Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.75
      1  1.75       dbj /*	$NetBSD: ffs_alloc.c,v 1.75 2004/04/18 03:30:23 dbj Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4  1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  1.60      fvdl  * All rights reserved.
      6  1.60      fvdl  *
      7  1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8  1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9  1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  1.60      fvdl  * research program
     12  1.60      fvdl  *
     13   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15   1.1   mycroft  *
     16   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17   1.1   mycroft  * modification, are permitted provided that the following conditions
     18   1.1   mycroft  * are met:
     19   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24  1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26   1.1   mycroft  *    without specific prior written permission.
     27   1.1   mycroft  *
     28   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1   mycroft  * SUCH DAMAGE.
     39   1.1   mycroft  *
     40  1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41   1.1   mycroft  */
     42  1.53     lukem 
     43  1.53     lukem #include <sys/cdefs.h>
     44  1.75       dbj __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.75 2004/04/18 03:30:23 dbj Exp $");
     45  1.17       mrg 
     46  1.43       mrg #if defined(_KERNEL_OPT)
     47  1.27   thorpej #include "opt_ffs.h"
     48  1.21    scottr #include "opt_quota.h"
     49  1.22    scottr #endif
     50   1.1   mycroft 
     51   1.1   mycroft #include <sys/param.h>
     52   1.1   mycroft #include <sys/systm.h>
     53   1.1   mycroft #include <sys/buf.h>
     54   1.1   mycroft #include <sys/proc.h>
     55   1.1   mycroft #include <sys/vnode.h>
     56   1.1   mycroft #include <sys/mount.h>
     57   1.1   mycroft #include <sys/kernel.h>
     58   1.1   mycroft #include <sys/syslog.h>
     59  1.29       mrg 
     60   1.1   mycroft #include <ufs/ufs/quota.h>
     61  1.19    bouyer #include <ufs/ufs/ufsmount.h>
     62   1.1   mycroft #include <ufs/ufs/inode.h>
     63   1.9  christos #include <ufs/ufs/ufs_extern.h>
     64  1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     65   1.1   mycroft 
     66   1.1   mycroft #include <ufs/ffs/fs.h>
     67   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     68   1.1   mycroft 
     69  1.58      fvdl static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
     70  1.58      fvdl static daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
     71  1.55      matt #ifdef XXXUBC
     72  1.58      fvdl static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     73  1.55      matt #endif
     74  1.50     lukem static ino_t ffs_dirpref __P((struct inode *));
     75  1.58      fvdl static daddr_t ffs_fragextend __P((struct inode *, int, daddr_t, int, int));
     76  1.30      fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
     77  1.58      fvdl static daddr_t ffs_hashalloc __P((struct inode *, int, daddr_t, int,
     78  1.58      fvdl     daddr_t (*)(struct inode *, int, daddr_t, int)));
     79  1.58      fvdl static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     80  1.60      fvdl static int32_t ffs_mapsearch __P((struct fs *, struct cg *,
     81  1.58      fvdl 				      daddr_t, int));
     82  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     83  1.55      matt #ifdef XXXUBC
     84  1.58      fvdl static int ffs_checkblk __P((struct inode *, daddr_t, long size));
     85  1.18      fvdl #endif
     86  1.55      matt #endif
     87  1.23  drochner 
     88  1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     89  1.34  jdolecek int ffs_log_changeopt = 0;
     90  1.34  jdolecek 
     91  1.23  drochner /* in ffs_tables.c */
     92  1.40  jdolecek extern const int inside[], around[];
     93  1.40  jdolecek extern const u_char * const fragtbl[];
     94   1.1   mycroft 
     95   1.1   mycroft /*
     96   1.1   mycroft  * Allocate a block in the file system.
     97   1.1   mycroft  *
     98   1.1   mycroft  * The size of the requested block is given, which must be some
     99   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    100   1.1   mycroft  * A preference may be optionally specified. If a preference is given
    101   1.1   mycroft  * the following hierarchy is used to allocate a block:
    102   1.1   mycroft  *   1) allocate the requested block.
    103   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    104   1.1   mycroft  *   3) allocate a block in the same cylinder group.
    105   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    106   1.1   mycroft  *      available block is located.
    107  1.47       wiz  * If no block preference is given the following hierarchy is used
    108   1.1   mycroft  * to allocate a block:
    109   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    110   1.1   mycroft  *      inode for the file.
    111   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    112   1.1   mycroft  *      available block is located.
    113   1.1   mycroft  */
    114   1.9  christos int
    115   1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    116  1.33  augustss 	struct inode *ip;
    117  1.58      fvdl 	daddr_t lbn, bpref;
    118   1.1   mycroft 	int size;
    119   1.1   mycroft 	struct ucred *cred;
    120  1.58      fvdl 	daddr_t *bnp;
    121   1.1   mycroft {
    122  1.62      fvdl 	struct fs *fs;
    123  1.58      fvdl 	daddr_t bno;
    124   1.9  christos 	int cg;
    125   1.9  christos #ifdef QUOTA
    126   1.9  christos 	int error;
    127   1.9  christos #endif
    128   1.1   mycroft 
    129  1.62      fvdl 	fs = ip->i_fs;
    130  1.62      fvdl 
    131  1.37       chs #ifdef UVM_PAGE_TRKOWN
    132  1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    133  1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    134  1.37       chs 		struct vm_page *pg;
    135  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    136  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    137  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    138  1.37       chs 
    139  1.37       chs 		simple_lock(&uobj->vmobjlock);
    140  1.37       chs 		while (off < endoff) {
    141  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    142  1.37       chs 			KASSERT(pg != NULL);
    143  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    144  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    145  1.37       chs 			off += PAGE_SIZE;
    146  1.37       chs 		}
    147  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    148  1.37       chs 	}
    149  1.37       chs #endif
    150  1.37       chs 
    151   1.1   mycroft 	*bnp = 0;
    152   1.1   mycroft #ifdef DIAGNOSTIC
    153   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    154  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    155   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    156   1.1   mycroft 		panic("ffs_alloc: bad size");
    157   1.1   mycroft 	}
    158   1.1   mycroft 	if (cred == NOCRED)
    159  1.56    provos 		panic("ffs_alloc: missing credential");
    160   1.1   mycroft #endif /* DIAGNOSTIC */
    161   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    162   1.1   mycroft 		goto nospace;
    163   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    164   1.1   mycroft 		goto nospace;
    165   1.1   mycroft #ifdef QUOTA
    166  1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    167   1.1   mycroft 		return (error);
    168   1.1   mycroft #endif
    169   1.1   mycroft 	if (bpref >= fs->fs_size)
    170   1.1   mycroft 		bpref = 0;
    171   1.1   mycroft 	if (bpref == 0)
    172   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    173   1.1   mycroft 	else
    174   1.1   mycroft 		cg = dtog(fs, bpref);
    175  1.58      fvdl 	bno = ffs_hashalloc(ip, cg, (long)bpref, size,
    176   1.9  christos 	    			     ffs_alloccg);
    177   1.1   mycroft 	if (bno > 0) {
    178  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    179   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    180   1.1   mycroft 		*bnp = bno;
    181   1.1   mycroft 		return (0);
    182   1.1   mycroft 	}
    183   1.1   mycroft #ifdef QUOTA
    184   1.1   mycroft 	/*
    185   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    186   1.1   mycroft 	 */
    187  1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    188   1.1   mycroft #endif
    189   1.1   mycroft nospace:
    190   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    191   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    192   1.1   mycroft 	return (ENOSPC);
    193   1.1   mycroft }
    194   1.1   mycroft 
    195   1.1   mycroft /*
    196   1.1   mycroft  * Reallocate a fragment to a bigger size
    197   1.1   mycroft  *
    198   1.1   mycroft  * The number and size of the old block is given, and a preference
    199   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    200   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    201   1.1   mycroft  * invoked to get an appropriate block.
    202   1.1   mycroft  */
    203   1.9  christos int
    204  1.37       chs ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    205  1.33  augustss 	struct inode *ip;
    206  1.58      fvdl 	daddr_t lbprev;
    207  1.58      fvdl 	daddr_t bpref;
    208   1.1   mycroft 	int osize, nsize;
    209   1.1   mycroft 	struct ucred *cred;
    210   1.1   mycroft 	struct buf **bpp;
    211  1.58      fvdl 	daddr_t *blknop;
    212   1.1   mycroft {
    213  1.62      fvdl 	struct fs *fs;
    214   1.1   mycroft 	struct buf *bp;
    215   1.1   mycroft 	int cg, request, error;
    216  1.58      fvdl 	daddr_t bprev, bno;
    217  1.25   thorpej 
    218  1.62      fvdl 	fs = ip->i_fs;
    219  1.37       chs #ifdef UVM_PAGE_TRKOWN
    220  1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    221  1.37       chs 		struct vm_page *pg;
    222  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    223  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    224  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    225  1.37       chs 
    226  1.37       chs 		simple_lock(&uobj->vmobjlock);
    227  1.37       chs 		while (off < endoff) {
    228  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    229  1.37       chs 			KASSERT(pg != NULL);
    230  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    231  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    232  1.37       chs 			off += PAGE_SIZE;
    233  1.37       chs 		}
    234  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    235  1.37       chs 	}
    236  1.37       chs #endif
    237  1.37       chs 
    238   1.1   mycroft #ifdef DIAGNOSTIC
    239   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    240   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    241  1.13  christos 		printf(
    242   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    243   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    244   1.1   mycroft 		panic("ffs_realloccg: bad size");
    245   1.1   mycroft 	}
    246   1.1   mycroft 	if (cred == NOCRED)
    247  1.56    provos 		panic("ffs_realloccg: missing credential");
    248   1.1   mycroft #endif /* DIAGNOSTIC */
    249   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    250   1.1   mycroft 		goto nospace;
    251  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    252  1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    253  1.60      fvdl 	else
    254  1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    255  1.60      fvdl 
    256  1.60      fvdl 	if (bprev == 0) {
    257  1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    258  1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    259   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    260   1.1   mycroft 	}
    261   1.1   mycroft 	/*
    262   1.1   mycroft 	 * Allocate the extra space in the buffer.
