroft 	 * Check for extension in the existing location.
    266   1.1   mycroft 	 */
    267   1.1   mycroft 	cg = dtog(fs, bprev);
    268   1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    269  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    270   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271  1.37       chs 
    272  1.37       chs 		if (bpp != NULL) {
    273  1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    274  1.37       chs 				panic("bad blockno");
    275  1.37       chs 			allocbuf(bp, nsize);
    276  1.37       chs 			bp->b_flags |= B_DONE;
    277  1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    278  1.37       chs 			*bpp = bp;
    279  1.37       chs 		}
    280  1.37       chs 		if (blknop != NULL) {
    281  1.37       chs 			*blknop = bno;
    282  1.37       chs 		}
    283   1.1   mycroft 		return (0);
    284   1.1   mycroft 	}
    285   1.1   mycroft 	/*
    286   1.1   mycroft 	 * Allocate a new disk location.
    287   1.1   mycroft 	 */
    288   1.1   mycroft 	if (bpref >= fs->fs_size)
    289   1.1   mycroft 		bpref = 0;
    290   1.1   mycroft 	switch ((int)fs->fs_optim) {
    291   1.1   mycroft 	case FS_OPTSPACE:
    292   1.1   mycroft 		/*
    293   1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    294   1.1   mycroft 		 * best use of space, we will waste time relocating it if
    295   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    296   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    297   1.1   mycroft 		 * to begin optimizing for time.
    298   1.1   mycroft 		 */
    299   1.1   mycroft 		request = nsize;
    300   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    301   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    302   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    303   1.1   mycroft 			break;
    304  1.34  jdolecek 
    305  1.34  jdolecek 		if (ffs_log_changeopt) {
    306  1.34  jdolecek 			log(LOG_NOTICE,
    307  1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    308  1.34  jdolecek 				fs->fs_fsmnt);
    309  1.34  jdolecek 		}
    310  1.34  jdolecek 
    311   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    312   1.1   mycroft 		break;
    313   1.1   mycroft 	case FS_OPTTIME:
    314   1.1   mycroft 		/*
    315   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    316   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    317   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    318   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    319   1.1   mycroft 		 * above will be able to grow it in place without further
    320   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    321   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    322   1.1   mycroft 		 * optimizing for space.
    323   1.1   mycroft 		 */
    324   1.1   mycroft 		request = fs->fs_bsize;
    325   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    326   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    327   1.1   mycroft 			break;
    328  1.34  jdolecek 
    329  1.34  jdolecek 		if (ffs_log_changeopt) {
    330  1.34  jdolecek 			log(LOG_NOTICE,
    331  1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    332  1.34  jdolecek 				fs->fs_fsmnt);
    333  1.34  jdolecek 		}
    334  1.34  jdolecek 
    335   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    336   1.1   mycroft 		break;
    337   1.1   mycroft 	default:
    338  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    339   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    340   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    341   1.1   mycroft 		/* NOTREACHED */
    342   1.1   mycroft 	}
    343  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    344   1.9  christos 	    			     ffs_alloccg);
    345   1.1   mycroft 	if (bno > 0) {
    346  1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    347  1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    348   1.1   mycroft 		if (nsize < request)
    349   1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    350   1.1   mycroft 			    (long)(request - nsize));
    351  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    352   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    353  1.37       chs 		if (bpp != NULL) {
    354  1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    355  1.37       chs 			allocbuf(bp, nsize);
    356  1.37       chs 			bp->b_flags |= B_DONE;
    357  1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    358  1.37       chs 			*bpp = bp;
    359  1.37       chs 		}
    360  1.37       chs 		if (blknop != NULL) {
    361  1.37       chs 			*blknop = bno;
    362  1.37       chs 		}
    363   1.1   mycroft 		return (0);
    364   1.1   mycroft 	}
    365   1.1   mycroft #ifdef QUOTA
    366   1.1   mycroft 	/*
    367   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    368   1.1   mycroft 	 */
    369   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    370   1.1   mycroft #endif
    371  1.37       chs 	if (bpp != NULL) {
    372  1.37       chs 		brelse(bp);
    373  1.37       chs 	}
    374  1.37       chs 
    375   1.1   mycroft nospace:
    376   1.1   mycroft 	/*
    377   1.1   mycroft 	 * no space available
    378   1.1   mycroft 	 */
    379   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    380   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    381   1.1   mycroft 	return (ENOSPC);
    382   1.1   mycroft }
    383   1.1   mycroft 
    384   1.1   mycroft /*
    385   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    386   1.1   mycroft  *
    387   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    388   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    389   1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    390   1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    391  1.46       wiz  * block immediately preceding the current range. If successful, the
    392   1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    393   1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    394   1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    395   1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    396   1.1   mycroft  * the previous block allocation will be used.
    397   1.1   mycroft  */
    398  1.55      matt #ifdef XXXUBC
    399   1.3   mycroft #ifdef DEBUG
    400   1.1   mycroft #include <sys/sysctl.h>
    401   1.5   mycroft int prtrealloc = 0;
    402   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    403   1.1   mycroft #endif
    404  1.55      matt #endif
    405   1.1   mycroft 
    406  1.18      fvdl int doasyncfree = 1;
    407  1.18      fvdl 
    408   1.1   mycroft int
    409   1.9  christos ffs_reallocblks(v)
    410   1.9  christos 	void *v;
    411   1.9  christos {
    412  1.55      matt #ifdef XXXUBC
    413   1.1   mycroft 	struct vop_reallocblks_args /* {
    414   1.1   mycroft 		struct vnode *a_vp;
    415   1.1   mycroft 		struct cluster_save *a_buflist;
    416   1.9  christos 	} */ *ap = v;
    417   1.1   mycroft 	struct fs *fs;
    418   1.1   mycroft 	struct inode *ip;
    419   1.1   mycroft 	struct vnode *vp;
    420   1.1   mycroft 	struct buf *sbp, *ebp;
    421  1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    422   1.1   mycroft 	struct cluster_save *buflist;
    423  1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    424   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    425   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    426  1.55      matt #endif /* XXXUBC */
    427   1.1   mycroft 
    428  1.37       chs 	/* XXXUBC don't reallocblks for now */
    429  1.37       chs 	return ENOSPC;
    430  1.37       chs 
    431  1.55      matt #ifdef XXXUBC
    432   1.1   mycroft 	vp = ap->a_vp;
    433   1.1   mycroft 	ip = VTOI(vp);
    434   1.1   mycroft 	fs = ip->i_fs;
    435   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    436   1.1   mycroft 		return (ENOSPC);
    437   1.1   mycroft 	buflist = ap->a_buflist;
    438   1.1   mycroft 	len = buflist->bs_nchildren;
    439   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    440   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    441   1.1   mycroft #ifdef DIAGNOSTIC
    442  1.18      fvdl 	for (i = 0; i < len; i++)
    443  1.18      fvdl 		if (!ffs_checkblk(ip,
    444  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    445  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    446   1.1   mycroft 	for (i = 1; i < len; i++)
    447   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    448  1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    449  1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    450  1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    451  1.18      fvdl 	for (i = 1; i < len - 1; i++)
    452  1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    453  1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    454   1.1   mycroft #endif
    455   1.1   mycroft 	/*
    456   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    457   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    458   1.1   mycroft 	 * the previous cylinder group.
    459   1.1   mycroft 	 */
    460   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    461   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    462   1.1   mycroft 		return (ENOSPC);
    463   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    464   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    465   1.1   mycroft 		return (ENOSPC);
    466   1.1   mycroft 	/*
    467   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    468   1.1   mycroft 	 */
    469   1.1   mycroft 	if (start_lvl == 0) {
    470  1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    471   1.1   mycroft 		soff = start_lbn;
    472   1.1   mycroft 	} else {
    473   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    474   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    475   1.1   mycroft 			brelse(sbp);
    476   1.1   mycroft 			return (ENOSPC);
    477   1.1   mycroft 		}
    478  1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    479   1.1   mycroft 		soff = idp->in_off;
    480   1.1   mycroft 	}
    481   1.1   mycroft 	/*
    482   1.1   mycroft 	 * Find the preferred location for the cluster.
