ffs_alloc.c revision 1.56 1 1.56 provos /* $NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.53 lukem
38 1.53 lukem #include <sys/cdefs.h>
39 1.56 provos __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $");
40 1.17 mrg
41 1.43 mrg #if defined(_KERNEL_OPT)
42 1.27 thorpej #include "opt_ffs.h"
43 1.21 scottr #include "opt_quota.h"
44 1.22 scottr #endif
45 1.1 mycroft
46 1.1 mycroft #include <sys/param.h>
47 1.1 mycroft #include <sys/systm.h>
48 1.1 mycroft #include <sys/buf.h>
49 1.1 mycroft #include <sys/proc.h>
50 1.1 mycroft #include <sys/vnode.h>
51 1.1 mycroft #include <sys/mount.h>
52 1.1 mycroft #include <sys/kernel.h>
53 1.1 mycroft #include <sys/syslog.h>
54 1.29 mrg
55 1.1 mycroft #include <ufs/ufs/quota.h>
56 1.19 bouyer #include <ufs/ufs/ufsmount.h>
57 1.1 mycroft #include <ufs/ufs/inode.h>
58 1.9 christos #include <ufs/ufs/ufs_extern.h>
59 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
60 1.1 mycroft
61 1.1 mycroft #include <ufs/ffs/fs.h>
62 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
63 1.1 mycroft
64 1.30 fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 1.51 chs static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66 1.55 matt #ifdef XXXUBC
67 1.30 fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 1.55 matt #endif
69 1.50 lukem static ino_t ffs_dirpref __P((struct inode *));
70 1.30 fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 1.30 fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
72 1.51 chs static u_long ffs_hashalloc __P((struct inode *, int, long, int,
73 1.51 chs ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
74 1.30 fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 1.30 fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
76 1.30 fvdl ufs_daddr_t, int));
77 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
78 1.55 matt #ifdef XXXUBC
79 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 1.18 fvdl #endif
81 1.55 matt #endif
82 1.23 drochner
83 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
84 1.34 jdolecek int ffs_log_changeopt = 0;
85 1.34 jdolecek
86 1.23 drochner /* in ffs_tables.c */
87 1.40 jdolecek extern const int inside[], around[];
88 1.40 jdolecek extern const u_char * const fragtbl[];
89 1.1 mycroft
90 1.1 mycroft /*
91 1.1 mycroft * Allocate a block in the file system.
92 1.1 mycroft *
93 1.1 mycroft * The size of the requested block is given, which must be some
94 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
95 1.1 mycroft * A preference may be optionally specified. If a preference is given
96 1.1 mycroft * the following hierarchy is used to allocate a block:
97 1.1 mycroft * 1) allocate the requested block.
98 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
99 1.1 mycroft * 3) allocate a block in the same cylinder group.
100 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
101 1.1 mycroft * available block is located.
102 1.47 wiz * If no block preference is given the following hierarchy is used
103 1.1 mycroft * to allocate a block:
104 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
105 1.1 mycroft * inode for the file.
106 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
107 1.1 mycroft * available block is located.
108 1.1 mycroft */
109 1.9 christos int
110 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
111 1.33 augustss struct inode *ip;
112 1.18 fvdl ufs_daddr_t lbn, bpref;
113 1.1 mycroft int size;
114 1.1 mycroft struct ucred *cred;
115 1.18 fvdl ufs_daddr_t *bnp;
116 1.1 mycroft {
117 1.37 chs struct fs *fs = ip->i_fs;
118 1.18 fvdl ufs_daddr_t bno;
119 1.9 christos int cg;
120 1.9 christos #ifdef QUOTA
121 1.9 christos int error;
122 1.9 christos #endif
123 1.1 mycroft
124 1.37 chs #ifdef UVM_PAGE_TRKOWN
125 1.51 chs if (ITOV(ip)->v_type == VREG &&
126 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
127 1.37 chs struct vm_page *pg;
128 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
129 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
130 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
131 1.37 chs
132 1.37 chs simple_lock(&uobj->vmobjlock);
133 1.37 chs while (off < endoff) {
134 1.37 chs pg = uvm_pagelookup(uobj, off);
135 1.37 chs KASSERT(pg != NULL);
136 1.37 chs KASSERT(pg->owner == curproc->p_pid);
137 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
138 1.37 chs off += PAGE_SIZE;
139 1.37 chs }
140 1.37 chs simple_unlock(&uobj->vmobjlock);
141 1.37 chs }
142 1.37 chs #endif
143 1.37 chs
144 1.1 mycroft *bnp = 0;
145 1.1 mycroft #ifdef DIAGNOSTIC
146 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
147 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
148 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
149 1.1 mycroft panic("ffs_alloc: bad size");
150 1.1 mycroft }
151 1.1 mycroft if (cred == NOCRED)
152 1.56 provos panic("ffs_alloc: missing credential");
153 1.1 mycroft #endif /* DIAGNOSTIC */
154 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
155 1.1 mycroft goto nospace;
156 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
157 1.1 mycroft goto nospace;
158 1.1 mycroft #ifdef QUOTA
159 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
160 1.1 mycroft return (error);
161 1.1 mycroft #endif
162 1.1 mycroft if (bpref >= fs->fs_size)
163 1.1 mycroft bpref = 0;
164 1.1 mycroft if (bpref == 0)
165 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
166 1.1 mycroft else
167 1.1 mycroft cg = dtog(fs, bpref);
168 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
169 1.9 christos ffs_alloccg);
170 1.1 mycroft if (bno > 0) {
171 1.15 bouyer ip->i_ffs_blocks += btodb(size);
172 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
173 1.1 mycroft *bnp = bno;
174 1.1 mycroft return (0);
175 1.1 mycroft }
176 1.1 mycroft #ifdef QUOTA
177 1.1 mycroft /*
178 1.1 mycroft * Restore user's disk quota because allocation failed.
179 1.1 mycroft */
180 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
181 1.1 mycroft #endif
182 1.1 mycroft nospace:
183 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
184 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
185 1.1 mycroft return (ENOSPC);
186 1.1 mycroft }
187 1.1 mycroft
188 1.1 mycroft /*
189 1.1 mycroft * Reallocate a fragment to a bigger size
190 1.1 mycroft *
191 1.1 mycroft * The number and size of the old block is given, and a preference
192 1.1 mycroft * and new size is also specified. The allocator attempts to extend
193 1.1 mycroft * the original block. Failing that, the regular block allocator is
194 1.1 mycroft * invoked to get an appropriate block.
195 1.1 mycroft */
196 1.9 christos int
197 1.37 chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
198 1.33 augustss struct inode *ip;
199 1.18 fvdl ufs_daddr_t lbprev;
200 1.18 fvdl ufs_daddr_t bpref;
201 1.1 mycroft int osize, nsize;
202 1.1 mycroft struct ucred *cred;
203 1.1 mycroft struct buf **bpp;
204 1.37 chs ufs_daddr_t *blknop;
205 1.1 mycroft {
206 1.37 chs struct fs *fs = ip->i_fs;
207 1.1 mycroft struct buf *bp;
208 1.1 mycroft int cg, request, error;
209 1.18 fvdl ufs_daddr_t bprev, bno;
210 1.25 thorpej
211 1.37 chs #ifdef UVM_PAGE_TRKOWN
212 1.37 chs if (ITOV(ip)->v_type == VREG) {
213 1.37 chs struct vm_page *pg;
214 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
215 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
216 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
217 1.37 chs
218 1.37 chs simple_lock(&uobj->vmobjlock);
219 1.37 chs while (off < endoff) {
220 1.37 chs pg = uvm_pagelookup(uobj, off);
221 1.37 chs KASSERT(pg != NULL);
222 1.37 chs KASSERT(pg->owner == curproc->p_pid);
223 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
224 1.37 chs off += PAGE_SIZE;
225 1.37 chs }
226 1.37 chs simple_unlock(&uobj->vmobjlock);
227 1.37 chs }
228 1.37 chs #endif
229 1.37 chs
230 1.1 mycroft #ifdef DIAGNOSTIC
231 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
232 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
233 1.13 christos printf(
234 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
235 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
236 1.1 mycroft panic("ffs_realloccg: bad size");
237 1.1 mycroft }
238 1.1 mycroft if (cred == NOCRED)
239 1.56 provos panic("ffs_realloccg: missing credential");
240 1.1 mycroft #endif /* DIAGNOSTIC */
241 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
242 1.1 mycroft goto nospace;
243 1.30 fvdl if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
244 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
245 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
246 1.1 mycroft panic("ffs_realloccg: bad bprev");
247 1.1 mycroft }
248 1.1 mycroft /*
249 1.1 mycroft * Allocate the extra space in the buffer.
