ffs_alloc.c revision 1.64 1 1.64 gmcgarry /* $NetBSD: ffs_alloc.c,v 1.64 2003/05/04 01:52:18 gmcgarry Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
5 1.60 fvdl * All rights reserved.
6 1.60 fvdl *
7 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
8 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
9 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 1.60 fvdl * research program
12 1.60 fvdl *
13 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
14 1.1 mycroft * The Regents of the University of California. All rights reserved.
15 1.1 mycroft *
16 1.1 mycroft * Redistribution and use in source and binary forms, with or without
17 1.1 mycroft * modification, are permitted provided that the following conditions
18 1.1 mycroft * are met:
19 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
20 1.1 mycroft * notice, this list of conditions and the following disclaimer.
21 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
23 1.1 mycroft * documentation and/or other materials provided with the distribution.
24 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
25 1.1 mycroft * must display the following acknowledgement:
26 1.1 mycroft * This product includes software developed by the University of
27 1.1 mycroft * California, Berkeley and its contributors.
28 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
29 1.1 mycroft * may be used to endorse or promote products derived from this software
30 1.1 mycroft * without specific prior written permission.
31 1.1 mycroft *
32 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 mycroft * SUCH DAMAGE.
43 1.1 mycroft *
44 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
45 1.1 mycroft */
46 1.53 lukem
47 1.53 lukem #include <sys/cdefs.h>
48 1.64 gmcgarry __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.64 2003/05/04 01:52:18 gmcgarry Exp $");
49 1.17 mrg
50 1.43 mrg #if defined(_KERNEL_OPT)
51 1.27 thorpej #include "opt_ffs.h"
52 1.21 scottr #include "opt_quota.h"
53 1.22 scottr #endif
54 1.1 mycroft
55 1.1 mycroft #include <sys/param.h>
56 1.1 mycroft #include <sys/systm.h>
57 1.1 mycroft #include <sys/buf.h>
58 1.1 mycroft #include <sys/proc.h>
59 1.1 mycroft #include <sys/vnode.h>
60 1.1 mycroft #include <sys/mount.h>
61 1.1 mycroft #include <sys/kernel.h>
62 1.1 mycroft #include <sys/syslog.h>
63 1.29 mrg
64 1.1 mycroft #include <ufs/ufs/quota.h>
65 1.19 bouyer #include <ufs/ufs/ufsmount.h>
66 1.1 mycroft #include <ufs/ufs/inode.h>
67 1.9 christos #include <ufs/ufs/ufs_extern.h>
68 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
69 1.1 mycroft
70 1.1 mycroft #include <ufs/ffs/fs.h>
71 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
72 1.1 mycroft
73 1.58 fvdl static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
74 1.58 fvdl static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
75 1.55 matt #ifdef XXXUBC
76 1.58 fvdl static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
77 1.55 matt #endif
78 1.50 lukem static ino_t ffs_dirpref __P((struct inode *));
79 1.58 fvdl static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
80 1.30 fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
81 1.58 fvdl static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
82 1.58 fvdl daddr_t (*)(struct inode *, int, daddr_t, int)));
83 1.58 fvdl static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
84 1.60 fvdl static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
85 1.58 fvdl daddr_t, int));
86 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
87 1.55 matt #ifdef XXXUBC
88 1.58 fvdl static int ffs_checkblk __P((struct inode *, daddr_t, long size));
89 1.18 fvdl #endif
90 1.55 matt #endif
91 1.23 drochner
92 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
93 1.34 jdolecek int ffs_log_changeopt = 0;
94 1.34 jdolecek
95 1.23 drochner /* in ffs_tables.c */
96 1.40 jdolecek extern const int inside[], around[];
97 1.40 jdolecek extern const u_char * const fragtbl[];
98 1.1 mycroft
99 1.1 mycroft /*
100 1.1 mycroft * Allocate a block in the file system.
101 1.1 mycroft *
102 1.1 mycroft * The size of the requested block is given, which must be some
103 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
104 1.1 mycroft * A preference may be optionally specified. If a preference is given
105 1.1 mycroft * the following hierarchy is used to allocate a block:
106 1.1 mycroft * 1) allocate the requested block.
107 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
108 1.1 mycroft * 3) allocate a block in the same cylinder group.
109 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
110 1.1 mycroft * available block is located.
111 1.47 wiz * If no block preference is given the following hierarchy is used
112 1.1 mycroft * to allocate a block:
113 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
114 1.1 mycroft * inode for the file.
115 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
116 1.1 mycroft * available block is located.
117 1.1 mycroft */
118 1.9 christos int
119 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
120 1.33 augustss struct inode *ip;
121 1.58 fvdl daddr_t lbn, bpref;
122 1.1 mycroft int size;
123 1.1 mycroft struct ucred *cred;
124 1.58 fvdl daddr_t *bnp;
125 1.1 mycroft {
126 1.62 fvdl struct fs *fs;
127 1.58 fvdl daddr_t bno;
128 1.9 christos int cg;
129 1.9 christos #ifdef QUOTA
130 1.9 christos int error;
131 1.9 christos #endif
132 1.1 mycroft
133 1.62 fvdl fs = ip->i_fs;
134 1.62 fvdl
135 1.37 chs #ifdef UVM_PAGE_TRKOWN
136 1.51 chs if (ITOV(ip)->v_type == VREG &&
137 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
138 1.37 chs struct vm_page *pg;
139 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
140 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
141 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
142 1.37 chs
143 1.37 chs simple_lock(&uobj->vmobjlock);
144 1.37 chs while (off < endoff) {
145 1.37 chs pg = uvm_pagelookup(uobj, off);
146 1.37 chs KASSERT(pg != NULL);
147 1.37 chs KASSERT(pg->owner == curproc->p_pid);
148 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
149 1.37 chs off += PAGE_SIZE;
150 1.37 chs }
151 1.37 chs simple_unlock(&uobj->vmobjlock);
152 1.37 chs }
153 1.37 chs #endif
154 1.37 chs
155 1.1 mycroft *bnp = 0;
156 1.1 mycroft #ifdef DIAGNOSTIC
157 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
158 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
159 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
160 1.1 mycroft panic("ffs_alloc: bad size");
161 1.1 mycroft }
162 1.1 mycroft if (cred == NOCRED)
163 1.56 provos panic("ffs_alloc: missing credential");
164 1.1 mycroft #endif /* DIAGNOSTIC */
165 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
166 1.1 mycroft goto nospace;
167 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
168 1.1 mycroft goto nospace;
169 1.1 mycroft #ifdef QUOTA
170 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
171 1.1 mycroft return (error);
172 1.1 mycroft #endif
173 1.1 mycroft if (bpref >= fs->fs_size)
174 1.1 mycroft bpref = 0;
175 1.1 mycroft if (bpref == 0)
176 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
177 1.1 mycroft else
178 1.1 mycroft cg = dtog(fs, bpref);
179 1.58 fvdl bno = ffs_hashalloc(ip, cg, (long)bpref, size,
180 1.9 christos ffs_alloccg);
181 1.1 mycroft if (bno > 0) {
182 1.60 fvdl DIP(ip, blocks) += btodb(size);
183 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
184 1.1 mycroft *bnp = bno;
185 1.1 mycroft return (0);
186 1.1 mycroft }
187 1.1 mycroft #ifdef QUOTA
188 1.1 mycroft /*
189 1.1 mycroft * Restore user's disk quota because allocation failed.
190 1.1 mycroft */
191 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
192 1.1 mycroft #endif
193 1.1 mycroft nospace:
194 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
195 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
196 1.1 mycroft return (ENOSPC);
197 1.1 mycroft }
198 1.1 mycroft
199 1.1 mycroft /*
200 1.1 mycroft * Reallocate a fragment to a bigger size
201 1.1 mycroft *
202 1.1 mycroft * The number and size of the old block is given, and a preference
203 1.1 mycroft * and new size is also specified. The allocator attempts to extend
204 1.1 mycroft * the original block. Failing that, the regular block allocator is
205 1.1 mycroft * invoked to get an appropriate block.
206 1.1 mycroft */
207 1.9 christos int
208 1.37 chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
209 1.33 augustss struct inode *ip;
210 1.58 fvdl daddr_t lbprev;
211 1.58 fvdl daddr_t bpref;
212 1.1 mycroft int osize, nsize;
213 1.1 mycroft struct ucred *cred;
214 1.1 mycroft struct buf **bpp;
215 1.58 fvdl daddr_t *blknop;
216 1.1 mycroft {
217 1.62 fvdl struct fs *fs;
218 1.1 mycroft struct buf *bp;
219 1.1 mycroft int cg, request, error;
220 1.58 fvdl daddr_t bprev, bno;
221 1.25 thorpej
222 1.62 fvdl fs = ip->i_fs;
223 1.37 chs #ifdef UVM_PAGE_TRKOWN
224 1.37 chs if (ITOV(ip)->v_type == VREG) {
225 1.37 chs struct vm_page *pg;
226 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
227 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
228 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
229 1.37 chs
230 1.37 chs simple_lock(&uobj->vmobjlock);
231 1.37 chs while (off < endoff) {
232 1.37 chs pg = uvm_pagelookup(uobj, off);
233 1.37 chs KASSERT(pg != NULL);
234 1.37 chs KASSERT(pg->owner == curproc->p_pid);
235 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
236 1.37 chs off += PAGE_SIZE;
237 1.37 chs }
238 1.37 chs simple_unlock(&uobj->vmobjlock);
239 1.37 chs }
240 1.37 chs #endif
241 1.37 chs
242 1.1 mycroft #ifdef DIAGNOSTIC
243 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
244 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
245 1.13 christos printf(
246 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
247 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
248 1.1 mycroft panic("ffs_realloccg: bad size");
249 1.1 mycroft }
250 1.1 mycroft if (cred == NOCRED)
251 1.56 provos panic("ffs_realloccg: missing credential");
252 1.1 mycroft #endif /* DIAGNOSTIC */
253 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
254 1.1 mycroft goto nospace;
255 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
256 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
257 1.60 fvdl else
258 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
259 1.60 fvdl
260 1.60 fvdl if (bprev == 0) {
261 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
262 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
263 1.1 mycroft panic("ffs_realloccg: bad bprev");
264 1.1 mycroft }
265 1.1 mycroft /*
266 1.1 mycroft * Allocate the extra space in the buffer.
