Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.84.2.8
      1  1.84.2.8      yamt /*	$NetBSD: ffs_alloc.c,v 1.84.2.8 2008/02/04 09:25:02 yamt Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4      1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5      1.60      fvdl  * All rights reserved.
      6      1.60      fvdl  *
      7      1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8      1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9      1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10      1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11      1.60      fvdl  * research program
     12      1.60      fvdl  *
     13       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15       1.1   mycroft  *
     16       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17       1.1   mycroft  * modification, are permitted provided that the following conditions
     18       1.1   mycroft  * are met:
     19       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24      1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26       1.1   mycroft  *    without specific prior written permission.
     27       1.1   mycroft  *
     28       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1   mycroft  * SUCH DAMAGE.
     39       1.1   mycroft  *
     40      1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41       1.1   mycroft  */
     42      1.53     lukem 
     43      1.53     lukem #include <sys/cdefs.h>
     44  1.84.2.8      yamt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.84.2.8 2008/02/04 09:25:02 yamt Exp $");
     45      1.17       mrg 
     46      1.43       mrg #if defined(_KERNEL_OPT)
     47      1.27   thorpej #include "opt_ffs.h"
     48      1.21    scottr #include "opt_quota.h"
     49      1.22    scottr #endif
     50       1.1   mycroft 
     51       1.1   mycroft #include <sys/param.h>
     52       1.1   mycroft #include <sys/systm.h>
     53       1.1   mycroft #include <sys/buf.h>
     54       1.1   mycroft #include <sys/proc.h>
     55       1.1   mycroft #include <sys/vnode.h>
     56       1.1   mycroft #include <sys/mount.h>
     57       1.1   mycroft #include <sys/kernel.h>
     58       1.1   mycroft #include <sys/syslog.h>
     59  1.84.2.1      yamt #include <sys/kauth.h>
     60      1.29       mrg 
     61      1.76   hannken #include <miscfs/specfs/specdev.h>
     62       1.1   mycroft #include <ufs/ufs/quota.h>
     63      1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64       1.1   mycroft #include <ufs/ufs/inode.h>
     65       1.9  christos #include <ufs/ufs/ufs_extern.h>
     66      1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67       1.1   mycroft 
     68       1.1   mycroft #include <ufs/ffs/fs.h>
     69       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70       1.1   mycroft 
     71  1.84.2.1      yamt static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72  1.84.2.1      yamt static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73      1.55      matt #ifdef XXXUBC
     74  1.84.2.1      yamt static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75      1.55      matt #endif
     76  1.84.2.1      yamt static ino_t ffs_dirpref(struct inode *);
     77  1.84.2.1      yamt static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78  1.84.2.1      yamt static void ffs_fserr(struct fs *, u_int, const char *);
     79  1.84.2.1      yamt static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80  1.84.2.1      yamt     daddr_t (*)(struct inode *, int, daddr_t, int));
     81  1.84.2.1      yamt static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82  1.84.2.1      yamt static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83  1.84.2.1      yamt 				      daddr_t, int);
     84      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85      1.55      matt #ifdef XXXUBC
     86  1.84.2.1      yamt static int ffs_checkblk(struct inode *, daddr_t, long size);
     87      1.18      fvdl #endif
     88      1.55      matt #endif
     89      1.23  drochner 
     90      1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91      1.34  jdolecek int ffs_log_changeopt = 0;
     92      1.34  jdolecek 
     93      1.23  drochner /* in ffs_tables.c */
     94      1.40  jdolecek extern const int inside[], around[];
     95      1.40  jdolecek extern const u_char * const fragtbl[];
     96       1.1   mycroft 
     97       1.1   mycroft /*
     98       1.1   mycroft  * Allocate a block in the file system.
     99      1.81     perry  *
    100       1.1   mycroft  * The size of the requested block is given, which must be some
    101       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102       1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103       1.1   mycroft  * the following hierarchy is used to allocate a block:
    104       1.1   mycroft  *   1) allocate the requested block.
    105       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106       1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108       1.1   mycroft  *      available block is located.
    109      1.47       wiz  * If no block preference is given the following hierarchy is used
    110       1.1   mycroft  * to allocate a block:
    111       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112       1.1   mycroft  *      inode for the file.
    113       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114       1.1   mycroft  *      available block is located.