    483   1.1   mycroft 	 */
    484   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    485   1.1   mycroft 	/*
    486   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    487   1.1   mycroft 	 */
    488   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    489   1.1   mycroft 		ssize = len;
    490   1.1   mycroft 	} else {
    491   1.1   mycroft #ifdef DIAGNOSTIC
    492   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    493   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    494   1.1   mycroft #endif
    495   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    496   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    497   1.1   mycroft 			goto fail;
    498  1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    499   1.1   mycroft 	}
    500   1.1   mycroft 	/*
    501   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    502   1.1   mycroft 	 */
    503  1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    504   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    505   1.1   mycroft 		goto fail;
    506   1.1   mycroft 	/*
    507   1.1   mycroft 	 * We have found a new contiguous block.
    508   1.1   mycroft 	 *
    509   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    510   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    511   1.1   mycroft 	 * with the file.
    512   1.1   mycroft 	 */
    513   1.5   mycroft #ifdef DEBUG
    514   1.5   mycroft 	if (prtrealloc)
    515  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    516   1.5   mycroft 		    start_lbn, end_lbn);
    517   1.5   mycroft #endif
    518   1.1   mycroft 	blkno = newblk;
    519   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    520  1.30      fvdl 		ufs_daddr_t ba;
    521  1.30      fvdl 
    522  1.30      fvdl 		if (i == ssize) {
    523   1.1   mycroft 			bap = ebap;
    524  1.30      fvdl 			soff = -i;
    525  1.30      fvdl 		}
    526  1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    527   1.1   mycroft #ifdef DIAGNOSTIC
    528  1.18      fvdl 		if (!ffs_checkblk(ip,
    529  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    530  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    531  1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    532   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    533   1.1   mycroft #endif
    534   1.5   mycroft #ifdef DEBUG
    535   1.5   mycroft 		if (prtrealloc)
    536  1.30      fvdl 			printf(" %d,", ba);
    537   1.5   mycroft #endif
    538  1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    539  1.30      fvdl  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    540  1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    541  1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    542  1.30      fvdl  				    buflist->bs_children[i]);
    543  1.30      fvdl  			else
    544  1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    545  1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    546  1.30      fvdl  				    ba, buflist->bs_children[i]);
    547  1.30      fvdl  		}
    548  1.30      fvdl 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    549   1.1   mycroft 	}
    550   1.1   mycroft 	/*
    551   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    552   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    553   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    554   1.1   mycroft 	 * they are almost never written, but if we are concerned about
    555   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    556   1.1   mycroft 	 *
    557   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    558   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    559   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    560   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    561   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    562   1.1   mycroft 	 * synchronous write only when it has been cleared.
    563   1.1   mycroft 	 */
    564  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    565   1.1   mycroft 		if (doasyncfree)
    566   1.1   mycroft 			bdwrite(sbp);
    567   1.1   mycroft 		else
    568   1.1   mycroft 			bwrite(sbp);
    569   1.1   mycroft 	} else {
    570   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    571  1.28   mycroft 		if (!doasyncfree)
    572  1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    573   1.1   mycroft 	}
    574  1.25   thorpej 	if (ssize < len) {
    575   1.1   mycroft 		if (doasyncfree)
    576   1.1   mycroft 			bdwrite(ebp);
    577   1.1   mycroft 		else
    578   1.1   mycroft 			bwrite(ebp);
    579  1.25   thorpej 	}
    580   1.1   mycroft 	/*
    581   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    582   1.1   mycroft 	 */
    583   1.5   mycroft #ifdef DEBUG
    584   1.5   mycroft 	if (prtrealloc)
    585  1.13  christos 		printf("\n\tnew:");
    586   1.5   mycroft #endif
    587   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    588  1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    589  1.30      fvdl 			ffs_blkfree(ip,
    590  1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    591  1.30      fvdl 			    fs->fs_bsize);
    592   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    593   1.5   mycroft #ifdef DEBUG
    594  1.18      fvdl 		if (!ffs_checkblk(ip,
    595  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    596  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    597   1.5   mycroft 		if (prtrealloc)
    598  1.13  christos 			printf(" %d,", blkno);
    599   1.5   mycroft #endif
    600   1.5   mycroft 	}
    601   1.5   mycroft #ifdef DEBUG
    602   1.5   mycroft 	if (prtrealloc) {
    603   1.5   mycroft 		prtrealloc--;
    604  1.13  christos 		printf("\n");
    605   1.1   mycroft 	}
    606   1.5   mycroft #endif
    607   1.1   mycroft 	return (0);
    608   1.1   mycroft 
    609   1.1   mycroft fail:
    610   1.1   mycroft 	if (ssize < len)
    611   1.1   mycroft 		brelse(ebp);
    612  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    613   1.1   mycroft 		brelse(sbp);
    614   1.1   mycroft 	return (ENOSPC);
    615  1.55      matt #endif /* XXXUBC */
    616   1.1   mycroft }
    617   1.1   mycroft 
    618   1.1   mycroft /*
    619   1.1   mycroft  * Allocate an inode in the file system.
    620   1.1   mycroft  *
    621   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    622   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    623   1.1   mycroft  *   1) allocate the preferred inode.
    624   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    625   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    626   1.1   mycroft  *      available inode is located.
    627  1.47       wiz  * If no inode preference is given the following hierarchy is used
    628   1.1   mycroft  * to allocate an inode:
    629   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    630   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    631   1.1   mycroft  *      available inode is located.
    632   1.1   mycroft  */
    633   1.9  christos int
    634   1.9  christos ffs_valloc(v)
    635   1.9  christos 	void *v;
    636   1.9  christos {
    637   1.1   mycroft 	struct vop_valloc_args /* {
    638   1.1   mycroft 		struct vnode *a_pvp;
    639   1.1   mycroft 		int a_mode;
    640   1.1   mycroft 		struct ucred *a_cred;
    641   1.1   mycroft 		struct vnode **a_vpp;
    642   1.9  christos 	} */ *ap = v;
    643  1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    644  1.33  augustss 	struct inode *pip;
    645  1.33  augustss 	struct fs *fs;
    646  1.33  augustss 	struct inode *ip;
    647   1.1   mycroft 	mode_t mode = ap->a_mode;
    648   1.1   mycroft 	ino_t ino, ipref;
    649   1.1   mycroft 	int cg, error;
    650   1.1   mycroft 
    651   1.1   mycroft 	*ap->a_vpp = NULL;
    652   1.1   mycroft 	pip = VTOI(pvp);
    653   1.1   mycroft 	fs = pip->i_fs;
    654   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    655   1.1   mycroft 		goto noinodes;
    656   1.1   mycroft 
    657   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    658  1.50     lukem 		ipref = ffs_dirpref(pip);
    659  1.50     lukem 	else
    660  1.50     lukem 		ipref = pip->i_number;
    661   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    662   1.1   mycroft 		ipref = 0;
    663   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    664  1.50     lukem 	/*
    665  1.50     lukem 	 * Track number of dirs created one after another
    666  1.50     lukem 	 * in a same cg without intervening by files.