250 1.1 mycroft */
251 1.37 chs if (bpp != NULL &&
252 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
253 1.1 mycroft brelse(bp);
254 1.1 mycroft return (error);
255 1.1 mycroft }
256 1.1 mycroft #ifdef QUOTA
257 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
258 1.44 chs if (bpp != NULL) {
259 1.44 chs brelse(bp);
260 1.44 chs }
261 1.1 mycroft return (error);
262 1.1 mycroft }
263 1.1 mycroft #endif
264 1.1 mycroft /*
265 1.1 mycroft * Check for extension in the existing location.
266 1.1 mycroft */
267 1.1 mycroft cg = dtog(fs, bprev);
268 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
269 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
270 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 1.37 chs
272 1.37 chs if (bpp != NULL) {
273 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
274 1.37 chs panic("bad blockno");
275 1.37 chs allocbuf(bp, nsize);
276 1.37 chs bp->b_flags |= B_DONE;
277 1.37 chs memset(bp->b_data + osize, 0, nsize - osize);
278 1.37 chs *bpp = bp;
279 1.37 chs }
280 1.37 chs if (blknop != NULL) {
281 1.37 chs *blknop = bno;
282 1.37 chs }
283 1.1 mycroft return (0);
284 1.1 mycroft }
285 1.1 mycroft /*
286 1.1 mycroft * Allocate a new disk location.
287 1.1 mycroft */
288 1.1 mycroft if (bpref >= fs->fs_size)
289 1.1 mycroft bpref = 0;
290 1.1 mycroft switch ((int)fs->fs_optim) {
291 1.1 mycroft case FS_OPTSPACE:
292 1.1 mycroft /*
293 1.1 mycroft * Allocate an exact sized fragment. Although this makes
294 1.1 mycroft * best use of space, we will waste time relocating it if
295 1.1 mycroft * the file continues to grow. If the fragmentation is
296 1.1 mycroft * less than half of the minimum free reserve, we choose
297 1.1 mycroft * to begin optimizing for time.
298 1.1 mycroft */
299 1.1 mycroft request = nsize;
300 1.1 mycroft if (fs->fs_minfree < 5 ||
301 1.1 mycroft fs->fs_cstotal.cs_nffree >
302 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
303 1.1 mycroft break;
304 1.34 jdolecek
305 1.34 jdolecek if (ffs_log_changeopt) {
306 1.34 jdolecek log(LOG_NOTICE,
307 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
308 1.34 jdolecek fs->fs_fsmnt);
309 1.34 jdolecek }
310 1.34 jdolecek
311 1.1 mycroft fs->fs_optim = FS_OPTTIME;
312 1.1 mycroft break;
313 1.1 mycroft case FS_OPTTIME:
314 1.1 mycroft /*
315 1.1 mycroft * At this point we have discovered a file that is trying to
316 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
317 1.1 mycroft * we allocate a full sized block, then free the unused portion.
318 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
319 1.1 mycroft * above will be able to grow it in place without further
320 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
321 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
322 1.1 mycroft * optimizing for space.
323 1.1 mycroft */
324 1.1 mycroft request = fs->fs_bsize;
325 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
326 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
327 1.1 mycroft break;
328 1.34 jdolecek
329 1.34 jdolecek if (ffs_log_changeopt) {
330 1.34 jdolecek log(LOG_NOTICE,
331 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
332 1.34 jdolecek fs->fs_fsmnt);
333 1.34 jdolecek }
334 1.34 jdolecek
335 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
336 1.1 mycroft break;
337 1.1 mycroft default:
338 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
339 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
340 1.1 mycroft panic("ffs_realloccg: bad optim");
341 1.1 mycroft /* NOTREACHED */
342 1.1 mycroft }
343 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
344 1.9 christos ffs_alloccg);
345 1.1 mycroft if (bno > 0) {
346 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
347 1.30 fvdl ffs_blkfree(ip, bprev, (long)osize);
348 1.1 mycroft if (nsize < request)
349 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
350 1.1 mycroft (long)(request - nsize));
351 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
352 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
353 1.37 chs if (bpp != NULL) {
354 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
355 1.37 chs allocbuf(bp, nsize);
356 1.37 chs bp->b_flags |= B_DONE;
357 1.37 chs memset(bp->b_data + osize, 0, (u_int)nsize - osize);
358 1.37 chs *bpp = bp;
359 1.37 chs }
360 1.37 chs if (blknop != NULL) {
361 1.37 chs *blknop = bno;
362 1.37 chs }
363 1.1 mycroft return (0);
364 1.1 mycroft }
365 1.1 mycroft #ifdef QUOTA
366 1.1 mycroft /*
367 1.1 mycroft * Restore user's disk quota because allocation failed.
368 1.1 mycroft */
369 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
370 1.1 mycroft #endif
371 1.37 chs if (bpp != NULL) {
372 1.37 chs brelse(bp);
373 1.37 chs }
374 1.37 chs
375 1.1 mycroft nospace:
376 1.1 mycroft /*
377 1.1 mycroft * no space available
378 1.1 mycroft */
379 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
380 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
381 1.1 mycroft return (ENOSPC);
382 1.1 mycroft }
383 1.1 mycroft
384 1.1 mycroft /*
385 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
386 1.1 mycroft *
387 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
388 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
389 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
390 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
391 1.46 wiz * block immediately preceding the current range. If successful, the
392 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
393 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
394 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
395 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
396 1.1 mycroft * the previous block allocation will be used.
397 1.1 mycroft */
398 1.55 matt #ifdef XXXUBC
399 1.3 mycroft #ifdef DEBUG
400 1.1 mycroft #include <sys/sysctl.h>
401 1.5 mycroft int prtrealloc = 0;
402 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
403 1.1 mycroft #endif
404 1.55 matt #endif
405 1.1 mycroft
406 1.18 fvdl int doasyncfree = 1;
407 1.18 fvdl
408 1.1 mycroft int
409 1.9 christos ffs_reallocblks(v)
410 1.9 christos void *v;
411 1.9 christos {
412 1.55 matt #ifdef XXXUBC
413 1.1 mycroft struct vop_reallocblks_args /* {
414 1.1 mycroft struct vnode *a_vp;
415 1.1 mycroft struct cluster_save *a_buflist;
416 1.9 christos } */ *ap = v;
417 1.1 mycroft struct fs *fs;
418 1.1 mycroft struct inode *ip;
419 1.1 mycroft struct vnode *vp;
420 1.1 mycroft struct buf *sbp, *ebp;
421 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
422 1.1 mycroft struct cluster_save *buflist;
423 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
424 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
425 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
426 1.55 matt #endif /* XXXUBC */
427 1.1 mycroft
428 1.37 chs /* XXXUBC don't reallocblks for now */
429 1.37 chs return ENOSPC;
430 1.37 chs
431 1.55 matt #ifdef XXXUBC
432 1.1 mycroft vp = ap->a_vp;
433 1.1 mycroft ip = VTOI(vp);
434 1.1 mycroft fs = ip->i_fs;
435 1.1 mycroft if (fs->fs_contigsumsize <= 0)
436 1.1 mycroft return (ENOSPC);
437 1.1 mycroft buflist = ap->a_buflist;
438 1.1 mycroft len = buflist->bs_nchildren;
439 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
440 1.1 mycroft end_lbn = start_lbn + len - 1;
441 1.1 mycroft #ifdef DIAGNOSTIC
442 1.18 fvdl for (i = 0; i < len; i++)
443 1.18 fvdl if (!ffs_checkblk(ip,
444 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
445 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
446 1.1 mycroft for (i = 1; i < len; i++)
447 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
448 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
449 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
450 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
451 1.18 fvdl for (i = 1; i < len - 1; i++)
452 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
453 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
454 1.1 mycroft #endif
455 1.1 mycroft /*
456 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
457 1.1 mycroft * the filesystem has decided to move and do not force it back to
458 1.1 mycroft * the previous cylinder group.
459 1.1 mycroft */
460 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
461 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
462 1.1 mycroft return (ENOSPC);
463 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
464 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
465 1.1 mycroft return (ENOSPC);
466 1.1 mycroft /*
467 1.1 mycroft * Get the starting offset and block map for the first block.
468 1.1 mycroft */
469 1.1 mycroft if (start_lvl == 0) {
470 1.15 bouyer sbap = &ip->i_ffs_db[0];
471 1.1 mycroft soff = start_lbn;
472 1.1 mycroft } else {
473 1.1 mycroft idp = &start_ap[start_lvl - 1];
474 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
475 1.1 mycroft brelse(sbp);
476 1.1 mycroft return (ENOSPC);
477 1.1 mycroft }
478 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
479 1.1 mycroft soff = idp->in_off;
480 1.1 mycroft }
481 1.1 mycroft /*
482 1.1 mycroft * Find the preferred location for the cluster.
483 1.1 mycroft */
484 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
485 1.1 mycroft /*
486 1.1 mycroft * If the block range spans two block maps, get the second map.