    263   1.1   mycroft 	 */
    264  1.37       chs 	if (bpp != NULL &&
    265  1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    266   1.1   mycroft 		brelse(bp);
    267   1.1   mycroft 		return (error);
    268   1.1   mycroft 	}
    269   1.1   mycroft #ifdef QUOTA
    270  1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    271  1.44       chs 		if (bpp != NULL) {
    272  1.44       chs 			brelse(bp);
    273  1.44       chs 		}
    274   1.1   mycroft 		return (error);
    275   1.1   mycroft 	}
    276   1.1   mycroft #endif
    277   1.1   mycroft 	/*
    278   1.1   mycroft 	 * Check for extension in the existing location.
    279   1.1   mycroft 	 */
    280   1.1   mycroft 	cg = dtog(fs, bprev);
    281  1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    282  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    283   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    284  1.37       chs 
    285  1.37       chs 		if (bpp != NULL) {
    286  1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    287  1.37       chs 				panic("bad blockno");
    288  1.72        pk 			allocbuf(bp, nsize, 1);
    289  1.37       chs 			bp->b_flags |= B_DONE;
    290  1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    291  1.37       chs 			*bpp = bp;
    292  1.37       chs 		}
    293  1.37       chs 		if (blknop != NULL) {
    294  1.37       chs 			*blknop = bno;
    295  1.37       chs 		}
    296   1.1   mycroft 		return (0);
    297   1.1   mycroft 	}
    298   1.1   mycroft 	/*
    299   1.1   mycroft 	 * Allocate a new disk location.
    300   1.1   mycroft 	 */
    301   1.1   mycroft 	if (bpref >= fs->fs_size)
    302   1.1   mycroft 		bpref = 0;
    303   1.1   mycroft 	switch ((int)fs->fs_optim) {
    304   1.1   mycroft 	case FS_OPTSPACE:
    305   1.1   mycroft 		/*
    306   1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    307   1.1   mycroft 		 * best use of space, we will waste time relocating it if
    308   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    309   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    310   1.1   mycroft 		 * to begin optimizing for time.
    311   1.1   mycroft 		 */
    312   1.1   mycroft 		request = nsize;
    313   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    314   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    315   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    316   1.1   mycroft 			break;
    317  1.34  jdolecek 
    318  1.34  jdolecek 		if (ffs_log_changeopt) {
    319  1.34  jdolecek 			log(LOG_NOTICE,
    320  1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    321  1.34  jdolecek 				fs->fs_fsmnt);
    322  1.34  jdolecek 		}
    323  1.34  jdolecek 
    324   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    325   1.1   mycroft 		break;
    326   1.1   mycroft 	case FS_OPTTIME:
    327   1.1   mycroft 		/*
    328   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    329   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    330   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    331   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    332   1.1   mycroft 		 * above will be able to grow it in place without further
    333   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    334   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    335   1.1   mycroft 		 * optimizing for space.
    336   1.1   mycroft 		 */
    337   1.1   mycroft 		request = fs->fs_bsize;
    338   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    339   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    340   1.1   mycroft 			break;
    341  1.34  jdolecek 
    342  1.34  jdolecek 		if (ffs_log_changeopt) {
    343  1.34  jdolecek 			log(LOG_NOTICE,
    344  1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    345  1.34  jdolecek 				fs->fs_fsmnt);
    346  1.34  jdolecek 		}
    347  1.34  jdolecek 
    348   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    349   1.1   mycroft 		break;
    350   1.1   mycroft 	default:
    351  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    352   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    353   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    354   1.1   mycroft 		/* NOTREACHED */
    355   1.1   mycroft 	}
    356  1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    357   1.1   mycroft 	if (bno > 0) {
    358  1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    359  1.30      fvdl 			ffs_blkfree(ip, bprev, (long)osize);
    360   1.1   mycroft 		if (nsize < request)
    361   1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    362   1.1   mycroft 			    (long)(request - nsize));
    363  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    364   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    365  1.37       chs 		if (bpp != NULL) {
    366  1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    367  1.72        pk 			allocbuf(bp, nsize, 1);
    368  1.37       chs 			bp->b_flags |= B_DONE;
    369  1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    370  1.37       chs 			*bpp = bp;
    371  1.37       chs 		}
    372  1.37       chs 		if (blknop != NULL) {
    373  1.37       chs 			*blknop = bno;
    374  1.37       chs 		}
    375   1.1   mycroft 		return (0);
    376   1.1   mycroft 	}
    377   1.1   mycroft #ifdef QUOTA
    378   1.1   mycroft 	/*
    379   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    380   1.1   mycroft 	 */
    381  1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    382   1.1   mycroft #endif
    383  1.37       chs 	if (bpp != NULL) {
    384  1.37       chs 		brelse(bp);
    385  1.37       chs 	}
    386  1.37       chs 
    387   1.1   mycroft nospace:
    388   1.1   mycroft 	/*
    389   1.1   mycroft 	 * no space available
    390   1.1   mycroft 	 */
    391   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    392   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    393   1.1   mycroft 	return (ENOSPC);
    394   1.1   mycroft }
    395   1.1   mycroft 
    396   1.1   mycroft /*
    397   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    398   1.1   mycroft  *
    399   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    400   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    401  1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    402  1.60      fvdl  * from the end of the allocation for the logical block immediately
    403  1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    404  1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    405  1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    406  1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    407  1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    408  1.60      fvdl  * allocation will be used.
    409  1.60      fvdl 
    410   1.1   mycroft  */
    411  1.55      matt #ifdef XXXUBC
    412   1.3   mycroft #ifdef DEBUG
    413   1.1   mycroft #include <sys/sysctl.h>
    414   1.5   mycroft int prtrealloc = 0;
    415   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    416   1.1   mycroft #endif
    417  1.55      matt #endif
    418   1.1   mycroft 
    419  1.60      fvdl /*
    420  1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    421  1.60      fvdl  */
    422  1.60      fvdl 
    423  1.18      fvdl int doasyncfree = 1;
    424  1.18      fvdl 
    425   1.1   mycroft int
    426   1.9  christos ffs_reallocblks(v)
    427   1.9  christos 	void *v;
    428   1.9  christos {
    429  1.55      matt #ifdef XXXUBC
    430   1.1   mycroft 	struct vop_reallocblks_args /* {
    431   1.1   mycroft 		struct vnode *a_vp;
    432   1.1   mycroft 		struct cluster_save *a_buflist;
    433   1.9  christos 	} */ *ap = v;
    434   1.1   mycroft 	struct fs *fs;
    435   1.1   mycroft 	struct inode *ip;
    436   1.1   mycroft 	struct vnode *vp;
    437   1.1   mycroft 	struct buf *sbp, *ebp;
    438  1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    439   1.1   mycroft 	struct cluster_save *buflist;
    440  1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    441   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    442   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    443  1.55      matt #endif /* XXXUBC */
    444   1.1   mycroft 
    445  1.37       chs 	/* XXXUBC don't reallocblks for now */
    446  1.37       chs 	return ENOSPC;
    447  1.37       chs 
    448  1.55      matt #ifdef XXXUBC
    449   1.1   mycroft 	vp = ap->a_vp;
    450   1.1   mycroft 	ip = VTOI(vp);
    451   1.1   mycroft 	fs = ip->i_fs;
    452   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    453   1.1   mycroft 		return (ENOSPC);
    454   1.1   mycroft 	buflist = ap->a_buflist;
    455   1.1   mycroft 	len = buflist->bs_nchildren;
    456   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    457   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    458   1.1   mycroft #ifdef DIAGNOSTIC
    459  1.18      fvdl 	for (i = 0; i < len; i++)
    460  1.18      fvdl 		if (!ffs_checkblk(ip,
    461  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    462  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    463   1.1   mycroft 	for (i = 1; i < len; i++)
    464   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    465  1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    466  1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    467  1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    468  1.18      fvdl 	for (i = 1; i < len - 1; i++)
    469  1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    470  1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    471   1.1   mycroft #endif
    472   1.1   mycroft 	/*
    473   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    474   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    475   1.1   mycroft 	 * the previous cylinder group.
    476   1.1   mycroft 	 */
    477   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    478   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    479   1.1   mycroft 		return (ENOSPC);
    480   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    481   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    482   1.1   mycroft 		return (ENOSPC);
    483   1.1   mycroft 	/*
    484   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    485   1.1   mycroft 	 */
    486   1.1   mycroft 	if (start_lvl == 0) {
    487  1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    488   1.1   mycroft 		soff = start_lbn;
    489   1.1   mycroft 	} else {
    490   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    491   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    492   1.1   mycroft 			brelse(sbp);
    493   1.1   mycroft 			return (ENOSPC);
    494   1.1   mycroft 		}
    495  1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    496   1.1   mycroft 		soff = idp->in_off;
    497   1.1   mycroft 	}
    498   1.1   mycroft 	/*
    499   1.1   mycroft 	 * Find the preferred location for the cluster.