267 1.1 mycroft */
268 1.37 chs if (bpp != NULL &&
269 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
270 1.1 mycroft brelse(bp);
271 1.1 mycroft return (error);
272 1.1 mycroft }
273 1.1 mycroft #ifdef QUOTA
274 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
275 1.44 chs if (bpp != NULL) {
276 1.44 chs brelse(bp);
277 1.44 chs }
278 1.1 mycroft return (error);
279 1.1 mycroft }
280 1.1 mycroft #endif
281 1.1 mycroft /*
282 1.1 mycroft * Check for extension in the existing location.
283 1.1 mycroft */
284 1.1 mycroft cg = dtog(fs, bprev);
285 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
286 1.60 fvdl DIP(ip, blocks) += btodb(nsize - osize);
287 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
288 1.37 chs
289 1.37 chs if (bpp != NULL) {
290 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
291 1.37 chs panic("bad blockno");
292 1.37 chs allocbuf(bp, nsize);
293 1.37 chs bp->b_flags |= B_DONE;
294 1.37 chs memset(bp->b_data + osize, 0, nsize - osize);
295 1.37 chs *bpp = bp;
296 1.37 chs }
297 1.37 chs if (blknop != NULL) {
298 1.37 chs *blknop = bno;
299 1.37 chs }
300 1.1 mycroft return (0);
301 1.1 mycroft }
302 1.1 mycroft /*
303 1.1 mycroft * Allocate a new disk location.
304 1.1 mycroft */
305 1.1 mycroft if (bpref >= fs->fs_size)
306 1.1 mycroft bpref = 0;
307 1.1 mycroft switch ((int)fs->fs_optim) {
308 1.1 mycroft case FS_OPTSPACE:
309 1.1 mycroft /*
310 1.1 mycroft * Allocate an exact sized fragment. Although this makes
311 1.1 mycroft * best use of space, we will waste time relocating it if
312 1.1 mycroft * the file continues to grow. If the fragmentation is
313 1.1 mycroft * less than half of the minimum free reserve, we choose
314 1.1 mycroft * to begin optimizing for time.
315 1.1 mycroft */
316 1.1 mycroft request = nsize;
317 1.1 mycroft if (fs->fs_minfree < 5 ||
318 1.1 mycroft fs->fs_cstotal.cs_nffree >
319 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
320 1.1 mycroft break;
321 1.34 jdolecek
322 1.34 jdolecek if (ffs_log_changeopt) {
323 1.34 jdolecek log(LOG_NOTICE,
324 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
325 1.34 jdolecek fs->fs_fsmnt);
326 1.34 jdolecek }
327 1.34 jdolecek
328 1.1 mycroft fs->fs_optim = FS_OPTTIME;
329 1.1 mycroft break;
330 1.1 mycroft case FS_OPTTIME:
331 1.1 mycroft /*
332 1.1 mycroft * At this point we have discovered a file that is trying to
333 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
334 1.1 mycroft * we allocate a full sized block, then free the unused portion.
335 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
336 1.1 mycroft * above will be able to grow it in place without further
337 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
338 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
339 1.1 mycroft * optimizing for space.
340 1.1 mycroft */
341 1.1 mycroft request = fs->fs_bsize;
342 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
343 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
344 1.1 mycroft break;
345 1.34 jdolecek
346 1.34 jdolecek if (ffs_log_changeopt) {
347 1.34 jdolecek log(LOG_NOTICE,
348 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
349 1.34 jdolecek fs->fs_fsmnt);
350 1.34 jdolecek }
351 1.34 jdolecek
352 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
353 1.1 mycroft break;
354 1.1 mycroft default:
355 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
356 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
357 1.1 mycroft panic("ffs_realloccg: bad optim");
358 1.1 mycroft /* NOTREACHED */
359 1.1 mycroft }
360 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
361 1.1 mycroft if (bno > 0) {
362 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
363 1.30 fvdl ffs_blkfree(ip, bprev, (long)osize);
364 1.1 mycroft if (nsize < request)
365 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
366 1.1 mycroft (long)(request - nsize));
367 1.60 fvdl DIP(ip, blocks) += btodb(nsize - osize);
368 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
369 1.37 chs if (bpp != NULL) {
370 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
371 1.37 chs allocbuf(bp, nsize);
372 1.37 chs bp->b_flags |= B_DONE;
373 1.37 chs memset(bp->b_data + osize, 0, (u_int)nsize - osize);
374 1.37 chs *bpp = bp;
375 1.37 chs }
376 1.37 chs if (blknop != NULL) {
377 1.37 chs *blknop = bno;
378 1.37 chs }
379 1.1 mycroft return (0);
380 1.1 mycroft }
381 1.1 mycroft #ifdef QUOTA
382 1.1 mycroft /*
383 1.1 mycroft * Restore user's disk quota because allocation failed.
384 1.1 mycroft */
385 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
386 1.1 mycroft #endif
387 1.37 chs if (bpp != NULL) {
388 1.37 chs brelse(bp);
389 1.37 chs }
390 1.37 chs
391 1.1 mycroft nospace:
392 1.1 mycroft /*
393 1.1 mycroft * no space available
394 1.1 mycroft */
395 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
396 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
397 1.1 mycroft return (ENOSPC);
398 1.1 mycroft }
399 1.1 mycroft
400 1.1 mycroft /*
401 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
402 1.1 mycroft *
403 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
404 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
405 1.60 fvdl * to find a range of sequential blocks starting as close as possible
406 1.60 fvdl * from the end of the allocation for the logical block immediately
407 1.60 fvdl * preceding the current range. If successful, the physical block numbers
408 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
409 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
410 1.60 fvdl * success in doing the reallocation is returned. Note that the error
411 1.60 fvdl * return is not reflected back to the user. Rather the previous block
412 1.60 fvdl * allocation will be used.
413 1.60 fvdl
414 1.1 mycroft */
415 1.55 matt #ifdef XXXUBC
416 1.3 mycroft #ifdef DEBUG
417 1.1 mycroft #include <sys/sysctl.h>
418 1.5 mycroft int prtrealloc = 0;
419 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
420 1.1 mycroft #endif
421 1.55 matt #endif
422 1.1 mycroft
423 1.60 fvdl /*
424 1.60 fvdl * NOTE: when re-enabling this, it must be updated for UFS2.
425 1.60 fvdl */
426 1.60 fvdl
427 1.18 fvdl int doasyncfree = 1;
428 1.18 fvdl
429 1.1 mycroft int
430 1.9 christos ffs_reallocblks(v)
431 1.9 christos void *v;
432 1.9 christos {
433 1.55 matt #ifdef XXXUBC
434 1.1 mycroft struct vop_reallocblks_args /* {
435 1.1 mycroft struct vnode *a_vp;
436 1.1 mycroft struct cluster_save *a_buflist;
437 1.9 christos } */ *ap = v;
438 1.1 mycroft struct fs *fs;
439 1.1 mycroft struct inode *ip;
440 1.1 mycroft struct vnode *vp;
441 1.1 mycroft struct buf *sbp, *ebp;
442 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
443 1.1 mycroft struct cluster_save *buflist;
444 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
445 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
446 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
447 1.55 matt #endif /* XXXUBC */
448 1.1 mycroft
449 1.37 chs /* XXXUBC don't reallocblks for now */
450 1.37 chs return ENOSPC;
451 1.37 chs
452 1.55 matt #ifdef XXXUBC
453 1.1 mycroft vp = ap->a_vp;
454 1.1 mycroft ip = VTOI(vp);
455 1.1 mycroft fs = ip->i_fs;
456 1.1 mycroft if (fs->fs_contigsumsize <= 0)
457 1.1 mycroft return (ENOSPC);
458 1.1 mycroft buflist = ap->a_buflist;
459 1.1 mycroft len = buflist->bs_nchildren;
460 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
461 1.1 mycroft end_lbn = start_lbn + len - 1;
462 1.1 mycroft #ifdef DIAGNOSTIC
463 1.18 fvdl for (i = 0; i < len; i++)
464 1.18 fvdl if (!ffs_checkblk(ip,
465 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
466 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
467 1.1 mycroft for (i = 1; i < len; i++)
468 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
469 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
470 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
471 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
472 1.18 fvdl for (i = 1; i < len - 1; i++)
473 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
474 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
475 1.1 mycroft #endif
476 1.1 mycroft /*
477 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
478 1.1 mycroft * the filesystem has decided to move and do not force it back to
479 1.1 mycroft * the previous cylinder group.