487 1.1 mycroft */
488 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
489 1.1 mycroft ssize = len;
490 1.1 mycroft } else {
491 1.1 mycroft #ifdef DIAGNOSTIC
492 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
493 1.1 mycroft panic("ffs_reallocblk: start == end");
494 1.1 mycroft #endif
495 1.1 mycroft ssize = len - (idp->in_off + 1);
496 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
497 1.1 mycroft goto fail;
498 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
499 1.1 mycroft }
500 1.1 mycroft /*
501 1.1 mycroft * Search the block map looking for an allocation of the desired size.
502 1.1 mycroft */
503 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
504 1.9 christos len, ffs_clusteralloc)) == 0)
505 1.1 mycroft goto fail;
506 1.1 mycroft /*
507 1.1 mycroft * We have found a new contiguous block.
508 1.1 mycroft *
509 1.1 mycroft * First we have to replace the old block pointers with the new
510 1.1 mycroft * block pointers in the inode and indirect blocks associated
511 1.1 mycroft * with the file.
512 1.1 mycroft */
513 1.5 mycroft #ifdef DEBUG
514 1.5 mycroft if (prtrealloc)
515 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
516 1.5 mycroft start_lbn, end_lbn);
517 1.5 mycroft #endif
518 1.1 mycroft blkno = newblk;
519 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
520 1.30 fvdl ufs_daddr_t ba;
521 1.30 fvdl
522 1.30 fvdl if (i == ssize) {
523 1.1 mycroft bap = ebap;
524 1.30 fvdl soff = -i;
525 1.30 fvdl }
526 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
527 1.1 mycroft #ifdef DIAGNOSTIC
528 1.18 fvdl if (!ffs_checkblk(ip,
529 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
530 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
531 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
532 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
533 1.1 mycroft #endif
534 1.5 mycroft #ifdef DEBUG
535 1.5 mycroft if (prtrealloc)
536 1.30 fvdl printf(" %d,", ba);
537 1.5 mycroft #endif
538 1.30 fvdl if (DOINGSOFTDEP(vp)) {
539 1.30 fvdl if (sbap == &ip->i_ffs_db[0] && i < ssize)
540 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
541 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
542 1.30 fvdl buflist->bs_children[i]);
543 1.30 fvdl else
544 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
545 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
546 1.30 fvdl ba, buflist->bs_children[i]);
547 1.30 fvdl }
548 1.30 fvdl *bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
549 1.1 mycroft }
550 1.1 mycroft /*
551 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
552 1.1 mycroft * For strict correctness, the writes should be synchronous since
553 1.1 mycroft * the old block values may have been written to disk. In practise
554 1.1 mycroft * they are almost never written, but if we are concerned about
555 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
556 1.1 mycroft *
557 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
558 1.1 mycroft * that shows whether the associated buffers and inodes have
559 1.1 mycroft * been written. The flag should be set when the cluster is
560 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
561 1.1 mycroft * We can then check below to see if it is set, and do the
562 1.1 mycroft * synchronous write only when it has been cleared.
563 1.1 mycroft */
564 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
565 1.1 mycroft if (doasyncfree)
566 1.1 mycroft bdwrite(sbp);
567 1.1 mycroft else
568 1.1 mycroft bwrite(sbp);
569 1.1 mycroft } else {
570 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
571 1.28 mycroft if (!doasyncfree)
572 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
573 1.1 mycroft }
574 1.25 thorpej if (ssize < len) {
575 1.1 mycroft if (doasyncfree)
576 1.1 mycroft bdwrite(ebp);
577 1.1 mycroft else
578 1.1 mycroft bwrite(ebp);
579 1.25 thorpej }
580 1.1 mycroft /*
581 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
582 1.1 mycroft */
583 1.5 mycroft #ifdef DEBUG
584 1.5 mycroft if (prtrealloc)
585 1.13 christos printf("\n\tnew:");
586 1.5 mycroft #endif
587 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
588 1.30 fvdl if (!DOINGSOFTDEP(vp))
589 1.30 fvdl ffs_blkfree(ip,
590 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
591 1.30 fvdl fs->fs_bsize);
592 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
593 1.5 mycroft #ifdef DEBUG
594 1.18 fvdl if (!ffs_checkblk(ip,
595 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
596 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
597 1.5 mycroft if (prtrealloc)
598 1.13 christos printf(" %d,", blkno);
599 1.5 mycroft #endif
600 1.5 mycroft }
601 1.5 mycroft #ifdef DEBUG
602 1.5 mycroft if (prtrealloc) {
603 1.5 mycroft prtrealloc--;
604 1.13 christos printf("\n");
605 1.1 mycroft }
606 1.5 mycroft #endif
607 1.1 mycroft return (0);
608 1.1 mycroft
609 1.1 mycroft fail:
610 1.1 mycroft if (ssize < len)
611 1.1 mycroft brelse(ebp);
612 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
613 1.1 mycroft brelse(sbp);
614 1.1 mycroft return (ENOSPC);
615 1.55 matt #endif /* XXXUBC */
616 1.1 mycroft }
617 1.1 mycroft
618 1.1 mycroft /*
619 1.1 mycroft * Allocate an inode in the file system.
620 1.1 mycroft *
621 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
622 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
623 1.1 mycroft * 1) allocate the preferred inode.
624 1.1 mycroft * 2) allocate an inode in the same cylinder group.
625 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
626 1.1 mycroft * available inode is located.
627 1.47 wiz * If no inode preference is given the following hierarchy is used
628 1.1 mycroft * to allocate an inode:
629 1.1 mycroft * 1) allocate an inode in cylinder group 0.
630 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
631 1.1 mycroft * available inode is located.
632 1.1 mycroft */
633 1.9 christos int
634 1.9 christos ffs_valloc(v)
635 1.9 christos void *v;
636 1.9 christos {
637 1.1 mycroft struct vop_valloc_args /* {
638 1.1 mycroft struct vnode *a_pvp;
639 1.1 mycroft int a_mode;
640 1.1 mycroft struct ucred *a_cred;
641 1.1 mycroft struct vnode **a_vpp;
642 1.9 christos } */ *ap = v;
643 1.33 augustss struct vnode *pvp = ap->a_pvp;
644 1.33 augustss struct inode *pip;
645 1.33 augustss struct fs *fs;
646 1.33 augustss struct inode *ip;
647 1.1 mycroft mode_t mode = ap->a_mode;
648 1.1 mycroft ino_t ino, ipref;
649 1.1 mycroft int cg, error;
650 1.1 mycroft
651 1.1 mycroft *ap->a_vpp = NULL;
652 1.1 mycroft pip = VTOI(pvp);
653 1.1 mycroft fs = pip->i_fs;
654 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
655 1.1 mycroft goto noinodes;
656 1.1 mycroft
657 1.1 mycroft if ((mode & IFMT) == IFDIR)
658 1.50 lukem ipref = ffs_dirpref(pip);
659 1.50 lukem else
660 1.50 lukem ipref = pip->i_number;
661 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
662 1.1 mycroft ipref = 0;
663 1.1 mycroft cg = ino_to_cg(fs, ipref);
664 1.50 lukem /*
665 1.50 lukem * Track number of dirs created one after another
666 1.50 lukem * in a same cg without intervening by files.
667 1.50 lukem */
668 1.50 lukem if ((mode & IFMT) == IFDIR) {
669 1.50 lukem if (fs->fs_contigdirs[cg] < 65535)
670 1.50 lukem fs->fs_contigdirs[cg]++;
671 1.50 lukem } else {
672 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
673 1.50 lukem fs->fs_contigdirs[cg]--;
674 1.50 lukem }
675 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
676 1.1 mycroft if (ino == 0)
677 1.1 mycroft goto noinodes;
678 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
679 1.1 mycroft if (error) {
680 1.1 mycroft VOP_VFREE(pvp, ino, mode);
681 1.1 mycroft return (error);
682 1.1 mycroft }
683 1.1 mycroft ip = VTOI(*ap->a_vpp);
684 1.15 bouyer if (ip->i_ffs_mode) {
685 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
686 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
687 1.1 mycroft panic("ffs_valloc: dup alloc");
688 1.1 mycroft }
689 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
690 1.13 christos printf("free inode %s/%d had %d blocks\n",
691 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
692 1.15 bouyer ip->i_ffs_blocks = 0;
693 1.1 mycroft }
694 1.15 bouyer ip->i_ffs_flags = 0;
695 1.1 mycroft /*
696 1.1 mycroft * Set up a new generation number for this inode.
697 1.1 mycroft */
698 1.15 bouyer ip->i_ffs_gen++;
699 1.1 mycroft return (0);
700 1.1 mycroft noinodes:
701 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
702 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
703 1.1 mycroft return (ENOSPC);
704 1.1 mycroft }
705 1.1 mycroft
706 1.1 mycroft /*
707 1.50 lukem * Find a cylinder group in which to place a directory.