    500   1.1   mycroft 	 */
    501   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    502   1.1   mycroft 	/*
    503   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    504   1.1   mycroft 	 */
    505   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    506   1.1   mycroft 		ssize = len;
    507   1.1   mycroft 	} else {
    508   1.1   mycroft #ifdef DIAGNOSTIC
    509   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    510   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    511   1.1   mycroft #endif
    512   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    513   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    514   1.1   mycroft 			goto fail;
    515  1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    516   1.1   mycroft 	}
    517   1.1   mycroft 	/*
    518   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    519   1.1   mycroft 	 */
    520  1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    521   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    522   1.1   mycroft 		goto fail;
    523   1.1   mycroft 	/*
    524   1.1   mycroft 	 * We have found a new contiguous block.
    525   1.1   mycroft 	 *
    526   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    527   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    528   1.1   mycroft 	 * with the file.
    529   1.1   mycroft 	 */
    530   1.5   mycroft #ifdef DEBUG
    531   1.5   mycroft 	if (prtrealloc)
    532  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    533   1.5   mycroft 		    start_lbn, end_lbn);
    534   1.5   mycroft #endif
    535   1.1   mycroft 	blkno = newblk;
    536   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    537  1.58      fvdl 		daddr_t ba;
    538  1.30      fvdl 
    539  1.30      fvdl 		if (i == ssize) {
    540   1.1   mycroft 			bap = ebap;
    541  1.30      fvdl 			soff = -i;
    542  1.30      fvdl 		}
    543  1.58      fvdl 		/* XXX ondisk32 */
    544  1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    545   1.1   mycroft #ifdef DIAGNOSTIC
    546  1.18      fvdl 		if (!ffs_checkblk(ip,
    547  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    548  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    549  1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    550   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    551   1.1   mycroft #endif
    552   1.5   mycroft #ifdef DEBUG
    553   1.5   mycroft 		if (prtrealloc)
    554  1.30      fvdl 			printf(" %d,", ba);
    555   1.5   mycroft #endif
    556  1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    557  1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    558  1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    559  1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    560  1.30      fvdl  				    buflist->bs_children[i]);
    561  1.30      fvdl  			else
    562  1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    563  1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    564  1.30      fvdl  				    ba, buflist->bs_children[i]);
    565  1.30      fvdl  		}
    566  1.58      fvdl 		/* XXX ondisk32 */
    567  1.58      fvdl 		*bap++ = ufs_rw32((int32_t)blkno, UFS_FSNEEDSWAP(fs));
    568   1.1   mycroft 	}
    569   1.1   mycroft 	/*
    570   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    571   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    572   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    573   1.1   mycroft 	 * they are almost never written, but if we are concerned about
    574   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    575   1.1   mycroft 	 *
    576   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    577   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    578   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    579   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    580   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    581   1.1   mycroft 	 * synchronous write only when it has been cleared.
    582   1.1   mycroft 	 */
    583  1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    584   1.1   mycroft 		if (doasyncfree)
    585   1.1   mycroft 			bdwrite(sbp);
    586   1.1   mycroft 		else
    587   1.1   mycroft 			bwrite(sbp);
    588   1.1   mycroft 	} else {
    589   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    590  1.28   mycroft 		if (!doasyncfree)
    591  1.28   mycroft 			VOP_UPDATE(vp, NULL, NULL, 1);
    592   1.1   mycroft 	}
    593  1.25   thorpej 	if (ssize < len) {
    594   1.1   mycroft 		if (doasyncfree)
    595   1.1   mycroft 			bdwrite(ebp);
    596   1.1   mycroft 		else
    597   1.1   mycroft 			bwrite(ebp);
    598  1.25   thorpej 	}
    599   1.1   mycroft 	/*
    600   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    601   1.1   mycroft 	 */
    602   1.5   mycroft #ifdef DEBUG
    603   1.5   mycroft 	if (prtrealloc)
    604  1.13  christos 		printf("\n\tnew:");
    605   1.5   mycroft #endif
    606   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    607  1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    608  1.30      fvdl 			ffs_blkfree(ip,
    609  1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    610  1.30      fvdl 			    fs->fs_bsize);
    611   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    612   1.5   mycroft #ifdef DEBUG
    613  1.18      fvdl 		if (!ffs_checkblk(ip,
    614  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    615  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    616   1.5   mycroft 		if (prtrealloc)
    617  1.13  christos 			printf(" %d,", blkno);
    618   1.5   mycroft #endif
    619   1.5   mycroft 	}
    620   1.5   mycroft #ifdef DEBUG
    621   1.5   mycroft 	if (prtrealloc) {
    622   1.5   mycroft 		prtrealloc--;
    623  1.13  christos 		printf("\n");
    624   1.1   mycroft 	}
    625   1.5   mycroft #endif
    626   1.1   mycroft 	return (0);
    627   1.1   mycroft 
    628   1.1   mycroft fail:
    629   1.1   mycroft 	if (ssize < len)
    630   1.1   mycroft 		brelse(ebp);
    631  1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    632   1.1   mycroft 		brelse(sbp);
    633   1.1   mycroft 	return (ENOSPC);
    634  1.55      matt #endif /* XXXUBC */
    635   1.1   mycroft }
    636   1.1   mycroft 
    637   1.1   mycroft /*
    638   1.1   mycroft  * Allocate an inode in the file system.
    639   1.1   mycroft  *
    640   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    641   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    642   1.1   mycroft  *   1) allocate the preferred inode.
    643   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    644   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    645   1.1   mycroft  *      available inode is located.
    646  1.47       wiz  * If no inode preference is given the following hierarchy is used
    647   1.1   mycroft  * to allocate an inode:
    648   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    649   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    650   1.1   mycroft  *      available inode is located.
    651   1.1   mycroft  */
    652   1.9  christos int
    653   1.9  christos ffs_valloc(v)
    654   1.9  christos 	void *v;
    655   1.9  christos {
    656   1.1   mycroft 	struct vop_valloc_args /* {
    657   1.1   mycroft 		struct vnode *a_pvp;
    658   1.1   mycroft 		int a_mode;
    659   1.1   mycroft 		struct ucred *a_cred;
    660   1.1   mycroft 		struct vnode **a_vpp;
    661   1.9  christos 	} */ *ap = v;
    662  1.33  augustss 	struct vnode *pvp = ap->a_pvp;
    663  1.33  augustss 	struct inode *pip;
    664  1.33  augustss 	struct fs *fs;
    665  1.33  augustss 	struct inode *ip;
    666  1.60      fvdl 	struct timespec ts;
    667   1.1   mycroft 	mode_t mode = ap->a_mode;
    668   1.1   mycroft 	ino_t ino, ipref;
    669   1.1   mycroft 	int cg, error;
    670   1.1   mycroft 
    671   1.1   mycroft 	*ap->a_vpp = NULL;
    672   1.1   mycroft 	pip = VTOI(pvp);
    673   1.1   mycroft 	fs = pip->i_fs;
    674   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    675   1.1   mycroft 		goto noinodes;
    676   1.1   mycroft 
    677   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    678  1.50     lukem 		ipref = ffs_dirpref(pip);
    679  1.50     lukem 	else
    680  1.50     lukem 		ipref = pip->i_number;
    681   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    682   1.1   mycroft 		ipref = 0;
    683   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    684  1.50     lukem 	/*
    685  1.50     lukem 	 * Track number of dirs created one after another
    686  1.50     lukem 	 * in a same cg without intervening by files.
    687  1.50     lukem 	 */
    688  1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    689  1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    690  1.50     lukem 			fs->fs_contigdirs[cg]++;
    691  1.50     lukem 	} else {
    692  1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    693  1.50     lukem 			fs->fs_contigdirs[cg]--;
    694  1.50     lukem 	}
    695  1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    696   1.1   mycroft 	if (ino == 0)
    697   1.1   mycroft 		goto noinodes;
    698  1.67   thorpej 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    699   1.1   mycroft 	if (error) {
    700   1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    701   1.1   mycroft 		return (error);
    702   1.1   mycroft 	}
    703   1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    704  1.60      fvdl 	if (ip->i_mode) {
    705  1.60      fvdl #if 0
    706  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    707  1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    708  1.60      fvdl #else
    709  1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    710  1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    711  1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    712  1.60      fvdl 		printf("size %llx blocks %llx\n",
    713  1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    714  1.60      fvdl 		printf("ino %u ipref %u\n", ino, ipref);
    715  1.60      fvdl #if 0
    716  1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    717  1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    718  1.60      fvdl #endif
    719  1.60      fvdl 
    720  1.60      fvdl #endif
    721   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    722   1.1   mycroft 	}
    723  1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    724  1.60      fvdl 		printf("free inode %s/%d had %" PRId64 " blocks\n",
    725  1.60      fvdl 		    fs->fs_fsmnt, ino, DIP(ip, blocks));
    726  1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    727   1.1   mycroft 	}
    728  1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    729  1.61      fvdl 	ip->i_flags = 0;
    730  1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    731   1.1   mycroft 	/*
    732   1.1   mycroft 	 * Set up a new generation number for this inode.