480 1.1 mycroft */
481 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
482 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
483 1.1 mycroft return (ENOSPC);
484 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
485 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
486 1.1 mycroft return (ENOSPC);
487 1.1 mycroft /*
488 1.1 mycroft * Get the starting offset and block map for the first block.
489 1.1 mycroft */
490 1.1 mycroft if (start_lvl == 0) {
491 1.60 fvdl sbap = &ip->i_ffs1_db[0];
492 1.1 mycroft soff = start_lbn;
493 1.1 mycroft } else {
494 1.1 mycroft idp = &start_ap[start_lvl - 1];
495 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
496 1.1 mycroft brelse(sbp);
497 1.1 mycroft return (ENOSPC);
498 1.1 mycroft }
499 1.60 fvdl sbap = (int32_t *)sbp->b_data;
500 1.1 mycroft soff = idp->in_off;
501 1.1 mycroft }
502 1.1 mycroft /*
503 1.1 mycroft * Find the preferred location for the cluster.
504 1.1 mycroft */
505 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
506 1.1 mycroft /*
507 1.1 mycroft * If the block range spans two block maps, get the second map.
508 1.1 mycroft */
509 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
510 1.1 mycroft ssize = len;
511 1.1 mycroft } else {
512 1.1 mycroft #ifdef DIAGNOSTIC
513 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
514 1.1 mycroft panic("ffs_reallocblk: start == end");
515 1.1 mycroft #endif
516 1.1 mycroft ssize = len - (idp->in_off + 1);
517 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
518 1.1 mycroft goto fail;
519 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
520 1.1 mycroft }
521 1.1 mycroft /*
522 1.1 mycroft * Search the block map looking for an allocation of the desired size.
523 1.1 mycroft */
524 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
525 1.9 christos len, ffs_clusteralloc)) == 0)
526 1.1 mycroft goto fail;
527 1.1 mycroft /*
528 1.1 mycroft * We have found a new contiguous block.
529 1.1 mycroft *
530 1.1 mycroft * First we have to replace the old block pointers with the new
531 1.1 mycroft * block pointers in the inode and indirect blocks associated
532 1.1 mycroft * with the file.
533 1.1 mycroft */
534 1.5 mycroft #ifdef DEBUG
535 1.5 mycroft if (prtrealloc)
536 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
537 1.5 mycroft start_lbn, end_lbn);
538 1.5 mycroft #endif
539 1.1 mycroft blkno = newblk;
540 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
541 1.58 fvdl daddr_t ba;
542 1.30 fvdl
543 1.30 fvdl if (i == ssize) {
544 1.1 mycroft bap = ebap;
545 1.30 fvdl soff = -i;
546 1.30 fvdl }
547 1.58 fvdl /* XXX ondisk32 */
548 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
549 1.1 mycroft #ifdef DIAGNOSTIC
550 1.18 fvdl if (!ffs_checkblk(ip,
551 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
552 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
553 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
554 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
555 1.1 mycroft #endif
556 1.5 mycroft #ifdef DEBUG
557 1.5 mycroft if (prtrealloc)
558 1.30 fvdl printf(" %d,", ba);
559 1.5 mycroft #endif
560 1.30 fvdl if (DOINGSOFTDEP(vp)) {
561 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
562 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
563 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
564 1.30 fvdl buflist->bs_children[i]);
565 1.30 fvdl else
566 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
567 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
568 1.30 fvdl ba, buflist->bs_children[i]);
569 1.30 fvdl }
570 1.58 fvdl /* XXX ondisk32 */
571 1.58 fvdl *bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
572 1.1 mycroft }
573 1.1 mycroft /*
574 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
575 1.1 mycroft * For strict correctness, the writes should be synchronous since
576 1.1 mycroft * the old block values may have been written to disk. In practise
577 1.1 mycroft * they are almost never written, but if we are concerned about
578 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
579 1.1 mycroft *
580 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
581 1.1 mycroft * that shows whether the associated buffers and inodes have
582 1.1 mycroft * been written. The flag should be set when the cluster is
583 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
584 1.1 mycroft * We can then check below to see if it is set, and do the
585 1.1 mycroft * synchronous write only when it has been cleared.
586 1.1 mycroft */
587 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
588 1.1 mycroft if (doasyncfree)
589 1.1 mycroft bdwrite(sbp);
590 1.1 mycroft else
591 1.1 mycroft bwrite(sbp);
592 1.1 mycroft } else {
593 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
594 1.28 mycroft if (!doasyncfree)
595 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
596 1.1 mycroft }
597 1.25 thorpej if (ssize < len) {
598 1.1 mycroft if (doasyncfree)
599 1.1 mycroft bdwrite(ebp);
600 1.1 mycroft else
601 1.1 mycroft bwrite(ebp);
602 1.25 thorpej }
603 1.1 mycroft /*
604 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
605 1.1 mycroft */
606 1.5 mycroft #ifdef DEBUG
607 1.5 mycroft if (prtrealloc)
608 1.13 christos printf("\n\tnew:");
609 1.5 mycroft #endif
610 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
611 1.30 fvdl if (!DOINGSOFTDEP(vp))
612 1.30 fvdl ffs_blkfree(ip,
613 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
614 1.30 fvdl fs->fs_bsize);
615 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
616 1.5 mycroft #ifdef DEBUG
617 1.18 fvdl if (!ffs_checkblk(ip,
618 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
619 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
620 1.5 mycroft if (prtrealloc)
621 1.13 christos printf(" %d,", blkno);
622 1.5 mycroft #endif
623 1.5 mycroft }
624 1.5 mycroft #ifdef DEBUG
625 1.5 mycroft if (prtrealloc) {
626 1.5 mycroft prtrealloc--;
627 1.13 christos printf("\n");
628 1.1 mycroft }
629 1.5 mycroft #endif
630 1.1 mycroft return (0);
631 1.1 mycroft
632 1.1 mycroft fail:
633 1.1 mycroft if (ssize < len)
634 1.1 mycroft brelse(ebp);
635 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
636 1.1 mycroft brelse(sbp);
637 1.1 mycroft return (ENOSPC);
638 1.55 matt #endif /* XXXUBC */
639 1.1 mycroft }
640 1.1 mycroft
641 1.1 mycroft /*
642 1.1 mycroft * Allocate an inode in the file system.
643 1.1 mycroft *
644 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
645 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
646 1.1 mycroft * 1) allocate the preferred inode.
647 1.1 mycroft * 2) allocate an inode in the same cylinder group.
648 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
649 1.1 mycroft * available inode is located.
650 1.47 wiz * If no inode preference is given the following hierarchy is used
651 1.1 mycroft * to allocate an inode:
652 1.1 mycroft * 1) allocate an inode in cylinder group 0.
653 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
654 1.1 mycroft * available inode is located.
655 1.1 mycroft */
656 1.9 christos int
657 1.9 christos ffs_valloc(v)
658 1.9 christos void *v;
659 1.9 christos {
660 1.1 mycroft struct vop_valloc_args /* {
661 1.1 mycroft struct vnode *a_pvp;
662 1.1 mycroft int a_mode;
663 1.1 mycroft struct ucred *a_cred;
664 1.1 mycroft struct vnode **a_vpp;
665 1.9 christos } */ *ap = v;
666 1.33 augustss struct vnode *pvp = ap->a_pvp;
667 1.33 augustss struct inode *pip;
668 1.33 augustss struct fs *fs;
669 1.33 augustss struct inode *ip;
670 1.60 fvdl struct timespec ts;
671 1.1 mycroft mode_t mode = ap->a_mode;
672 1.1 mycroft ino_t ino, ipref;
673 1.1 mycroft int cg, error;
674 1.1 mycroft
675 1.1 mycroft *ap->a_vpp = NULL;
676 1.1 mycroft pip = VTOI(pvp);
677 1.1 mycroft fs = pip->i_fs;
678 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
679 1.1 mycroft goto noinodes;
680 1.1 mycroft
681 1.1 mycroft if ((mode & IFMT) == IFDIR)
682 1.50 lukem ipref = ffs_dirpref(pip);
683 1.50 lukem else
684 1.50 lukem ipref = pip->i_number;
685 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
686 1.1 mycroft ipref = 0;
687 1.1 mycroft cg = ino_to_cg(fs, ipref);
688 1.50 lukem /*
689 1.50 lukem * Track number of dirs created one after another
690 1.50 lukem * in a same cg without intervening by files.