    667  1.50     lukem 	 */
    668  1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    669  1.50     lukem 		if (fs->fs_contigdirs[cg] < 65535)
    670  1.50     lukem 			fs->fs_contigdirs[cg]++;
    671  1.50     lukem 	} else {
    672  1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    673  1.50     lukem 			fs->fs_contigdirs[cg]--;
    674  1.50     lukem 	}
    675   1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    676   1.1   mycroft 	if (ino == 0)
    677   1.1   mycroft 		goto noinodes;
    678   1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    679   1.1   mycroft 	if (error) {
    680   1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    681   1.1   mycroft 		return (error);
    682   1.1   mycroft 	}
    683   1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    684  1.15    bouyer 	if (ip->i_ffs_mode) {
    685  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    686  1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    687   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    688   1.1   mycroft 	}
    689  1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    690  1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    691  1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    692  1.15    bouyer 		ip->i_ffs_blocks = 0;
    693   1.1   mycroft 	}
    694  1.15    bouyer 	ip->i_ffs_flags = 0;
    695   1.1   mycroft 	/*
    696   1.1   mycroft 	 * Set up a new generation number for this inode.
    697   1.1   mycroft 	 */
    698  1.15    bouyer 	ip->i_ffs_gen++;
    699   1.1   mycroft 	return (0);
    700   1.1   mycroft noinodes:
    701   1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    702   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    703   1.1   mycroft 	return (ENOSPC);
    704   1.1   mycroft }
    705   1.1   mycroft 
    706   1.1   mycroft /*
    707  1.50     lukem  * Find a cylinder group in which to place a directory.
    708  1.42  sommerfe  *
    709  1.50     lukem  * The policy implemented by this algorithm is to allocate a
    710  1.50     lukem  * directory inode in the same cylinder group as its parent
    711  1.50     lukem  * directory, but also to reserve space for its files inodes
    712  1.50     lukem  * and data. Restrict the number of directories which may be
    713  1.50     lukem  * allocated one after another in the same cylinder group
    714  1.50     lukem  * without intervening allocation of files.
    715  1.42  sommerfe  *
    716  1.50     lukem  * If we allocate a first level directory then force allocation
    717  1.50     lukem  * in another cylinder group.
    718   1.1   mycroft  */
    719   1.1   mycroft static ino_t
    720  1.50     lukem ffs_dirpref(pip)
    721  1.50     lukem 	struct inode *pip;
    722   1.1   mycroft {
    723  1.50     lukem 	register struct fs *fs;
    724  1.50     lukem 	int cg, prefcg, dirsize, cgsize;
    725  1.50     lukem 	int avgifree, avgbfree, avgndir, curdirsize;
    726  1.50     lukem 	int minifree, minbfree, maxndir;
    727  1.50     lukem 	int mincg, minndir;
    728  1.50     lukem 	int maxcontigdirs;
    729  1.50     lukem 
    730  1.50     lukem 	fs = pip->i_fs;
    731   1.1   mycroft 
    732   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    733  1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    734  1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    735  1.50     lukem 
    736  1.50     lukem 	/*
    737  1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    738  1.50     lukem 	 */
    739  1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    740  1.50     lukem 		prefcg = random() % fs->fs_ncg;
    741  1.50     lukem 		mincg = prefcg;
    742  1.50     lukem 		minndir = fs->fs_ipg;
    743  1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    744  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    745  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    746  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    747  1.42  sommerfe 				mincg = cg;
    748  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    749  1.42  sommerfe 			}
    750  1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    751  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    752  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    753  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    754  1.50     lukem 				mincg = cg;
    755  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    756  1.42  sommerfe 			}
    757  1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    758  1.42  sommerfe 	}
    759  1.50     lukem 
    760  1.50     lukem 	/*
    761  1.50     lukem 	 * Count various limits which used for
    762  1.50     lukem 	 * optimal allocation of a directory inode.
    763  1.50     lukem 	 */
    764  1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    765  1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    766  1.50     lukem 	if (minifree < 0)
    767  1.50     lukem 		minifree = 0;
    768  1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    769  1.50     lukem 	if (minbfree < 0)
    770  1.50     lukem 		minbfree = 0;
    771  1.50     lukem 	cgsize = fs->fs_fsize * fs->fs_fpg;
    772  1.50     lukem 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    773  1.50     lukem 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    774  1.50     lukem 	if (dirsize < curdirsize)
    775  1.50     lukem 		dirsize = curdirsize;
    776  1.50     lukem 	maxcontigdirs = min(cgsize / dirsize, 255);
    777  1.50     lukem 	if (fs->fs_avgfpdir > 0)
    778  1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    779  1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    780  1.50     lukem 	if (maxcontigdirs == 0)
    781  1.50     lukem 		maxcontigdirs = 1;
    782  1.50     lukem 
    783  1.50     lukem 	/*
    784  1.50     lukem 	 * Limit number of dirs in one cg and reserve space for
    785  1.50     lukem 	 * regular files, but only if we have no deficit in
    786  1.50     lukem 	 * inodes or space.
    787  1.50     lukem 	 */
    788  1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    789  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    790  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    791  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    792  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    793  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    794  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    795  1.50     lukem 		}
    796  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    797  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    798  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    799  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    800  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    801  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    802  1.50     lukem 		}
    803  1.50     lukem 	/*
    804  1.50     lukem 	 * This is a backstop when we are deficient in space.
    805  1.50     lukem 	 */
    806  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    807  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    808  1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    809  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    810  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    811  1.50     lukem 			break;
    812  1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    813   1.1   mycroft }
    814   1.1   mycroft 
    815   1.1   mycroft /*
    816   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    817   1.1   mycroft  * logically divided into sections. The first section is composed of the
    818   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    819   1.1   mycroft  *
    820   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    821   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    822   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    823   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    824   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    825   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    826   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    827   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    828   1.1   mycroft  * continues until a cylinder group with greater than the average number
    829   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    830   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    831   1.1   mycroft  * here a best guess is made based upon the logical block number being
    832   1.1   mycroft  * allocated.
    833   1.1   mycroft  *
    834   1.1   mycroft  * If a section is already partially allocated, the policy is to
    835   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    836   1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    837   1.1   mycroft  * so that the disk head will be in transit between them for at least
    838   1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    839   1.1   mycroft  * schedule another I/O transfer.
    840   1.1   mycroft  */
    841  1.18      fvdl ufs_daddr_t
    842   1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    843   1.1   mycroft 	struct inode *ip;
    844  1.18      fvdl 	ufs_daddr_t lbn;
    845   1.1   mycroft 	int indx;
    846  1.18      fvdl 	ufs_daddr_t *bap;
    847   1.1   mycroft {
    848  1.33  augustss 	struct fs *fs;
    849  1.33  augustss 	int cg;
    850   1.1   mycroft 	int avgbfree, startcg;
    851  1.18      fvdl 	ufs_daddr_t nextblk;
    852   1.1   mycroft 
    853   1.1   mycroft 	fs = ip->i_fs;
    854   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    855  1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    856   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    857   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    858   1.1   mycroft 		}
    859   1.1   mycroft 		/*
    860   1.1   mycroft 		 * Find a cylinder with greater than average number of
    861   1.1   mycroft 		 * unused data blocks.
    862   1.1   mycroft 		 */
    863   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    864   1.1   mycroft 			startcg =
    865   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    866   1.1   mycroft 		else
    867  1.19    bouyer 			startcg = dtog(fs,
    868  1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    869   1.1   mycroft 		startcg %= fs->fs_ncg;
    870   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    871   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    872   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    873   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    874   1.1   mycroft 			}
    875  1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    876   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    877   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    878   1.1   mycroft 			}
    879  1.35   thorpej 		return (0);
    880   1.1   mycroft 	}
    881   1.1   mycroft 	/*
    882   1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    883   1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    884   1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    885   1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    886   1.1   mycroft 	 */
    887  1.30      fvdl 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    888  1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    889  1.30      fvdl 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    890   1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    891   1.1   mycroft 		return (nextblk);
    892   1.1   mycroft 	if (fs->fs_rotdelay != 0)
    893   1.1   mycroft 		/*
    894   1.1   mycroft 		 * Here we convert ms of delay to frags as:
    895   1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    896   1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    897   1.1   mycroft 		 * then round up to the next block.