708 1.42 sommerfe *
709 1.50 lukem * The policy implemented by this algorithm is to allocate a
710 1.50 lukem * directory inode in the same cylinder group as its parent
711 1.50 lukem * directory, but also to reserve space for its files inodes
712 1.50 lukem * and data. Restrict the number of directories which may be
713 1.50 lukem * allocated one after another in the same cylinder group
714 1.50 lukem * without intervening allocation of files.
715 1.42 sommerfe *
716 1.50 lukem * If we allocate a first level directory then force allocation
717 1.50 lukem * in another cylinder group.
718 1.1 mycroft */
719 1.1 mycroft static ino_t
720 1.50 lukem ffs_dirpref(pip)
721 1.50 lukem struct inode *pip;
722 1.1 mycroft {
723 1.50 lukem register struct fs *fs;
724 1.50 lukem int cg, prefcg, dirsize, cgsize;
725 1.50 lukem int avgifree, avgbfree, avgndir, curdirsize;
726 1.50 lukem int minifree, minbfree, maxndir;
727 1.50 lukem int mincg, minndir;
728 1.50 lukem int maxcontigdirs;
729 1.50 lukem
730 1.50 lukem fs = pip->i_fs;
731 1.1 mycroft
732 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
733 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
734 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
735 1.50 lukem
736 1.50 lukem /*
737 1.50 lukem * Force allocation in another cg if creating a first level dir.
738 1.50 lukem */
739 1.50 lukem if (ITOV(pip)->v_flag & VROOT) {
740 1.50 lukem prefcg = random() % fs->fs_ncg;
741 1.50 lukem mincg = prefcg;
742 1.50 lukem minndir = fs->fs_ipg;
743 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
744 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
745 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
746 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
747 1.42 sommerfe mincg = cg;
748 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
749 1.42 sommerfe }
750 1.50 lukem for (cg = 0; cg < prefcg; cg++)
751 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
752 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
753 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
754 1.50 lukem mincg = cg;
755 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
756 1.42 sommerfe }
757 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
758 1.42 sommerfe }
759 1.50 lukem
760 1.50 lukem /*
761 1.50 lukem * Count various limits which used for
762 1.50 lukem * optimal allocation of a directory inode.
763 1.50 lukem */
764 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
765 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
766 1.50 lukem if (minifree < 0)
767 1.50 lukem minifree = 0;
768 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
769 1.50 lukem if (minbfree < 0)
770 1.50 lukem minbfree = 0;
771 1.50 lukem cgsize = fs->fs_fsize * fs->fs_fpg;
772 1.50 lukem dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
773 1.50 lukem curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
774 1.50 lukem if (dirsize < curdirsize)
775 1.50 lukem dirsize = curdirsize;
776 1.50 lukem maxcontigdirs = min(cgsize / dirsize, 255);
777 1.50 lukem if (fs->fs_avgfpdir > 0)
778 1.50 lukem maxcontigdirs = min(maxcontigdirs,
779 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
780 1.50 lukem if (maxcontigdirs == 0)
781 1.50 lukem maxcontigdirs = 1;
782 1.50 lukem
783 1.50 lukem /*
784 1.50 lukem * Limit number of dirs in one cg and reserve space for
785 1.50 lukem * regular files, but only if we have no deficit in
786 1.50 lukem * inodes or space.
787 1.50 lukem */
788 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
789 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
790 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
791 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
792 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
793 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
794 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
795 1.50 lukem }
796 1.50 lukem for (cg = 0; cg < prefcg; cg++)
797 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
798 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
799 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
800 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
801 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
802 1.50 lukem }
803 1.50 lukem /*
804 1.50 lukem * This is a backstop when we are deficient in space.
805 1.50 lukem */
806 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
807 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
808 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
809 1.50 lukem for (cg = 0; cg < prefcg; cg++)
810 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
811 1.50 lukem break;
812 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
813 1.1 mycroft }
814 1.1 mycroft
815 1.1 mycroft /*
816 1.1 mycroft * Select the desired position for the next block in a file. The file is
817 1.1 mycroft * logically divided into sections. The first section is composed of the
818 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
819 1.1 mycroft *
820 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
821 1.1 mycroft * request a block in the same cylinder group as the inode that describes
822 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
823 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
824 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
825 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
826 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
827 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
828 1.1 mycroft * continues until a cylinder group with greater than the average number
829 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
830 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
831 1.1 mycroft * here a best guess is made based upon the logical block number being
832 1.1 mycroft * allocated.
833 1.1 mycroft *
834 1.1 mycroft * If a section is already partially allocated, the policy is to
835 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
836 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
837 1.1 mycroft * so that the disk head will be in transit between them for at least
838 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
839 1.1 mycroft * schedule another I/O transfer.
840 1.1 mycroft */
841 1.18 fvdl ufs_daddr_t
842 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
843 1.1 mycroft struct inode *ip;
844 1.18 fvdl ufs_daddr_t lbn;
845 1.1 mycroft int indx;
846 1.18 fvdl ufs_daddr_t *bap;
847 1.1 mycroft {
848 1.33 augustss struct fs *fs;
849 1.33 augustss int cg;
850 1.1 mycroft int avgbfree, startcg;
851 1.18 fvdl ufs_daddr_t nextblk;
852 1.1 mycroft
853 1.1 mycroft fs = ip->i_fs;
854 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
855 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
856 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
857 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
858 1.1 mycroft }
859 1.1 mycroft /*
860 1.1 mycroft * Find a cylinder with greater than average number of
861 1.1 mycroft * unused data blocks.
862 1.1 mycroft */
863 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
864 1.1 mycroft startcg =
865 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
866 1.1 mycroft else
867 1.19 bouyer startcg = dtog(fs,
868 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
869 1.1 mycroft startcg %= fs->fs_ncg;
870 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
871 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
872 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
873 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
874 1.1 mycroft }
875 1.52 lukem for (cg = 0; cg < startcg; cg++)
876 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
877 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
878 1.1 mycroft }
879 1.35 thorpej return (0);
880 1.1 mycroft }
881 1.1 mycroft /*
882 1.1 mycroft * One or more previous blocks have been laid out. If less
883 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
884 1.1 mycroft * next block is requested contiguously, otherwise it is
885 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
886 1.1 mycroft */
887 1.30 fvdl nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
888 1.19 bouyer if (indx < fs->fs_maxcontig ||
889 1.30 fvdl ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
890 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
891 1.1 mycroft return (nextblk);
892 1.1 mycroft if (fs->fs_rotdelay != 0)
893 1.1 mycroft /*
894 1.1 mycroft * Here we convert ms of delay to frags as:
895 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
896 1.1 mycroft * ((sect/frag) * (ms/sec))
897 1.1 mycroft * then round up to the next block.
898 1.1 mycroft */
899 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
900 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
901 1.1 mycroft return (nextblk);
902 1.1 mycroft }
903 1.1 mycroft
904 1.1 mycroft /*
905 1.1 mycroft * Implement the cylinder overflow algorithm.
906 1.1 mycroft *
907 1.1 mycroft * The policy implemented by this algorithm is:
908 1.1 mycroft * 1) allocate the block in its requested cylinder group.
909 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
910 1.1 mycroft * 3) brute force search for a free block.
911 1.1 mycroft */
912 1.1 mycroft /*VARARGS5*/
913 1.1 mycroft static u_long
914 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
915 1.1 mycroft struct inode *ip;
916 1.1 mycroft int cg;
917 1.1 mycroft long pref;
918 1.1 mycroft int size; /* size for data blocks, mode for inodes */
919 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
920 1.1 mycroft {
921 1.33 augustss struct fs *fs;
922 1.1 mycroft long result;
923 1.1 mycroft int i, icg = cg;
924 1.1 mycroft
925 1.1 mycroft fs = ip->i_fs;
926 1.1 mycroft /*
927 1.1 mycroft * 1: preferred cylinder group
928 1.1 mycroft */
929 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
930 1.1 mycroft if (result)
931 1.1 mycroft return (result);
932 1.1 mycroft /*
933 1.1 mycroft * 2: quadratic rehash
934 1.1 mycroft */
935 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
936 1.1 mycroft cg += i;
937 1.1 mycroft if (cg >= fs->fs_ncg)
938 1.1 mycroft cg -= fs->fs_ncg;
939 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
940 1.1 mycroft if (result)
941 1.1 mycroft return (result);
942 1.1 mycroft }
943 1.1 mycroft /*
944 1.1 mycroft * 3: brute force search
945 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
946 1.1 mycroft * and 1 is always checked in the quadratic rehash.
947 1.1 mycroft */
948 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
949 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
950 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
951 1.1 mycroft if (result)
952 1.1 mycroft return (result);
953 1.1 mycroft cg++;
954 1.1 mycroft if (cg == fs->fs_ncg)
955 1.1 mycroft cg = 0;
956 1.1 mycroft }
957 1.35 thorpej return (0);
958 1.1 mycroft }
959 1.1 mycroft
960 1.1 mycroft /*
961 1.1 mycroft * Determine whether a fragment can be extended.