691 1.50 lukem */
692 1.50 lukem if ((mode & IFMT) == IFDIR) {
693 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
694 1.50 lukem fs->fs_contigdirs[cg]++;
695 1.50 lukem } else {
696 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
697 1.50 lukem fs->fs_contigdirs[cg]--;
698 1.50 lukem }
699 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
700 1.1 mycroft if (ino == 0)
701 1.1 mycroft goto noinodes;
702 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
703 1.1 mycroft if (error) {
704 1.1 mycroft VOP_VFREE(pvp, ino, mode);
705 1.1 mycroft return (error);
706 1.1 mycroft }
707 1.1 mycroft ip = VTOI(*ap->a_vpp);
708 1.60 fvdl if (ip->i_mode) {
709 1.60 fvdl #if 0
710 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
711 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
712 1.60 fvdl #else
713 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
714 1.60 fvdl DIP(ip, mode), ip->i_mode,
715 1.60 fvdl DIP(ip, gen), ip->i_gen);
716 1.60 fvdl printf("size %llx blocks %llx\n",
717 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
718 1.60 fvdl printf("ino %u ipref %u\n", ino, ipref);
719 1.60 fvdl #if 0
720 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
721 1.60 fvdl (int)fs->fs_bsize, NOCRED, &bp);
722 1.60 fvdl #endif
723 1.60 fvdl
724 1.60 fvdl #endif
725 1.1 mycroft panic("ffs_valloc: dup alloc");
726 1.1 mycroft }
727 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
728 1.60 fvdl printf("free inode %s/%d had %" PRId64 " blocks\n",
729 1.60 fvdl fs->fs_fsmnt, ino, DIP(ip, blocks));
730 1.60 fvdl DIP(ip, blocks) = 0;
731 1.1 mycroft }
732 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
733 1.61 fvdl ip->i_flags = 0;
734 1.60 fvdl DIP(ip, flags) = 0;
735 1.1 mycroft /*
736 1.1 mycroft * Set up a new generation number for this inode.
737 1.1 mycroft */
738 1.60 fvdl ip->i_gen++;
739 1.60 fvdl DIP(ip, gen) = ip->i_gen;
740 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
741 1.60 fvdl TIMEVAL_TO_TIMESPEC(&time, &ts);
742 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
743 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
744 1.60 fvdl }
745 1.1 mycroft return (0);
746 1.1 mycroft noinodes:
747 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
748 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
749 1.1 mycroft return (ENOSPC);
750 1.1 mycroft }
751 1.1 mycroft
752 1.1 mycroft /*
753 1.50 lukem * Find a cylinder group in which to place a directory.
754 1.42 sommerfe *
755 1.50 lukem * The policy implemented by this algorithm is to allocate a
756 1.50 lukem * directory inode in the same cylinder group as its parent
757 1.50 lukem * directory, but also to reserve space for its files inodes
758 1.50 lukem * and data. Restrict the number of directories which may be
759 1.50 lukem * allocated one after another in the same cylinder group
760 1.50 lukem * without intervening allocation of files.
761 1.42 sommerfe *
762 1.50 lukem * If we allocate a first level directory then force allocation
763 1.50 lukem * in another cylinder group.
764 1.1 mycroft */
765 1.1 mycroft static ino_t
766 1.50 lukem ffs_dirpref(pip)
767 1.50 lukem struct inode *pip;
768 1.1 mycroft {
769 1.50 lukem register struct fs *fs;
770 1.50 lukem int cg, prefcg, dirsize, cgsize;
771 1.50 lukem int avgifree, avgbfree, avgndir, curdirsize;
772 1.50 lukem int minifree, minbfree, maxndir;
773 1.50 lukem int mincg, minndir;
774 1.50 lukem int maxcontigdirs;
775 1.50 lukem
776 1.50 lukem fs = pip->i_fs;
777 1.1 mycroft
778 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
779 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
780 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
781 1.50 lukem
782 1.50 lukem /*
783 1.50 lukem * Force allocation in another cg if creating a first level dir.
784 1.50 lukem */
785 1.50 lukem if (ITOV(pip)->v_flag & VROOT) {
786 1.50 lukem prefcg = random() % fs->fs_ncg;
787 1.50 lukem mincg = prefcg;
788 1.50 lukem minndir = fs->fs_ipg;
789 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
790 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
791 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
792 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
793 1.42 sommerfe mincg = cg;
794 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
795 1.42 sommerfe }
796 1.50 lukem for (cg = 0; cg < prefcg; cg++)
797 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
798 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
799 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
800 1.50 lukem mincg = cg;
801 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
802 1.42 sommerfe }
803 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
804 1.42 sommerfe }
805 1.50 lukem
806 1.50 lukem /*
807 1.50 lukem * Count various limits which used for
808 1.50 lukem * optimal allocation of a directory inode.
809 1.50 lukem */
810 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
811 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
812 1.50 lukem if (minifree < 0)
813 1.50 lukem minifree = 0;
814 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
815 1.50 lukem if (minbfree < 0)
816 1.50 lukem minbfree = 0;
817 1.50 lukem cgsize = fs->fs_fsize * fs->fs_fpg;
818 1.50 lukem dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
819 1.50 lukem curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
820 1.50 lukem if (dirsize < curdirsize)
821 1.50 lukem dirsize = curdirsize;
822 1.50 lukem maxcontigdirs = min(cgsize / dirsize, 255);
823 1.50 lukem if (fs->fs_avgfpdir > 0)
824 1.50 lukem maxcontigdirs = min(maxcontigdirs,
825 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
826 1.50 lukem if (maxcontigdirs == 0)
827 1.50 lukem maxcontigdirs = 1;
828 1.50 lukem
829 1.50 lukem /*
830 1.50 lukem * Limit number of dirs in one cg and reserve space for
831 1.50 lukem * regular files, but only if we have no deficit in
832 1.50 lukem * inodes or space.
833 1.50 lukem */
834 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
835 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
836 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
837 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
838 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
839 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
840 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
841 1.50 lukem }
842 1.50 lukem for (cg = 0; cg < prefcg; cg++)
843 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
844 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
845 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
846 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
847 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
848 1.50 lukem }
849 1.50 lukem /*
850 1.50 lukem * This is a backstop when we are deficient in space.
851 1.50 lukem */
852 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
853 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
854 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
855 1.50 lukem for (cg = 0; cg < prefcg; cg++)
856 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
857 1.50 lukem break;
858 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
859 1.1 mycroft }
860 1.1 mycroft
861 1.1 mycroft /*
862 1.1 mycroft * Select the desired position for the next block in a file. The file is
863 1.1 mycroft * logically divided into sections. The first section is composed of the
864 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
865 1.1 mycroft *
866 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
867 1.1 mycroft * request a block in the same cylinder group as the inode that describes
868 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
869 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
870 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
871 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
872 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
873 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
874 1.1 mycroft * continues until a cylinder group with greater than the average number
875 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
876 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
877 1.1 mycroft * here a best guess is made based upon the logical block number being
878 1.1 mycroft * allocated.
879 1.1 mycroft *
880 1.1 mycroft * If a section is already partially allocated, the policy is to
881 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
882 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
883 1.60 fvdl * contigously if possible.
884 1.1 mycroft */
885 1.58 fvdl daddr_t
886 1.60 fvdl ffs_blkpref_ufs1(ip, lbn, indx, bap)
887 1.1 mycroft struct inode *ip;
888 1.58 fvdl daddr_t lbn;
889 1.1 mycroft int indx;
890 1.58 fvdl int32_t *bap; /* XXX ondisk32 */
891 1.1 mycroft {
892 1.33 augustss struct fs *fs;
893 1.33 augustss int cg;
894 1.1 mycroft int avgbfree, startcg;
895 1.1 mycroft
896 1.1 mycroft fs = ip->i_fs;
897 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
898 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
899 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
900 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
901 1.1 mycroft }
902 1.1 mycroft /*
903 1.1 mycroft * Find a cylinder with greater than average number of
904 1.1 mycroft * unused data blocks.
905 1.1 mycroft */
906 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
907 1.1 mycroft startcg =
908 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
909 1.1 mycroft else
910 1.19 bouyer startcg = dtog(fs,
911 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
912 1.1 mycroft startcg %= fs->fs_ncg;
913 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
914 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
915 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
916 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
917 1.1 mycroft }
918 1.52 lukem for (cg = 0; cg < startcg; cg++)
919 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
920 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
921 1.1 mycroft }
922 1.35 thorpej return (0);
923 1.1 mycroft }
924 1.1 mycroft /*
925 1.60 fvdl * We just always try to lay things out contiguously.
926 1.60 fvdl */
927 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
928 1.60 fvdl }
929 1.60 fvdl
930 1.60 fvdl daddr_t
931 1.60 fvdl ffs_blkpref_ufs2(ip, lbn, indx, bap)
932 1.60 fvdl struct inode *ip;
933 1.60 fvdl daddr_t lbn;
934 1.60 fvdl int indx;
935 1.60 fvdl int64_t *bap;
936 1.60 fvdl {
937 1.60 fvdl struct fs *fs;
938 1.60 fvdl int cg;
939 1.60 fvdl int avgbfree, startcg;
940 1.60 fvdl
941 1.60 fvdl fs = ip->i_fs;
942 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
943 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
944 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
945 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
946 1.60 fvdl }
947 1.1 mycroft /*
948 1.60 fvdl * Find a cylinder with greater than average number of
949 1.60 fvdl * unused data blocks.
950 1.1 mycroft */
951 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
952 1.60 fvdl startcg =
953 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
954 1.60 fvdl else
955 1.60 fvdl startcg = dtog(fs,
956 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
957 1.60 fvdl startcg %= fs->fs_ncg;
958 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
959 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
960 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
961 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
962 1.60 fvdl }
963 1.60 fvdl for (cg = 0; cg < startcg; cg++)
964 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
965 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
966 1.60 fvdl }
967 1.60 fvdl return (0);
968 1.60 fvdl }
969 1.60 fvdl /*
970 1.60 fvdl * We just always try to lay things out contiguously.
971 1.60 fvdl */
972 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
973 1.1 mycroft }
974 1.1 mycroft
975 1.60 fvdl
976 1.1 mycroft /*
977 1.1 mycroft * Implement the cylinder overflow algorithm.