    733   1.1   mycroft 	 */
    734  1.60      fvdl 	ip->i_gen++;
    735  1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    736  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    737  1.60      fvdl 		TIMEVAL_TO_TIMESPEC(&time, &ts);
    738  1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    739  1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    740  1.60      fvdl 	}
    741   1.1   mycroft 	return (0);
    742   1.1   mycroft noinodes:
    743   1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    744   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    745   1.1   mycroft 	return (ENOSPC);
    746   1.1   mycroft }
    747   1.1   mycroft 
    748   1.1   mycroft /*
    749  1.50     lukem  * Find a cylinder group in which to place a directory.
    750  1.42  sommerfe  *
    751  1.50     lukem  * The policy implemented by this algorithm is to allocate a
    752  1.50     lukem  * directory inode in the same cylinder group as its parent
    753  1.50     lukem  * directory, but also to reserve space for its files inodes
    754  1.50     lukem  * and data. Restrict the number of directories which may be
    755  1.50     lukem  * allocated one after another in the same cylinder group
    756  1.50     lukem  * without intervening allocation of files.
    757  1.42  sommerfe  *
    758  1.50     lukem  * If we allocate a first level directory then force allocation
    759  1.50     lukem  * in another cylinder group.
    760   1.1   mycroft  */
    761   1.1   mycroft static ino_t
    762  1.50     lukem ffs_dirpref(pip)
    763  1.50     lukem 	struct inode *pip;
    764   1.1   mycroft {
    765  1.50     lukem 	register struct fs *fs;
    766  1.74     soren 	int cg, prefcg;
    767  1.74     soren 	int64_t dirsize, cgsize;
    768  1.50     lukem 	int avgifree, avgbfree, avgndir, curdirsize;
    769  1.50     lukem 	int minifree, minbfree, maxndir;
    770  1.50     lukem 	int mincg, minndir;
    771  1.50     lukem 	int maxcontigdirs;
    772  1.50     lukem 
    773  1.50     lukem 	fs = pip->i_fs;
    774   1.1   mycroft 
    775   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    776  1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    777  1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    778  1.50     lukem 
    779  1.50     lukem 	/*
    780  1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    781  1.50     lukem 	 */
    782  1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    783  1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    784  1.50     lukem 		mincg = prefcg;
    785  1.50     lukem 		minndir = fs->fs_ipg;
    786  1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    787  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    788  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    789  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    790  1.42  sommerfe 				mincg = cg;
    791  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    792  1.42  sommerfe 			}
    793  1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    794  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    795  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    796  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    797  1.50     lukem 				mincg = cg;
    798  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    799  1.42  sommerfe 			}
    800  1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    801  1.42  sommerfe 	}
    802  1.50     lukem 
    803  1.50     lukem 	/*
    804  1.50     lukem 	 * Count various limits which used for
    805  1.50     lukem 	 * optimal allocation of a directory inode.
    806  1.50     lukem 	 */
    807  1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    808  1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    809  1.50     lukem 	if (minifree < 0)
    810  1.50     lukem 		minifree = 0;
    811  1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    812  1.50     lukem 	if (minbfree < 0)
    813  1.50     lukem 		minbfree = 0;
    814  1.50     lukem 	cgsize = fs->fs_fsize * fs->fs_fpg;
    815  1.50     lukem 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
    816  1.50     lukem 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
    817  1.50     lukem 	if (dirsize < curdirsize)
    818  1.50     lukem 		dirsize = curdirsize;
    819  1.50     lukem 	maxcontigdirs = min(cgsize / dirsize, 255);
    820  1.50     lukem 	if (fs->fs_avgfpdir > 0)
    821  1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    822  1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    823  1.50     lukem 	if (maxcontigdirs == 0)
    824  1.50     lukem 		maxcontigdirs = 1;
    825  1.50     lukem 
    826  1.50     lukem 	/*
    827  1.50     lukem 	 * Limit number of dirs in one cg and reserve space for
    828  1.50     lukem 	 * regular files, but only if we have no deficit in
    829  1.50     lukem 	 * inodes or space.
    830  1.50     lukem 	 */
    831  1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    832  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    833  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    834  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    835  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    836  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    837  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    838  1.50     lukem 		}
    839  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    840  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    841  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    842  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    843  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    844  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    845  1.50     lukem 		}
    846  1.50     lukem 	/*
    847  1.50     lukem 	 * This is a backstop when we are deficient in space.
    848  1.50     lukem 	 */
    849  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    850  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    851  1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    852  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    853  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    854  1.50     lukem 			break;
    855  1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    856   1.1   mycroft }
    857   1.1   mycroft 
    858   1.1   mycroft /*
    859   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    860   1.1   mycroft  * logically divided into sections. The first section is composed of the
    861   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    862   1.1   mycroft  *
    863   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    864   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    865   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    866   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    867   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    868   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    869   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    870   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    871   1.1   mycroft  * continues until a cylinder group with greater than the average number
    872   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    873   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    874   1.1   mycroft  * here a best guess is made based upon the logical block number being
    875   1.1   mycroft  * allocated.
    876   1.1   mycroft  *
    877   1.1   mycroft  * If a section is already partially allocated, the policy is to
    878   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    879  1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    880  1.60      fvdl  * contigously if possible.
    881   1.1   mycroft  */
    882  1.58      fvdl daddr_t
    883  1.60      fvdl ffs_blkpref_ufs1(ip, lbn, indx, bap)
    884   1.1   mycroft 	struct inode *ip;
    885  1.58      fvdl 	daddr_t lbn;
    886   1.1   mycroft 	int indx;
    887  1.58      fvdl 	int32_t *bap;	/* XXX ondisk32 */
    888   1.1   mycroft {
    889  1.33  augustss 	struct fs *fs;
    890  1.33  augustss 	int cg;
    891   1.1   mycroft 	int avgbfree, startcg;
    892   1.1   mycroft 
    893   1.1   mycroft 	fs = ip->i_fs;
    894   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    895  1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    896   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    897   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    898   1.1   mycroft 		}
    899   1.1   mycroft 		/*
    900   1.1   mycroft 		 * Find a cylinder with greater than average number of
    901   1.1   mycroft 		 * unused data blocks.
    902   1.1   mycroft 		 */
    903   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    904   1.1   mycroft 			startcg =
    905   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    906   1.1   mycroft 		else
    907  1.19    bouyer 			startcg = dtog(fs,
    908  1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    909   1.1   mycroft 		startcg %= fs->fs_ncg;
    910   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    911   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    912   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    913   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    914   1.1   mycroft 			}
    915  1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    916   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    917   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    918   1.1   mycroft 			}
    919  1.35   thorpej 		return (0);
    920   1.1   mycroft 	}
    921   1.1   mycroft 	/*
    922  1.60      fvdl 	 * We just always try to lay things out contiguously.
    923  1.60      fvdl 	 */
    924  1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    925  1.60      fvdl }
    926  1.60      fvdl 
    927  1.60      fvdl daddr_t
    928  1.60      fvdl ffs_blkpref_ufs2(ip, lbn, indx, bap)
    929  1.60      fvdl 	struct inode *ip;
    930  1.60      fvdl 	daddr_t lbn;
    931  1.60      fvdl 	int indx;
    932  1.60      fvdl 	int64_t *bap;
    933  1.60      fvdl {
    934  1.60      fvdl 	struct fs *fs;
    935  1.60      fvdl 	int cg;
    936  1.60      fvdl 	int avgbfree, startcg;
    937  1.60      fvdl 
    938  1.60      fvdl 	fs = ip->i_fs;
    939  1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    940  1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    941  1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    942  1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    943  1.60      fvdl 		}
    944   1.1   mycroft 		/*
    945  1.60      fvdl 		 * Find a cylinder with greater than average number of
    946  1.60      fvdl 		 * unused data blocks.
    947   1.1   mycroft 		 */
    948  1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    949  1.60      fvdl 			startcg =
    950  1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    951  1.60      fvdl 		else
    952  1.60      fvdl 			startcg = dtog(fs,
    953  1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    954  1.60      fvdl 		startcg %= fs->fs_ncg;
    955  1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    956  1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    957  1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    958  1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    959  1.60      fvdl 			}
    960  1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    961  1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    962  1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    963  1.60      fvdl 			}
    964  1.60      fvdl 		return (0);
    965  1.60      fvdl 	}
    966  1.60      fvdl 	/*
    967  1.60      fvdl 	 * We just always try to lay things out contiguously.
    968  1.60      fvdl 	 */
    969  1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    970   1.1   mycroft }
    971   1.1   mycroft 
    972  1.60      fvdl 
    973   1.1   mycroft /*
    974   1.1   mycroft  * Implement the cylinder overflow algorithm.
    975   1.1   mycroft  *
    976   1.1   mycroft  * The policy implemented by this algorithm is:
    977   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    978   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    979   1.1   mycroft  *   3) brute force search for a free block.