962 1.1 mycroft *
963 1.1 mycroft * Check to see if the necessary fragments are available, and
964 1.1 mycroft * if they are, allocate them.
965 1.1 mycroft */
966 1.18 fvdl static ufs_daddr_t
967 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
968 1.1 mycroft struct inode *ip;
969 1.1 mycroft int cg;
970 1.1 mycroft long bprev;
971 1.1 mycroft int osize, nsize;
972 1.1 mycroft {
973 1.33 augustss struct fs *fs;
974 1.33 augustss struct cg *cgp;
975 1.1 mycroft struct buf *bp;
976 1.1 mycroft long bno;
977 1.1 mycroft int frags, bbase;
978 1.1 mycroft int i, error;
979 1.1 mycroft
980 1.1 mycroft fs = ip->i_fs;
981 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
982 1.35 thorpej return (0);
983 1.1 mycroft frags = numfrags(fs, nsize);
984 1.1 mycroft bbase = fragnum(fs, bprev);
985 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
986 1.1 mycroft /* cannot extend across a block boundary */
987 1.35 thorpej return (0);
988 1.1 mycroft }
989 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
990 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
991 1.1 mycroft if (error) {
992 1.1 mycroft brelse(bp);
993 1.35 thorpej return (0);
994 1.1 mycroft }
995 1.1 mycroft cgp = (struct cg *)bp->b_data;
996 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
997 1.1 mycroft brelse(bp);
998 1.35 thorpej return (0);
999 1.1 mycroft }
1000 1.30 fvdl cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1001 1.1 mycroft bno = dtogd(fs, bprev);
1002 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1003 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
1004 1.1 mycroft brelse(bp);
1005 1.35 thorpej return (0);
1006 1.1 mycroft }
1007 1.1 mycroft /*
1008 1.1 mycroft * the current fragment can be extended
1009 1.1 mycroft * deduct the count on fragment being extended into
1010 1.1 mycroft * increase the count on the remaining fragment (if any)
1011 1.1 mycroft * allocate the extended piece
1012 1.1 mycroft */
1013 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1014 1.30 fvdl if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1015 1.1 mycroft break;
1016 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1017 1.1 mycroft if (i != frags)
1018 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1019 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1020 1.30 fvdl clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1021 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1022 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1023 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1024 1.1 mycroft }
1025 1.1 mycroft fs->fs_fmod = 1;
1026 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1027 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1028 1.1 mycroft bdwrite(bp);
1029 1.1 mycroft return (bprev);
1030 1.1 mycroft }
1031 1.1 mycroft
1032 1.1 mycroft /*
1033 1.1 mycroft * Determine whether a block can be allocated.
1034 1.1 mycroft *
1035 1.1 mycroft * Check to see if a block of the appropriate size is available,
1036 1.1 mycroft * and if it is, allocate it.
1037 1.1 mycroft */
1038 1.18 fvdl static ufs_daddr_t
1039 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
1040 1.1 mycroft struct inode *ip;
1041 1.1 mycroft int cg;
1042 1.18 fvdl ufs_daddr_t bpref;
1043 1.1 mycroft int size;
1044 1.1 mycroft {
1045 1.30 fvdl struct cg *cgp;
1046 1.1 mycroft struct buf *bp;
1047 1.30 fvdl ufs_daddr_t bno, blkno;
1048 1.30 fvdl int error, frags, allocsiz, i;
1049 1.30 fvdl struct fs *fs = ip->i_fs;
1050 1.30 fvdl #ifdef FFS_EI
1051 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1052 1.30 fvdl #endif
1053 1.1 mycroft
1054 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1055 1.35 thorpej return (0);
1056 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1057 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1058 1.1 mycroft if (error) {
1059 1.1 mycroft brelse(bp);
1060 1.35 thorpej return (0);
1061 1.1 mycroft }
1062 1.1 mycroft cgp = (struct cg *)bp->b_data;
1063 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1064 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1065 1.1 mycroft brelse(bp);
1066 1.35 thorpej return (0);
1067 1.1 mycroft }
1068 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1069 1.1 mycroft if (size == fs->fs_bsize) {
1070 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
1071 1.1 mycroft bdwrite(bp);
1072 1.1 mycroft return (bno);
1073 1.1 mycroft }
1074 1.1 mycroft /*
1075 1.1 mycroft * check to see if any fragments are already available
1076 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1077 1.1 mycroft * it down to a smaller size if necessary
1078 1.1 mycroft */
1079 1.1 mycroft frags = numfrags(fs, size);
1080 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1081 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1082 1.1 mycroft break;
1083 1.1 mycroft if (allocsiz == fs->fs_frag) {
1084 1.1 mycroft /*
1085 1.1 mycroft * no fragments were available, so a block will be
1086 1.1 mycroft * allocated, and hacked up
1087 1.1 mycroft */
1088 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
1089 1.1 mycroft brelse(bp);
1090 1.35 thorpej return (0);
1091 1.1 mycroft }
1092 1.30 fvdl bno = ffs_alloccgblk(ip, bp, bpref);
1093 1.1 mycroft bpref = dtogd(fs, bno);
1094 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1095 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
1096 1.1 mycroft i = fs->fs_frag - frags;
1097 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1098 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1099 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1100 1.1 mycroft fs->fs_fmod = 1;
1101 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1102 1.1 mycroft bdwrite(bp);
1103 1.1 mycroft return (bno);
1104 1.1 mycroft }
1105 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1106 1.30 fvdl #if 0
1107 1.30 fvdl /*
1108 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1109 1.30 fvdl * also: returning NULL as ufs_daddr_t ?
1110 1.30 fvdl */
1111 1.1 mycroft if (bno < 0) {
1112 1.1 mycroft brelse(bp);
1113 1.35 thorpej return (0);
1114 1.1 mycroft }
1115 1.30 fvdl #endif
1116 1.1 mycroft for (i = 0; i < frags; i++)
1117 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
1118 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1119 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1120 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1121 1.1 mycroft fs->fs_fmod = 1;
1122 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1123 1.1 mycroft if (frags != allocsiz)
1124 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1125 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1126 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1127 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1128 1.1 mycroft bdwrite(bp);
1129 1.30 fvdl return blkno;
1130 1.1 mycroft }
1131 1.1 mycroft
1132 1.1 mycroft /*
1133 1.1 mycroft * Allocate a block in a cylinder group.
1134 1.1 mycroft *
1135 1.1 mycroft * This algorithm implements the following policy:
1136 1.1 mycroft * 1) allocate the requested block.
1137 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1138 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1139 1.1 mycroft * specified cylinder group.
1140 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1141 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1142 1.1 mycroft */
1143 1.18 fvdl static ufs_daddr_t
1144 1.30 fvdl ffs_alloccgblk(ip, bp, bpref)
1145 1.30 fvdl struct inode *ip;
1146 1.30 fvdl struct buf *bp;
1147 1.18 fvdl ufs_daddr_t bpref;
1148 1.1 mycroft {
1149 1.30 fvdl struct cg *cgp;
1150 1.18 fvdl ufs_daddr_t bno, blkno;
1151 1.1 mycroft int cylno, pos, delta;
1152 1.1 mycroft short *cylbp;
1153 1.33 augustss int i;
1154 1.30 fvdl struct fs *fs = ip->i_fs;
1155 1.30 fvdl #ifdef FFS_EI
1156 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1157 1.30 fvdl #endif
1158 1.1 mycroft
1159 1.30 fvdl cgp = (struct cg *)bp->b_data;
1160 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1161 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1162 1.1 mycroft goto norot;
1163 1.1 mycroft }
1164 1.1 mycroft bpref = blknum(fs, bpref);
1165 1.1 mycroft bpref = dtogd(fs, bpref);
1166 1.1 mycroft /*
1167 1.1 mycroft * if the requested block is available, use it
1168 1.1 mycroft */
1169 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1170 1.19 bouyer fragstoblks(fs, bpref))) {
1171 1.1 mycroft bno = bpref;
1172 1.1 mycroft goto gotit;
1173 1.1 mycroft }
1174 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1175 1.1 mycroft /*
1176 1.1 mycroft * Block layout information is not available.
1177 1.1 mycroft * Leaving bpref unchanged means we take the
1178 1.1 mycroft * next available free block following the one
1179 1.1 mycroft * we just allocated. Hopefully this will at
1180 1.1 mycroft * least hit a track cache on drives of unknown
1181 1.1 mycroft * geometry (e.g. SCSI).
1182 1.1 mycroft */
1183 1.1 mycroft goto norot;
1184 1.1 mycroft }
1185 1.6 mycroft /*
1186 1.6 mycroft * check for a block available on the same cylinder
1187 1.6 mycroft */
1188 1.6 mycroft cylno = cbtocylno(fs, bpref);
1189 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
1190 1.6 mycroft goto norot;
1191 1.1 mycroft /*
1192 1.1 mycroft * check the summary information to see if a block is
1193 1.1 mycroft * available in the requested cylinder starting at the
1194 1.1 mycroft * requested rotational position and proceeding around.