978 1.1 mycroft *
979 1.1 mycroft * The policy implemented by this algorithm is:
980 1.1 mycroft * 1) allocate the block in its requested cylinder group.
981 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
982 1.1 mycroft * 3) brute force search for a free block.
983 1.1 mycroft */
984 1.1 mycroft /*VARARGS5*/
985 1.58 fvdl static daddr_t
986 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
987 1.1 mycroft struct inode *ip;
988 1.1 mycroft int cg;
989 1.58 fvdl daddr_t pref;
990 1.1 mycroft int size; /* size for data blocks, mode for inodes */
991 1.58 fvdl daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
992 1.1 mycroft {
993 1.33 augustss struct fs *fs;
994 1.58 fvdl daddr_t result;
995 1.1 mycroft int i, icg = cg;
996 1.1 mycroft
997 1.1 mycroft fs = ip->i_fs;
998 1.1 mycroft /*
999 1.1 mycroft * 1: preferred cylinder group
1000 1.1 mycroft */
1001 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
1002 1.1 mycroft if (result)
1003 1.1 mycroft return (result);
1004 1.1 mycroft /*
1005 1.1 mycroft * 2: quadratic rehash
1006 1.1 mycroft */
1007 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
1008 1.1 mycroft cg += i;
1009 1.1 mycroft if (cg >= fs->fs_ncg)
1010 1.1 mycroft cg -= fs->fs_ncg;
1011 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1012 1.1 mycroft if (result)
1013 1.1 mycroft return (result);
1014 1.1 mycroft }
1015 1.1 mycroft /*
1016 1.1 mycroft * 3: brute force search
1017 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
1018 1.1 mycroft * and 1 is always checked in the quadratic rehash.
1019 1.1 mycroft */
1020 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
1021 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1022 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1023 1.1 mycroft if (result)
1024 1.1 mycroft return (result);
1025 1.1 mycroft cg++;
1026 1.1 mycroft if (cg == fs->fs_ncg)
1027 1.1 mycroft cg = 0;
1028 1.1 mycroft }
1029 1.35 thorpej return (0);
1030 1.1 mycroft }
1031 1.1 mycroft
1032 1.1 mycroft /*
1033 1.1 mycroft * Determine whether a fragment can be extended.
1034 1.1 mycroft *
1035 1.1 mycroft * Check to see if the necessary fragments are available, and
1036 1.1 mycroft * if they are, allocate them.
1037 1.1 mycroft */
1038 1.58 fvdl static daddr_t
1039 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
1040 1.1 mycroft struct inode *ip;
1041 1.1 mycroft int cg;
1042 1.58 fvdl daddr_t bprev;
1043 1.1 mycroft int osize, nsize;
1044 1.1 mycroft {
1045 1.33 augustss struct fs *fs;
1046 1.33 augustss struct cg *cgp;
1047 1.1 mycroft struct buf *bp;
1048 1.58 fvdl daddr_t bno;
1049 1.1 mycroft int frags, bbase;
1050 1.1 mycroft int i, error;
1051 1.62 fvdl u_int8_t *blksfree;
1052 1.1 mycroft
1053 1.1 mycroft fs = ip->i_fs;
1054 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1055 1.35 thorpej return (0);
1056 1.1 mycroft frags = numfrags(fs, nsize);
1057 1.1 mycroft bbase = fragnum(fs, bprev);
1058 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1059 1.1 mycroft /* cannot extend across a block boundary */
1060 1.35 thorpej return (0);
1061 1.1 mycroft }
1062 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1063 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1064 1.1 mycroft if (error) {
1065 1.1 mycroft brelse(bp);
1066 1.35 thorpej return (0);
1067 1.1 mycroft }
1068 1.1 mycroft cgp = (struct cg *)bp->b_data;
1069 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1070 1.1 mycroft brelse(bp);
1071 1.35 thorpej return (0);
1072 1.1 mycroft }
1073 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1074 1.62 fvdl cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
1075 1.1 mycroft bno = dtogd(fs, bprev);
1076 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1077 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1078 1.62 fvdl if (isclr(blksfree, bno + i)) {
1079 1.1 mycroft brelse(bp);
1080 1.35 thorpej return (0);
1081 1.1 mycroft }
1082 1.1 mycroft /*
1083 1.1 mycroft * the current fragment can be extended
1084 1.1 mycroft * deduct the count on fragment being extended into
1085 1.1 mycroft * increase the count on the remaining fragment (if any)
1086 1.1 mycroft * allocate the extended piece
1087 1.1 mycroft */
1088 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1089 1.62 fvdl if (isclr(blksfree, bno + i))
1090 1.1 mycroft break;
1091 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1092 1.1 mycroft if (i != frags)
1093 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1094 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1095 1.62 fvdl clrbit(blksfree, bno + i);
1096 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1097 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1098 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1099 1.1 mycroft }
1100 1.1 mycroft fs->fs_fmod = 1;
1101 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1102 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1103 1.1 mycroft bdwrite(bp);
1104 1.1 mycroft return (bprev);
1105 1.1 mycroft }
1106 1.1 mycroft
1107 1.1 mycroft /*
1108 1.1 mycroft * Determine whether a block can be allocated.
1109 1.1 mycroft *
1110 1.1 mycroft * Check to see if a block of the appropriate size is available,
1111 1.1 mycroft * and if it is, allocate it.
1112 1.1 mycroft */
1113 1.58 fvdl static daddr_t
1114 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
1115 1.1 mycroft struct inode *ip;
1116 1.1 mycroft int cg;
1117 1.58 fvdl daddr_t bpref;
1118 1.1 mycroft int size;
1119 1.1 mycroft {
1120 1.62 fvdl struct fs *fs = ip->i_fs;
1121 1.30 fvdl struct cg *cgp;
1122 1.1 mycroft struct buf *bp;
1123 1.60 fvdl int32_t bno;
1124 1.60 fvdl daddr_t blkno;
1125 1.30 fvdl int error, frags, allocsiz, i;
1126 1.62 fvdl u_int8_t *blksfree;
1127 1.30 fvdl #ifdef FFS_EI
1128 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1129 1.30 fvdl #endif
1130 1.1 mycroft
1131 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1132 1.35 thorpej return (0);
1133 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1134 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1135 1.1 mycroft if (error) {
1136 1.1 mycroft brelse(bp);
1137 1.35 thorpej return (0);
1138 1.1 mycroft }
1139 1.1 mycroft cgp = (struct cg *)bp->b_data;
1140 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1141 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1142 1.1 mycroft brelse(bp);
1143 1.35 thorpej return (0);
1144 1.1 mycroft }
1145 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1146 1.62 fvdl cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1147 1.1 mycroft if (size == fs->fs_bsize) {
1148 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1149 1.1 mycroft bdwrite(bp);
1150 1.60 fvdl return (blkno);
1151 1.1 mycroft }
1152 1.1 mycroft /*
1153 1.1 mycroft * check to see if any fragments are already available
1154 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1155 1.1 mycroft * it down to a smaller size if necessary
1156 1.1 mycroft */
1157 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1158 1.1 mycroft frags = numfrags(fs, size);
1159 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1160 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1161 1.1 mycroft break;
1162 1.1 mycroft if (allocsiz == fs->fs_frag) {
1163 1.1 mycroft /*
1164 1.1 mycroft * no fragments were available, so a block will be
1165 1.1 mycroft * allocated, and hacked up
1166 1.1 mycroft */
1167 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
1168 1.1 mycroft brelse(bp);
1169 1.35 thorpej return (0);
1170 1.1 mycroft }
1171 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1172 1.60 fvdl bno = dtogd(fs, blkno);
1173 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1174 1.62 fvdl setbit(blksfree, bno + i);
1175 1.1 mycroft i = fs->fs_frag - frags;
1176 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1177 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1178 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1179 1.1 mycroft fs->fs_fmod = 1;
1180 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1181 1.1 mycroft bdwrite(bp);
1182 1.60 fvdl return (blkno);
1183 1.1 mycroft }
1184 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1185 1.30 fvdl #if 0
1186 1.30 fvdl /*
1187 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1188 1.58 fvdl * also: returning NULL as daddr_t ?
1189 1.30 fvdl */
1190 1.1 mycroft if (bno < 0) {
1191 1.1 mycroft brelse(bp);
1192 1.35 thorpej return (0);
1193 1.1 mycroft }
1194 1.30 fvdl #endif
1195 1.1 mycroft for (i = 0; i < frags; i++)
1196 1.62 fvdl clrbit(blksfree, bno + i);
1197 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1198 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1199 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1200 1.1 mycroft fs->fs_fmod = 1;
1201 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1202 1.1 mycroft if (frags != allocsiz)
1203 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1204 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1205 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1206 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1207 1.1 mycroft bdwrite(bp);
1208 1.30 fvdl return blkno;
1209 1.1 mycroft }
1210 1.1 mycroft
1211 1.1 mycroft /*
1212 1.1 mycroft * Allocate a block in a cylinder group.
1213 1.1 mycroft *
1214 1.1 mycroft * This algorithm implements the following policy:
1215 1.1 mycroft * 1) allocate the requested block.
1216 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1217 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1218 1.1 mycroft * specified cylinder group.