    980   1.1   mycroft  */
    981   1.1   mycroft /*VARARGS5*/
    982  1.58      fvdl static daddr_t
    983   1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    984   1.1   mycroft 	struct inode *ip;
    985   1.1   mycroft 	int cg;
    986  1.58      fvdl 	daddr_t pref;
    987   1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    988  1.58      fvdl 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    989   1.1   mycroft {
    990  1.33  augustss 	struct fs *fs;
    991  1.58      fvdl 	daddr_t result;
    992   1.1   mycroft 	int i, icg = cg;
    993   1.1   mycroft 
    994   1.1   mycroft 	fs = ip->i_fs;
    995   1.1   mycroft 	/*
    996   1.1   mycroft 	 * 1: preferred cylinder group
    997   1.1   mycroft 	 */
    998   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    999   1.1   mycroft 	if (result)
   1000   1.1   mycroft 		return (result);
   1001   1.1   mycroft 	/*
   1002   1.1   mycroft 	 * 2: quadratic rehash
   1003   1.1   mycroft 	 */
   1004   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1005   1.1   mycroft 		cg += i;
   1006   1.1   mycroft 		if (cg >= fs->fs_ncg)
   1007   1.1   mycroft 			cg -= fs->fs_ncg;
   1008   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1009   1.1   mycroft 		if (result)
   1010   1.1   mycroft 			return (result);
   1011   1.1   mycroft 	}
   1012   1.1   mycroft 	/*
   1013   1.1   mycroft 	 * 3: brute force search
   1014   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1015   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1016   1.1   mycroft 	 */
   1017   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1018   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1019   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1020   1.1   mycroft 		if (result)
   1021   1.1   mycroft 			return (result);
   1022   1.1   mycroft 		cg++;
   1023   1.1   mycroft 		if (cg == fs->fs_ncg)
   1024   1.1   mycroft 			cg = 0;
   1025   1.1   mycroft 	}
   1026  1.35   thorpej 	return (0);
   1027   1.1   mycroft }
   1028   1.1   mycroft 
   1029   1.1   mycroft /*
   1030   1.1   mycroft  * Determine whether a fragment can be extended.
   1031   1.1   mycroft  *
   1032   1.1   mycroft  * Check to see if the necessary fragments are available, and
   1033   1.1   mycroft  * if they are, allocate them.
   1034   1.1   mycroft  */
   1035  1.58      fvdl static daddr_t
   1036   1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
   1037   1.1   mycroft 	struct inode *ip;
   1038   1.1   mycroft 	int cg;
   1039  1.58      fvdl 	daddr_t bprev;
   1040   1.1   mycroft 	int osize, nsize;
   1041   1.1   mycroft {
   1042  1.33  augustss 	struct fs *fs;
   1043  1.33  augustss 	struct cg *cgp;
   1044   1.1   mycroft 	struct buf *bp;
   1045  1.58      fvdl 	daddr_t bno;
   1046   1.1   mycroft 	int frags, bbase;
   1047   1.1   mycroft 	int i, error;
   1048  1.62      fvdl 	u_int8_t *blksfree;
   1049   1.1   mycroft 
   1050   1.1   mycroft 	fs = ip->i_fs;
   1051   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1052  1.35   thorpej 		return (0);
   1053   1.1   mycroft 	frags = numfrags(fs, nsize);
   1054   1.1   mycroft 	bbase = fragnum(fs, bprev);
   1055   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1056   1.1   mycroft 		/* cannot extend across a block boundary */
   1057  1.35   thorpej 		return (0);
   1058   1.1   mycroft 	}
   1059   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1060   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1061   1.1   mycroft 	if (error) {
   1062   1.1   mycroft 		brelse(bp);
   1063  1.35   thorpej 		return (0);
   1064   1.1   mycroft 	}
   1065   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1066  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1067   1.1   mycroft 		brelse(bp);
   1068  1.35   thorpej 		return (0);
   1069   1.1   mycroft 	}
   1070  1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1071  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1072  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1073  1.73       dbj 		cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
   1074   1.1   mycroft 	bno = dtogd(fs, bprev);
   1075  1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1076   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1077  1.62      fvdl 		if (isclr(blksfree, bno + i)) {
   1078   1.1   mycroft 			brelse(bp);
   1079  1.35   thorpej 			return (0);
   1080   1.1   mycroft 		}
   1081   1.1   mycroft 	/*
   1082   1.1   mycroft 	 * the current fragment can be extended
   1083   1.1   mycroft 	 * deduct the count on fragment being extended into
   1084   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1085   1.1   mycroft 	 * allocate the extended piece
   1086   1.1   mycroft 	 */
   1087   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1088  1.62      fvdl 		if (isclr(blksfree, bno + i))
   1089   1.1   mycroft 			break;
   1090  1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1091   1.1   mycroft 	if (i != frags)
   1092  1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1093   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1094  1.62      fvdl 		clrbit(blksfree, bno + i);
   1095  1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1096   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1097   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1098   1.1   mycroft 	}
   1099   1.1   mycroft 	fs->fs_fmod = 1;
   1100  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1101  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1102   1.1   mycroft 	bdwrite(bp);
   1103   1.1   mycroft 	return (bprev);
   1104   1.1   mycroft }
   1105   1.1   mycroft 
   1106   1.1   mycroft /*
   1107   1.1   mycroft  * Determine whether a block can be allocated.
   1108   1.1   mycroft  *
   1109   1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1110   1.1   mycroft  * and if it is, allocate it.
   1111   1.1   mycroft  */
   1112  1.58      fvdl static daddr_t
   1113   1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
   1114   1.1   mycroft 	struct inode *ip;
   1115   1.1   mycroft 	int cg;
   1116  1.58      fvdl 	daddr_t bpref;
   1117   1.1   mycroft 	int size;
   1118   1.1   mycroft {
   1119  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1120  1.30      fvdl 	struct cg *cgp;
   1121   1.1   mycroft 	struct buf *bp;
   1122  1.60      fvdl 	int32_t bno;
   1123  1.60      fvdl 	daddr_t blkno;
   1124  1.30      fvdl 	int error, frags, allocsiz, i;
   1125  1.62      fvdl 	u_int8_t *blksfree;
   1126  1.30      fvdl #ifdef FFS_EI
   1127  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1128  1.30      fvdl #endif
   1129   1.1   mycroft 
   1130   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1131  1.35   thorpej 		return (0);
   1132   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1133   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1134   1.1   mycroft 	if (error) {
   1135   1.1   mycroft 		brelse(bp);
   1136  1.35   thorpej 		return (0);
   1137   1.1   mycroft 	}
   1138   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1139  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1140   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1141   1.1   mycroft 		brelse(bp);
   1142  1.35   thorpej 		return (0);
   1143   1.1   mycroft 	}
   1144  1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1145  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1146  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1147  1.73       dbj 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1148   1.1   mycroft 	if (size == fs->fs_bsize) {
   1149  1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1150   1.1   mycroft 		bdwrite(bp);
   1151  1.60      fvdl 		return (blkno);
   1152   1.1   mycroft 	}
   1153   1.1   mycroft 	/*
   1154   1.1   mycroft 	 * check to see if any fragments are already available
   1155   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1156   1.1   mycroft 	 * it down to a smaller size if necessary
   1157   1.1   mycroft 	 */
   1158  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1159   1.1   mycroft 	frags = numfrags(fs, size);
   1160   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1161   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1162   1.1   mycroft 			break;
   1163   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1164   1.1   mycroft 		/*
   1165   1.1   mycroft 		 * no fragments were available, so a block will be
   1166   1.1   mycroft 		 * allocated, and hacked up
   1167   1.1   mycroft 		 */
   1168   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1169   1.1   mycroft 			brelse(bp);
   1170  1.35   thorpej 			return (0);
   1171   1.1   mycroft 		}
   1172  1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1173  1.60      fvdl 		bno = dtogd(fs, blkno);
   1174   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1175  1.62      fvdl 			setbit(blksfree, bno + i);
   1176   1.1   mycroft 		i = fs->fs_frag - frags;
   1177  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1178   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1179  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1180   1.1   mycroft 		fs->fs_fmod = 1;
   1181  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1182   1.1   mycroft 		bdwrite(bp);
   1183  1.60      fvdl 		return (blkno);
   1184   1.1   mycroft 	}
   1185  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1186  1.30      fvdl #if 0
   1187  1.30      fvdl 	/*
   1188  1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1189  1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1190  1.30      fvdl 	 */
   1191   1.1   mycroft 	if (bno < 0) {
   1192   1.1   mycroft 		brelse(bp);
   1193  1.35   thorpej 		return (0);
   1194   1.1   mycroft 	}
   1195  1.30      fvdl #endif
   1196   1.1   mycroft 	for (i = 0; i < frags; i++)
   1197  1.62      fvdl 		clrbit(blksfree, bno + i);
   1198  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1199   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1200   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1201   1.1   mycroft 	fs->fs_fmod = 1;
   1202  1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1203   1.1   mycroft 	if (frags != allocsiz)
   1204  1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1205  1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1206  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1207  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1208   1.1   mycroft 	bdwrite(bp);
   1209  1.30      fvdl 	return blkno;
   1210   1.1   mycroft }
   1211   1.1   mycroft 
   1212   1.1   mycroft /*
   1213   1.1   mycroft  * Allocate a block in a cylinder group.
   1214   1.1   mycroft  *
   1215   1.1   mycroft  * This algorithm implements the following policy:
   1216   1.1   mycroft  *   1) allocate the requested block.
   1217   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1218   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1219   1.1   mycroft  *      specified cylinder group.
   1220   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1221   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1222   1.1   mycroft  */
   1223  1.58      fvdl static daddr_t
   1224  1.30      fvdl ffs_alloccgblk(ip, bp, bpref)
   1225  1.30      fvdl 	struct inode *ip;
   1226  1.30      fvdl 	struct buf *bp;
   1227  1.58      fvdl 	daddr_t bpref;
   1228   1.1   mycroft {
   1229  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1230  1.30      fvdl 	struct cg *cgp;
   1231  1.60      fvdl 	daddr_t blkno;
   1232  1.60      fvdl 	int32_t bno;
   1233  1.60      fvdl 	u_int8_t *blksfree;
   1234  1.30      fvdl #ifdef FFS_EI
   1235  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1236  1.30      fvdl #endif
   1237   1.1   mycroft 
   1238  1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1239  1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1240  1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1241  1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1242  1.60      fvdl 	} else {
   1243  1.60      fvdl 		bpref = blknum(fs, bpref);
   1244  1.60      fvdl 		bno = dtogd(fs, bpref);
   1245   1.1   mycroft 		/*
   1246  1.60      fvdl 		 * if the requested block is available, use it
   1247   1.1   mycroft 		 */
   1248  1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1249  1.60      fvdl 			goto gotit;
   1250   1.1   mycroft 	}
   1251   1.1   mycroft 	/*
   1252  1.60      fvdl 	 * Take the next available block in this cylinder group.
