Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.68.2.11
      1  1.68.2.11  christos /*	$NetBSD: ffs_alloc.c,v 1.68.2.11 2005/12/11 10:29:41 christos Exp $	*/
      2        1.2       cgd 
      3        1.1   mycroft /*
      4       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5       1.60      fvdl  * All rights reserved.
      6       1.60      fvdl  *
      7       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11       1.60      fvdl  * research program
     12       1.60      fvdl  *
     13        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15        1.1   mycroft  *
     16        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17        1.1   mycroft  * modification, are permitted provided that the following conditions
     18        1.1   mycroft  * are met:
     19        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24   1.68.2.2     skrll  * 3. Neither the name of the University nor the names of its contributors
     25        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26        1.1   mycroft  *    without specific prior written permission.
     27        1.1   mycroft  *
     28        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38        1.1   mycroft  * SUCH DAMAGE.
     39        1.1   mycroft  *
     40       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41        1.1   mycroft  */
     42       1.53     lukem 
     43       1.53     lukem #include <sys/cdefs.h>
     44  1.68.2.11  christos __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.68.2.11 2005/12/11 10:29:41 christos Exp $");
     45       1.17       mrg 
     46       1.43       mrg #if defined(_KERNEL_OPT)
     47       1.27   thorpej #include "opt_ffs.h"
     48       1.21    scottr #include "opt_quota.h"
     49       1.22    scottr #endif
     50        1.1   mycroft 
     51        1.1   mycroft #include <sys/param.h>
     52        1.1   mycroft #include <sys/systm.h>
     53        1.1   mycroft #include <sys/buf.h>
     54        1.1   mycroft #include <sys/proc.h>
     55        1.1   mycroft #include <sys/vnode.h>
     56        1.1   mycroft #include <sys/mount.h>
     57        1.1   mycroft #include <sys/kernel.h>
     58        1.1   mycroft #include <sys/syslog.h>
     59       1.29       mrg 
     60   1.68.2.2     skrll #include <miscfs/specfs/specdev.h>
     61        1.1   mycroft #include <ufs/ufs/quota.h>
     62       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     63        1.1   mycroft #include <ufs/ufs/inode.h>
     64        1.9  christos #include <ufs/ufs/ufs_extern.h>
     65       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     66        1.1   mycroft 
     67        1.1   mycroft #include <ufs/ffs/fs.h>
     68        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     69        1.1   mycroft 
     70  1.68.2.10     skrll static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     71  1.68.2.10     skrll static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     72       1.55      matt #ifdef XXXUBC
     73  1.68.2.10     skrll static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     74       1.55      matt #endif
     75  1.68.2.10     skrll static ino_t ffs_dirpref(struct inode *);
     76  1.68.2.10     skrll static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     77  1.68.2.10     skrll static void ffs_fserr(struct fs *, u_int, const char *);
     78  1.68.2.10     skrll static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     79  1.68.2.10     skrll     daddr_t (*)(struct inode *, int, daddr_t, int));
     80  1.68.2.10     skrll static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     81  1.68.2.10     skrll static int32_t ffs_mapsearch(struct fs *, struct cg *,
     82  1.68.2.10     skrll 				      daddr_t, int);
     83       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     84       1.55      matt #ifdef XXXUBC
     85  1.68.2.10     skrll static int ffs_checkblk(struct inode *, daddr_t, long size);
     86       1.18      fvdl #endif
     87       1.55      matt #endif
     88       1.23  drochner 
     89       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     90       1.34  jdolecek int ffs_log_changeopt = 0;
     91       1.34  jdolecek 
     92       1.23  drochner /* in ffs_tables.c */
     93       1.40  jdolecek extern const int inside[], around[];
     94       1.40  jdolecek extern const u_char * const fragtbl[];
     95        1.1   mycroft 
     96        1.1   mycroft /*
     97        1.1   mycroft  * Allocate a block in the file system.
     98   1.68.2.9     skrll  *
     99        1.1   mycroft  * The size of the requested block is given, which must be some
    100        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    101        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    102        1.1   mycroft  * the following hierarchy is used to allocate a block:
    103        1.1   mycroft  *   1) allocate the requested block.
    104        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    105        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    106        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    107        1.1   mycroft  *      available block is located.
    108       1.47       wiz  * If no block preference is given the following hierarchy is used
    109        1.1   mycroft  * to allocate a block:
    110        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    111        1.1   mycroft  *      inode for the file.
    112        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    113        1.1   mycroft  *      available block is located.
    114        1.1   mycroft  */
    115        1.9  christos int
    116  1.68.2.10     skrll ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    117  1.68.2.10     skrll     struct ucred *cred, daddr_t *bnp)
    118        1.1   mycroft {
    119       1.62      fvdl 	struct fs *fs;
    120       1.58      fvdl 	daddr_t bno;
    121        1.9  christos 	int cg;
    122        1.9  christos #ifdef QUOTA
    123        1.9  christos 	int error;
    124        1.9  christos #endif
    125   1.68.2.9     skrll 
    126       1.62      fvdl 	fs = ip->i_fs;
    127       1.62      fvdl 
    128       1.37       chs #ifdef UVM_PAGE_TRKOWN
    129       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    130       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    131       1.37       chs 		struct vm_page *pg;
    132       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    133       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    134       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    135       1.37       chs 
    136       1.37       chs 		simple_lock(&uobj->vmobjlock);
    137       1.37       chs 		while (off < endoff) {
    138       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    139       1.37       chs 			KASSERT(pg != NULL);
    140       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    141       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    142       1.37       chs 			off += PAGE_SIZE;
    143       1.37       chs 		}
    144       1.37       chs 		simple_unlock(&uobj->vmobjlock);
    145       1.37       chs 	}
    146       1.37       chs #endif
    147       1.37       chs 
    148        1.1   mycroft 	*bnp = 0;
    149        1.1   mycroft #ifdef DIAGNOSTIC
    150        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    151       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    152        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    153        1.1   mycroft 		panic("ffs_alloc: bad size");
    154        1.1   mycroft 	}
    155        1.1   mycroft 	if (cred == NOCRED)
    156       1.56    provos 		panic("ffs_alloc: missing credential");
    157        1.1   mycroft #endif /* DIAGNOSTIC */
    158        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    159        1.1   mycroft 		goto nospace;
    160        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    161        1.1   mycroft 		goto nospace;
    162        1.1   mycroft #ifdef QUOTA
    163       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    164        1.1   mycroft 		return (error);
    165        1.1   mycroft #endif
    166        1.1   mycroft 	if (bpref >= fs->fs_size)
    167        1.1   mycroft 		bpref = 0;
    168        1.1   mycroft 	if (bpref == 0)
    169        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    170        1.1   mycroft 	else
    171        1.1   mycroft 		cg = dtog(fs, bpref);
    172  1.68.2.10     skrll 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    173        1.1   mycroft 	if (bno > 0) {
    174       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    175        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    176        1.1   mycroft 		*bnp = bno;
    177        1.1   mycroft 		return (0);
    178        1.1   mycroft 	}
    179        1.1   mycroft #ifdef QUOTA
    180        1.1   mycroft 	/*
    181        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    182        1.1   mycroft 	 */
    183       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    184        1.1   mycroft #endif
    185        1.1   mycroft nospace:
    186        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    187        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    188        1.1   mycroft 	return (ENOSPC);
    189        1.1   mycroft }
    190        1.1   mycroft 
    191        1.1   mycroft /*
    192        1.1   mycroft  * Reallocate a fragment to a bigger size
    193        1.1   mycroft  *
    194        1.1   mycroft  * The number and size of the old block is given, and a preference
    195        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    196        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    197        1.1   mycroft  * invoked to get an appropriate block.
    198        1.1   mycroft  */
    199        1.9  christos int
    200  1.68.2.10     skrll ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    201  1.68.2.10     skrll     int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
    202        1.1   mycroft {
    203       1.62      fvdl 	struct fs *fs;
    204        1.1   mycroft 	struct buf *bp;
    205        1.1   mycroft 	int cg, request, error;
    206       1.58      fvdl 	daddr_t bprev, bno;
    207       1.25   thorpej 
    208       1.62      fvdl 	fs = ip->i_fs;
    209       1.37       chs #ifdef UVM_PAGE_TRKOWN
    210       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    211       1.37       chs 		struct vm_page *pg;
    212       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    213       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    214       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    215       1.37       chs 
    216       1.37       chs 		simple_lock(&uobj->vmobjlock);
    217       1.37       chs 		while (off < endoff) {
    218       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    219       1.37       chs 			KASSERT(pg != NULL);
    220       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    221       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    222       1.37       chs 			off += PAGE_SIZE;
    223       1.37       chs 		}
    224       1.37       chs 		simple_unlock(&uobj->vmobjlock);
    225       1.37       chs 	}
    226       1.37       chs #endif
    227       1.37       chs 
    228        1.1   mycroft #ifdef DIAGNOSTIC
    229        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    230        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    231       1.13  christos 		printf(
    232        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    233        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    234        1.1   mycroft 		panic("ffs_realloccg: bad size");
    235        1.1   mycroft 	}
    236        1.1   mycroft 	if (cred == NOCRED)
    237       1.56    provos 		panic("ffs_realloccg: missing credential");
    238        1.1   mycroft #endif /* DIAGNOSTIC */
    239        1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    240        1.1   mycroft 		goto nospace;
    241       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    242       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    243       1.60      fvdl 	else
    244       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    245       1.60      fvdl 
    246       1.60      fvdl 	if (bprev == 0) {
    247       1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    248       1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    249        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    250        1.1   mycroft 	}
    251        1.1   mycroft 	/*
    252        1.1   mycroft 	 * Allocate the extra space in the buffer.