    898   1.1   mycroft 		 */
    899   1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    900   1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    901   1.1   mycroft 	return (nextblk);
    902   1.1   mycroft }
    903   1.1   mycroft 
    904   1.1   mycroft /*
    905   1.1   mycroft  * Implement the cylinder overflow algorithm.
    906   1.1   mycroft  *
    907   1.1   mycroft  * The policy implemented by this algorithm is:
    908   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    909   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    910   1.1   mycroft  *   3) brute force search for a free block.
    911   1.1   mycroft  */
    912   1.1   mycroft /*VARARGS5*/
    913   1.1   mycroft static u_long
    914   1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    915   1.1   mycroft 	struct inode *ip;
    916   1.1   mycroft 	int cg;
    917   1.1   mycroft 	long pref;
    918   1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    919  1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    920   1.1   mycroft {
    921  1.33  augustss 	struct fs *fs;
    922   1.1   mycroft 	long result;
    923   1.1   mycroft 	int i, icg = cg;
    924   1.1   mycroft 
    925   1.1   mycroft 	fs = ip->i_fs;
    926   1.1   mycroft 	/*
    927   1.1   mycroft 	 * 1: preferred cylinder group
    928   1.1   mycroft 	 */
    929   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    930   1.1   mycroft 	if (result)
    931   1.1   mycroft 		return (result);
    932   1.1   mycroft 	/*
    933   1.1   mycroft 	 * 2: quadratic rehash
    934   1.1   mycroft 	 */
    935   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    936   1.1   mycroft 		cg += i;
    937   1.1   mycroft 		if (cg >= fs->fs_ncg)
    938   1.1   mycroft 			cg -= fs->fs_ncg;
    939   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    940   1.1   mycroft 		if (result)
    941   1.1   mycroft 			return (result);
    942   1.1   mycroft 	}
    943   1.1   mycroft 	/*
    944   1.1   mycroft 	 * 3: brute force search
    945   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    946   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    947   1.1   mycroft 	 */
    948   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    949   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    950   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    951   1.1   mycroft 		if (result)
    952   1.1   mycroft 			return (result);
    953   1.1   mycroft 		cg++;
    954   1.1   mycroft 		if (cg == fs->fs_ncg)
    955   1.1   mycroft 			cg = 0;
    956   1.1   mycroft 	}
    957  1.35   thorpej 	return (0);
    958   1.1   mycroft }
    959   1.1   mycroft 
    960   1.1   mycroft /*
    961   1.1   mycroft  * Determine whether a fragment can be extended.
    962   1.1   mycroft  *
    963   1.1   mycroft  * Check to see if the necessary fragments are available, and
    964   1.1   mycroft  * if they are, allocate them.
    965   1.1   mycroft  */
    966  1.18      fvdl static ufs_daddr_t
    967   1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    968   1.1   mycroft 	struct inode *ip;
    969   1.1   mycroft 	int cg;
    970   1.1   mycroft 	long bprev;
    971   1.1   mycroft 	int osize, nsize;
    972   1.1   mycroft {
    973  1.33  augustss 	struct fs *fs;
    974  1.33  augustss 	struct cg *cgp;
    975   1.1   mycroft 	struct buf *bp;
    976   1.1   mycroft 	long bno;
    977   1.1   mycroft 	int frags, bbase;
    978   1.1   mycroft 	int i, error;
    979   1.1   mycroft 
    980   1.1   mycroft 	fs = ip->i_fs;
    981   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    982  1.35   thorpej 		return (0);
    983   1.1   mycroft 	frags = numfrags(fs, nsize);
    984   1.1   mycroft 	bbase = fragnum(fs, bprev);
    985   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    986   1.1   mycroft 		/* cannot extend across a block boundary */
    987  1.35   thorpej 		return (0);
    988   1.1   mycroft 	}
    989   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    990   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    991   1.1   mycroft 	if (error) {
    992   1.1   mycroft 		brelse(bp);
    993  1.35   thorpej 		return (0);
    994   1.1   mycroft 	}
    995   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    996  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    997   1.1   mycroft 		brelse(bp);
    998  1.35   thorpej 		return (0);
    999   1.1   mycroft 	}
   1000  1.30      fvdl 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1001   1.1   mycroft 	bno = dtogd(fs, bprev);
   1002   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1003  1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
   1004   1.1   mycroft 			brelse(bp);
   1005  1.35   thorpej 			return (0);
   1006   1.1   mycroft 		}
   1007   1.1   mycroft 	/*
   1008   1.1   mycroft 	 * the current fragment can be extended
   1009   1.1   mycroft 	 * deduct the count on fragment being extended into
   1010   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1011   1.1   mycroft 	 * allocate the extended piece
   1012   1.1   mycroft 	 */
   1013   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1014  1.30      fvdl 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1015   1.1   mycroft 			break;
   1016  1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1017   1.1   mycroft 	if (i != frags)
   1018  1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1019   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1020  1.30      fvdl 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
   1021  1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1022   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1023   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1024   1.1   mycroft 	}
   1025   1.1   mycroft 	fs->fs_fmod = 1;
   1026  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1027  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1028   1.1   mycroft 	bdwrite(bp);
   1029   1.1   mycroft 	return (bprev);
   1030   1.1   mycroft }
   1031   1.1   mycroft 
   1032   1.1   mycroft /*
   1033   1.1   mycroft  * Determine whether a block can be allocated.
   1034   1.1   mycroft  *
   1035   1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1036   1.1   mycroft  * and if it is, allocate it.
   1037   1.1   mycroft  */
   1038  1.18      fvdl static ufs_daddr_t
   1039   1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
   1040   1.1   mycroft 	struct inode *ip;
   1041   1.1   mycroft 	int cg;
   1042  1.18      fvdl 	ufs_daddr_t bpref;
   1043   1.1   mycroft 	int size;
   1044   1.1   mycroft {
   1045  1.30      fvdl 	struct cg *cgp;
   1046   1.1   mycroft 	struct buf *bp;
   1047  1.30      fvdl 	ufs_daddr_t bno, blkno;
   1048  1.30      fvdl 	int error, frags, allocsiz, i;
   1049  1.30      fvdl 	struct fs *fs = ip->i_fs;
   1050  1.30      fvdl #ifdef FFS_EI
   1051  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1052  1.30      fvdl #endif
   1053   1.1   mycroft 
   1054   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1055  1.35   thorpej 		return (0);
   1056   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1057   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1058   1.1   mycroft 	if (error) {
   1059   1.1   mycroft 		brelse(bp);
   1060  1.35   thorpej 		return (0);
   1061   1.1   mycroft 	}
   1062   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1063  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1064   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1065   1.1   mycroft 		brelse(bp);
   1066  1.35   thorpej 		return (0);
   1067   1.1   mycroft 	}
   1068  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1069   1.1   mycroft 	if (size == fs->fs_bsize) {
   1070  1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1071   1.1   mycroft 		bdwrite(bp);
   1072   1.1   mycroft 		return (bno);
   1073   1.1   mycroft 	}
   1074   1.1   mycroft 	/*
   1075   1.1   mycroft 	 * check to see if any fragments are already available
   1076   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1077   1.1   mycroft 	 * it down to a smaller size if necessary
   1078   1.1   mycroft 	 */
   1079   1.1   mycroft 	frags = numfrags(fs, size);
   1080   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1081   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1082   1.1   mycroft 			break;
   1083   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1084   1.1   mycroft 		/*
   1085   1.1   mycroft 		 * no fragments were available, so a block will be
   1086   1.1   mycroft 		 * allocated, and hacked up
   1087   1.1   mycroft 		 */
   1088   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1089   1.1   mycroft 			brelse(bp);
   1090  1.35   thorpej 			return (0);
   1091   1.1   mycroft 		}
   1092  1.30      fvdl 		bno = ffs_alloccgblk(ip, bp, bpref);
   1093   1.1   mycroft 		bpref = dtogd(fs, bno);
   1094   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1095  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
   1096   1.1   mycroft 		i = fs->fs_frag - frags;
   1097  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1098   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1099  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1100   1.1   mycroft 		fs->fs_fmod = 1;
   1101  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1102   1.1   mycroft 		bdwrite(bp);
   1103   1.1   mycroft 		return (bno);
   1104   1.1   mycroft 	}
   1105  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1106  1.30      fvdl #if 0
   1107  1.30      fvdl 	/*
   1108  1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1109  1.30      fvdl 	 *          also: returning NULL as ufs_daddr_t ?