   1253   1.1   mycroft 	 */
   1254  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1255   1.1   mycroft 	if (bno < 0)
   1256  1.35   thorpej 		return (0);
   1257  1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1258   1.1   mycroft gotit:
   1259   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1260  1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1261  1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1262  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1263   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1264  1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1265  1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1266  1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1267  1.73       dbj 		int cylno;
   1268  1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1269  1.75       dbj 		KASSERT(cylno >= 0);
   1270  1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1271  1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1272  1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1273  1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1274  1.73       dbj 		    needswap);
   1275  1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1276  1.73       dbj 	}
   1277   1.1   mycroft 	fs->fs_fmod = 1;
   1278  1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1279  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1280  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1281  1.30      fvdl 	return (blkno);
   1282   1.1   mycroft }
   1283   1.1   mycroft 
   1284  1.55      matt #ifdef XXXUBC
   1285   1.1   mycroft /*
   1286   1.1   mycroft  * Determine whether a cluster can be allocated.
   1287   1.1   mycroft  *
   1288   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1289   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1290   1.1   mycroft  * take the first one that we find following bpref.
   1291   1.1   mycroft  */
   1292  1.60      fvdl 
   1293  1.60      fvdl /*
   1294  1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1295  1.60      fvdl  */
   1296  1.58      fvdl static daddr_t
   1297   1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1298   1.1   mycroft 	struct inode *ip;
   1299   1.1   mycroft 	int cg;
   1300  1.58      fvdl 	daddr_t bpref;
   1301   1.1   mycroft 	int len;
   1302   1.1   mycroft {
   1303  1.33  augustss 	struct fs *fs;
   1304  1.33  augustss 	struct cg *cgp;
   1305   1.1   mycroft 	struct buf *bp;
   1306  1.18      fvdl 	int i, got, run, bno, bit, map;
   1307   1.1   mycroft 	u_char *mapp;
   1308   1.5   mycroft 	int32_t *lp;
   1309   1.1   mycroft 
   1310   1.1   mycroft 	fs = ip->i_fs;
   1311   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1312  1.35   thorpej 		return (0);
   1313   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1314   1.1   mycroft 	    NOCRED, &bp))
   1315   1.1   mycroft 		goto fail;
   1316   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1317  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1318   1.1   mycroft 		goto fail;
   1319   1.1   mycroft 	/*
   1320   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1321   1.1   mycroft 	 * available in this cylinder group.
   1322   1.1   mycroft 	 */
   1323  1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1324   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1325  1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1326   1.1   mycroft 			break;
   1327   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1328   1.5   mycroft 		/*
   1329   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1330   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1331   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1332   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1333   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1334   1.5   mycroft 		 */
   1335  1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1336   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1337  1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1338   1.5   mycroft 				break;
   1339   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1340   1.1   mycroft 		goto fail;
   1341   1.5   mycroft 	}
   1342   1.1   mycroft 	/*
   1343   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1344   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1345   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1346   1.1   mycroft 	 * block allocation. We do not search before the current
   1347   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1348   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1349   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1350   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1351   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1352   1.1   mycroft 	 */
   1353   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1354   1.1   mycroft 		bpref = 0;
   1355   1.1   mycroft 	else
   1356   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1357  1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1358   1.1   mycroft 	map = *mapp++;
   1359   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1360  1.19    bouyer 	for (run = 0, got = bpref;
   1361  1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1362   1.1   mycroft 		if ((map & bit) == 0) {
   1363   1.1   mycroft 			run = 0;
   1364   1.1   mycroft 		} else {
   1365   1.1   mycroft 			run++;
   1366   1.1   mycroft 			if (run == len)
   1367   1.1   mycroft 				break;
   1368   1.1   mycroft 		}
   1369  1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1370   1.1   mycroft 			bit <<= 1;
   1371   1.1   mycroft 		} else {
   1372   1.1   mycroft 			map = *mapp++;
   1373   1.1   mycroft 			bit = 1;
   1374   1.1   mycroft 		}
   1375   1.1   mycroft 	}
   1376  1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1377   1.1   mycroft 		goto fail;
   1378   1.1   mycroft 	/*
   1379   1.1   mycroft 	 * Allocate the cluster that we have found.
   1380   1.1   mycroft 	 */
   1381  1.30      fvdl #ifdef DIAGNOSTIC
   1382  1.18      fvdl 	for (i = 1; i <= len; i++)
   1383  1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1384  1.30      fvdl 		    got - run + i))
   1385  1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1386  1.30      fvdl #endif
   1387  1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1388  1.18      fvdl 	if (dtog(fs, bno) != cg)
   1389  1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1390   1.1   mycroft 	len = blkstofrags(fs, len);
   1391   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1392  1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1393   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1394   1.8       cgd 	bdwrite(bp);
   1395   1.1   mycroft 	return (bno);
   1396   1.1   mycroft 
   1397   1.1   mycroft fail:
   1398   1.1   mycroft 	brelse(bp);
   1399   1.1   mycroft 	return (0);
   1400   1.1   mycroft }
   1401  1.55      matt #endif /* XXXUBC */
   1402   1.1   mycroft 
   1403   1.1   mycroft /*
   1404   1.1   mycroft  * Determine whether an inode can be allocated.
   1405   1.1   mycroft  *
   1406   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1407   1.1   mycroft  * allocate it using the following policy:
   1408   1.1   mycroft  *   1) allocate the requested inode.
   1409   1.1   mycroft  *   2) allocate the next available inode after the requested
   1410   1.1   mycroft  *      inode in the specified cylinder group.
   1411   1.1   mycroft  */
   1412  1.58      fvdl static daddr_t
   1413   1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1414   1.1   mycroft 	struct inode *ip;
   1415   1.1   mycroft 	int cg;
   1416  1.58      fvdl 	daddr_t ipref;
   1417   1.1   mycroft 	int mode;
   1418   1.1   mycroft {
   1419  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1420  1.33  augustss 	struct cg *cgp;
   1421  1.60      fvdl 	struct buf *bp, *ibp;
   1422  1.60      fvdl 	u_int8_t *inosused;
   1423   1.1   mycroft 	int error, start, len, loc, map, i;
   1424  1.60      fvdl 	int32_t initediblk;
   1425  1.60      fvdl 	struct ufs2_dinode *dp2;
   1426  1.19    bouyer #ifdef FFS_EI
   1427  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1428  1.19    bouyer #endif
   1429   1.1   mycroft 
   1430   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1431  1.35   thorpej 		return (0);
   1432   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1433   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1434   1.1   mycroft 	if (error) {
   1435   1.1   mycroft 		brelse(bp);
   1436  1.35   thorpej 		return (0);
   1437   1.1   mycroft 	}
   1438   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1439  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1440   1.1   mycroft 		brelse(bp);
   1441  1.35   thorpej 		return (0);
   1442   1.1   mycroft 	}
   1443  1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1444  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1445  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1446  1.73       dbj 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1447  1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1448   1.1   mycroft 	if (ipref) {
   1449   1.1   mycroft 		ipref %= fs->fs_ipg;
   1450  1.60      fvdl 		if (isclr(inosused, ipref))
   1451   1.1   mycroft 			goto gotit;
   1452   1.1   mycroft 	}
   1453  1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1454  1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1455  1.19    bouyer 		NBBY);
   1456  1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1457   1.1   mycroft 	if (loc == 0) {
   1458   1.1   mycroft 		len = start + 1;
   1459   1.1   mycroft 		start = 0;
   1460  1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1461   1.1   mycroft 		if (loc == 0) {
   1462  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1463  1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1464  1.19    bouyer 				fs->fs_fsmnt);
   1465   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1466   1.1   mycroft 			/* NOTREACHED */
   1467   1.1   mycroft 		}
   1468   1.1   mycroft 	}
   1469   1.1   mycroft 	i = start + len - loc;
   1470  1.60      fvdl 	map = inosused[i];
   1471   1.1   mycroft 	ipref = i * NBBY;
   1472   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1473   1.1   mycroft 		if ((map & i) == 0) {
   1474  1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1475   1.1   mycroft 			goto gotit;
   1476   1.1   mycroft 		}
   1477   1.1   mycroft 	}
   1478  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1479   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1480   1.1   mycroft 	/* NOTREACHED */
   1481   1.1   mycroft gotit:
   1482  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1483  1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1484  1.60      fvdl 	setbit(inosused, ipref);
   1485  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1486   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1487  1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1488   1.1   mycroft 	fs->fs_fmod = 1;
   1489   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1490  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1491   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1492   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1493   1.1   mycroft 	}
   1494  1.60      fvdl 	/*
   1495  1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1496  1.60      fvdl 	 */
   1497  1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1498  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1499  1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1500  1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1501  1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1502  1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1503  1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1504  1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1505  1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1506  1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1507  1.60      fvdl 			/*
   1508  1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1509  1.60      fvdl 			 * random, after all.