    253        1.1   mycroft 	 */
    254       1.37       chs 	if (bpp != NULL &&
    255       1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    256        1.1   mycroft 		brelse(bp);
    257        1.1   mycroft 		return (error);
    258        1.1   mycroft 	}
    259        1.1   mycroft #ifdef QUOTA
    260       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    261       1.44       chs 		if (bpp != NULL) {
    262       1.44       chs 			brelse(bp);
    263       1.44       chs 		}
    264        1.1   mycroft 		return (error);
    265        1.1   mycroft 	}
    266        1.1   mycroft #endif
    267        1.1   mycroft 	/*
    268        1.1   mycroft 	 * Check for extension in the existing location.
    269        1.1   mycroft 	 */
    270        1.1   mycroft 	cg = dtog(fs, bprev);
    271       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    272       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    273        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    274       1.37       chs 
    275       1.37       chs 		if (bpp != NULL) {
    276       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    277       1.37       chs 				panic("bad blockno");
    278   1.68.2.2     skrll 			allocbuf(bp, nsize, 1);
    279       1.37       chs 			bp->b_flags |= B_DONE;
    280       1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    281       1.37       chs 			*bpp = bp;
    282       1.37       chs 		}
    283       1.37       chs 		if (blknop != NULL) {
    284       1.37       chs 			*blknop = bno;
    285       1.37       chs 		}
    286        1.1   mycroft 		return (0);
    287        1.1   mycroft 	}
    288        1.1   mycroft 	/*
    289        1.1   mycroft 	 * Allocate a new disk location.
    290        1.1   mycroft 	 */
    291        1.1   mycroft 	if (bpref >= fs->fs_size)
    292        1.1   mycroft 		bpref = 0;
    293        1.1   mycroft 	switch ((int)fs->fs_optim) {
    294        1.1   mycroft 	case FS_OPTSPACE:
    295        1.1   mycroft 		/*
    296   1.68.2.9     skrll 		 * Allocate an exact sized fragment. Although this makes
    297   1.68.2.9     skrll 		 * best use of space, we will waste time relocating it if
    298        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    299        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    300        1.1   mycroft 		 * to begin optimizing for time.
    301        1.1   mycroft 		 */
    302        1.1   mycroft 		request = nsize;
    303        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    304        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    305        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    306        1.1   mycroft 			break;
    307       1.34  jdolecek 
    308       1.34  jdolecek 		if (ffs_log_changeopt) {
    309       1.34  jdolecek 			log(LOG_NOTICE,
    310       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    311       1.34  jdolecek 				fs->fs_fsmnt);
    312       1.34  jdolecek 		}
    313       1.34  jdolecek 
    314        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    315        1.1   mycroft 		break;
    316        1.1   mycroft 	case FS_OPTTIME:
    317        1.1   mycroft 		/*
    318        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    319        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    320        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    321        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    322        1.1   mycroft 		 * above will be able to grow it in place without further
    323        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    324        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    325        1.1   mycroft 		 * optimizing for space.
    326        1.1   mycroft 		 */
    327        1.1   mycroft 		request = fs->fs_bsize;
    328        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    329        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    330        1.1   mycroft 			break;
    331       1.34  jdolecek 
    332       1.34  jdolecek 		if (ffs_log_changeopt) {
    333       1.34  jdolecek 			log(LOG_NOTICE,
    334       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    335       1.34  jdolecek 				fs->fs_fsmnt);
    336       1.34  jdolecek 		}
    337       1.34  jdolecek 
    338        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    339        1.1   mycroft 		break;
    340        1.1   mycroft 	default:
    341       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    342        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    343        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    344        1.1   mycroft 		/* NOTREACHED */
    345        1.1   mycroft 	}
    346       1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    347        1.1   mycroft 	if (bno > 0) {
    348       1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    349   1.68.2.2     skrll 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    350   1.68.2.2     skrll 			    ip->i_number);
    351        1.1   mycroft 		if (nsize < request)
    352   1.68.2.2     skrll 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    353   1.68.2.2     skrll 			    (long)(request - nsize), ip->i_number);
    354       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    355        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    356       1.37       chs 		if (bpp != NULL) {
    357       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    358   1.68.2.2     skrll 			allocbuf(bp, nsize, 1);
    359       1.37       chs 			bp->b_flags |= B_DONE;
    360       1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    361       1.37       chs 			*bpp = bp;
    362       1.37       chs 		}
    363       1.37       chs 		if (blknop != NULL) {
    364       1.37       chs 			*blknop = bno;
    365       1.37       chs 		}
    366        1.1   mycroft 		return (0);
    367        1.1   mycroft 	}
    368        1.1   mycroft #ifdef QUOTA
    369        1.1   mycroft 	/*
    370        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    371        1.1   mycroft 	 */
    372       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    373        1.1   mycroft #endif
    374       1.37       chs 	if (bpp != NULL) {
    375       1.37       chs 		brelse(bp);
    376       1.37       chs 	}
    377       1.37       chs 
    378        1.1   mycroft nospace:
    379        1.1   mycroft 	/*
    380        1.1   mycroft 	 * no space available
    381        1.1   mycroft 	 */
    382        1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    383        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    384        1.1   mycroft 	return (ENOSPC);
    385        1.1   mycroft }
    386        1.1   mycroft 
    387  1.68.2.10     skrll #if 0
    388        1.1   mycroft /*
    389        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    390        1.1   mycroft  *
    391        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    392        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    393       1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    394       1.60      fvdl  * from the end of the allocation for the logical block immediately
    395       1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    396       1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    397       1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    398       1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    399       1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    400       1.60      fvdl  * allocation will be used.
    401       1.60      fvdl 
    402        1.1   mycroft  */
    403       1.55      matt #ifdef XXXUBC
    404        1.3   mycroft #ifdef DEBUG
    405        1.1   mycroft #include <sys/sysctl.h>
    406        1.5   mycroft int prtrealloc = 0;
    407        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    408        1.1   mycroft #endif
    409       1.55      matt #endif
    410        1.1   mycroft 
    411       1.60      fvdl /*
    412       1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    413       1.60      fvdl  */
    414       1.60      fvdl 
    415       1.18      fvdl int doasyncfree = 1;
    416       1.18      fvdl 
    417        1.1   mycroft int
    418  1.68.2.10     skrll ffs_reallocblks(void *v)
    419        1.9  christos {
    420       1.55      matt #ifdef XXXUBC
    421        1.1   mycroft 	struct vop_reallocblks_args /* {
    422        1.1   mycroft 		struct vnode *a_vp;
    423        1.1   mycroft 		struct cluster_save *a_buflist;
    424        1.9  christos 	} */ *ap = v;
    425        1.1   mycroft 	struct fs *fs;
    426        1.1   mycroft 	struct inode *ip;
    427        1.1   mycroft 	struct vnode *vp;
    428        1.1   mycroft 	struct buf *sbp, *ebp;
    429       1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    430        1.1   mycroft 	struct cluster_save *buflist;
    431       1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    432        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    433        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    434       1.55      matt #endif /* XXXUBC */
    435        1.1   mycroft 
    436       1.37       chs 	/* XXXUBC don't reallocblks for now */
    437       1.37       chs 	return ENOSPC;
    438       1.37       chs 
    439       1.55      matt #ifdef XXXUBC
    440        1.1   mycroft 	vp = ap->a_vp;
    441        1.1   mycroft 	ip = VTOI(vp);
    442        1.1   mycroft 	fs = ip->i_fs;
    443        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    444        1.1   mycroft 		return (ENOSPC);
    445        1.1   mycroft 	buflist = ap->a_buflist;
    446        1.1   mycroft 	len = buflist->bs_nchildren;
    447        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    448        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    449        1.1   mycroft #ifdef DIAGNOSTIC
    450       1.18      fvdl 	for (i = 0; i < len; i++)
    451       1.18      fvdl 		if (!ffs_checkblk(ip,
    452       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    453       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    454        1.1   mycroft 	for (i = 1; i < len; i++)
    455        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    456       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    457       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    458       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    459       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    460       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    461       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    462        1.1   mycroft #endif
    463        1.1   mycroft 	/*
    464        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    465        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    466        1.1   mycroft 	 * the previous cylinder group.
    467        1.1   mycroft 	 */
    468        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    469        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    470        1.1   mycroft 		return (ENOSPC);
    471        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    472        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    473        1.1   mycroft 		return (ENOSPC);
    474        1.1   mycroft 	/*
    475        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    476        1.1   mycroft 	 */
    477        1.1   mycroft 	if (start_lvl == 0) {
    478       1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    479        1.1   mycroft 		soff = start_lbn;
    480        1.1   mycroft 	} else {
    481        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    482        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    483        1.1   mycroft 			brelse(sbp);
    484        1.1   mycroft 			return (ENOSPC);
    485        1.1   mycroft 		}
    486       1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    487        1.1   mycroft 		soff = idp->in_off;
    488        1.1   mycroft 	}
    489        1.1   mycroft 	/*
    490        1.1   mycroft 	 * Find the preferred location for the cluster.
    491        1.1   mycroft 	 */
    492        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    493        1.1   mycroft 	/*
    494        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    495        1.1   mycroft 	 */
    496        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    497        1.1   mycroft 		ssize = len;
    498        1.1   mycroft 	} else {
    499        1.1   mycroft #ifdef DIAGNOSTIC
    500        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    501        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    502        1.1   mycroft #endif
    503        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    504        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    505        1.1   mycroft 			goto fail;
    506       1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    507        1.1   mycroft 	}
    508        1.1   mycroft 	/*
    509        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    510        1.1   mycroft 	 */
    511       1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    512        1.9  christos 	    len, ffs_clusteralloc)) == 0)
    513        1.1   mycroft 		goto fail;
    514        1.1   mycroft 	/*
    515        1.1   mycroft 	 * We have found a new contiguous block.