1219 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1220 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1221 1.1 mycroft */
1222 1.58 fvdl static daddr_t
1223 1.30 fvdl ffs_alloccgblk(ip, bp, bpref)
1224 1.30 fvdl struct inode *ip;
1225 1.30 fvdl struct buf *bp;
1226 1.58 fvdl daddr_t bpref;
1227 1.1 mycroft {
1228 1.62 fvdl struct fs *fs = ip->i_fs;
1229 1.30 fvdl struct cg *cgp;
1230 1.60 fvdl daddr_t blkno;
1231 1.60 fvdl int32_t bno;
1232 1.60 fvdl u_int8_t *blksfree;
1233 1.30 fvdl #ifdef FFS_EI
1234 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1235 1.30 fvdl #endif
1236 1.1 mycroft
1237 1.30 fvdl cgp = (struct cg *)bp->b_data;
1238 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1239 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1240 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1241 1.60 fvdl } else {
1242 1.60 fvdl bpref = blknum(fs, bpref);
1243 1.60 fvdl bno = dtogd(fs, bpref);
1244 1.1 mycroft /*
1245 1.60 fvdl * if the requested block is available, use it
1246 1.1 mycroft */
1247 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1248 1.60 fvdl goto gotit;
1249 1.1 mycroft }
1250 1.1 mycroft /*
1251 1.60 fvdl * Take the next available block in this cylinder group.
1252 1.1 mycroft */
1253 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1254 1.1 mycroft if (bno < 0)
1255 1.35 thorpej return (0);
1256 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1257 1.1 mycroft gotit:
1258 1.1 mycroft blkno = fragstoblks(fs, bno);
1259 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1260 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1261 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1262 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1263 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1264 1.1 mycroft fs->fs_fmod = 1;
1265 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1266 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1267 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1268 1.30 fvdl return (blkno);
1269 1.1 mycroft }
1270 1.1 mycroft
1271 1.55 matt #ifdef XXXUBC
1272 1.1 mycroft /*
1273 1.1 mycroft * Determine whether a cluster can be allocated.
1274 1.1 mycroft *
1275 1.1 mycroft * We do not currently check for optimal rotational layout if there
1276 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1277 1.1 mycroft * take the first one that we find following bpref.
1278 1.1 mycroft */
1279 1.60 fvdl
1280 1.60 fvdl /*
1281 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1282 1.60 fvdl */
1283 1.58 fvdl static daddr_t
1284 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1285 1.1 mycroft struct inode *ip;
1286 1.1 mycroft int cg;
1287 1.58 fvdl daddr_t bpref;
1288 1.1 mycroft int len;
1289 1.1 mycroft {
1290 1.33 augustss struct fs *fs;
1291 1.33 augustss struct cg *cgp;
1292 1.1 mycroft struct buf *bp;
1293 1.18 fvdl int i, got, run, bno, bit, map;
1294 1.1 mycroft u_char *mapp;
1295 1.5 mycroft int32_t *lp;
1296 1.1 mycroft
1297 1.1 mycroft fs = ip->i_fs;
1298 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1299 1.35 thorpej return (0);
1300 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1301 1.1 mycroft NOCRED, &bp))
1302 1.1 mycroft goto fail;
1303 1.1 mycroft cgp = (struct cg *)bp->b_data;
1304 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1305 1.1 mycroft goto fail;
1306 1.1 mycroft /*
1307 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1308 1.1 mycroft * available in this cylinder group.
1309 1.1 mycroft */
1310 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1311 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1312 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1313 1.1 mycroft break;
1314 1.5 mycroft if (i > fs->fs_contigsumsize) {
1315 1.5 mycroft /*
1316 1.5 mycroft * This is the first time looking for a cluster in this
1317 1.5 mycroft * cylinder group. Update the cluster summary information
1318 1.5 mycroft * to reflect the true maximum sized cluster so that
1319 1.5 mycroft * future cluster allocation requests can avoid reading
1320 1.5 mycroft * the cylinder group map only to find no clusters.
1321 1.5 mycroft */
1322 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1323 1.5 mycroft for (i = len - 1; i > 0; i--)
1324 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1325 1.5 mycroft break;
1326 1.5 mycroft fs->fs_maxcluster[cg] = i;
1327 1.1 mycroft goto fail;
1328 1.5 mycroft }
1329 1.1 mycroft /*
1330 1.1 mycroft * Search the cluster map to find a big enough cluster.
1331 1.1 mycroft * We take the first one that we find, even if it is larger
1332 1.1 mycroft * than we need as we prefer to get one close to the previous
1333 1.1 mycroft * block allocation. We do not search before the current
1334 1.1 mycroft * preference point as we do not want to allocate a block
1335 1.1 mycroft * that is allocated before the previous one (as we will
1336 1.1 mycroft * then have to wait for another pass of the elevator
1337 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1338 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1339 1.1 mycroft */
1340 1.1 mycroft if (dtog(fs, bpref) != cg)
1341 1.1 mycroft bpref = 0;
1342 1.1 mycroft else
1343 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1344 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1345 1.1 mycroft map = *mapp++;
1346 1.1 mycroft bit = 1 << (bpref % NBBY);
1347 1.19 bouyer for (run = 0, got = bpref;
1348 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1349 1.1 mycroft if ((map & bit) == 0) {
1350 1.1 mycroft run = 0;
1351 1.1 mycroft } else {
1352 1.1 mycroft run++;
1353 1.1 mycroft if (run == len)
1354 1.1 mycroft break;
1355 1.1 mycroft }
1356 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1357 1.1 mycroft bit <<= 1;
1358 1.1 mycroft } else {
1359 1.1 mycroft map = *mapp++;
1360 1.1 mycroft bit = 1;
1361 1.1 mycroft }
1362 1.1 mycroft }
1363 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1364 1.1 mycroft goto fail;
1365 1.1 mycroft /*
1366 1.1 mycroft * Allocate the cluster that we have found.
1367 1.1 mycroft */
1368 1.30 fvdl #ifdef DIAGNOSTIC
1369 1.18 fvdl for (i = 1; i <= len; i++)
1370 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1371 1.30 fvdl got - run + i))
1372 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1373 1.30 fvdl #endif
1374 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1375 1.18 fvdl if (dtog(fs, bno) != cg)
1376 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1377 1.1 mycroft len = blkstofrags(fs, len);
1378 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1379 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1380 1.1 mycroft panic("ffs_clusteralloc: lost block");
1381 1.8 cgd bdwrite(bp);
1382 1.1 mycroft return (bno);
1383 1.1 mycroft
1384 1.1 mycroft fail:
1385 1.1 mycroft brelse(bp);
1386 1.1 mycroft return (0);
1387 1.1 mycroft }
1388 1.55 matt #endif /* XXXUBC */
1389 1.1 mycroft
1390 1.1 mycroft /*
1391 1.1 mycroft * Determine whether an inode can be allocated.
1392 1.1 mycroft *
1393 1.1 mycroft * Check to see if an inode is available, and if it is,
1394 1.1 mycroft * allocate it using the following policy:
1395 1.1 mycroft * 1) allocate the requested inode.
1396 1.1 mycroft * 2) allocate the next available inode after the requested
1397 1.1 mycroft * inode in the specified cylinder group.
1398 1.1 mycroft */
1399 1.58 fvdl static daddr_t
1400 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1401 1.1 mycroft struct inode *ip;
1402 1.1 mycroft int cg;
1403 1.58 fvdl daddr_t ipref;
1404 1.1 mycroft int mode;
1405 1.1 mycroft {
1406 1.62 fvdl struct fs *fs = ip->i_fs;
1407 1.33 augustss struct cg *cgp;
1408 1.60 fvdl struct buf *bp, *ibp;
1409 1.60 fvdl u_int8_t *inosused;
1410 1.1 mycroft int error, start, len, loc, map, i;
1411 1.60 fvdl int32_t initediblk;
1412 1.60 fvdl struct ufs2_dinode *dp2;
1413 1.19 bouyer #ifdef FFS_EI
1414 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1415 1.19 bouyer #endif
1416 1.1 mycroft
1417 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1418 1.35 thorpej return (0);
1419 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1420 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1421 1.1 mycroft if (error) {
1422 1.1 mycroft brelse(bp);
1423 1.35 thorpej return (0);
1424 1.1 mycroft }
1425 1.1 mycroft cgp = (struct cg *)bp->b_data;
1426 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1427 1.1 mycroft brelse(bp);
1428 1.35 thorpej return (0);
1429 1.1 mycroft }
1430 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1431 1.62 fvdl cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1432 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1433 1.1 mycroft if (ipref) {
1434 1.1 mycroft ipref %= fs->fs_ipg;
1435 1.60 fvdl if (isclr(inosused, ipref))
1436 1.1 mycroft goto gotit;
1437 1.1 mycroft }
1438 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1439 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1440 1.19 bouyer NBBY);
1441 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1442 1.1 mycroft if (loc == 0) {
1443 1.1 mycroft len = start + 1;
1444 1.1 mycroft start = 0;
1445 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1446 1.1 mycroft if (loc == 0) {
1447 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1448 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1449 1.19 bouyer fs->fs_fsmnt);
1450 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1451 1.1 mycroft /* NOTREACHED */
1452 1.1 mycroft }
1453 1.1 mycroft }
1454 1.1 mycroft i = start + len - loc;
1455 1.60 fvdl map = inosused[i];
1456 1.1 mycroft ipref = i * NBBY;
1457 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1458 1.1 mycroft if ((map & i) == 0) {
1459 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1460 1.1 mycroft goto gotit;
1461 1.1 mycroft }
1462 1.1 mycroft }
1463 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1464 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1465 1.1 mycroft /* NOTREACHED */
1466 1.1 mycroft gotit:
1467 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1468 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1469 1.60 fvdl setbit(inosused, ipref);
1470 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1471 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1472 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1473 1.1 mycroft fs->fs_fmod = 1;
1474 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1475 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1476 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1477 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1478 1.1 mycroft }
1479 1.60 fvdl /*
1480 1.60 fvdl * Check to see if we need to initialize more inodes.