1195 1.1 mycroft */
1196 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
1197 1.1 mycroft pos = cbtorpos(fs, bpref);
1198 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
1199 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1200 1.1 mycroft break;
1201 1.1 mycroft if (i == fs->fs_nrpos)
1202 1.1 mycroft for (i = 0; i < pos; i++)
1203 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1204 1.1 mycroft break;
1205 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1206 1.1 mycroft /*
1207 1.1 mycroft * found a rotational position, now find the actual
1208 1.1 mycroft * block. A panic if none is actually there.
1209 1.1 mycroft */
1210 1.1 mycroft pos = cylno % fs->fs_cpc;
1211 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1212 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1213 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1214 1.1 mycroft pos, i, fs->fs_fsmnt);
1215 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1216 1.1 mycroft }
1217 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1218 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1219 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1220 1.1 mycroft goto gotit;
1221 1.1 mycroft }
1222 1.1 mycroft delta = fs_rotbl(fs)[i];
1223 1.1 mycroft if (delta <= 0 ||
1224 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1225 1.1 mycroft break;
1226 1.1 mycroft i += delta;
1227 1.1 mycroft }
1228 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1229 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1230 1.1 mycroft }
1231 1.1 mycroft norot:
1232 1.1 mycroft /*
1233 1.1 mycroft * no blocks in the requested cylinder, so take next
1234 1.1 mycroft * available one in this cylinder group.
1235 1.1 mycroft */
1236 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1237 1.1 mycroft if (bno < 0)
1238 1.35 thorpej return (0);
1239 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1240 1.1 mycroft gotit:
1241 1.1 mycroft blkno = fragstoblks(fs, bno);
1242 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1243 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1244 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1245 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1246 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1247 1.1 mycroft cylno = cbtocylno(fs, bno);
1248 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1249 1.30 fvdl needswap);
1250 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1251 1.1 mycroft fs->fs_fmod = 1;
1252 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1253 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1254 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1255 1.30 fvdl return (blkno);
1256 1.1 mycroft }
1257 1.1 mycroft
1258 1.55 matt #ifdef XXXUBC
1259 1.1 mycroft /*
1260 1.1 mycroft * Determine whether a cluster can be allocated.
1261 1.1 mycroft *
1262 1.1 mycroft * We do not currently check for optimal rotational layout if there
1263 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1264 1.1 mycroft * take the first one that we find following bpref.
1265 1.1 mycroft */
1266 1.18 fvdl static ufs_daddr_t
1267 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1268 1.1 mycroft struct inode *ip;
1269 1.1 mycroft int cg;
1270 1.18 fvdl ufs_daddr_t bpref;
1271 1.1 mycroft int len;
1272 1.1 mycroft {
1273 1.33 augustss struct fs *fs;
1274 1.33 augustss struct cg *cgp;
1275 1.1 mycroft struct buf *bp;
1276 1.18 fvdl int i, got, run, bno, bit, map;
1277 1.1 mycroft u_char *mapp;
1278 1.5 mycroft int32_t *lp;
1279 1.1 mycroft
1280 1.1 mycroft fs = ip->i_fs;
1281 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1282 1.35 thorpej return (0);
1283 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1284 1.1 mycroft NOCRED, &bp))
1285 1.1 mycroft goto fail;
1286 1.1 mycroft cgp = (struct cg *)bp->b_data;
1287 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1288 1.1 mycroft goto fail;
1289 1.1 mycroft /*
1290 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1291 1.1 mycroft * available in this cylinder group.
1292 1.1 mycroft */
1293 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1294 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1295 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1296 1.1 mycroft break;
1297 1.5 mycroft if (i > fs->fs_contigsumsize) {
1298 1.5 mycroft /*
1299 1.5 mycroft * This is the first time looking for a cluster in this
1300 1.5 mycroft * cylinder group. Update the cluster summary information
1301 1.5 mycroft * to reflect the true maximum sized cluster so that
1302 1.5 mycroft * future cluster allocation requests can avoid reading
1303 1.5 mycroft * the cylinder group map only to find no clusters.
1304 1.5 mycroft */
1305 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1306 1.5 mycroft for (i = len - 1; i > 0; i--)
1307 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1308 1.5 mycroft break;
1309 1.5 mycroft fs->fs_maxcluster[cg] = i;
1310 1.1 mycroft goto fail;
1311 1.5 mycroft }
1312 1.1 mycroft /*
1313 1.1 mycroft * Search the cluster map to find a big enough cluster.
1314 1.1 mycroft * We take the first one that we find, even if it is larger
1315 1.1 mycroft * than we need as we prefer to get one close to the previous
1316 1.1 mycroft * block allocation. We do not search before the current
1317 1.1 mycroft * preference point as we do not want to allocate a block
1318 1.1 mycroft * that is allocated before the previous one (as we will
1319 1.1 mycroft * then have to wait for another pass of the elevator
1320 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1321 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1322 1.1 mycroft */
1323 1.1 mycroft if (dtog(fs, bpref) != cg)
1324 1.1 mycroft bpref = 0;
1325 1.1 mycroft else
1326 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1327 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1328 1.1 mycroft map = *mapp++;
1329 1.1 mycroft bit = 1 << (bpref % NBBY);
1330 1.19 bouyer for (run = 0, got = bpref;
1331 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1332 1.1 mycroft if ((map & bit) == 0) {
1333 1.1 mycroft run = 0;
1334 1.1 mycroft } else {
1335 1.1 mycroft run++;
1336 1.1 mycroft if (run == len)
1337 1.1 mycroft break;
1338 1.1 mycroft }
1339 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1340 1.1 mycroft bit <<= 1;
1341 1.1 mycroft } else {
1342 1.1 mycroft map = *mapp++;
1343 1.1 mycroft bit = 1;
1344 1.1 mycroft }
1345 1.1 mycroft }
1346 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1347 1.1 mycroft goto fail;
1348 1.1 mycroft /*
1349 1.1 mycroft * Allocate the cluster that we have found.
1350 1.1 mycroft */
1351 1.30 fvdl #ifdef DIAGNOSTIC
1352 1.18 fvdl for (i = 1; i <= len; i++)
1353 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1354 1.30 fvdl got - run + i))
1355 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1356 1.30 fvdl #endif
1357 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1358 1.18 fvdl if (dtog(fs, bno) != cg)
1359 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1360 1.1 mycroft len = blkstofrags(fs, len);
1361 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1362 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1363 1.1 mycroft panic("ffs_clusteralloc: lost block");
1364 1.8 cgd bdwrite(bp);
1365 1.1 mycroft return (bno);
1366 1.1 mycroft
1367 1.1 mycroft fail:
1368 1.1 mycroft brelse(bp);
1369 1.1 mycroft return (0);
1370 1.1 mycroft }
1371 1.55 matt #endif /* XXXUBC */
1372 1.1 mycroft
1373 1.1 mycroft /*
1374 1.1 mycroft * Determine whether an inode can be allocated.
1375 1.1 mycroft *
1376 1.1 mycroft * Check to see if an inode is available, and if it is,
1377 1.1 mycroft * allocate it using the following policy:
1378 1.1 mycroft * 1) allocate the requested inode.
1379 1.1 mycroft * 2) allocate the next available inode after the requested
1380 1.1 mycroft * inode in the specified cylinder group.
1381 1.1 mycroft */
1382 1.18 fvdl static ufs_daddr_t
1383 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1384 1.1 mycroft struct inode *ip;
1385 1.1 mycroft int cg;
1386 1.18 fvdl ufs_daddr_t ipref;
1387 1.1 mycroft int mode;
1388 1.1 mycroft {
1389 1.33 augustss struct cg *cgp;
1390 1.1 mycroft struct buf *bp;
1391 1.1 mycroft int error, start, len, loc, map, i;
1392 1.33 augustss struct fs *fs = ip->i_fs;
1393 1.19 bouyer #ifdef FFS_EI
1394 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1395 1.19 bouyer #endif
1396 1.1 mycroft
1397 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1398 1.35 thorpej return (0);
1399 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1400 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1401 1.1 mycroft if (error) {
1402 1.1 mycroft brelse(bp);
1403 1.35 thorpej return (0);
1404 1.1 mycroft }
1405 1.1 mycroft cgp = (struct cg *)bp->b_data;
1406 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1407 1.1 mycroft brelse(bp);
1408 1.35 thorpej return (0);
1409 1.1 mycroft }
1410 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1411 1.1 mycroft if (ipref) {
1412 1.1 mycroft ipref %= fs->fs_ipg;
1413 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1414 1.1 mycroft goto gotit;
1415 1.1 mycroft }
1416 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1417 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1418 1.19 bouyer NBBY);
1419 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1420 1.1 mycroft if (loc == 0) {
1421 1.1 mycroft len = start + 1;
1422 1.1 mycroft start = 0;
1423 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1424 1.1 mycroft if (loc == 0) {
1425 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1426 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1427 1.19 bouyer fs->fs_fsmnt);
1428 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1429 1.1 mycroft /* NOTREACHED */
1430 1.1 mycroft }
1431 1.1 mycroft }
1432 1.1 mycroft i = start + len - loc;
1433 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1434 1.1 mycroft ipref = i * NBBY;
1435 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1436 1.1 mycroft if ((map & i) == 0) {
1437 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1438 1.1 mycroft goto gotit;
1439 1.1 mycroft }
1440 1.1 mycroft }
1441 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1442 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1443 1.1 mycroft /* NOTREACHED */
1444 1.1 mycroft gotit:
1445 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1446 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1447 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1448 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1449 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1450 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1451 1.1 mycroft fs->fs_fmod = 1;
1452 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1453 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1454 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1455 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1456 1.1 mycroft }
1457 1.1 mycroft bdwrite(bp);
1458 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1459 1.1 mycroft }
1460 1.1 mycroft
1461 1.1 mycroft /*
1462 1.1 mycroft * Free a block or fragment.