    516        1.1   mycroft 	 *
    517        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    518        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    519        1.1   mycroft 	 * with the file.
    520        1.1   mycroft 	 */
    521        1.5   mycroft #ifdef DEBUG
    522        1.5   mycroft 	if (prtrealloc)
    523       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    524        1.5   mycroft 		    start_lbn, end_lbn);
    525        1.5   mycroft #endif
    526        1.1   mycroft 	blkno = newblk;
    527        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    528       1.58      fvdl 		daddr_t ba;
    529       1.30      fvdl 
    530       1.30      fvdl 		if (i == ssize) {
    531        1.1   mycroft 			bap = ebap;
    532       1.30      fvdl 			soff = -i;
    533       1.30      fvdl 		}
    534       1.58      fvdl 		/* XXX ondisk32 */
    535       1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    536        1.1   mycroft #ifdef DIAGNOSTIC
    537       1.18      fvdl 		if (!ffs_checkblk(ip,
    538       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    539       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    540       1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    541        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    542        1.1   mycroft #endif
    543        1.5   mycroft #ifdef DEBUG
    544        1.5   mycroft 		if (prtrealloc)
    545       1.30      fvdl 			printf(" %d,", ba);
    546        1.5   mycroft #endif
    547       1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    548       1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    549       1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    550       1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    551       1.30      fvdl  				    buflist->bs_children[i]);
    552       1.30      fvdl  			else
    553       1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    554       1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    555       1.30      fvdl  				    ba, buflist->bs_children[i]);
    556       1.30      fvdl  		}
    557       1.58      fvdl 		/* XXX ondisk32 */
    558   1.68.2.8     skrll 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    559        1.1   mycroft 	}
    560        1.1   mycroft 	/*
    561        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    562        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    563        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    564   1.68.2.9     skrll 	 * they are almost never written, but if we are concerned about
    565        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    566        1.1   mycroft 	 *
    567        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    568        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    569        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    570        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    571        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    572        1.1   mycroft 	 * synchronous write only when it has been cleared.
    573        1.1   mycroft 	 */
    574       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    575        1.1   mycroft 		if (doasyncfree)
    576        1.1   mycroft 			bdwrite(sbp);
    577        1.1   mycroft 		else
    578        1.1   mycroft 			bwrite(sbp);
    579        1.1   mycroft 	} else {
    580        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    581       1.28   mycroft 		if (!doasyncfree)
    582  1.68.2.10     skrll 			ffs_update(vp, NULL, NULL, 1);
    583        1.1   mycroft 	}
    584       1.25   thorpej 	if (ssize < len) {
    585        1.1   mycroft 		if (doasyncfree)
    586        1.1   mycroft 			bdwrite(ebp);
    587        1.1   mycroft 		else
    588        1.1   mycroft 			bwrite(ebp);
    589       1.25   thorpej 	}
    590        1.1   mycroft 	/*
    591        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    592        1.1   mycroft 	 */
    593        1.5   mycroft #ifdef DEBUG
    594        1.5   mycroft 	if (prtrealloc)
    595       1.13  christos 		printf("\n\tnew:");
    596        1.5   mycroft #endif
    597        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    598       1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    599   1.68.2.2     skrll 			ffs_blkfree(fs, ip->i_devvp,
    600       1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    601   1.68.2.2     skrll 			    fs->fs_bsize, ip->i_number);
    602        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    603        1.5   mycroft #ifdef DEBUG
    604       1.18      fvdl 		if (!ffs_checkblk(ip,
    605       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    606       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    607        1.5   mycroft 		if (prtrealloc)
    608       1.13  christos 			printf(" %d,", blkno);
    609        1.5   mycroft #endif
    610        1.5   mycroft 	}
    611        1.5   mycroft #ifdef DEBUG
    612        1.5   mycroft 	if (prtrealloc) {
    613        1.5   mycroft 		prtrealloc--;
    614       1.13  christos 		printf("\n");
    615        1.1   mycroft 	}
    616        1.5   mycroft #endif
    617        1.1   mycroft 	return (0);
    618        1.1   mycroft 
    619        1.1   mycroft fail:
    620        1.1   mycroft 	if (ssize < len)
    621        1.1   mycroft 		brelse(ebp);
    622       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    623        1.1   mycroft 		brelse(sbp);
    624        1.1   mycroft 	return (ENOSPC);
    625       1.55      matt #endif /* XXXUBC */
    626        1.1   mycroft }
    627  1.68.2.10     skrll #endif /* 0 */
    628        1.1   mycroft 
    629        1.1   mycroft /*
    630        1.1   mycroft  * Allocate an inode in the file system.
    631   1.68.2.9     skrll  *
    632        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    633        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    634        1.1   mycroft  *   1) allocate the preferred inode.
    635        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    636        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    637        1.1   mycroft  *      available inode is located.
    638       1.47       wiz  * If no inode preference is given the following hierarchy is used
    639        1.1   mycroft  * to allocate an inode:
    640        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    641        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    642        1.1   mycroft  *      available inode is located.
    643        1.1   mycroft  */
    644        1.9  christos int
    645  1.68.2.10     skrll ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred,
    646  1.68.2.10     skrll     struct vnode **vpp)
    647        1.9  christos {
    648       1.33  augustss 	struct inode *pip;
    649       1.33  augustss 	struct fs *fs;
    650       1.33  augustss 	struct inode *ip;
    651       1.60      fvdl 	struct timespec ts;
    652        1.1   mycroft 	ino_t ino, ipref;
    653        1.1   mycroft 	int cg, error;
    654   1.68.2.9     skrll 
    655  1.68.2.10     skrll 	*vpp = NULL;
    656        1.1   mycroft 	pip = VTOI(pvp);
    657        1.1   mycroft 	fs = pip->i_fs;
    658        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    659        1.1   mycroft 		goto noinodes;
    660        1.1   mycroft 
    661        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    662       1.50     lukem 		ipref = ffs_dirpref(pip);
    663       1.50     lukem 	else
    664       1.50     lukem 		ipref = pip->i_number;
    665        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    666        1.1   mycroft 		ipref = 0;
    667        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    668       1.50     lukem 	/*
    669       1.50     lukem 	 * Track number of dirs created one after another
    670       1.50     lukem 	 * in a same cg without intervening by files.
    671       1.50     lukem 	 */
    672       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    673       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    674       1.50     lukem 			fs->fs_contigdirs[cg]++;
    675       1.50     lukem 	} else {
    676       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    677       1.50     lukem 			fs->fs_contigdirs[cg]--;
    678       1.50     lukem 	}
    679       1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    680        1.1   mycroft 	if (ino == 0)
    681        1.1   mycroft 		goto noinodes;
    682  1.68.2.10     skrll 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    683        1.1   mycroft 	if (error) {
    684  1.68.2.10     skrll 		ffs_vfree(pvp, ino, mode);
    685        1.1   mycroft 		return (error);
    686        1.1   mycroft 	}
    687  1.68.2.10     skrll 	ip = VTOI(*vpp);
    688       1.60      fvdl 	if (ip->i_mode) {
    689       1.60      fvdl #if 0
    690       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    691       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    692       1.60      fvdl #else
    693       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    694       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    695       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    696       1.60      fvdl 		printf("size %llx blocks %llx\n",
    697       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    698  1.68.2.10     skrll 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    699  1.68.2.10     skrll 		    (unsigned long long)ipref);
    700       1.60      fvdl #if 0
    701       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    702       1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    703       1.60      fvdl #endif
    704       1.60      fvdl 
    705       1.60      fvdl #endif
    706        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    707        1.1   mycroft 	}
    708       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    709  1.68.2.10     skrll 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    710  1.68.2.10     skrll 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    711       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    712        1.1   mycroft 	}
    713       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    714       1.61      fvdl 	ip->i_flags = 0;
    715       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    716        1.1   mycroft 	/*
    717        1.1   mycroft 	 * Set up a new generation number for this inode.
    718        1.1   mycroft 	 */
    719       1.60      fvdl 	ip->i_gen++;
    720       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    721       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    722  1.68.2.10     skrll 		nanotime(&ts);
    723       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    724       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    725       1.60      fvdl 	}
    726        1.1   mycroft 	return (0);
    727        1.1   mycroft noinodes:
    728  1.68.2.10     skrll 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
    729        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    730        1.1   mycroft 	return (ENOSPC);
    731        1.1   mycroft }
    732        1.1   mycroft 
    733        1.1   mycroft /*
    734       1.50     lukem  * Find a cylinder group in which to place a directory.
    735       1.42  sommerfe  *
    736       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    737       1.50     lukem  * directory inode in the same cylinder group as its parent
    738       1.50     lukem  * directory, but also to reserve space for its files inodes
    739       1.50     lukem  * and data. Restrict the number of directories which may be
    740       1.50     lukem  * allocated one after another in the same cylinder group
    741       1.50     lukem  * without intervening allocation of files.
    742       1.42  sommerfe  *
    743       1.50     lukem  * If we allocate a first level directory then force allocation
    744       1.50     lukem  * in another cylinder group.