   1510  1.60      fvdl 			 */
   1511  1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1512  1.60      fvdl 			dp2++;
   1513  1.60      fvdl 		}
   1514  1.60      fvdl 		bawrite(ibp);
   1515  1.60      fvdl 		initediblk += INOPB(fs);
   1516  1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1517  1.60      fvdl 	}
   1518  1.60      fvdl 
   1519   1.1   mycroft 	bdwrite(bp);
   1520   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1521   1.1   mycroft }
   1522   1.1   mycroft 
   1523   1.1   mycroft /*
   1524   1.1   mycroft  * Free a block or fragment.
   1525   1.1   mycroft  *
   1526   1.1   mycroft  * The specified block or fragment is placed back in the
   1527   1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1528   1.1   mycroft  * block reassembly is checked.
   1529   1.1   mycroft  */
   1530   1.9  christos void
   1531   1.1   mycroft ffs_blkfree(ip, bno, size)
   1532  1.33  augustss 	struct inode *ip;
   1533  1.58      fvdl 	daddr_t bno;
   1534   1.1   mycroft 	long size;
   1535   1.1   mycroft {
   1536  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1537  1.33  augustss 	struct cg *cgp;
   1538   1.1   mycroft 	struct buf *bp;
   1539  1.60      fvdl 	int32_t fragno, cgbno;
   1540   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1541  1.62      fvdl 	u_int8_t *blksfree;
   1542  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1543   1.1   mycroft 
   1544  1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1545  1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1546  1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1547  1.58      fvdl 		       "size = %ld, fs = %s\n",
   1548  1.59   tsutsui 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1549   1.1   mycroft 		panic("blkfree: bad size");
   1550   1.1   mycroft 	}
   1551   1.1   mycroft 	cg = dtog(fs, bno);
   1552  1.60      fvdl 	if (bno >= fs->fs_size) {
   1553  1.59   tsutsui 		printf("bad block %" PRId64 ", ino %d\n", bno, ip->i_number);
   1554  1.60      fvdl 		ffs_fserr(fs, ip->i_uid, "bad block");
   1555   1.1   mycroft 		return;
   1556   1.1   mycroft 	}
   1557   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1558   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1559   1.1   mycroft 	if (error) {
   1560   1.1   mycroft 		brelse(bp);
   1561   1.1   mycroft 		return;
   1562   1.1   mycroft 	}
   1563   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1564  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1565   1.1   mycroft 		brelse(bp);
   1566   1.1   mycroft 		return;
   1567   1.1   mycroft 	}
   1568  1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1569  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1570  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1571  1.73       dbj 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1572  1.60      fvdl 	cgbno = dtogd(fs, bno);
   1573  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1574   1.1   mycroft 	if (size == fs->fs_bsize) {
   1575  1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1576  1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1577  1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1578  1.59   tsutsui 			    ip->i_dev, bno, fs->fs_fsmnt);
   1579   1.1   mycroft 			panic("blkfree: freeing free block");
   1580   1.1   mycroft 		}
   1581  1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1582  1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1583  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1584   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1585   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1586  1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1587  1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1588  1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1589  1.75       dbj 			KASSERT(i >= 0);
   1590  1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1591  1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1592  1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1593  1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1594  1.73       dbj 			    needswap);
   1595  1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1596  1.73       dbj 		}
   1597   1.1   mycroft 	} else {
   1598  1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1599   1.1   mycroft 		/*
   1600   1.1   mycroft 		 * decrement the counts associated with the old frags
   1601   1.1   mycroft 		 */
   1602  1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1603  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1604   1.1   mycroft 		/*
   1605   1.1   mycroft 		 * deallocate the fragment
   1606   1.1   mycroft 		 */
   1607   1.1   mycroft 		frags = numfrags(fs, size);
   1608   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1609  1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1610  1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1611  1.59   tsutsui 				       ", fs = %s\n",
   1612  1.59   tsutsui 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1613   1.1   mycroft 				panic("blkfree: freeing free frag");
   1614   1.1   mycroft 			}
   1615  1.62      fvdl 			setbit(blksfree, cgbno + i);
   1616   1.1   mycroft 		}
   1617  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1618   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1619  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1620   1.1   mycroft 		/*
   1621   1.1   mycroft 		 * add back in counts associated with the new frags
   1622   1.1   mycroft 		 */
   1623  1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1624  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1625   1.1   mycroft 		/*
   1626   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1627   1.1   mycroft 		 */
   1628  1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1629  1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1630  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1631   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1632   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1633  1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1634  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1635   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1636   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1637  1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1638  1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1639  1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1640  1.75       dbj 				KASSERT(i >= 0);
   1641  1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1642  1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1643  1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1644  1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1645  1.73       dbj 				    bbase)], 1, needswap);
   1646  1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1647  1.73       dbj 			}
   1648   1.1   mycroft 		}
   1649   1.1   mycroft 	}
   1650   1.1   mycroft 	fs->fs_fmod = 1;
   1651   1.1   mycroft 	bdwrite(bp);
   1652   1.1   mycroft }
   1653   1.1   mycroft 
   1654  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1655  1.55      matt #ifdef XXXUBC
   1656  1.18      fvdl /*
   1657  1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1658  1.18      fvdl  * fragment is allocated, false if it is free.
   1659  1.18      fvdl  */
   1660  1.18      fvdl static int
   1661  1.18      fvdl ffs_checkblk(ip, bno, size)
   1662  1.18      fvdl 	struct inode *ip;
   1663  1.58      fvdl 	daddr_t bno;
   1664  1.18      fvdl 	long size;
   1665  1.18      fvdl {
   1666  1.18      fvdl 	struct fs *fs;
   1667  1.18      fvdl 	struct cg *cgp;
   1668  1.18      fvdl 	struct buf *bp;
   1669  1.18      fvdl 	int i, error, frags, free;
   1670  1.18      fvdl 
   1671  1.18      fvdl 	fs = ip->i_fs;
   1672  1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1673  1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1674  1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1675  1.18      fvdl 		panic("checkblk: bad size");
   1676  1.18      fvdl 	}
   1677  1.60      fvdl 	if (bno >= fs->fs_size)
   1678  1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1679  1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1680  1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1681  1.18      fvdl 	if (error) {
   1682  1.18      fvdl 		brelse(bp);
   1683  1.18      fvdl 		return 0;
   1684  1.18      fvdl 	}
   1685  1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1686  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1687  1.18      fvdl 		brelse(bp);
   1688  1.18      fvdl 		return 0;
   1689  1.18      fvdl 	}
   1690  1.18      fvdl 	bno = dtogd(fs, bno);
   1691  1.18      fvdl 	if (size == fs->fs_bsize) {
   1692  1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1693  1.19    bouyer 			fragstoblks(fs, bno));
   1694  1.18      fvdl 	} else {
   1695  1.18      fvdl 		frags = numfrags(fs, size);
   1696  1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1697  1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1698  1.18      fvdl 				free++;
   1699  1.18      fvdl 		if (free != 0 && free != frags)
   1700  1.18      fvdl 			panic("checkblk: partially free fragment");
   1701  1.18      fvdl 	}
   1702  1.18      fvdl 	brelse(bp);
   1703  1.18      fvdl 	return (!free);
   1704  1.18      fvdl }
   1705  1.55      matt #endif /* XXXUBC */
   1706  1.18      fvdl #endif /* DIAGNOSTIC */
   1707  1.18      fvdl 
   1708   1.1   mycroft /*
   1709   1.1   mycroft  * Free an inode.
   1710  1.30      fvdl  */
   1711  1.30      fvdl int
   1712  1.30      fvdl ffs_vfree(v)
   1713  1.30      fvdl 	void *v;
   1714  1.30      fvdl {
   1715  1.30      fvdl 	struct vop_vfree_args /* {
   1716  1.30      fvdl 		struct vnode *a_pvp;
   1717  1.30      fvdl 		ino_t a_ino;
   1718  1.30      fvdl 		int a_mode;
   1719  1.30      fvdl 	} */ *ap = v;
   1720  1.30      fvdl 
   1721  1.30      fvdl 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1722  1.30      fvdl 		softdep_freefile(ap);
   1723  1.30      fvdl 		return (0);
   1724  1.30      fvdl 	}
   1725  1.30      fvdl 	return (ffs_freefile(ap));
   1726  1.30      fvdl }
   1727  1.30      fvdl 
   1728  1.30      fvdl /*
   1729  1.30      fvdl  * Do the actual free operation.
   1730   1.1   mycroft  * The specified inode is placed back in the free map.