1463 1.1 mycroft *
1464 1.1 mycroft * The specified block or fragment is placed back in the
1465 1.1 mycroft * free map. If a fragment is deallocated, a possible
1466 1.1 mycroft * block reassembly is checked.
1467 1.1 mycroft */
1468 1.9 christos void
1469 1.1 mycroft ffs_blkfree(ip, bno, size)
1470 1.33 augustss struct inode *ip;
1471 1.18 fvdl ufs_daddr_t bno;
1472 1.1 mycroft long size;
1473 1.1 mycroft {
1474 1.33 augustss struct cg *cgp;
1475 1.1 mycroft struct buf *bp;
1476 1.18 fvdl ufs_daddr_t blkno;
1477 1.1 mycroft int i, error, cg, blk, frags, bbase;
1478 1.33 augustss struct fs *fs = ip->i_fs;
1479 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1480 1.1 mycroft
1481 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1482 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1483 1.30 fvdl printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1484 1.30 fvdl ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1485 1.1 mycroft panic("blkfree: bad size");
1486 1.1 mycroft }
1487 1.1 mycroft cg = dtog(fs, bno);
1488 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1489 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1490 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1491 1.1 mycroft return;
1492 1.1 mycroft }
1493 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1494 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1495 1.1 mycroft if (error) {
1496 1.1 mycroft brelse(bp);
1497 1.1 mycroft return;
1498 1.1 mycroft }
1499 1.1 mycroft cgp = (struct cg *)bp->b_data;
1500 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1501 1.1 mycroft brelse(bp);
1502 1.1 mycroft return;
1503 1.1 mycroft }
1504 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1505 1.1 mycroft bno = dtogd(fs, bno);
1506 1.1 mycroft if (size == fs->fs_bsize) {
1507 1.1 mycroft blkno = fragstoblks(fs, bno);
1508 1.30 fvdl if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1509 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1510 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1511 1.1 mycroft panic("blkfree: freeing free block");
1512 1.1 mycroft }
1513 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1514 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1515 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1516 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1517 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1518 1.1 mycroft i = cbtocylno(fs, bno);
1519 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1520 1.30 fvdl needswap);
1521 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1522 1.1 mycroft } else {
1523 1.1 mycroft bbase = bno - fragnum(fs, bno);
1524 1.1 mycroft /*
1525 1.1 mycroft * decrement the counts associated with the old frags
1526 1.1 mycroft */
1527 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1528 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1529 1.1 mycroft /*
1530 1.1 mycroft * deallocate the fragment
1531 1.1 mycroft */
1532 1.1 mycroft frags = numfrags(fs, size);
1533 1.1 mycroft for (i = 0; i < frags; i++) {
1534 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1535 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1536 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1537 1.1 mycroft panic("blkfree: freeing free frag");
1538 1.1 mycroft }
1539 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1540 1.1 mycroft }
1541 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1542 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1543 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1544 1.1 mycroft /*
1545 1.1 mycroft * add back in counts associated with the new frags
1546 1.1 mycroft */
1547 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1548 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1549 1.1 mycroft /*
1550 1.1 mycroft * if a complete block has been reassembled, account for it
1551 1.1 mycroft */
1552 1.1 mycroft blkno = fragstoblks(fs, bbase);
1553 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1554 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1555 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1556 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1557 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, 1);
1558 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1559 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1560 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1561 1.1 mycroft i = cbtocylno(fs, bbase);
1562 1.30 fvdl ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1563 1.30 fvdl bbase)], 1,
1564 1.30 fvdl needswap);
1565 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1566 1.1 mycroft }
1567 1.1 mycroft }
1568 1.1 mycroft fs->fs_fmod = 1;
1569 1.1 mycroft bdwrite(bp);
1570 1.1 mycroft }
1571 1.1 mycroft
1572 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1573 1.55 matt #ifdef XXXUBC
1574 1.18 fvdl /*
1575 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1576 1.18 fvdl * fragment is allocated, false if it is free.
1577 1.18 fvdl */
1578 1.18 fvdl static int
1579 1.18 fvdl ffs_checkblk(ip, bno, size)
1580 1.18 fvdl struct inode *ip;
1581 1.18 fvdl ufs_daddr_t bno;
1582 1.18 fvdl long size;
1583 1.18 fvdl {
1584 1.18 fvdl struct fs *fs;
1585 1.18 fvdl struct cg *cgp;
1586 1.18 fvdl struct buf *bp;
1587 1.18 fvdl int i, error, frags, free;
1588 1.18 fvdl
1589 1.18 fvdl fs = ip->i_fs;
1590 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1591 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1592 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1593 1.18 fvdl panic("checkblk: bad size");
1594 1.18 fvdl }
1595 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1596 1.18 fvdl panic("checkblk: bad block %d", bno);
1597 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1598 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1599 1.18 fvdl if (error) {
1600 1.18 fvdl brelse(bp);
1601 1.18 fvdl return 0;
1602 1.18 fvdl }
1603 1.18 fvdl cgp = (struct cg *)bp->b_data;
1604 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1605 1.18 fvdl brelse(bp);
1606 1.18 fvdl return 0;
1607 1.18 fvdl }
1608 1.18 fvdl bno = dtogd(fs, bno);
1609 1.18 fvdl if (size == fs->fs_bsize) {
1610 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1611 1.19 bouyer fragstoblks(fs, bno));
1612 1.18 fvdl } else {
1613 1.18 fvdl frags = numfrags(fs, size);
1614 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1615 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1616 1.18 fvdl free++;
1617 1.18 fvdl if (free != 0 && free != frags)
1618 1.18 fvdl panic("checkblk: partially free fragment");
1619 1.18 fvdl }
1620 1.18 fvdl brelse(bp);
1621 1.18 fvdl return (!free);
1622 1.18 fvdl }
1623 1.55 matt #endif /* XXXUBC */
1624 1.18 fvdl #endif /* DIAGNOSTIC */
1625 1.18 fvdl
1626 1.1 mycroft /*
1627 1.1 mycroft * Free an inode.
1628 1.30 fvdl */
1629 1.30 fvdl int
1630 1.30 fvdl ffs_vfree(v)
1631 1.30 fvdl void *v;
1632 1.30 fvdl {
1633 1.30 fvdl struct vop_vfree_args /* {
1634 1.30 fvdl struct vnode *a_pvp;
1635 1.30 fvdl ino_t a_ino;
1636 1.30 fvdl int a_mode;
1637 1.30 fvdl } */ *ap = v;
1638 1.30 fvdl
1639 1.30 fvdl if (DOINGSOFTDEP(ap->a_pvp)) {
1640 1.30 fvdl softdep_freefile(ap);
1641 1.30 fvdl return (0);
1642 1.30 fvdl }
1643 1.30 fvdl return (ffs_freefile(ap));
1644 1.30 fvdl }
1645 1.30 fvdl
1646 1.30 fvdl /*
1647 1.30 fvdl * Do the actual free operation.
1648 1.1 mycroft * The specified inode is placed back in the free map.