    745        1.1   mycroft  */
    746        1.1   mycroft static ino_t
    747  1.68.2.10     skrll ffs_dirpref(struct inode *pip)
    748        1.1   mycroft {
    749       1.50     lukem 	register struct fs *fs;
    750   1.68.2.2     skrll 	int cg, prefcg;
    751  1.68.2.11  christos 	int64_t dirsize, cgsize, curdsz;
    752  1.68.2.11  christos 	int avgifree, avgbfree, avgndir;
    753       1.50     lukem 	int minifree, minbfree, maxndir;
    754       1.50     lukem 	int mincg, minndir;
    755       1.50     lukem 	int maxcontigdirs;
    756       1.50     lukem 
    757       1.50     lukem 	fs = pip->i_fs;
    758        1.1   mycroft 
    759        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    760       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    761       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    762       1.50     lukem 
    763       1.50     lukem 	/*
    764       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    765       1.50     lukem 	 */
    766       1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    767       1.50     lukem 		prefcg = random() % fs->fs_ncg;
    768       1.50     lukem 		mincg = prefcg;
    769       1.50     lukem 		minndir = fs->fs_ipg;
    770       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    771       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    772       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    773       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    774       1.42  sommerfe 				mincg = cg;
    775       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    776       1.42  sommerfe 			}
    777       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    778       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    779       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    780       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    781       1.50     lukem 				mincg = cg;
    782       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    783       1.42  sommerfe 			}
    784       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    785       1.42  sommerfe 	}
    786       1.50     lukem 
    787       1.50     lukem 	/*
    788       1.50     lukem 	 * Count various limits which used for
    789       1.50     lukem 	 * optimal allocation of a directory inode.
    790       1.50     lukem 	 */
    791       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    792       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    793       1.50     lukem 	if (minifree < 0)
    794       1.50     lukem 		minifree = 0;
    795       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    796       1.50     lukem 	if (minbfree < 0)
    797       1.50     lukem 		minbfree = 0;
    798  1.68.2.11  christos 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    799  1.68.2.11  christos 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    800  1.68.2.11  christos 	if (avgndir != 0) {
    801  1.68.2.11  christos 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    802  1.68.2.11  christos 		if (dirsize < curdsz)
    803  1.68.2.11  christos 			dirsize = curdsz;
    804  1.68.2.11  christos 	}
    805  1.68.2.11  christos 	if (cgsize < dirsize * 255)
    806  1.68.2.11  christos 		maxcontigdirs = cgsize / dirsize;
    807  1.68.2.11  christos 	else
    808  1.68.2.11  christos 		maxcontigdirs = 255;
    809       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    810       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    811       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    812       1.50     lukem 	if (maxcontigdirs == 0)
    813       1.50     lukem 		maxcontigdirs = 1;
    814       1.50     lukem 
    815       1.50     lukem 	/*
    816   1.68.2.9     skrll 	 * Limit number of dirs in one cg and reserve space for
    817       1.50     lukem 	 * regular files, but only if we have no deficit in
    818       1.50     lukem 	 * inodes or space.
    819       1.50     lukem 	 */
    820       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    821       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    822       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    823       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    824       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    825       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    826       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    827       1.50     lukem 		}
    828       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    829       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    830       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    831       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    832       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    833       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    834       1.50     lukem 		}
    835       1.50     lukem 	/*
    836       1.50     lukem 	 * This is a backstop when we are deficient in space.
    837       1.50     lukem 	 */
    838       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    839       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    840       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    841       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    842       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    843       1.50     lukem 			break;
    844       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    845        1.1   mycroft }
    846        1.1   mycroft 
    847        1.1   mycroft /*
    848        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    849        1.1   mycroft  * logically divided into sections. The first section is composed of the
    850        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    851   1.68.2.9     skrll  *
    852        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    853        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    854        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    855        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    856        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    857        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    858        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    859        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    860        1.1   mycroft  * continues until a cylinder group with greater than the average number
    861        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    862        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    863        1.1   mycroft  * here a best guess is made based upon the logical block number being
    864        1.1   mycroft  * allocated.
    865   1.68.2.9     skrll  *
    866        1.1   mycroft  * If a section is already partially allocated, the policy is to
    867        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    868       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    869       1.60      fvdl  * contigously if possible.
    870        1.1   mycroft  */
    871       1.58      fvdl daddr_t
    872  1.68.2.10     skrll ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    873  1.68.2.10     skrll     int32_t *bap /* XXX ondisk32 */)
    874        1.1   mycroft {
    875       1.33  augustss 	struct fs *fs;
    876       1.33  augustss 	int cg;
    877        1.1   mycroft 	int avgbfree, startcg;
    878        1.1   mycroft 
    879        1.1   mycroft 	fs = ip->i_fs;
    880        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    881       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    882        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    883        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    884        1.1   mycroft 		}
    885        1.1   mycroft 		/*
    886        1.1   mycroft 		 * Find a cylinder with greater than average number of
    887        1.1   mycroft 		 * unused data blocks.
    888        1.1   mycroft 		 */
    889        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    890        1.1   mycroft 			startcg =
    891        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    892        1.1   mycroft 		else
    893       1.19    bouyer 			startcg = dtog(fs,
    894       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    895        1.1   mycroft 		startcg %= fs->fs_ncg;
    896        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    897        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    898        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    899        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    900        1.1   mycroft 			}
    901       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    902        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    903        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    904        1.1   mycroft 			}
    905       1.35   thorpej 		return (0);
    906        1.1   mycroft 	}
    907        1.1   mycroft 	/*
    908       1.60      fvdl 	 * We just always try to lay things out contiguously.
    909       1.60      fvdl 	 */
    910       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    911       1.60      fvdl }
    912       1.60      fvdl 
    913       1.60      fvdl daddr_t
    914  1.68.2.10     skrll ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    915       1.60      fvdl {
    916       1.60      fvdl 	struct fs *fs;
    917       1.60      fvdl 	int cg;
    918       1.60      fvdl 	int avgbfree, startcg;
    919       1.60      fvdl 
    920       1.60      fvdl 	fs = ip->i_fs;
    921       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    922       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    923       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    924       1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    925       1.60      fvdl 		}
    926        1.1   mycroft 		/*
    927       1.60      fvdl 		 * Find a cylinder with greater than average number of
    928       1.60      fvdl 		 * unused data blocks.
    929        1.1   mycroft 		 */
    930       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    931       1.60      fvdl 			startcg =
    932       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    933       1.60      fvdl 		else
    934       1.60      fvdl 			startcg = dtog(fs,
    935       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    936       1.60      fvdl 		startcg %= fs->fs_ncg;
    937       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    938       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    939       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    940       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    941       1.60      fvdl 			}
    942       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    943       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    944       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    945       1.60      fvdl 			}
    946       1.60      fvdl 		return (0);
    947       1.60      fvdl 	}
    948       1.60      fvdl 	/*
    949       1.60      fvdl 	 * We just always try to lay things out contiguously.
    950       1.60      fvdl 	 */
    951       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    952        1.1   mycroft }
    953        1.1   mycroft 
    954       1.60      fvdl 
    955        1.1   mycroft /*
    956        1.1   mycroft  * Implement the cylinder overflow algorithm.
    957        1.1   mycroft  *
    958        1.1   mycroft  * The policy implemented by this algorithm is:
    959        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    960        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    961        1.1   mycroft  *   3) brute force search for a free block.
    962        1.1   mycroft  */
    963        1.1   mycroft /*VARARGS5*/
    964       1.58      fvdl static daddr_t
    965  1.68.2.10     skrll ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    966  1.68.2.10     skrll     int size /* size for data blocks, mode for inodes */,
    967  1.68.2.10     skrll     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    968        1.1   mycroft {
    969       1.33  augustss 	struct fs *fs;
    970       1.58      fvdl 	daddr_t result;
    971        1.1   mycroft 	int i, icg = cg;
    972        1.1   mycroft 
    973        1.1   mycroft 	fs = ip->i_fs;
    974        1.1   mycroft 	/*
    975        1.1   mycroft 	 * 1: preferred cylinder group
    976        1.1   mycroft 	 */
    977        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    978        1.1   mycroft 	if (result)
    979        1.1   mycroft 		return (result);
    980        1.1   mycroft 	/*
    981        1.1   mycroft 	 * 2: quadratic rehash
    982        1.1   mycroft 	 */
    983        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    984        1.1   mycroft 		cg += i;
    985        1.1   mycroft 		if (cg >= fs->fs_ncg)
    986        1.1   mycroft 			cg -= fs->fs_ncg;
    987        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    988        1.1   mycroft 		if (result)
    989        1.1   mycroft 			return (result);
    990        1.1   mycroft 	}
    991        1.1   mycroft 	/*
    992        1.1   mycroft 	 * 3: brute force search
    993        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    994        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    995        1.1   mycroft 	 */
    996        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    997        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    998        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    999        1.1   mycroft 		if (result)
   1000        1.1   mycroft 			return (result);
   1001        1.1   mycroft 		cg++;
   1002        1.1   mycroft 		if (cg == fs->fs_ncg)
   1003        1.1   mycroft 			cg = 0;
   1004        1.1   mycroft 	}
   1005       1.35   thorpej 	return (0);
   1006        1.1   mycroft }
   1007        1.1   mycroft 
   1008        1.1   mycroft /*
   1009        1.1   mycroft  * Determine whether a fragment can be extended.
   1010        1.1   mycroft  *
   1011   1.68.2.9     skrll  * Check to see if the necessary fragments are available, and
   1012        1.1   mycroft  * if they are, allocate them.