   1731   1.1   mycroft  */
   1732   1.1   mycroft int
   1733  1.30      fvdl ffs_freefile(v)
   1734   1.9  christos 	void *v;
   1735   1.9  christos {
   1736   1.1   mycroft 	struct vop_vfree_args /* {
   1737   1.1   mycroft 		struct vnode *a_pvp;
   1738   1.1   mycroft 		ino_t a_ino;
   1739   1.1   mycroft 		int a_mode;
   1740   1.9  christos 	} */ *ap = v;
   1741  1.33  augustss 	struct cg *cgp;
   1742  1.33  augustss 	struct inode *pip = VTOI(ap->a_pvp);
   1743  1.33  augustss 	struct fs *fs = pip->i_fs;
   1744   1.1   mycroft 	ino_t ino = ap->a_ino;
   1745   1.1   mycroft 	struct buf *bp;
   1746   1.1   mycroft 	int error, cg;
   1747  1.62      fvdl 	u_int8_t *inosused;
   1748  1.19    bouyer #ifdef FFS_EI
   1749  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1750  1.19    bouyer #endif
   1751   1.1   mycroft 
   1752   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1753  1.56    provos 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
   1754   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1755   1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1756   1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1757   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1758   1.1   mycroft 	if (error) {
   1759   1.1   mycroft 		brelse(bp);
   1760  1.30      fvdl 		return (error);
   1761   1.1   mycroft 	}
   1762   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1763  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1764   1.1   mycroft 		brelse(bp);
   1765   1.1   mycroft 		return (0);
   1766   1.1   mycroft 	}
   1767  1.62      fvdl 	cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
   1768  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1769  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1770  1.73       dbj 		cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
   1771  1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1772   1.1   mycroft 	ino %= fs->fs_ipg;
   1773  1.62      fvdl 	if (isclr(inosused, ino)) {
   1774  1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1775   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1776   1.1   mycroft 		if (fs->fs_ronly == 0)
   1777   1.1   mycroft 			panic("ifree: freeing free inode");
   1778   1.1   mycroft 	}
   1779  1.62      fvdl 	clrbit(inosused, ino);
   1780  1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1781  1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1782  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1783   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1784   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1785   1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1786  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1787   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1788   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1789   1.1   mycroft 	}
   1790   1.1   mycroft 	fs->fs_fmod = 1;
   1791   1.1   mycroft 	bdwrite(bp);
   1792   1.1   mycroft 	return (0);
   1793   1.1   mycroft }
   1794   1.1   mycroft 
   1795   1.1   mycroft /*
   1796   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1797   1.1   mycroft  *
   1798   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1799   1.1   mycroft  * available.
   1800   1.1   mycroft  */
   1801  1.60      fvdl static int32_t
   1802  1.30      fvdl ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1803  1.33  augustss 	struct fs *fs;
   1804  1.33  augustss 	struct cg *cgp;
   1805  1.58      fvdl 	daddr_t bpref;
   1806   1.1   mycroft 	int allocsiz;
   1807   1.1   mycroft {
   1808  1.60      fvdl 	int32_t bno;
   1809   1.1   mycroft 	int start, len, loc, i;
   1810   1.1   mycroft 	int blk, field, subfield, pos;
   1811  1.19    bouyer 	int ostart, olen;
   1812  1.62      fvdl 	u_int8_t *blksfree;
   1813  1.30      fvdl #ifdef FFS_EI
   1814  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1815  1.30      fvdl #endif
   1816   1.1   mycroft 
   1817   1.1   mycroft 	/*
   1818   1.1   mycroft 	 * find the fragment by searching through the free block
   1819   1.1   mycroft 	 * map for an appropriate bit pattern
   1820   1.1   mycroft 	 */
   1821   1.1   mycroft 	if (bpref)
   1822   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1823   1.1   mycroft 	else
   1824  1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1825  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1826   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1827  1.19    bouyer 	ostart = start;
   1828  1.19    bouyer 	olen = len;
   1829  1.45     lukem 	loc = scanc((u_int)len,
   1830  1.62      fvdl 		(const u_char *)&blksfree[start],
   1831  1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1832  1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1833   1.1   mycroft 	if (loc == 0) {
   1834   1.1   mycroft 		len = start + 1;
   1835   1.1   mycroft 		start = 0;
   1836  1.45     lukem 		loc = scanc((u_int)len,
   1837  1.62      fvdl 			(const u_char *)&blksfree[0],
   1838  1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1839  1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1840   1.1   mycroft 		if (loc == 0) {
   1841  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1842  1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1843  1.20      ross 			printf("offset=%d %ld\n",
   1844  1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1845  1.62      fvdl 				(long)blksfree - (long)cgp);
   1846  1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1847   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1848   1.1   mycroft 			/* NOTREACHED */
   1849   1.1   mycroft 		}
   1850   1.1   mycroft 	}
   1851   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1852  1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1853   1.1   mycroft 	/*
   1854   1.1   mycroft 	 * found the byte in the map
   1855   1.1   mycroft 	 * sift through the bits to find the selected frag
   1856   1.1   mycroft 	 */
   1857   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1858  1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1859   1.1   mycroft 		blk <<= 1;
   1860   1.1   mycroft 		field = around[allocsiz];
   1861   1.1   mycroft 		subfield = inside[allocsiz];
   1862   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1863   1.1   mycroft 			if ((blk & field) == subfield)
   1864   1.1   mycroft 				return (bno + pos);
   1865   1.1   mycroft 			field <<= 1;
   1866   1.1   mycroft 			subfield <<= 1;
   1867   1.1   mycroft 		}
   1868   1.1   mycroft 	}
   1869  1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1870   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1871  1.58      fvdl 	/* return (-1); */
   1872   1.1   mycroft }
   1873   1.1   mycroft 
   1874   1.1   mycroft /*
   1875   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1876   1.1   mycroft  *
   1877   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1878   1.1   mycroft  */
   1879   1.9  christos void
   1880  1.30      fvdl ffs_clusteracct(fs, cgp, blkno, cnt)
   1881   1.1   mycroft 	struct fs *fs;
   1882   1.1   mycroft 	struct cg *cgp;
   1883  1.60      fvdl 	int32_t blkno;
   1884   1.1   mycroft 	int cnt;
   1885   1.1   mycroft {
   1886   1.4       cgd 	int32_t *sump;
   1887   1.5   mycroft 	int32_t *lp;
   1888   1.1   mycroft 	u_char *freemapp, *mapp;
   1889   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1890  1.30      fvdl #ifdef FFS_EI
   1891  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1892  1.30      fvdl #endif
   1893   1.1   mycroft 
   1894   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1895   1.1   mycroft 		return;
   1896  1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1897  1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1898   1.1   mycroft 	/*
   1899   1.1   mycroft 	 * Allocate or clear the actual block.
   1900   1.1   mycroft 	 */
   1901   1.1   mycroft 	if (cnt > 0)
   1902   1.1   mycroft 		setbit(freemapp, blkno);
   1903   1.1   mycroft 	else
   1904   1.1   mycroft 		clrbit(freemapp, blkno);
   1905   1.1   mycroft 	/*
   1906   1.1   mycroft 	 * Find the size of the cluster going forward.
   1907   1.1   mycroft 	 */
   1908   1.1   mycroft 	start = blkno + 1;
   1909   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1910  1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1911  1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1912   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1913   1.1   mycroft 	map = *mapp++;
   1914   1.1   mycroft 	bit = 1 << (start % NBBY);
   1915   1.1   mycroft 	for (i = start; i < end; i++) {
   1916   1.1   mycroft 		if ((map & bit) == 0)
   1917   1.1   mycroft 			break;
   1918   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1919   1.1   mycroft 			bit <<= 1;
   1920   1.1   mycroft 		} else {
   1921   1.1   mycroft 			map = *mapp++;
   1922   1.1   mycroft 			bit = 1;
   1923   1.1   mycroft 		}
   1924   1.1   mycroft 	}
   1925   1.1   mycroft 	forw = i - start;
   1926   1.1   mycroft 	/*
   1927   1.1   mycroft 	 * Find the size of the cluster going backward.
   1928   1.1   mycroft 	 */
   1929   1.1   mycroft 	start = blkno - 1;
   1930   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1931   1.1   mycroft 	if (end < 0)
   1932   1.1   mycroft 		end = -1;
   1933   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1934   1.1   mycroft 	map = *mapp--;
   1935   1.1   mycroft 	bit = 1 << (start % NBBY);
   1936   1.1   mycroft 	for (i = start; i > end; i--) {
   1937   1.1   mycroft 		if ((map & bit) == 0)
   1938   1.1   mycroft 			break;
   1939   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1940   1.1   mycroft 			bit >>= 1;
   1941   1.1   mycroft 		} else {
   1942   1.1   mycroft 			map = *mapp--;
   1943   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1944   1.1   mycroft 		}
   1945   1.1   mycroft 	}
   1946   1.1   mycroft 	back = start - i;
   1947   1.1   mycroft 	/*
   1948   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1949   1.1   mycroft 	 * back clusters.
   1950   1.1   mycroft 	 */
   1951   1.1   mycroft 	i = back + forw + 1;
   1952   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1953   1.1   mycroft 		i = fs->fs_contigsumsize;
   1954  1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1955   1.1   mycroft 	if (back > 0)
   1956  1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1957   1.1   mycroft 	if (forw > 0)
   1958  1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1959  1.19    bouyer 
   1960   1.5   mycroft 	/*
   1961   1.5   mycroft 	 * Update cluster summary information.
   1962   1.5   mycroft 	 */
   1963   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1964   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1965  1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1966   1.5   mycroft 			break;
   1967  1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1968   1.1   mycroft }
   1969   1.1   mycroft 
   1970   1.1   mycroft /*
   1971   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1972   1.1   mycroft  *
   1973   1.1   mycroft  * The form of the error message is:
   1974   1.1   mycroft  *	fs: error message
   1975   1.1   mycroft  */
   1976   1.1   mycroft static void
   1977   1.1   mycroft ffs_fserr(fs, uid, cp)
   1978   1.1   mycroft 	struct fs *fs;
   1979   1.1   mycroft 	u_int uid;
   1980   1.1   mycroft 	char *cp;
   1981   1.1   mycroft {
   1982   1.1   mycroft 
   1983  1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1984  1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1985   1.1   mycroft }
   1986