1649 1.1 mycroft */
1650 1.1 mycroft int
1651 1.30 fvdl ffs_freefile(v)
1652 1.9 christos void *v;
1653 1.9 christos {
1654 1.1 mycroft struct vop_vfree_args /* {
1655 1.1 mycroft struct vnode *a_pvp;
1656 1.1 mycroft ino_t a_ino;
1657 1.1 mycroft int a_mode;
1658 1.9 christos } */ *ap = v;
1659 1.33 augustss struct cg *cgp;
1660 1.33 augustss struct inode *pip = VTOI(ap->a_pvp);
1661 1.33 augustss struct fs *fs = pip->i_fs;
1662 1.1 mycroft ino_t ino = ap->a_ino;
1663 1.1 mycroft struct buf *bp;
1664 1.1 mycroft int error, cg;
1665 1.19 bouyer #ifdef FFS_EI
1666 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1667 1.19 bouyer #endif
1668 1.1 mycroft
1669 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1670 1.56 provos panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1671 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1672 1.1 mycroft cg = ino_to_cg(fs, ino);
1673 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1674 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1675 1.1 mycroft if (error) {
1676 1.1 mycroft brelse(bp);
1677 1.30 fvdl return (error);
1678 1.1 mycroft }
1679 1.1 mycroft cgp = (struct cg *)bp->b_data;
1680 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1681 1.1 mycroft brelse(bp);
1682 1.1 mycroft return (0);
1683 1.1 mycroft }
1684 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1685 1.1 mycroft ino %= fs->fs_ipg;
1686 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1687 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1688 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1689 1.1 mycroft if (fs->fs_ronly == 0)
1690 1.1 mycroft panic("ifree: freeing free inode");
1691 1.1 mycroft }
1692 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1693 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1694 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1695 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1696 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1697 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1698 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1699 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1700 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1701 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1702 1.1 mycroft }
1703 1.1 mycroft fs->fs_fmod = 1;
1704 1.1 mycroft bdwrite(bp);
1705 1.1 mycroft return (0);
1706 1.1 mycroft }
1707 1.1 mycroft
1708 1.1 mycroft /*
1709 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1710 1.1 mycroft *
1711 1.1 mycroft * It is a panic if a request is made to find a block if none are
1712 1.1 mycroft * available.
1713 1.1 mycroft */
1714 1.18 fvdl static ufs_daddr_t
1715 1.30 fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
1716 1.33 augustss struct fs *fs;
1717 1.33 augustss struct cg *cgp;
1718 1.18 fvdl ufs_daddr_t bpref;
1719 1.1 mycroft int allocsiz;
1720 1.1 mycroft {
1721 1.18 fvdl ufs_daddr_t bno;
1722 1.1 mycroft int start, len, loc, i;
1723 1.1 mycroft int blk, field, subfield, pos;
1724 1.19 bouyer int ostart, olen;
1725 1.30 fvdl #ifdef FFS_EI
1726 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1727 1.30 fvdl #endif
1728 1.1 mycroft
1729 1.1 mycroft /*
1730 1.1 mycroft * find the fragment by searching through the free block
1731 1.1 mycroft * map for an appropriate bit pattern
1732 1.1 mycroft */
1733 1.1 mycroft if (bpref)
1734 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1735 1.1 mycroft else
1736 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1737 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1738 1.19 bouyer ostart = start;
1739 1.19 bouyer olen = len;
1740 1.45 lukem loc = scanc((u_int)len,
1741 1.45 lukem (const u_char *)&cg_blksfree(cgp, needswap)[start],
1742 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1743 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1744 1.1 mycroft if (loc == 0) {
1745 1.1 mycroft len = start + 1;
1746 1.1 mycroft start = 0;
1747 1.45 lukem loc = scanc((u_int)len,
1748 1.45 lukem (const u_char *)&cg_blksfree(cgp, needswap)[0],
1749 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1750 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1751 1.1 mycroft if (loc == 0) {
1752 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1753 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1754 1.20 ross printf("offset=%d %ld\n",
1755 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1756 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1757 1.1 mycroft panic("ffs_alloccg: map corrupted");
1758 1.1 mycroft /* NOTREACHED */
1759 1.1 mycroft }
1760 1.1 mycroft }
1761 1.1 mycroft bno = (start + len - loc) * NBBY;
1762 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1763 1.1 mycroft /*
1764 1.1 mycroft * found the byte in the map
1765 1.1 mycroft * sift through the bits to find the selected frag
1766 1.1 mycroft */
1767 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1768 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1769 1.1 mycroft blk <<= 1;
1770 1.1 mycroft field = around[allocsiz];
1771 1.1 mycroft subfield = inside[allocsiz];
1772 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1773 1.1 mycroft if ((blk & field) == subfield)
1774 1.1 mycroft return (bno + pos);
1775 1.1 mycroft field <<= 1;
1776 1.1 mycroft subfield <<= 1;
1777 1.1 mycroft }
1778 1.1 mycroft }
1779 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1780 1.1 mycroft panic("ffs_alloccg: block not in map");
1781 1.1 mycroft return (-1);
1782 1.1 mycroft }
1783 1.1 mycroft
1784 1.1 mycroft /*
1785 1.1 mycroft * Update the cluster map because of an allocation or free.
1786 1.1 mycroft *
1787 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1788 1.1 mycroft */
1789 1.9 christos void
1790 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
1791 1.1 mycroft struct fs *fs;
1792 1.1 mycroft struct cg *cgp;
1793 1.18 fvdl ufs_daddr_t blkno;
1794 1.1 mycroft int cnt;
1795 1.1 mycroft {
1796 1.4 cgd int32_t *sump;
1797 1.5 mycroft int32_t *lp;
1798 1.1 mycroft u_char *freemapp, *mapp;
1799 1.1 mycroft int i, start, end, forw, back, map, bit;
1800 1.30 fvdl #ifdef FFS_EI
1801 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1802 1.30 fvdl #endif
1803 1.1 mycroft
1804 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1805 1.1 mycroft return;
1806 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1807 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1808 1.1 mycroft /*
1809 1.1 mycroft * Allocate or clear the actual block.
1810 1.1 mycroft */
1811 1.1 mycroft if (cnt > 0)
1812 1.1 mycroft setbit(freemapp, blkno);
1813 1.1 mycroft else
1814 1.1 mycroft clrbit(freemapp, blkno);
1815 1.1 mycroft /*
1816 1.1 mycroft * Find the size of the cluster going forward.
1817 1.1 mycroft */
1818 1.1 mycroft start = blkno + 1;
1819 1.1 mycroft end = start + fs->fs_contigsumsize;
1820 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1821 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1822 1.1 mycroft mapp = &freemapp[start / NBBY];
1823 1.1 mycroft map = *mapp++;
1824 1.1 mycroft bit = 1 << (start % NBBY);
1825 1.1 mycroft for (i = start; i < end; i++) {
1826 1.1 mycroft if ((map & bit) == 0)
1827 1.1 mycroft break;
1828 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1829 1.1 mycroft bit <<= 1;
1830 1.1 mycroft } else {
1831 1.1 mycroft map = *mapp++;
1832 1.1 mycroft bit = 1;
1833 1.1 mycroft }
1834 1.1 mycroft }
1835 1.1 mycroft forw = i - start;
1836 1.1 mycroft /*
1837 1.1 mycroft * Find the size of the cluster going backward.
1838 1.1 mycroft */
1839 1.1 mycroft start = blkno - 1;
1840 1.1 mycroft end = start - fs->fs_contigsumsize;
1841 1.1 mycroft if (end < 0)
1842 1.1 mycroft end = -1;
1843 1.1 mycroft mapp = &freemapp[start / NBBY];
1844 1.1 mycroft map = *mapp--;
1845 1.1 mycroft bit = 1 << (start % NBBY);
1846 1.1 mycroft for (i = start; i > end; i--) {
1847 1.1 mycroft if ((map & bit) == 0)
1848 1.1 mycroft break;
1849 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1850 1.1 mycroft bit >>= 1;
1851 1.1 mycroft } else {
1852 1.1 mycroft map = *mapp--;
1853 1.1 mycroft bit = 1 << (NBBY - 1);
1854 1.1 mycroft }
1855 1.1 mycroft }
1856 1.1 mycroft back = start - i;
1857 1.1 mycroft /*
1858 1.1 mycroft * Account for old cluster and the possibly new forward and
1859 1.1 mycroft * back clusters.
1860 1.1 mycroft */
1861 1.1 mycroft i = back + forw + 1;
1862 1.1 mycroft if (i > fs->fs_contigsumsize)
1863 1.1 mycroft i = fs->fs_contigsumsize;
1864 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1865 1.1 mycroft if (back > 0)
1866 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1867 1.1 mycroft if (forw > 0)
1868 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1869 1.19 bouyer
1870 1.5 mycroft /*
1871 1.5 mycroft * Update cluster summary information.
1872 1.5 mycroft */
1873 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1874 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1875 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1876 1.5 mycroft break;
1877 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1878 1.1 mycroft }
1879 1.1 mycroft
1880 1.1 mycroft /*
1881 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1882 1.1 mycroft *
1883 1.1 mycroft * The form of the error message is:
1884 1.1 mycroft * fs: error message
1885 1.1 mycroft */
1886 1.1 mycroft static void
1887 1.1 mycroft ffs_fserr(fs, uid, cp)
1888 1.1 mycroft struct fs *fs;
1889 1.1 mycroft u_int uid;
1890 1.1 mycroft char *cp;
1891 1.1 mycroft {
1892 1.1 mycroft
1893 1.37 chs log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1894 1.37 chs uid, curproc->p_comm, fs->fs_fsmnt, cp);
1895 1.1 mycroft }
1896