   1110  1.30      fvdl 	 */
   1111   1.1   mycroft 	if (bno < 0) {
   1112   1.1   mycroft 		brelse(bp);
   1113  1.35   thorpej 		return (0);
   1114   1.1   mycroft 	}
   1115  1.30      fvdl #endif
   1116   1.1   mycroft 	for (i = 0; i < frags; i++)
   1117  1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
   1118  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1119   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1120   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1121   1.1   mycroft 	fs->fs_fmod = 1;
   1122  1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1123   1.1   mycroft 	if (frags != allocsiz)
   1124  1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1125  1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1126  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1127  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1128   1.1   mycroft 	bdwrite(bp);
   1129  1.30      fvdl 	return blkno;
   1130   1.1   mycroft }
   1131   1.1   mycroft 
   1132   1.1   mycroft /*
   1133   1.1   mycroft  * Allocate a block in a cylinder group.
   1134   1.1   mycroft  *
   1135   1.1   mycroft  * This algorithm implements the following policy:
   1136   1.1   mycroft  *   1) allocate the requested block.
   1137   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1138   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1139   1.1   mycroft  *      specified cylinder group.
   1140   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1141   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1142   1.1   mycroft  */
   1143  1.18      fvdl static ufs_daddr_t
   1144  1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1145  1.30      fvdl 	struct inode *ip;
   1146  1.30      fvdl 	struct buf *bp;
   1147  1.18      fvdl 	ufs_daddr_t bpref;
   1148   1.1   mycroft {
   1149  1.30      fvdl 	struct cg *cgp;
   1150  1.18      fvdl 	ufs_daddr_t bno, blkno;
   1151   1.1   mycroft 	int cylno, pos, delta;
   1152   1.1   mycroft 	short *cylbp;
   1153  1.33  augustss 	int i;
   1154  1.30      fvdl 	struct fs *fs = ip->i_fs;
   1155  1.30      fvdl #ifdef FFS_EI
   1156  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1157  1.30      fvdl #endif
   1158   1.1   mycroft 
   1159  1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1160  1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1161  1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1162   1.1   mycroft 		goto norot;
   1163   1.1   mycroft 	}
   1164   1.1   mycroft 	bpref = blknum(fs, bpref);
   1165   1.1   mycroft 	bpref = dtogd(fs, bpref);
   1166   1.1   mycroft 	/*
   1167   1.1   mycroft 	 * if the requested block is available, use it
   1168   1.1   mycroft 	 */
   1169  1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1170  1.19    bouyer 		fragstoblks(fs, bpref))) {
   1171   1.1   mycroft 		bno = bpref;
   1172   1.1   mycroft 		goto gotit;
   1173   1.1   mycroft 	}
   1174  1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1175   1.1   mycroft 		/*
   1176   1.1   mycroft 		 * Block layout information is not available.
   1177   1.1   mycroft 		 * Leaving bpref unchanged means we take the
   1178   1.1   mycroft 		 * next available free block following the one
   1179   1.1   mycroft 		 * we just allocated. Hopefully this will at
   1180   1.1   mycroft 		 * least hit a track cache on drives of unknown
   1181   1.1   mycroft 		 * geometry (e.g. SCSI).
   1182   1.1   mycroft 		 */
   1183   1.1   mycroft 		goto norot;
   1184   1.1   mycroft 	}
   1185   1.6   mycroft 	/*
   1186   1.6   mycroft 	 * check for a block available on the same cylinder
   1187   1.6   mycroft 	 */
   1188   1.6   mycroft 	cylno = cbtocylno(fs, bpref);
   1189  1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1190   1.6   mycroft 		goto norot;
   1191   1.1   mycroft 	/*
   1192   1.1   mycroft 	 * check the summary information to see if a block is
   1193   1.1   mycroft 	 * available in the requested cylinder starting at the
   1194   1.1   mycroft 	 * requested rotational position and proceeding around.
   1195   1.1   mycroft 	 */
   1196  1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1197   1.1   mycroft 	pos = cbtorpos(fs, bpref);
   1198   1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
   1199  1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1200   1.1   mycroft 			break;
   1201   1.1   mycroft 	if (i == fs->fs_nrpos)
   1202   1.1   mycroft 		for (i = 0; i < pos; i++)
   1203  1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1204   1.1   mycroft 				break;
   1205  1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1206   1.1   mycroft 		/*
   1207   1.1   mycroft 		 * found a rotational position, now find the actual
   1208   1.1   mycroft 		 * block. A panic if none is actually there.
   1209   1.1   mycroft 		 */
   1210   1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1211   1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1212   1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1213  1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1214   1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1215   1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1216   1.1   mycroft 		}
   1217   1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1218  1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1219   1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1220   1.1   mycroft 				goto gotit;
   1221   1.1   mycroft 			}
   1222   1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1223   1.1   mycroft 			if (delta <= 0 ||
   1224   1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1225   1.1   mycroft 				break;
   1226   1.1   mycroft 			i += delta;
   1227   1.1   mycroft 		}
   1228  1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1229   1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1230   1.1   mycroft 	}
   1231   1.1   mycroft norot:
   1232   1.1   mycroft 	/*
   1233   1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1234   1.1   mycroft 	 * available one in this cylinder group.
   1235   1.1   mycroft 	 */
   1236  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1237   1.1   mycroft 	if (bno < 0)
   1238  1.35   thorpej 		return (0);
   1239  1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1240   1.1   mycroft gotit:
   1241   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1242  1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1243  1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1244  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1245   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1246  1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1247   1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1248  1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1249  1.30      fvdl 	    needswap);
   1250  1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1251   1.1   mycroft 	fs->fs_fmod = 1;
   1252  1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1253  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1254  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1255  1.30      fvdl 	return (blkno);
   1256   1.1   mycroft }
   1257   1.1   mycroft 
   1258  1.55      matt #ifdef XXXUBC
   1259   1.1   mycroft /*
   1260   1.1   mycroft  * Determine whether a cluster can be allocated.
   1261   1.1   mycroft  *
   1262   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1263   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1264   1.1   mycroft  * take the first one that we find following bpref.
   1265   1.1   mycroft  */
   1266  1.18      fvdl static ufs_daddr_t
   1267   1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1268   1.1   mycroft 	struct inode *ip;
   1269   1.1   mycroft 	int cg;
   1270  1.18      fvdl 	ufs_daddr_t bpref;
   1271   1.1   mycroft 	int len;
   1272   1.1   mycroft {
   1273  1.33  augustss 	struct fs *fs;
   1274  1.33  augustss 	struct cg *cgp;
   1275   1.1   mycroft 	struct buf *bp;
   1276  1.18      fvdl 	int i, got, run, bno, bit, map;
   1277   1.1   mycroft 	u_char *mapp;
   1278   1.5   mycroft 	int32_t *lp;
   1279   1.1   mycroft 
   1280   1.1   mycroft 	fs = ip->i_fs;
   1281   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1282  1.35   thorpej 		return (0);
   1283   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1284   1.1   mycroft 	    NOCRED, &bp))
   1285   1.1   mycroft 		goto fail;
   1286   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1287  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1288   1.1   mycroft 		goto fail;
   1289   1.1   mycroft 	/*
   1290   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1291   1.1   mycroft 	 * available in this cylinder group.