   1013        1.1   mycroft  */
   1014       1.58      fvdl static daddr_t
   1015  1.68.2.10     skrll ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1016        1.1   mycroft {
   1017       1.33  augustss 	struct fs *fs;
   1018       1.33  augustss 	struct cg *cgp;
   1019        1.1   mycroft 	struct buf *bp;
   1020       1.58      fvdl 	daddr_t bno;
   1021        1.1   mycroft 	int frags, bbase;
   1022        1.1   mycroft 	int i, error;
   1023       1.62      fvdl 	u_int8_t *blksfree;
   1024        1.1   mycroft 
   1025        1.1   mycroft 	fs = ip->i_fs;
   1026        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1027       1.35   thorpej 		return (0);
   1028        1.1   mycroft 	frags = numfrags(fs, nsize);
   1029        1.1   mycroft 	bbase = fragnum(fs, bprev);
   1030        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1031        1.1   mycroft 		/* cannot extend across a block boundary */
   1032       1.35   thorpej 		return (0);
   1033        1.1   mycroft 	}
   1034        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1035        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1036        1.1   mycroft 	if (error) {
   1037        1.1   mycroft 		brelse(bp);
   1038       1.35   thorpej 		return (0);
   1039        1.1   mycroft 	}
   1040        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1041       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1042        1.1   mycroft 		brelse(bp);
   1043       1.35   thorpej 		return (0);
   1044        1.1   mycroft 	}
   1045       1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1046   1.68.2.2     skrll 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1047   1.68.2.2     skrll 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1048   1.68.2.2     skrll 		cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1049        1.1   mycroft 	bno = dtogd(fs, bprev);
   1050       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1051        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1052       1.62      fvdl 		if (isclr(blksfree, bno + i)) {
   1053        1.1   mycroft 			brelse(bp);
   1054       1.35   thorpej 			return (0);
   1055        1.1   mycroft 		}
   1056        1.1   mycroft 	/*
   1057        1.1   mycroft 	 * the current fragment can be extended
   1058        1.1   mycroft 	 * deduct the count on fragment being extended into
   1059        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1060        1.1   mycroft 	 * allocate the extended piece
   1061        1.1   mycroft 	 */
   1062        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1063       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1064        1.1   mycroft 			break;
   1065       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1066        1.1   mycroft 	if (i != frags)
   1067       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1068        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1069       1.62      fvdl 		clrbit(blksfree, bno + i);
   1070       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1071        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1072        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1073        1.1   mycroft 	}
   1074        1.1   mycroft 	fs->fs_fmod = 1;
   1075       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1076       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1077   1.68.2.2     skrll 	ACTIVECG_CLR(fs, cg);
   1078        1.1   mycroft 	bdwrite(bp);
   1079        1.1   mycroft 	return (bprev);
   1080        1.1   mycroft }
   1081        1.1   mycroft 
   1082        1.1   mycroft /*
   1083        1.1   mycroft  * Determine whether a block can be allocated.
   1084        1.1   mycroft  *
   1085        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1086        1.1   mycroft  * and if it is, allocate it.
   1087        1.1   mycroft  */
   1088       1.58      fvdl static daddr_t
   1089  1.68.2.10     skrll ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1090        1.1   mycroft {
   1091       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1092       1.30      fvdl 	struct cg *cgp;
   1093        1.1   mycroft 	struct buf *bp;
   1094       1.60      fvdl 	int32_t bno;
   1095       1.60      fvdl 	daddr_t blkno;
   1096       1.30      fvdl 	int error, frags, allocsiz, i;
   1097       1.62      fvdl 	u_int8_t *blksfree;
   1098       1.30      fvdl #ifdef FFS_EI
   1099       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1100       1.30      fvdl #endif
   1101        1.1   mycroft 
   1102        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1103       1.35   thorpej 		return (0);
   1104        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1105        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1106        1.1   mycroft 	if (error) {
   1107        1.1   mycroft 		brelse(bp);
   1108       1.35   thorpej 		return (0);
   1109        1.1   mycroft 	}
   1110        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1111       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1112        1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1113        1.1   mycroft 		brelse(bp);
   1114       1.35   thorpej 		return (0);
   1115        1.1   mycroft 	}
   1116       1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1117   1.68.2.2     skrll 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1118   1.68.2.2     skrll 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1119   1.68.2.2     skrll 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1120        1.1   mycroft 	if (size == fs->fs_bsize) {
   1121       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1122   1.68.2.2     skrll 		ACTIVECG_CLR(fs, cg);
   1123        1.1   mycroft 		bdwrite(bp);
   1124       1.60      fvdl 		return (blkno);
   1125        1.1   mycroft 	}
   1126        1.1   mycroft 	/*
   1127        1.1   mycroft 	 * check to see if any fragments are already available
   1128        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1129        1.1   mycroft 	 * it down to a smaller size if necessary
   1130        1.1   mycroft 	 */
   1131       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1132        1.1   mycroft 	frags = numfrags(fs, size);
   1133        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1134        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1135        1.1   mycroft 			break;
   1136        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1137        1.1   mycroft 		/*
   1138   1.68.2.9     skrll 		 * no fragments were available, so a block will be
   1139        1.1   mycroft 		 * allocated, and hacked up
   1140        1.1   mycroft 		 */
   1141        1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1142        1.1   mycroft 			brelse(bp);
   1143       1.35   thorpej 			return (0);
   1144        1.1   mycroft 		}
   1145       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1146       1.60      fvdl 		bno = dtogd(fs, blkno);
   1147        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1148       1.62      fvdl 			setbit(blksfree, bno + i);
   1149        1.1   mycroft 		i = fs->fs_frag - frags;
   1150       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1151        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1152       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1153        1.1   mycroft 		fs->fs_fmod = 1;
   1154       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1155   1.68.2.2     skrll 		ACTIVECG_CLR(fs, cg);
   1156        1.1   mycroft 		bdwrite(bp);
   1157       1.60      fvdl 		return (blkno);
   1158        1.1   mycroft 	}
   1159       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1160       1.30      fvdl #if 0
   1161       1.30      fvdl 	/*
   1162       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1163       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1164       1.30      fvdl 	 */
   1165        1.1   mycroft 	if (bno < 0) {
   1166        1.1   mycroft 		brelse(bp);
   1167       1.35   thorpej 		return (0);
   1168        1.1   mycroft 	}
   1169       1.30      fvdl #endif
   1170        1.1   mycroft 	for (i = 0; i < frags; i++)
   1171       1.62      fvdl 		clrbit(blksfree, bno + i);
   1172       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1173        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1174        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1175        1.1   mycroft 	fs->fs_fmod = 1;
   1176       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1177        1.1   mycroft 	if (frags != allocsiz)
   1178       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1179       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1180       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1181       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1182   1.68.2.2     skrll 	ACTIVECG_CLR(fs, cg);
   1183        1.1   mycroft 	bdwrite(bp);
   1184       1.30      fvdl 	return blkno;
   1185        1.1   mycroft }
   1186        1.1   mycroft 
   1187        1.1   mycroft /*
   1188        1.1   mycroft  * Allocate a block in a cylinder group.
   1189        1.1   mycroft  *
   1190        1.1   mycroft  * This algorithm implements the following policy:
   1191        1.1   mycroft  *   1) allocate the requested block.
   1192        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1193        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1194        1.1   mycroft  *      specified cylinder group.
   1195        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1196        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1197        1.1   mycroft  */
   1198       1.58      fvdl static daddr_t
   1199  1.68.2.10     skrll ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1200        1.1   mycroft {
   1201       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1202       1.30      fvdl 	struct cg *cgp;
   1203       1.60      fvdl 	daddr_t blkno;
   1204       1.60      fvdl 	int32_t bno;
   1205       1.60      fvdl 	u_int8_t *blksfree;
   1206       1.30      fvdl #ifdef FFS_EI
   1207       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1208       1.30      fvdl #endif
   1209        1.1   mycroft 
   1210       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1211       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1212       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1213       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1214       1.60      fvdl 	} else {
   1215       1.60      fvdl 		bpref = blknum(fs, bpref);
   1216       1.60      fvdl 		bno = dtogd(fs, bpref);
   1217        1.1   mycroft 		/*
   1218       1.60      fvdl 		 * if the requested block is available, use it
   1219        1.1   mycroft 		 */
   1220       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1221       1.60      fvdl 			goto gotit;
   1222        1.1   mycroft 	}
   1223        1.1   mycroft 	/*
   1224       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1225        1.1   mycroft 	 */
   1226       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1227        1.1   mycroft 	if (bno < 0)
   1228       1.35   thorpej 		return (0);
   1229       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1230        1.1   mycroft gotit:
   1231        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1232       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1233       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1234       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1235        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1236       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1237   1.68.2.2     skrll 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1238   1.68.2.2     skrll 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1239   1.68.2.2     skrll 		int cylno;
   1240   1.68.2.2     skrll 		cylno = old_cbtocylno(fs, bno);
   1241   1.68.2.2     skrll 		KASSERT(cylno >= 0);
   1242   1.68.2.2     skrll 		KASSERT(cylno < fs->fs_old_ncyl);
   1243   1.68.2.2     skrll 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1244   1.68.2.2     skrll 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1245   1.68.2.2     skrll 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1246   1.68.2.2     skrll 		    needswap);
   1247   1.68.2.2     skrll 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1248   1.68.2.2     skrll 	}
   1249        1.1   mycroft 	fs->fs_fmod = 1;
   1250       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1251       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1252       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1253       1.30      fvdl 	return (blkno);
   1254        1.1   mycroft }
   1255        1.1   mycroft 
   1256       1.55      matt #ifdef XXXUBC
   1257        1.1   mycroft /*
   1258        1.1   mycroft  * Determine whether a cluster can be allocated.
   1259        1.1   mycroft  *
   1260        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1261        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1262        1.1   mycroft  * take the first one that we find following bpref.