1481 1.60 fvdl */
1482 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1483 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1484 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1485 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1486 1.60 fvdl ibp = getblk(ip->i_devvp, fsbtodb(fs,
1487 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1488 1.60 fvdl (int)fs->fs_bsize, 0, 0);
1489 1.60 fvdl memset(ibp->b_data, 0, fs->fs_bsize);
1490 1.60 fvdl dp2 = (struct ufs2_dinode *)(ibp->b_data);
1491 1.60 fvdl for (i = 0; i < INOPB(fs); i++) {
1492 1.60 fvdl /*
1493 1.60 fvdl * Don't bother to swap, it's supposed to be
1494 1.60 fvdl * random, after all.
1495 1.60 fvdl */
1496 1.60 fvdl dp2->di_gen = random() / 2 + 1;
1497 1.60 fvdl dp2++;
1498 1.60 fvdl }
1499 1.60 fvdl bawrite(ibp);
1500 1.60 fvdl initediblk += INOPB(fs);
1501 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1502 1.60 fvdl }
1503 1.60 fvdl
1504 1.1 mycroft bdwrite(bp);
1505 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1506 1.1 mycroft }
1507 1.1 mycroft
1508 1.1 mycroft /*
1509 1.1 mycroft * Free a block or fragment.
1510 1.1 mycroft *
1511 1.1 mycroft * The specified block or fragment is placed back in the
1512 1.1 mycroft * free map. If a fragment is deallocated, a possible
1513 1.1 mycroft * block reassembly is checked.
1514 1.1 mycroft */
1515 1.9 christos void
1516 1.1 mycroft ffs_blkfree(ip, bno, size)
1517 1.33 augustss struct inode *ip;
1518 1.58 fvdl daddr_t bno;
1519 1.1 mycroft long size;
1520 1.1 mycroft {
1521 1.62 fvdl struct fs *fs = ip->i_fs;
1522 1.33 augustss struct cg *cgp;
1523 1.1 mycroft struct buf *bp;
1524 1.60 fvdl int32_t fragno, cgbno;
1525 1.1 mycroft int i, error, cg, blk, frags, bbase;
1526 1.62 fvdl u_int8_t *blksfree;
1527 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1528 1.1 mycroft
1529 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1530 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1531 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1532 1.58 fvdl "size = %ld, fs = %s\n",
1533 1.59 tsutsui ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1534 1.1 mycroft panic("blkfree: bad size");
1535 1.1 mycroft }
1536 1.1 mycroft cg = dtog(fs, bno);
1537 1.60 fvdl if (bno >= fs->fs_size) {
1538 1.59 tsutsui printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
1539 1.60 fvdl ffs_fserr(fs, ip->i_uid, "bad block");
1540 1.1 mycroft return;
1541 1.1 mycroft }
1542 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1543 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1544 1.1 mycroft if (error) {
1545 1.1 mycroft brelse(bp);
1546 1.1 mycroft return;
1547 1.1 mycroft }
1548 1.1 mycroft cgp = (struct cg *)bp->b_data;
1549 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1550 1.1 mycroft brelse(bp);
1551 1.1 mycroft return;
1552 1.1 mycroft }
1553 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1554 1.62 fvdl cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1555 1.60 fvdl cgbno = dtogd(fs, bno);
1556 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1557 1.1 mycroft if (size == fs->fs_bsize) {
1558 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1559 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1560 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1561 1.59 tsutsui ip->i_dev, bno, fs->fs_fsmnt);
1562 1.1 mycroft panic("blkfree: freeing free block");
1563 1.1 mycroft }
1564 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1565 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1566 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1567 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1568 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1569 1.1 mycroft } else {
1570 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1571 1.1 mycroft /*
1572 1.1 mycroft * decrement the counts associated with the old frags
1573 1.1 mycroft */
1574 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1575 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1576 1.1 mycroft /*
1577 1.1 mycroft * deallocate the fragment
1578 1.1 mycroft */
1579 1.1 mycroft frags = numfrags(fs, size);
1580 1.1 mycroft for (i = 0; i < frags; i++) {
1581 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1582 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1583 1.59 tsutsui ", fs = %s\n",
1584 1.59 tsutsui ip->i_dev, bno + i, fs->fs_fsmnt);
1585 1.1 mycroft panic("blkfree: freeing free frag");
1586 1.1 mycroft }
1587 1.62 fvdl setbit(blksfree, cgbno + i);
1588 1.1 mycroft }
1589 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1590 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1591 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1592 1.1 mycroft /*
1593 1.1 mycroft * add back in counts associated with the new frags
1594 1.1 mycroft */
1595 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1596 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1597 1.1 mycroft /*
1598 1.1 mycroft * if a complete block has been reassembled, account for it
1599 1.1 mycroft */
1600 1.60 fvdl fragno = fragstoblks(fs, bbase);
1601 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1602 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1603 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1604 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1605 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1606 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1607 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1608 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1609 1.1 mycroft }
1610 1.1 mycroft }
1611 1.1 mycroft fs->fs_fmod = 1;
1612 1.1 mycroft bdwrite(bp);
1613 1.1 mycroft }
1614 1.1 mycroft
1615 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1616 1.55 matt #ifdef XXXUBC
1617 1.18 fvdl /*
1618 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1619 1.18 fvdl * fragment is allocated, false if it is free.
1620 1.18 fvdl */
1621 1.18 fvdl static int
1622 1.18 fvdl ffs_checkblk(ip, bno, size)
1623 1.18 fvdl struct inode *ip;
1624 1.58 fvdl daddr_t bno;
1625 1.18 fvdl long size;
1626 1.18 fvdl {
1627 1.18 fvdl struct fs *fs;
1628 1.18 fvdl struct cg *cgp;
1629 1.18 fvdl struct buf *bp;
1630 1.18 fvdl int i, error, frags, free;
1631 1.18 fvdl
1632 1.18 fvdl fs = ip->i_fs;
1633 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1634 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1635 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1636 1.18 fvdl panic("checkblk: bad size");
1637 1.18 fvdl }
1638 1.60 fvdl if (bno >= fs->fs_size)
1639 1.18 fvdl panic("checkblk: bad block %d", bno);
1640 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1641 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1642 1.18 fvdl if (error) {
1643 1.18 fvdl brelse(bp);
1644 1.18 fvdl return 0;
1645 1.18 fvdl }
1646 1.18 fvdl cgp = (struct cg *)bp->b_data;
1647 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1648 1.18 fvdl brelse(bp);
1649 1.18 fvdl return 0;
1650 1.18 fvdl }
1651 1.18 fvdl bno = dtogd(fs, bno);
1652 1.18 fvdl if (size == fs->fs_bsize) {
1653 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1654 1.19 bouyer fragstoblks(fs, bno));
1655 1.18 fvdl } else {
1656 1.18 fvdl frags = numfrags(fs, size);
1657 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1658 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1659 1.18 fvdl free++;
1660 1.18 fvdl if (free != 0 && free != frags)
1661 1.18 fvdl panic("checkblk: partially free fragment");
1662 1.18 fvdl }
1663 1.18 fvdl brelse(bp);
1664 1.18 fvdl return (!free);
1665 1.18 fvdl }
1666 1.55 matt #endif /* XXXUBC */
1667 1.18 fvdl #endif /* DIAGNOSTIC */
1668 1.18 fvdl
1669 1.1 mycroft /*
1670 1.1 mycroft * Free an inode.
1671 1.30 fvdl */
1672 1.30 fvdl int
1673 1.30 fvdl ffs_vfree(v)
1674 1.30 fvdl void *v;
1675 1.30 fvdl {
1676 1.30 fvdl struct vop_vfree_args /* {
1677 1.30 fvdl struct vnode *a_pvp;
1678 1.30 fvdl ino_t a_ino;
1679 1.30 fvdl int a_mode;
1680 1.30 fvdl } */ *ap = v;
1681 1.30 fvdl
1682 1.30 fvdl if (DOINGSOFTDEP(ap->a_pvp)) {
1683 1.30 fvdl softdep_freefile(ap);
1684 1.30 fvdl return (0);
1685 1.30 fvdl }
1686 1.30 fvdl return (ffs_freefile(ap));
1687 1.30 fvdl }
1688 1.30 fvdl
1689 1.30 fvdl /*
1690 1.30 fvdl * Do the actual free operation.
1691 1.1 mycroft * The specified inode is placed back in the free map.