   1292   1.1   mycroft 	 */
   1293  1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1294   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1295  1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1296   1.1   mycroft 			break;
   1297   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1298   1.5   mycroft 		/*
   1299   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1300   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1301   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1302   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1303   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1304   1.5   mycroft 		 */
   1305  1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1306   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1307  1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1308   1.5   mycroft 				break;
   1309   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1310   1.1   mycroft 		goto fail;
   1311   1.5   mycroft 	}
   1312   1.1   mycroft 	/*
   1313   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1314   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1315   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1316   1.1   mycroft 	 * block allocation. We do not search before the current
   1317   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1318   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1319   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1320   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1321   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1322   1.1   mycroft 	 */
   1323   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1324   1.1   mycroft 		bpref = 0;
   1325   1.1   mycroft 	else
   1326   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1327  1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1328   1.1   mycroft 	map = *mapp++;
   1329   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1330  1.19    bouyer 	for (run = 0, got = bpref;
   1331  1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1332   1.1   mycroft 		if ((map & bit) == 0) {
   1333   1.1   mycroft 			run = 0;
   1334   1.1   mycroft 		} else {
   1335   1.1   mycroft 			run++;
   1336   1.1   mycroft 			if (run == len)
   1337   1.1   mycroft 				break;
   1338   1.1   mycroft 		}
   1339  1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1340   1.1   mycroft 			bit <<= 1;
   1341   1.1   mycroft 		} else {
   1342   1.1   mycroft 			map = *mapp++;
   1343   1.1   mycroft 			bit = 1;
   1344   1.1   mycroft 		}
   1345   1.1   mycroft 	}
   1346  1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1347   1.1   mycroft 		goto fail;
   1348   1.1   mycroft 	/*
   1349   1.1   mycroft 	 * Allocate the cluster that we have found.
   1350   1.1   mycroft 	 */
   1351  1.30      fvdl #ifdef DIAGNOSTIC
   1352  1.18      fvdl 	for (i = 1; i <= len; i++)
   1353  1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1354  1.30      fvdl 		    got - run + i))
   1355  1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1356  1.30      fvdl #endif
   1357  1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1358  1.18      fvdl 	if (dtog(fs, bno) != cg)
   1359  1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1360   1.1   mycroft 	len = blkstofrags(fs, len);
   1361   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1362  1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1363   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1364   1.8       cgd 	bdwrite(bp);
   1365   1.1   mycroft 	return (bno);
   1366   1.1   mycroft 
   1367   1.1   mycroft fail:
   1368   1.1   mycroft 	brelse(bp);
   1369   1.1   mycroft 	return (0);
   1370   1.1   mycroft }
   1371  1.55      matt #endif /* XXXUBC */
   1372   1.1   mycroft 
   1373   1.1   mycroft /*
   1374   1.1   mycroft  * Determine whether an inode can be allocated.
   1375   1.1   mycroft  *
   1376   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1377   1.1   mycroft  * allocate it using the following policy:
   1378   1.1   mycroft  *   1) allocate the requested inode.
   1379   1.1   mycroft  *   2) allocate the next available inode after the requested
   1380   1.1   mycroft  *      inode in the specified cylinder group.
   1381   1.1   mycroft  */
   1382  1.18      fvdl static ufs_daddr_t
   1383   1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1384   1.1   mycroft 	struct inode *ip;
   1385   1.1   mycroft 	int cg;
   1386  1.18      fvdl 	ufs_daddr_t ipref;
   1387   1.1   mycroft 	int mode;
   1388   1.1   mycroft {
   1389  1.33  augustss 	struct cg *cgp;
   1390   1.1   mycroft 	struct buf *bp;
   1391   1.1   mycroft 	int error, start, len, loc, map, i;
   1392  1.33  augustss 	struct fs *fs = ip->i_fs;
   1393  1.19    bouyer #ifdef FFS_EI
   1394  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1395  1.19    bouyer #endif
   1396   1.1   mycroft 
   1397   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1398  1.35   thorpej 		return (0);
   1399   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1400   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1401   1.1   mycroft 	if (error) {
   1402   1.1   mycroft 		brelse(bp);
   1403  1.35   thorpej 		return (0);
   1404   1.1   mycroft 	}
   1405   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1406  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1407   1.1   mycroft 		brelse(bp);
   1408  1.35   thorpej 		return (0);
   1409   1.1   mycroft 	}
   1410  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1411   1.1   mycroft 	if (ipref) {
   1412   1.1   mycroft 		ipref %= fs->fs_ipg;
   1413  1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1414   1.1   mycroft 			goto gotit;
   1415   1.1   mycroft 	}
   1416  1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1417  1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1418  1.19    bouyer 		NBBY);
   1419  1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1420   1.1   mycroft 	if (loc == 0) {
   1421   1.1   mycroft 		len = start + 1;
   1422   1.1   mycroft 		start = 0;
   1423  1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1424   1.1   mycroft 		if (loc == 0) {
   1425  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1426  1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1427  1.19    bouyer 				fs->fs_fsmnt);
   1428   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1429   1.1   mycroft 			/* NOTREACHED */
   1430   1.1   mycroft 		}
   1431   1.1   mycroft 	}
   1432   1.1   mycroft 	i = start + len - loc;
   1433  1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1434   1.1   mycroft 	ipref = i * NBBY;
   1435   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1436   1.1   mycroft 		if ((map & i) == 0) {
   1437  1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1438   1.1   mycroft 			goto gotit;
   1439   1.1   mycroft 		}
   1440   1.1   mycroft 	}
   1441  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1442   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1443   1.1   mycroft 	/* NOTREACHED */
   1444   1.1   mycroft gotit:
   1445  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1446  1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1447  1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1448  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1449   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1450  1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1451   1.1   mycroft 	fs->fs_fmod = 1;
   1452   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1453  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1454   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1455   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1456   1.1   mycroft 	}
   1457   1.1   mycroft 	bdwrite(bp);
   1458   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1459   1.1   mycroft }
   1460   1.1   mycroft 
   1461   1.1   mycroft /*
   1462   1.1   mycroft  * Free a block or fragment.
   1463   1.1   mycroft  *
   1464   1.1   mycroft  * The specified block or fragment is placed back in the
   1465   1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1466   1.1   mycroft  * block reassembly is checked.