   1263        1.1   mycroft  */
   1264       1.60      fvdl 
   1265       1.60      fvdl /*
   1266       1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1267       1.60      fvdl  */
   1268       1.58      fvdl static daddr_t
   1269  1.68.2.10     skrll ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1270        1.1   mycroft {
   1271       1.33  augustss 	struct fs *fs;
   1272       1.33  augustss 	struct cg *cgp;
   1273        1.1   mycroft 	struct buf *bp;
   1274       1.18      fvdl 	int i, got, run, bno, bit, map;
   1275        1.1   mycroft 	u_char *mapp;
   1276        1.5   mycroft 	int32_t *lp;
   1277        1.1   mycroft 
   1278        1.1   mycroft 	fs = ip->i_fs;
   1279        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1280       1.35   thorpej 		return (0);
   1281        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1282        1.1   mycroft 	    NOCRED, &bp))
   1283        1.1   mycroft 		goto fail;
   1284        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1285       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1286        1.1   mycroft 		goto fail;
   1287        1.1   mycroft 	/*
   1288        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1289        1.1   mycroft 	 * available in this cylinder group.
   1290        1.1   mycroft 	 */
   1291       1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1292        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1293       1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1294        1.1   mycroft 			break;
   1295        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1296        1.5   mycroft 		/*
   1297        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1298        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1299        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1300        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1301        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1302        1.5   mycroft 		 */
   1303       1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1304        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1305       1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1306        1.5   mycroft 				break;
   1307        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1308        1.1   mycroft 		goto fail;
   1309        1.5   mycroft 	}
   1310        1.1   mycroft 	/*
   1311        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1312        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1313        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1314        1.1   mycroft 	 * block allocation. We do not search before the current
   1315        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1316        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1317        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1318        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1319        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1320        1.1   mycroft 	 */
   1321        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1322        1.1   mycroft 		bpref = 0;
   1323        1.1   mycroft 	else
   1324        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1325       1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1326        1.1   mycroft 	map = *mapp++;
   1327        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1328       1.19    bouyer 	for (run = 0, got = bpref;
   1329       1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1330        1.1   mycroft 		if ((map & bit) == 0) {
   1331        1.1   mycroft 			run = 0;
   1332        1.1   mycroft 		} else {
   1333        1.1   mycroft 			run++;
   1334        1.1   mycroft 			if (run == len)
   1335        1.1   mycroft 				break;
   1336        1.1   mycroft 		}
   1337       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1338        1.1   mycroft 			bit <<= 1;
   1339        1.1   mycroft 		} else {
   1340        1.1   mycroft 			map = *mapp++;
   1341        1.1   mycroft 			bit = 1;
   1342        1.1   mycroft 		}
   1343        1.1   mycroft 	}
   1344       1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1345        1.1   mycroft 		goto fail;
   1346        1.1   mycroft 	/*
   1347        1.1   mycroft 	 * Allocate the cluster that we have found.
   1348        1.1   mycroft 	 */
   1349       1.30      fvdl #ifdef DIAGNOSTIC
   1350       1.18      fvdl 	for (i = 1; i <= len; i++)
   1351       1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1352       1.30      fvdl 		    got - run + i))
   1353       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1354       1.30      fvdl #endif
   1355       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1356       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1357       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1358        1.1   mycroft 	len = blkstofrags(fs, len);
   1359        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1360       1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1361        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1362   1.68.2.2     skrll 	ACTIVECG_CLR(fs, cg);
   1363        1.8       cgd 	bdwrite(bp);
   1364        1.1   mycroft 	return (bno);
   1365        1.1   mycroft 
   1366        1.1   mycroft fail:
   1367        1.1   mycroft 	brelse(bp);
   1368        1.1   mycroft 	return (0);
   1369        1.1   mycroft }
   1370       1.55      matt #endif /* XXXUBC */
   1371        1.1   mycroft 
   1372        1.1   mycroft /*
   1373        1.1   mycroft  * Determine whether an inode can be allocated.
   1374        1.1   mycroft  *
   1375        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1376        1.1   mycroft  * allocate it using the following policy:
   1377        1.1   mycroft  *   1) allocate the requested inode.
   1378        1.1   mycroft  *   2) allocate the next available inode after the requested
   1379        1.1   mycroft  *      inode in the specified cylinder group.
   1380        1.1   mycroft  */
   1381       1.58      fvdl static daddr_t
   1382  1.68.2.10     skrll ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1383        1.1   mycroft {
   1384       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1385       1.33  augustss 	struct cg *cgp;
   1386       1.60      fvdl 	struct buf *bp, *ibp;
   1387       1.60      fvdl 	u_int8_t *inosused;
   1388        1.1   mycroft 	int error, start, len, loc, map, i;
   1389       1.60      fvdl 	int32_t initediblk;
   1390       1.60      fvdl 	struct ufs2_dinode *dp2;
   1391       1.19    bouyer #ifdef FFS_EI
   1392       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1393       1.19    bouyer #endif
   1394        1.1   mycroft 
   1395        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1396       1.35   thorpej 		return (0);
   1397        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1398        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1399        1.1   mycroft 	if (error) {
   1400        1.1   mycroft 		brelse(bp);
   1401       1.35   thorpej 		return (0);
   1402        1.1   mycroft 	}
   1403        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1404       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1405        1.1   mycroft 		brelse(bp);
   1406       1.35   thorpej 		return (0);
   1407        1.1   mycroft 	}
   1408       1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1409   1.68.2.2     skrll 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1410   1.68.2.2     skrll 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1411   1.68.2.2     skrll 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1412       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1413        1.1   mycroft 	if (ipref) {
   1414        1.1   mycroft 		ipref %= fs->fs_ipg;
   1415       1.60      fvdl 		if (isclr(inosused, ipref))
   1416        1.1   mycroft 			goto gotit;
   1417        1.1   mycroft 	}
   1418       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1419       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1420       1.19    bouyer 		NBBY);
   1421       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1422        1.1   mycroft 	if (loc == 0) {
   1423        1.1   mycroft 		len = start + 1;
   1424        1.1   mycroft 		start = 0;
   1425       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1426        1.1   mycroft 		if (loc == 0) {
   1427       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1428       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1429       1.19    bouyer 				fs->fs_fsmnt);
   1430        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1431        1.1   mycroft 			/* NOTREACHED */
   1432        1.1   mycroft 		}
   1433        1.1   mycroft 	}
   1434        1.1   mycroft 	i = start + len - loc;
   1435       1.60      fvdl 	map = inosused[i];
   1436        1.1   mycroft 	ipref = i * NBBY;
   1437        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1438        1.1   mycroft 		if ((map & i) == 0) {
   1439       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1440        1.1   mycroft 			goto gotit;
   1441        1.1   mycroft 		}
   1442        1.1   mycroft 	}
   1443       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1444        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1445        1.1   mycroft 	/* NOTREACHED */
   1446        1.1   mycroft gotit:
   1447       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1448       1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1449       1.60      fvdl 	setbit(inosused, ipref);
   1450       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1451        1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1452       1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1453        1.1   mycroft 	fs->fs_fmod = 1;
   1454        1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1455       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1456        1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1457        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1458        1.1   mycroft 	}
   1459       1.60      fvdl 	/*
   1460       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1461       1.60      fvdl 	 */
   1462       1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1463       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1464       1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1465       1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1466       1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1467       1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1468       1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1469       1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1470       1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1471       1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1472       1.60      fvdl 			/*
   1473       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1474       1.60      fvdl 			 * random, after all.
   1475       1.60      fvdl 			 */
   1476   1.68.2.2     skrll 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1477       1.60      fvdl 			dp2++;
   1478       1.60      fvdl 		}
   1479       1.60      fvdl 		bawrite(ibp);
   1480       1.60      fvdl 		initediblk += INOPB(fs);
   1481       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1482       1.60      fvdl 	}
   1483       1.60      fvdl 
   1484   1.68.2.2     skrll 	ACTIVECG_CLR(fs, cg);
   1485        1.1   mycroft 	bdwrite(bp);
   1486        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1487        1.1   mycroft }
   1488        1.1   mycroft 
   1489        1.1   mycroft /*
   1490        1.1   mycroft  * Free a block or fragment.
   1491        1.1   mycroft  *
   1492        1.1   mycroft  * The specified block or fragment is placed back in the
   1493   1.68.2.9     skrll  * free map. If a fragment is deallocated, a possible
   1494        1.1   mycroft  * block reassembly is checked.