1692 1.1 mycroft */
1693 1.1 mycroft int
1694 1.30 fvdl ffs_freefile(v)
1695 1.9 christos void *v;
1696 1.9 christos {
1697 1.1 mycroft struct vop_vfree_args /* {
1698 1.1 mycroft struct vnode *a_pvp;
1699 1.1 mycroft ino_t a_ino;
1700 1.1 mycroft int a_mode;
1701 1.9 christos } */ *ap = v;
1702 1.33 augustss struct cg *cgp;
1703 1.33 augustss struct inode *pip = VTOI(ap->a_pvp);
1704 1.33 augustss struct fs *fs = pip->i_fs;
1705 1.1 mycroft ino_t ino = ap->a_ino;
1706 1.1 mycroft struct buf *bp;
1707 1.1 mycroft int error, cg;
1708 1.62 fvdl u_int8_t *inosused;
1709 1.19 bouyer #ifdef FFS_EI
1710 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1711 1.19 bouyer #endif
1712 1.1 mycroft
1713 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1714 1.56 provos panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1715 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1716 1.1 mycroft cg = ino_to_cg(fs, ino);
1717 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1718 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1719 1.1 mycroft if (error) {
1720 1.1 mycroft brelse(bp);
1721 1.30 fvdl return (error);
1722 1.1 mycroft }
1723 1.1 mycroft cgp = (struct cg *)bp->b_data;
1724 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1725 1.1 mycroft brelse(bp);
1726 1.1 mycroft return (0);
1727 1.1 mycroft }
1728 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1729 1.62 fvdl cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1730 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1731 1.1 mycroft ino %= fs->fs_ipg;
1732 1.62 fvdl if (isclr(inosused, ino)) {
1733 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1734 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1735 1.1 mycroft if (fs->fs_ronly == 0)
1736 1.1 mycroft panic("ifree: freeing free inode");
1737 1.1 mycroft }
1738 1.62 fvdl clrbit(inosused, ino);
1739 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1740 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1741 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1742 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1743 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1744 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1745 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1746 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1747 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1748 1.1 mycroft }
1749 1.1 mycroft fs->fs_fmod = 1;
1750 1.1 mycroft bdwrite(bp);
1751 1.1 mycroft return (0);
1752 1.1 mycroft }
1753 1.1 mycroft
1754 1.1 mycroft /*
1755 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1756 1.1 mycroft *
1757 1.1 mycroft * It is a panic if a request is made to find a block if none are
1758 1.1 mycroft * available.
1759 1.1 mycroft */
1760 1.60 fvdl static int32_t
1761 1.30 fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
1762 1.33 augustss struct fs *fs;
1763 1.33 augustss struct cg *cgp;
1764 1.58 fvdl daddr_t bpref;
1765 1.1 mycroft int allocsiz;
1766 1.1 mycroft {
1767 1.60 fvdl int32_t bno;
1768 1.1 mycroft int start, len, loc, i;
1769 1.1 mycroft int blk, field, subfield, pos;
1770 1.19 bouyer int ostart, olen;
1771 1.62 fvdl u_int8_t *blksfree;
1772 1.30 fvdl #ifdef FFS_EI
1773 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1774 1.30 fvdl #endif
1775 1.1 mycroft
1776 1.1 mycroft /*
1777 1.1 mycroft * find the fragment by searching through the free block
1778 1.1 mycroft * map for an appropriate bit pattern
1779 1.1 mycroft */
1780 1.1 mycroft if (bpref)
1781 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1782 1.1 mycroft else
1783 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1784 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1785 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1786 1.19 bouyer ostart = start;
1787 1.19 bouyer olen = len;
1788 1.45 lukem loc = scanc((u_int)len,
1789 1.62 fvdl (const u_char *)&blksfree[start],
1790 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1791 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1792 1.1 mycroft if (loc == 0) {
1793 1.1 mycroft len = start + 1;
1794 1.1 mycroft start = 0;
1795 1.45 lukem loc = scanc((u_int)len,
1796 1.62 fvdl (const u_char *)&blksfree[0],
1797 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1798 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1799 1.1 mycroft if (loc == 0) {
1800 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1801 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1802 1.20 ross printf("offset=%d %ld\n",
1803 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1804 1.62 fvdl (long)blksfree - (long)cgp);
1805 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1806 1.1 mycroft panic("ffs_alloccg: map corrupted");
1807 1.1 mycroft /* NOTREACHED */
1808 1.1 mycroft }
1809 1.1 mycroft }
1810 1.1 mycroft bno = (start + len - loc) * NBBY;
1811 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1812 1.1 mycroft /*
1813 1.1 mycroft * found the byte in the map
1814 1.1 mycroft * sift through the bits to find the selected frag
1815 1.1 mycroft */
1816 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1817 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1818 1.1 mycroft blk <<= 1;
1819 1.1 mycroft field = around[allocsiz];
1820 1.1 mycroft subfield = inside[allocsiz];
1821 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1822 1.1 mycroft if ((blk & field) == subfield)
1823 1.1 mycroft return (bno + pos);
1824 1.1 mycroft field <<= 1;
1825 1.1 mycroft subfield <<= 1;
1826 1.1 mycroft }
1827 1.1 mycroft }
1828 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1829 1.1 mycroft panic("ffs_alloccg: block not in map");
1830 1.58 fvdl /* return (-1); */
1831 1.1 mycroft }
1832 1.1 mycroft
1833 1.1 mycroft /*
1834 1.1 mycroft * Update the cluster map because of an allocation or free.
1835 1.1 mycroft *
1836 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1837 1.1 mycroft */
1838 1.9 christos void
1839 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
1840 1.1 mycroft struct fs *fs;
1841 1.1 mycroft struct cg *cgp;
1842 1.60 fvdl int32_t blkno;
1843 1.1 mycroft int cnt;
1844 1.1 mycroft {
1845 1.4 cgd int32_t *sump;
1846 1.5 mycroft int32_t *lp;
1847 1.1 mycroft u_char *freemapp, *mapp;
1848 1.1 mycroft int i, start, end, forw, back, map, bit;
1849 1.30 fvdl #ifdef FFS_EI
1850 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1851 1.30 fvdl #endif
1852 1.1 mycroft
1853 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1854 1.1 mycroft return;
1855 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1856 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1857 1.1 mycroft /*
1858 1.1 mycroft * Allocate or clear the actual block.
1859 1.1 mycroft */
1860 1.1 mycroft if (cnt > 0)
1861 1.1 mycroft setbit(freemapp, blkno);
1862 1.1 mycroft else
1863 1.1 mycroft clrbit(freemapp, blkno);
1864 1.1 mycroft /*
1865 1.1 mycroft * Find the size of the cluster going forward.
1866 1.1 mycroft */
1867 1.1 mycroft start = blkno + 1;
1868 1.1 mycroft end = start + fs->fs_contigsumsize;
1869 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1870 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1871 1.1 mycroft mapp = &freemapp[start / NBBY];
1872 1.1 mycroft map = *mapp++;
1873 1.1 mycroft bit = 1 << (start % NBBY);
1874 1.1 mycroft for (i = start; i < end; i++) {
1875 1.1 mycroft if ((map & bit) == 0)
1876 1.1 mycroft break;
1877 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1878 1.1 mycroft bit <<= 1;
1879 1.1 mycroft } else {
1880 1.1 mycroft map = *mapp++;
1881 1.1 mycroft bit = 1;
1882 1.1 mycroft }
1883 1.1 mycroft }
1884 1.1 mycroft forw = i - start;
1885 1.1 mycroft /*
1886 1.1 mycroft * Find the size of the cluster going backward.
1887 1.1 mycroft */
1888 1.1 mycroft start = blkno - 1;
1889 1.1 mycroft end = start - fs->fs_contigsumsize;
1890 1.1 mycroft if (end < 0)
1891 1.1 mycroft end = -1;
1892 1.1 mycroft mapp = &freemapp[start / NBBY];
1893 1.1 mycroft map = *mapp--;
1894 1.1 mycroft bit = 1 << (start % NBBY);
1895 1.1 mycroft for (i = start; i > end; i--) {
1896 1.1 mycroft if ((map & bit) == 0)
1897 1.1 mycroft break;
1898 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1899 1.1 mycroft bit >>= 1;
1900 1.1 mycroft } else {
1901 1.1 mycroft map = *mapp--;
1902 1.1 mycroft bit = 1 << (NBBY - 1);
1903 1.1 mycroft }
1904 1.1 mycroft }
1905 1.1 mycroft back = start - i;
1906 1.1 mycroft /*
1907 1.1 mycroft * Account for old cluster and the possibly new forward and
1908 1.1 mycroft * back clusters.
1909 1.1 mycroft */
1910 1.1 mycroft i = back + forw + 1;
1911 1.1 mycroft if (i > fs->fs_contigsumsize)
1912 1.1 mycroft i = fs->fs_contigsumsize;
1913 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1914 1.1 mycroft if (back > 0)
1915 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1916 1.1 mycroft if (forw > 0)
1917 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1918 1.19 bouyer
1919 1.5 mycroft /*
1920 1.5 mycroft * Update cluster summary information.
1921 1.5 mycroft */
1922 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1923 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1924 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1925 1.5 mycroft break;
1926 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1927 1.1 mycroft }
1928 1.1 mycroft
1929 1.1 mycroft /*
1930 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1931 1.1 mycroft *
1932 1.1 mycroft * The form of the error message is:
1933 1.1 mycroft * fs: error message
1934 1.1 mycroft */
1935 1.1 mycroft static void
1936 1.1 mycroft ffs_fserr(fs, uid, cp)
1937 1.1 mycroft struct fs *fs;
1938 1.1 mycroft u_int uid;
1939 1.1 mycroft char *cp;
1940 1.1 mycroft {
1941 1.1 mycroft
1942 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1943 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1944 1.1 mycroft }
1945