   1467   1.1   mycroft  */
   1468   1.9  christos void
   1469   1.1   mycroft ffs_blkfree(ip, bno, size)
   1470  1.33  augustss 	struct inode *ip;
   1471  1.18      fvdl 	ufs_daddr_t bno;
   1472   1.1   mycroft 	long size;
   1473   1.1   mycroft {
   1474  1.33  augustss 	struct cg *cgp;
   1475   1.1   mycroft 	struct buf *bp;
   1476  1.18      fvdl 	ufs_daddr_t blkno;
   1477   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1478  1.33  augustss 	struct fs *fs = ip->i_fs;
   1479  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1480   1.1   mycroft 
   1481  1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1482  1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1483  1.30      fvdl 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1484  1.30      fvdl 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1485   1.1   mycroft 		panic("blkfree: bad size");
   1486   1.1   mycroft 	}
   1487   1.1   mycroft 	cg = dtog(fs, bno);
   1488   1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1489  1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1490  1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1491   1.1   mycroft 		return;
   1492   1.1   mycroft 	}
   1493   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1494   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1495   1.1   mycroft 	if (error) {
   1496   1.1   mycroft 		brelse(bp);
   1497   1.1   mycroft 		return;
   1498   1.1   mycroft 	}
   1499   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1500  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1501   1.1   mycroft 		brelse(bp);
   1502   1.1   mycroft 		return;
   1503   1.1   mycroft 	}
   1504  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1505   1.1   mycroft 	bno = dtogd(fs, bno);
   1506   1.1   mycroft 	if (size == fs->fs_bsize) {
   1507   1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1508  1.30      fvdl 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1509  1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1510   1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1511   1.1   mycroft 			panic("blkfree: freeing free block");
   1512   1.1   mycroft 		}
   1513  1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1514  1.30      fvdl 		ffs_clusteracct(fs, cgp, blkno, 1);
   1515  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1516   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1517   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1518   1.1   mycroft 		i = cbtocylno(fs, bno);
   1519  1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1520  1.30      fvdl 		    needswap);
   1521  1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1522   1.1   mycroft 	} else {
   1523   1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1524   1.1   mycroft 		/*
   1525   1.1   mycroft 		 * decrement the counts associated with the old frags
   1526   1.1   mycroft 		 */
   1527  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1528  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1529   1.1   mycroft 		/*
   1530   1.1   mycroft 		 * deallocate the fragment
   1531   1.1   mycroft 		 */
   1532   1.1   mycroft 		frags = numfrags(fs, size);
   1533   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1534  1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1535  1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1536   1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1537   1.1   mycroft 				panic("blkfree: freeing free frag");
   1538   1.1   mycroft 			}
   1539  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1540   1.1   mycroft 		}
   1541  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1542   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1543  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1544   1.1   mycroft 		/*
   1545   1.1   mycroft 		 * add back in counts associated with the new frags
   1546   1.1   mycroft 		 */
   1547  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1548  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1549   1.1   mycroft 		/*
   1550   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1551   1.1   mycroft 		 */
   1552   1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1553  1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1554  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1555   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1556   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1557  1.30      fvdl 			ffs_clusteracct(fs, cgp, blkno, 1);
   1558  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1559   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1560   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1561   1.1   mycroft 			i = cbtocylno(fs, bbase);
   1562  1.30      fvdl 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1563  1.30      fvdl 								bbase)], 1,
   1564  1.30      fvdl 			    needswap);
   1565  1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1566   1.1   mycroft 		}
   1567   1.1   mycroft 	}
   1568   1.1   mycroft 	fs->fs_fmod = 1;
   1569   1.1   mycroft 	bdwrite(bp);
   1570   1.1   mycroft }
   1571   1.1   mycroft 
   1572  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1573  1.55      matt #ifdef XXXUBC
   1574  1.18      fvdl /*
   1575  1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1576  1.18      fvdl  * fragment is allocated, false if it is free.
   1577  1.18      fvdl  */
   1578  1.18      fvdl static int
   1579  1.18      fvdl ffs_checkblk(ip, bno, size)
   1580  1.18      fvdl 	struct inode *ip;
   1581  1.18      fvdl 	ufs_daddr_t bno;
   1582  1.18      fvdl 	long size;
   1583  1.18      fvdl {
   1584  1.18      fvdl 	struct fs *fs;
   1585  1.18      fvdl 	struct cg *cgp;
   1586  1.18      fvdl 	struct buf *bp;
   1587  1.18      fvdl 	int i, error, frags, free;
   1588  1.18      fvdl 
   1589  1.18      fvdl 	fs = ip->i_fs;
   1590  1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1591  1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1592  1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1593  1.18      fvdl 		panic("checkblk: bad size");
   1594  1.18      fvdl 	}
   1595  1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1596  1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1597  1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1598  1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1599  1.18      fvdl 	if (error) {
   1600  1.18      fvdl 		brelse(bp);
   1601  1.18      fvdl 		return 0;
   1602  1.18      fvdl 	}
   1603  1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1604  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1605  1.18      fvdl 		brelse(bp);
   1606  1.18      fvdl 		return 0;
   1607  1.18      fvdl 	}
   1608  1.18      fvdl 	bno = dtogd(fs, bno);
   1609  1.18      fvdl 	if (size == fs->fs_bsize) {
   1610  1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1611  1.19    bouyer 			fragstoblks(fs, bno));
   1612  1.18      fvdl 	} else {
   1613  1.18      fvdl 		frags = numfrags(fs, size);
   1614  1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1615  1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1616  1.18      fvdl 				free++;
   1617  1.18      fvdl 		if (free != 0 && free != frags)
   1618  1.18      fvdl 			panic("checkblk: partially free fragment");
   1619  1.18      fvdl 	}
   1620  1.18      fvdl 	brelse(bp);
   1621  1.18      fvdl 	return (!free);
   1622  1.18      fvdl }
   1623  1.55      matt #endif /* XXXUBC */
   1624  1.18      fvdl #endif /* DIAGNOSTIC */
   1625  1.18      fvdl 
   1626   1.1   mycroft /*
   1627   1.1   mycroft  * Free an inode.
   1628  1.30      fvdl  */
   1629  1.30      fvdl int
   1630  1.30      fvdl ffs_vfree(v)
   1631  1.30      fvdl 	void *v;
   1632  1.30      fvdl {
   1633  1.30      fvdl 	struct vop_vfree_args /* {
   1634  1.30      fvdl 		struct vnode *a_pvp;
   1635  1.30      fvdl 		ino_t a_ino;
   1636  1.30      fvdl 		int a_mode;
   1637  1.30      fvdl 	} */ *ap = v;
   1638  1.30      fvdl 
   1639  1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1640  1.30      fvdl 		softdep_freefile(ap);
   1641  1.30      fvdl 		return (0);
   1642  1.30      fvdl 	}
   1643  1.30      fvdl 	return (ffs_freefile(ap));
   1644  1.30      fvdl }
   1645  1.30      fvdl 
   1646  1.30      fvdl /*
   1647  1.30      fvdl  * Do the actual free operation.
   1648   1.1   mycroft  * The specified inode is placed back in the free map.
   1649   1.1   mycroft  */
   1650   1.1   mycroft int
   1651  1.30      fvdl ffs_freefile(v)
   1652   1.9  christos 	void *v;
   1653   1.9  christos {
   1654   1.1   mycroft 	struct vop_vfree_args /* {
   1655   1.1   mycroft 		struct vnode *a_pvp;
   1656   1.1   mycroft 		ino_t a_ino;
   1657   1.1   mycroft 		int a_mode;
   1658   1.9  christos 	} */ *ap = v;
   1659  1.33  augustss 	struct cg *cgp;
   1660  1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1661  1.33  augustss 	struct fs *fs = pip->i_fs;
   1662   1.1   mycroft 	ino_t ino = ap->a_ino;
   1663   1.1   mycroft 	struct buf *bp;
   1664   1.1   mycroft 	int error, cg;
   1665  1.19    bouyer #ifdef FFS_EI
   1666  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1667  1.19    bouyer #endif
   1668   1.1   mycroft 
   1669   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1670   1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1671   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1672   1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1673   1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1674   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1675   1.1   mycroft 	if (error) {
   1676   1.1   mycroft 		brelse(bp);
   1677  1.30      fvdl 		return (error);
   1678   1.1   mycroft 	}
   1679   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1680  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1681   1.1   mycroft 		brelse(bp);
   1682   1.1   mycroft 		return (0);
   1683   1.1   mycroft 	}
   1684  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1685   1.1   mycroft 	ino %= fs->fs_ipg;
   1686  1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1687  1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1688   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1689   1.1   mycroft 		if (fs->fs_ronly == 0)
   1690   1.1   mycroft 			panic("ifree: freeing free inode");
   1691   1.1   mycroft 	}
   1692  1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1693  1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1694  1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1695  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1696   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1697   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1698   1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1699  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1700   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1701   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1702   1.1   mycroft 	}
   1703   1.1   mycroft 	fs->fs_fmod = 1;
   1704   1.1   mycroft 	bdwrite(bp);
   1705   1.1   mycroft 	return (0);
   1706   1.1   mycroft }
   1707   1.1   mycroft 
   1708   1.1   mycroft /*
   1709   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1710   1.1   mycroft  *
   1711   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1712   1.1   mycroft  * available.