   1495        1.1   mycroft  */
   1496        1.9  christos void
   1497  1.68.2.10     skrll ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1498  1.68.2.10     skrll     ino_t inum)
   1499        1.1   mycroft {
   1500       1.33  augustss 	struct cg *cgp;
   1501        1.1   mycroft 	struct buf *bp;
   1502   1.68.2.2     skrll 	struct ufsmount *ump;
   1503       1.60      fvdl 	int32_t fragno, cgbno;
   1504   1.68.2.2     skrll 	daddr_t cgblkno;
   1505        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1506       1.62      fvdl 	u_int8_t *blksfree;
   1507   1.68.2.2     skrll 	dev_t dev;
   1508       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1509        1.1   mycroft 
   1510   1.68.2.2     skrll 	cg = dtog(fs, bno);
   1511   1.68.2.2     skrll 	if (devvp->v_type != VBLK) {
   1512   1.68.2.2     skrll 		/* devvp is a snapshot */
   1513   1.68.2.2     skrll 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1514   1.68.2.2     skrll 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1515   1.68.2.2     skrll 	} else {
   1516   1.68.2.2     skrll 		dev = devvp->v_rdev;
   1517   1.68.2.2     skrll 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1518   1.68.2.2     skrll 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1519   1.68.2.2     skrll 		if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
   1520   1.68.2.2     skrll 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
   1521   1.68.2.2     skrll 			return;
   1522   1.68.2.2     skrll 	}
   1523       1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1524       1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1525       1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1526       1.58      fvdl 		       "size = %ld, fs = %s\n",
   1527   1.68.2.2     skrll 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1528        1.1   mycroft 		panic("blkfree: bad size");
   1529        1.1   mycroft 	}
   1530   1.68.2.2     skrll 
   1531       1.60      fvdl 	if (bno >= fs->fs_size) {
   1532  1.68.2.10     skrll 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1533  1.68.2.10     skrll 		    (unsigned long long)inum);
   1534   1.68.2.2     skrll 		ffs_fserr(fs, inum, "bad block");
   1535        1.1   mycroft 		return;
   1536        1.1   mycroft 	}
   1537   1.68.2.2     skrll 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1538        1.1   mycroft 	if (error) {
   1539        1.1   mycroft 		brelse(bp);
   1540        1.1   mycroft 		return;
   1541        1.1   mycroft 	}
   1542        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1543       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1544        1.1   mycroft 		brelse(bp);
   1545        1.1   mycroft 		return;
   1546        1.1   mycroft 	}
   1547       1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1548   1.68.2.2     skrll 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1549   1.68.2.2     skrll 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1550   1.68.2.2     skrll 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1551       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1552       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1553        1.1   mycroft 	if (size == fs->fs_bsize) {
   1554       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1555       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1556   1.68.2.2     skrll 			if (devvp->v_type != VBLK) {
   1557   1.68.2.2     skrll 				/* devvp is a snapshot */
   1558   1.68.2.2     skrll 				brelse(bp);
   1559   1.68.2.2     skrll 				return;
   1560   1.68.2.2     skrll 			}
   1561       1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1562   1.68.2.2     skrll 			    dev, bno, fs->fs_fsmnt);
   1563        1.1   mycroft 			panic("blkfree: freeing free block");
   1564        1.1   mycroft 		}
   1565       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1566       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1567       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1568        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1569        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1570   1.68.2.2     skrll 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1571   1.68.2.2     skrll 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1572   1.68.2.2     skrll 			i = old_cbtocylno(fs, cgbno);
   1573   1.68.2.2     skrll 			KASSERT(i >= 0);
   1574   1.68.2.2     skrll 			KASSERT(i < fs->fs_old_ncyl);
   1575   1.68.2.2     skrll 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1576   1.68.2.2     skrll 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1577   1.68.2.2     skrll 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1578   1.68.2.2     skrll 			    needswap);
   1579   1.68.2.2     skrll 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1580   1.68.2.2     skrll 		}
   1581        1.1   mycroft 	} else {
   1582       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1583        1.1   mycroft 		/*
   1584        1.1   mycroft 		 * decrement the counts associated with the old frags
   1585        1.1   mycroft 		 */
   1586       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1587       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1588        1.1   mycroft 		/*
   1589        1.1   mycroft 		 * deallocate the fragment
   1590        1.1   mycroft 		 */
   1591        1.1   mycroft 		frags = numfrags(fs, size);
   1592        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1593       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1594       1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1595       1.59   tsutsui 				       ", fs = %s\n",
   1596   1.68.2.2     skrll 				    dev, bno + i, fs->fs_fsmnt);
   1597        1.1   mycroft 				panic("blkfree: freeing free frag");
   1598        1.1   mycroft 			}
   1599       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1600        1.1   mycroft 		}
   1601       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1602        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1603       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1604        1.1   mycroft 		/*
   1605        1.1   mycroft 		 * add back in counts associated with the new frags
   1606        1.1   mycroft 		 */
   1607       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1608       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1609        1.1   mycroft 		/*
   1610        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1611        1.1   mycroft 		 */
   1612       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1613       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1614       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1615        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1616        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1617       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1618       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1619        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1620        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1621   1.68.2.2     skrll 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1622   1.68.2.2     skrll 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1623   1.68.2.2     skrll 				i = old_cbtocylno(fs, bbase);
   1624   1.68.2.2     skrll 				KASSERT(i >= 0);
   1625   1.68.2.2     skrll 				KASSERT(i < fs->fs_old_ncyl);
   1626   1.68.2.2     skrll 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1627   1.68.2.2     skrll 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1628   1.68.2.2     skrll 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1629   1.68.2.2     skrll 				    bbase)], 1, needswap);
   1630   1.68.2.2     skrll 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1631   1.68.2.2     skrll 			}
   1632        1.1   mycroft 		}
   1633        1.1   mycroft 	}
   1634        1.1   mycroft 	fs->fs_fmod = 1;
   1635   1.68.2.2     skrll 	ACTIVECG_CLR(fs, cg);
   1636        1.1   mycroft 	bdwrite(bp);
   1637        1.1   mycroft }
   1638        1.1   mycroft 
   1639       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1640       1.55      matt #ifdef XXXUBC
   1641       1.18      fvdl /*
   1642       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1643       1.18      fvdl  * fragment is allocated, false if it is free.
   1644       1.18      fvdl  */
   1645       1.18      fvdl static int
   1646  1.68.2.10     skrll ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1647       1.18      fvdl {
   1648       1.18      fvdl 	struct fs *fs;
   1649       1.18      fvdl 	struct cg *cgp;
   1650       1.18      fvdl 	struct buf *bp;
   1651       1.18      fvdl 	int i, error, frags, free;
   1652       1.18      fvdl 
   1653       1.18      fvdl 	fs = ip->i_fs;
   1654       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1655       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1656       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1657       1.18      fvdl 		panic("checkblk: bad size");
   1658       1.18      fvdl 	}
   1659       1.60      fvdl 	if (bno >= fs->fs_size)
   1660       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1661       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1662       1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1663       1.18      fvdl 	if (error) {
   1664       1.18      fvdl 		brelse(bp);
   1665       1.18      fvdl 		return 0;
   1666       1.18      fvdl 	}
   1667       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1668       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1669       1.18      fvdl 		brelse(bp);
   1670       1.18      fvdl 		return 0;
   1671       1.18      fvdl 	}
   1672       1.18      fvdl 	bno = dtogd(fs, bno);
   1673       1.18      fvdl 	if (size == fs->fs_bsize) {
   1674       1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1675       1.19    bouyer 			fragstoblks(fs, bno));
   1676       1.18      fvdl 	} else {
   1677       1.18      fvdl 		frags = numfrags(fs, size);
   1678       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1679       1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1680       1.18      fvdl 				free++;
   1681       1.18      fvdl 		if (free != 0 && free != frags)
   1682       1.18      fvdl 			panic("checkblk: partially free fragment");
   1683       1.18      fvdl 	}
   1684       1.18      fvdl 	brelse(bp);
   1685       1.18      fvdl 	return (!free);
   1686       1.18      fvdl }
   1687       1.55      matt #endif /* XXXUBC */
   1688       1.18      fvdl #endif /* DIAGNOSTIC */
   1689       1.18      fvdl 
   1690        1.1   mycroft /*
   1691        1.1   mycroft  * Free an inode.
   1692       1.30      fvdl  */
   1693       1.30      fvdl int
   1694  1.68.2.10     skrll ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1695       1.30      fvdl {
   1696       1.30      fvdl 
   1697  1.68.2.10     skrll 	if (DOINGSOFTDEP(vp)) {
   1698  1.68.2.10     skrll 		softdep_freefile(vp, ino, mode);
   1699       1.30      fvdl 		return (0);
   1700       1.30      fvdl 	}
   1701  1.68.2.10     skrll 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1702       1.30      fvdl }
   1703       1.30      fvdl 
   1704       1.30      fvdl /*
   1705       1.30      fvdl  * Do the actual free operation.
   1706        1.1   mycroft  * The specified inode is placed back in the free map.
   1707        1.1   mycroft  */
   1708        1.1   mycroft int
   1709  1.68.2.10     skrll ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1710        1.9  christos {
   1711       1.33  augustss 	struct cg *cgp;
   1712        1.1   mycroft 	struct buf *bp;
   1713        1.1   mycroft 	int error, cg;
   1714   1.68.2.2     skrll 	daddr_t cgbno;
   1715       1.62      fvdl 	u_int8_t *inosused;
   1716   1.68.2.4     skrll 	dev_t dev;
   1717       1.19    bouyer #ifdef FFS_EI
   1718       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1719       1.19    bouyer #endif
   1720        1.1   mycroft 
   1721   1.68.2.2     skrll 	cg = ino_to_cg(fs, ino);
   1722   1.68.2.4     skrll 	if (devvp->v_type != VBLK) {
   1723   1.68.2.4     skrll 		/* devvp is a snapshot */
   1724   1.68.2.4     skrll 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1725   1.68.2.2     skrll 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1726   1.68.2.2     skrll 	} else {
   1727   1.68.2.4     skrll 		dev = devvp->v_rdev;
   1728   1.68.2.2     skrll 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1729   1.68.2.2     skrll 	}
   1730        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1731  1.68.2.10     skrll 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1732  1.68.2.10     skrll 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1733   1.68.2.4     skrll 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1734        1.1   mycroft 	if (error) {
   1735        1.1   mycroft 		brelse(bp);
   1736       1.30      fvdl 		return (error);
   1737        1.1   mycroft 	}
   1738        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1739       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1740        1.1   mycroft 		brelse(bp);
   1741        1.1   mycroft 		return (0);
   1742        1.1   mycroft 	}
   1743       1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1744   1.68.2.2     skrll 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1745   1.68.2.2     skrll 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1746   1.68.2.2     skrll 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1747       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1748        1.1   mycroft 	ino %= fs->fs_ipg;
   1749       1.62      fvdl 	if (isclr(inosused, ino)) {
   1750  1.68.2.10     skrll 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1751  1.68.2.10     skrll 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1752  1.68.2.10     skrll 		    fs->fs_fsmnt);
   1753        1.1   mycroft 		if (fs->fs_ronly == 0)
   1754        1.1   mycroft 			panic("ifree: freeing free inode");
   1755        1.1   mycroft 	}
   1756       1.62      fvdl 	clrbit(inosused, ino);
   1757       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1758       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1759       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1760        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1761        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1762   1.68.2.4     skrll 	if ((mode & IFMT) == IFDIR) {
   1763       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1764        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1765        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1766        1.1   mycroft 	}
   1767        1.1   mycroft 	fs->fs_fmod = 1;
   1768  1.68.2.10     skrll 	ACTIVECG_CLR(fs, cg);
   1769        1.1   mycroft 	bdwrite(bp);
   1770        1.1   mycroft 	return (0);
   1771        1.1   mycroft }
   1772        1.1   mycroft 
   1773        1.1   mycroft /*
   1774   1.68.2.2     skrll  * Check to see if a file is free.