    115  1.84.2.8      yamt  *
    116  1.84.2.8      yamt  * => called with um_lock held
    117  1.84.2.8      yamt  * => releases um_lock before returning
    118       1.1   mycroft  */
    119       1.9  christos int
    120  1.84.2.1      yamt ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    121  1.84.2.1      yamt     kauth_cred_t cred, daddr_t *bnp)
    122       1.1   mycroft {
    123  1.84.2.5      yamt 	struct ufsmount *ump;
    124      1.62      fvdl 	struct fs *fs;
    125      1.58      fvdl 	daddr_t bno;
    126       1.9  christos 	int cg;
    127       1.9  christos #ifdef QUOTA
    128       1.9  christos 	int error;
    129       1.9  christos #endif
    130      1.81     perry 
    131      1.62      fvdl 	fs = ip->i_fs;
    132  1.84.2.5      yamt 	ump = ip->i_ump;
    133  1.84.2.5      yamt 
    134  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
    135      1.62      fvdl 
    136      1.37       chs #ifdef UVM_PAGE_TRKOWN
    137      1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    138      1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    139      1.37       chs 		struct vm_page *pg;
    140      1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    141      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    142      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    143      1.37       chs 
    144  1.84.2.7      yamt 		mutex_enter(&uobj->vmobjlock);
    145      1.37       chs 		while (off < endoff) {
    146      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    147      1.37       chs 			KASSERT(pg != NULL);
    148      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    149      1.37       chs 			off += PAGE_SIZE;
    150      1.37       chs 		}
    151  1.84.2.7      yamt 		mutex_exit(&uobj->vmobjlock);
    152      1.37       chs 	}
    153      1.37       chs #endif
    154      1.37       chs 
    155       1.1   mycroft 	*bnp = 0;
    156       1.1   mycroft #ifdef DIAGNOSTIC
    157       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    158      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    159       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    160       1.1   mycroft 		panic("ffs_alloc: bad size");
    161       1.1   mycroft 	}
    162       1.1   mycroft 	if (cred == NOCRED)
    163      1.56    provos 		panic("ffs_alloc: missing credential");
    164       1.1   mycroft #endif /* DIAGNOSTIC */
    165       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    166       1.1   mycroft 		goto nospace;
    167  1.84.2.4      yamt 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    168  1.84.2.4      yamt 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    169       1.1   mycroft 		goto nospace;
    170       1.1   mycroft #ifdef QUOTA
    171  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
    172      1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    173       1.1   mycroft 		return (error);
    174  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
    175       1.1   mycroft #endif
    176       1.1   mycroft 	if (bpref >= fs->fs_size)
    177       1.1   mycroft 		bpref = 0;
    178       1.1   mycroft 	if (bpref == 0)
    179       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    180       1.1   mycroft 	else
    181       1.1   mycroft 		cg = dtog(fs, bpref);
    182      1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    183       1.1   mycroft 	if (bno > 0) {
    184      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    185       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    186       1.1   mycroft 		*bnp = bno;
    187       1.1   mycroft 		return (0);
    188       1.1   mycroft 	}
    189       1.1   mycroft #ifdef QUOTA
    190       1.1   mycroft 	/*
    191       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    192       1.1   mycroft 	 */
    193      1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    194       1.1   mycroft #endif
    195       1.1   mycroft nospace:
    196  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
    197  1.84.2.1      yamt 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    198       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    199       1.1   mycroft 	return (ENOSPC);
    200       1.1   mycroft }
    201       1.1   mycroft 
    202       1.1   mycroft /*
    203       1.1   mycroft  * Reallocate a fragment to a bigger size
    204       1.1   mycroft  *
    205       1.1   mycroft  * The number and size of the old block is given, and a preference
    206       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    207       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    208       1.1   mycroft  * invoked to get an appropriate block.