   1713   1.1   mycroft  */
   1714  1.18      fvdl static ufs_daddr_t
   1715  1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1716  1.33  augustss 	struct fs *fs;
   1717  1.33  augustss 	struct cg *cgp;
   1718  1.18      fvdl 	ufs_daddr_t bpref;
   1719   1.1   mycroft 	int allocsiz;
   1720   1.1   mycroft {
   1721  1.18      fvdl 	ufs_daddr_t bno;
   1722   1.1   mycroft 	int start, len, loc, i;
   1723   1.1   mycroft 	int blk, field, subfield, pos;
   1724  1.19    bouyer 	int ostart, olen;
   1725  1.30      fvdl #ifdef FFS_EI
   1726  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1727  1.30      fvdl #endif
   1728   1.1   mycroft 
   1729   1.1   mycroft 	/*
   1730   1.1   mycroft 	 * find the fragment by searching through the free block
   1731   1.1   mycroft 	 * map for an appropriate bit pattern
   1732   1.1   mycroft 	 */
   1733   1.1   mycroft 	if (bpref)
   1734   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1735   1.1   mycroft 	else
   1736  1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1737   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1738  1.19    bouyer 	ostart = start;
   1739  1.19    bouyer 	olen = len;
   1740  1.45     lukem 	loc = scanc((u_int)len,
   1741  1.45     lukem 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
   1742  1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1743  1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1744   1.1   mycroft 	if (loc == 0) {
   1745   1.1   mycroft 		len = start + 1;
   1746   1.1   mycroft 		start = 0;
   1747  1.45     lukem 		loc = scanc((u_int)len,
   1748  1.45     lukem 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
   1749  1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1750  1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1751   1.1   mycroft 		if (loc == 0) {
   1752  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1753  1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1754  1.20      ross 			printf("offset=%d %ld\n",
   1755  1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1756  1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1757   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1758   1.1   mycroft 			/* NOTREACHED */
   1759   1.1   mycroft 		}
   1760   1.1   mycroft 	}
   1761   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1762  1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1763   1.1   mycroft 	/*
   1764   1.1   mycroft 	 * found the byte in the map
   1765   1.1   mycroft 	 * sift through the bits to find the selected frag
   1766   1.1   mycroft 	 */
   1767   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1768  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1769   1.1   mycroft 		blk <<= 1;
   1770   1.1   mycroft 		field = around[allocsiz];
   1771   1.1   mycroft 		subfield = inside[allocsiz];
   1772   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1773   1.1   mycroft 			if ((blk & field) == subfield)
   1774   1.1   mycroft 				return (bno + pos);
   1775   1.1   mycroft 			field <<= 1;
   1776   1.1   mycroft 			subfield <<= 1;
   1777   1.1   mycroft 		}
   1778   1.1   mycroft 	}
   1779  1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1780   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1781   1.1   mycroft 	return (-1);
   1782   1.1   mycroft }
   1783   1.1   mycroft 
   1784   1.1   mycroft /*
   1785   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1786   1.1   mycroft  *
   1787   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1788   1.1   mycroft  */
   1789   1.9  christos void
   1790  1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1791   1.1   mycroft 	struct fs *fs;
   1792   1.1   mycroft 	struct cg *cgp;
   1793  1.18      fvdl 	ufs_daddr_t blkno;
   1794   1.1   mycroft 	int cnt;
   1795   1.1   mycroft {
   1796   1.4       cgd 	int32_t *sump;
   1797   1.5   mycroft 	int32_t *lp;
   1798   1.1   mycroft 	u_char *freemapp, *mapp;
   1799   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1800  1.30      fvdl #ifdef FFS_EI
   1801  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1802  1.30      fvdl #endif
   1803   1.1   mycroft 
   1804   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1805   1.1   mycroft 		return;
   1806  1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1807  1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1808   1.1   mycroft 	/*
   1809   1.1   mycroft 	 * Allocate or clear the actual block.
   1810   1.1   mycroft 	 */
   1811   1.1   mycroft 	if (cnt > 0)
   1812   1.1   mycroft 		setbit(freemapp, blkno);
   1813   1.1   mycroft 	else
   1814   1.1   mycroft 		clrbit(freemapp, blkno);
   1815   1.1   mycroft 	/*
   1816   1.1   mycroft 	 * Find the size of the cluster going forward.
   1817   1.1   mycroft 	 */
   1818   1.1   mycroft 	start = blkno + 1;
   1819   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1820  1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1821  1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1822   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1823   1.1   mycroft 	map = *mapp++;
   1824   1.1   mycroft 	bit = 1 << (start % NBBY);
   1825   1.1   mycroft 	for (i = start; i < end; i++) {
   1826   1.1   mycroft 		if ((map & bit) == 0)
   1827   1.1   mycroft 			break;
   1828   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1829   1.1   mycroft 			bit <<= 1;
   1830   1.1   mycroft 		} else {
   1831   1.1   mycroft 			map = *mapp++;
   1832   1.1   mycroft 			bit = 1;
   1833   1.1   mycroft 		}
   1834   1.1   mycroft 	}
   1835   1.1   mycroft 	forw = i - start;
   1836   1.1   mycroft 	/*
   1837   1.1   mycroft 	 * Find the size of the cluster going backward.
   1838   1.1   mycroft 	 */
   1839   1.1   mycroft 	start = blkno - 1;
   1840   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1841   1.1   mycroft 	if (end < 0)
   1842   1.1   mycroft 		end = -1;
   1843   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1844   1.1   mycroft 	map = *mapp--;
   1845   1.1   mycroft 	bit = 1 << (start % NBBY);
   1846   1.1   mycroft 	for (i = start; i > end; i--) {
   1847   1.1   mycroft 		if ((map & bit) == 0)
   1848   1.1   mycroft 			break;
   1849   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1850   1.1   mycroft 			bit >>= 1;
   1851   1.1   mycroft 		} else {
   1852   1.1   mycroft 			map = *mapp--;
   1853   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1854   1.1   mycroft 		}
   1855   1.1   mycroft 	}
   1856   1.1   mycroft 	back = start - i;
   1857   1.1   mycroft 	/*
   1858   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1859   1.1   mycroft 	 * back clusters.
   1860   1.1   mycroft 	 */
   1861   1.1   mycroft 	i = back + forw + 1;
   1862   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1863   1.1   mycroft 		i = fs->fs_contigsumsize;
   1864  1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1865   1.1   mycroft 	if (back > 0)
   1866  1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1867   1.1   mycroft 	if (forw > 0)
   1868  1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1869  1.19    bouyer 
   1870   1.5   mycroft 	/*
   1871   1.5   mycroft 	 * Update cluster summary information.
   1872   1.5   mycroft 	 */
   1873   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1874   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1875  1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1876   1.5   mycroft 			break;
   1877  1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1878   1.1   mycroft }
   1879   1.1   mycroft 
   1880   1.1   mycroft /*
   1881   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1882   1.1   mycroft  *
   1883   1.1   mycroft  * The form of the error message is:
   1884   1.1   mycroft  *	fs: error message
   1885   1.1   mycroft  */
   1886   1.1   mycroft static void
   1887   1.1   mycroft ffs_fserr(fs, uid, cp)
   1888   1.1   mycroft 	struct fs *fs;
   1889   1.1   mycroft 	u_int uid;
   1890   1.1   mycroft 	char *cp;
   1891   1.1   mycroft {
   1892   1.1   mycroft 
   1893  1.37       chs 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
   1894  1.37       chs 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
   1895   1.1   mycroft }
   1896