   1775   1.68.2.2     skrll  */
   1776   1.68.2.2     skrll int
   1777  1.68.2.10     skrll ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1778   1.68.2.2     skrll {
   1779   1.68.2.2     skrll 	struct cg *cgp;
   1780   1.68.2.2     skrll 	struct buf *bp;
   1781   1.68.2.2     skrll 	daddr_t cgbno;
   1782   1.68.2.2     skrll 	int ret, cg;
   1783   1.68.2.2     skrll 	u_int8_t *inosused;
   1784   1.68.2.2     skrll 
   1785   1.68.2.2     skrll 	cg = ino_to_cg(fs, ino);
   1786   1.68.2.2     skrll 	if (devvp->v_type != VBLK) {
   1787   1.68.2.2     skrll 		/* devvp is a snapshot */
   1788   1.68.2.2     skrll 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1789   1.68.2.2     skrll 	} else
   1790   1.68.2.2     skrll 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1791   1.68.2.2     skrll 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1792   1.68.2.2     skrll 		return 1;
   1793   1.68.2.2     skrll 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1794   1.68.2.2     skrll 		brelse(bp);
   1795   1.68.2.2     skrll 		return 1;
   1796   1.68.2.2     skrll 	}
   1797   1.68.2.2     skrll 	cgp = (struct cg *)bp->b_data;
   1798   1.68.2.2     skrll 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1799   1.68.2.2     skrll 		brelse(bp);
   1800   1.68.2.2     skrll 		return 1;
   1801   1.68.2.2     skrll 	}
   1802   1.68.2.2     skrll 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1803   1.68.2.2     skrll 	ino %= fs->fs_ipg;
   1804   1.68.2.2     skrll 	ret = isclr(inosused, ino);
   1805   1.68.2.2     skrll 	brelse(bp);
   1806   1.68.2.2     skrll 	return ret;
   1807   1.68.2.2     skrll }
   1808   1.68.2.2     skrll 
   1809   1.68.2.2     skrll /*
   1810        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1811        1.1   mycroft  *
   1812        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1813        1.1   mycroft  * available.
   1814        1.1   mycroft  */
   1815       1.60      fvdl static int32_t
   1816  1.68.2.10     skrll ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1817        1.1   mycroft {
   1818       1.60      fvdl 	int32_t bno;
   1819        1.1   mycroft 	int start, len, loc, i;
   1820        1.1   mycroft 	int blk, field, subfield, pos;
   1821       1.19    bouyer 	int ostart, olen;
   1822       1.62      fvdl 	u_int8_t *blksfree;
   1823       1.30      fvdl #ifdef FFS_EI
   1824       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1825       1.30      fvdl #endif
   1826        1.1   mycroft 
   1827        1.1   mycroft 	/*
   1828        1.1   mycroft 	 * find the fragment by searching through the free block
   1829        1.1   mycroft 	 * map for an appropriate bit pattern
   1830        1.1   mycroft 	 */
   1831        1.1   mycroft 	if (bpref)
   1832        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1833        1.1   mycroft 	else
   1834       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1835       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1836        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1837       1.19    bouyer 	ostart = start;
   1838       1.19    bouyer 	olen = len;
   1839       1.45     lukem 	loc = scanc((u_int)len,
   1840       1.62      fvdl 		(const u_char *)&blksfree[start],
   1841       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1842       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1843        1.1   mycroft 	if (loc == 0) {
   1844        1.1   mycroft 		len = start + 1;
   1845        1.1   mycroft 		start = 0;
   1846       1.45     lukem 		loc = scanc((u_int)len,
   1847       1.62      fvdl 			(const u_char *)&blksfree[0],
   1848       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1849       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1850        1.1   mycroft 		if (loc == 0) {
   1851       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1852       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1853       1.20      ross 			printf("offset=%d %ld\n",
   1854       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1855       1.62      fvdl 				(long)blksfree - (long)cgp);
   1856       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1857        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1858        1.1   mycroft 			/* NOTREACHED */
   1859        1.1   mycroft 		}
   1860        1.1   mycroft 	}
   1861        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1862       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1863        1.1   mycroft 	/*
   1864        1.1   mycroft 	 * found the byte in the map
   1865        1.1   mycroft 	 * sift through the bits to find the selected frag
   1866        1.1   mycroft 	 */
   1867        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1868       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1869        1.1   mycroft 		blk <<= 1;
   1870        1.1   mycroft 		field = around[allocsiz];
   1871        1.1   mycroft 		subfield = inside[allocsiz];
   1872        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1873        1.1   mycroft 			if ((blk & field) == subfield)
   1874        1.1   mycroft 				return (bno + pos);
   1875        1.1   mycroft 			field <<= 1;
   1876        1.1   mycroft 			subfield <<= 1;
   1877        1.1   mycroft 		}
   1878        1.1   mycroft 	}
   1879       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1880        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1881       1.58      fvdl 	/* return (-1); */
   1882        1.1   mycroft }
   1883        1.1   mycroft 
   1884        1.1   mycroft /*
   1885        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1886        1.1   mycroft  *
   1887        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1888        1.1   mycroft  */
   1889        1.9  christos void
   1890  1.68.2.10     skrll ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1891        1.1   mycroft {
   1892        1.4       cgd 	int32_t *sump;
   1893        1.5   mycroft 	int32_t *lp;
   1894        1.1   mycroft 	u_char *freemapp, *mapp;
   1895        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1896       1.30      fvdl #ifdef FFS_EI
   1897       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1898       1.30      fvdl #endif
   1899        1.1   mycroft 
   1900        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1901        1.1   mycroft 		return;
   1902       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1903       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1904        1.1   mycroft 	/*
   1905        1.1   mycroft 	 * Allocate or clear the actual block.
   1906        1.1   mycroft 	 */
   1907        1.1   mycroft 	if (cnt > 0)
   1908        1.1   mycroft 		setbit(freemapp, blkno);
   1909        1.1   mycroft 	else
   1910        1.1   mycroft 		clrbit(freemapp, blkno);
   1911        1.1   mycroft 	/*
   1912        1.1   mycroft 	 * Find the size of the cluster going forward.
   1913        1.1   mycroft 	 */
   1914        1.1   mycroft 	start = blkno + 1;
   1915        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1916       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1917       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1918        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1919        1.1   mycroft 	map = *mapp++;
   1920        1.1   mycroft 	bit = 1 << (start % NBBY);
   1921        1.1   mycroft 	for (i = start; i < end; i++) {
   1922        1.1   mycroft 		if ((map & bit) == 0)
   1923        1.1   mycroft 			break;
   1924        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1925        1.1   mycroft 			bit <<= 1;
   1926        1.1   mycroft 		} else {
   1927        1.1   mycroft 			map = *mapp++;
   1928        1.1   mycroft 			bit = 1;
   1929        1.1   mycroft 		}
   1930        1.1   mycroft 	}
   1931        1.1   mycroft 	forw = i - start;
   1932        1.1   mycroft 	/*
   1933        1.1   mycroft 	 * Find the size of the cluster going backward.
   1934        1.1   mycroft 	 */
   1935        1.1   mycroft 	start = blkno - 1;
   1936        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1937        1.1   mycroft 	if (end < 0)
   1938        1.1   mycroft 		end = -1;
   1939        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1940        1.1   mycroft 	map = *mapp--;
   1941        1.1   mycroft 	bit = 1 << (start % NBBY);
   1942        1.1   mycroft 	for (i = start; i > end; i--) {
   1943        1.1   mycroft 		if ((map & bit) == 0)
   1944        1.1   mycroft 			break;
   1945        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1946        1.1   mycroft 			bit >>= 1;
   1947        1.1   mycroft 		} else {
   1948        1.1   mycroft 			map = *mapp--;
   1949        1.1   mycroft 			bit = 1 << (NBBY - 1);
   1950        1.1   mycroft 		}
   1951        1.1   mycroft 	}
   1952        1.1   mycroft 	back = start - i;
   1953        1.1   mycroft 	/*
   1954        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1955        1.1   mycroft 	 * back clusters.
   1956        1.1   mycroft 	 */
   1957        1.1   mycroft 	i = back + forw + 1;
   1958        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1959        1.1   mycroft 		i = fs->fs_contigsumsize;
   1960       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1961        1.1   mycroft 	if (back > 0)
   1962       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1963        1.1   mycroft 	if (forw > 0)
   1964       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1965       1.19    bouyer 
   1966        1.5   mycroft 	/*
   1967        1.5   mycroft 	 * Update cluster summary information.
   1968        1.5   mycroft 	 */
   1969        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1970        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1971       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1972        1.5   mycroft 			break;
   1973       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1974        1.1   mycroft }
   1975        1.1   mycroft 
   1976        1.1   mycroft /*
   1977        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1978   1.68.2.9     skrll  *
   1979        1.1   mycroft  * The form of the error message is:
   1980        1.1   mycroft  *	fs: error message
   1981        1.1   mycroft  */
   1982        1.1   mycroft static void
   1983  1.68.2.10     skrll ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   1984        1.1   mycroft {
   1985        1.1   mycroft 
   1986       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1987       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1988        1.1   mycroft }
   1989