    209  1.84.2.8      yamt  *
    210  1.84.2.8      yamt  * => called with um_lock held
    211  1.84.2.8      yamt  * => return with um_lock released
    212       1.1   mycroft  */
    213       1.9  christos int
    214  1.84.2.1      yamt ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    215  1.84.2.1      yamt     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    216       1.1   mycroft {
    217  1.84.2.5      yamt 	struct ufsmount *ump;
    218      1.62      fvdl 	struct fs *fs;
    219       1.1   mycroft 	struct buf *bp;
    220       1.1   mycroft 	int cg, request, error;
    221      1.58      fvdl 	daddr_t bprev, bno;
    222      1.25   thorpej 
    223      1.62      fvdl 	fs = ip->i_fs;
    224  1.84.2.5      yamt 	ump = ip->i_ump;
    225  1.84.2.5      yamt 
    226  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
    227  1.84.2.5      yamt 
    228      1.37       chs #ifdef UVM_PAGE_TRKOWN
    229      1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    230      1.37       chs 		struct vm_page *pg;
    231      1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    232      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    233      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    234      1.37       chs 
    235  1.84.2.7      yamt 		mutex_enter(&uobj->vmobjlock);
    236      1.37       chs 		while (off < endoff) {
    237      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    238      1.37       chs 			KASSERT(pg != NULL);
    239      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    240      1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    241      1.37       chs 			off += PAGE_SIZE;
    242      1.37       chs 		}
    243  1.84.2.7      yamt 		mutex_exit(&uobj->vmobjlock);
    244      1.37       chs 	}
    245      1.37       chs #endif
    246      1.37       chs 
    247       1.1   mycroft #ifdef DIAGNOSTIC
    248       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    249       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    250      1.13  christos 		printf(
    251       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    252       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    253       1.1   mycroft 		panic("ffs_realloccg: bad size");
    254       1.1   mycroft 	}
    255       1.1   mycroft 	if (cred == NOCRED)
    256      1.56    provos 		panic("ffs_realloccg: missing credential");
    257       1.1   mycroft #endif /* DIAGNOSTIC */
    258  1.84.2.4      yamt 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    259  1.84.2.5      yamt 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    260  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
    261       1.1   mycroft 		goto nospace;
    262  1.84.2.5      yamt 	}
    263      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    264      1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    265      1.60      fvdl 	else
    266      1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    267      1.60      fvdl 
    268      1.60      fvdl 	if (bprev == 0) {
    269      1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    270      1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    271       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    272       1.1   mycroft 	}
    273  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
    274  1.84.2.5      yamt 
    275       1.1   mycroft 	/*
    276       1.1   mycroft 	 * Allocate the extra space in the buffer.
    277       1.1   mycroft 	 */
    278      1.37       chs 	if (bpp != NULL &&
    279      1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    280  1.84.2.5      yamt 		brelse(bp, 0);
    281       1.1   mycroft 		return (error);
    282       1.1   mycroft 	}
    283       1.1   mycroft #ifdef QUOTA
    284      1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    285      1.44       chs 		if (bpp != NULL) {
    286  1.84.2.5      yamt 			brelse(bp, 0);
    287      1.44       chs 		}
    288       1.1   mycroft 		return (error);
    289       1.1   mycroft 	}
    290       1.1   mycroft #endif
    291       1.1   mycroft 	/*
    292       1.1   mycroft 	 * Check for extension in the existing location.
    293       1.1   mycroft 	 */
    294       1.1   mycroft 	cg = dtog(fs, bprev);
    295  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
    296      1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    297      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    298       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    299      1.37       chs 
    300      1.37       chs 		if (bpp != NULL) {
    301      1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    302      1.37       chs 				panic("bad blockno");
    303      1.72        pk 			allocbuf(bp, nsize, 1);
    304  1.84.2.4      yamt 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    305  1.84.2.7      yamt 			mutex_enter(bp->b_objlock);
    306  1.84.2.7      yamt 			bp->b_oflags |= BO_DONE;
    307  1.84.2.7      yamt 			mutex_exit(bp->b_objlock);
    308      1.37       chs 			*bpp = bp;
    309      1.37       chs 		}
    310      1.37       chs 		if (blknop != NULL) {
    311      1.37       chs 			*blknop = bno;
    312      1.37       chs 		}
    313       1.1   mycroft 		return (0);
    314       1.1   mycroft 	}
    315       1.1   mycroft 	/*
    316       1.1   mycroft 	 * Allocate a new disk location.
    317       1.1   mycroft 	 */
    318       1.1   mycroft 	if (bpref >= fs->fs_size)
    319       1.1   mycroft 		bpref = 0;
    320       1.1   mycroft 	switch ((int)fs->fs_optim) {
    321       1.1   mycroft 	case FS_OPTSPACE:
    322       1.1   mycroft 		/*
    323      1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    324      1.81     perry 		 * best use of space, we will waste time relocating it if
    325       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    326       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    327       1.1   mycroft 		 * to begin optimizing for time.
    328       1.1   mycroft 		 */
    329       1.1   mycroft 		request = nsize;
    330       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    331       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    332       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    333       1.1   mycroft 			break;
    334      1.34  jdolecek 
    335      1.34  jdolecek 		if (ffs_log_changeopt) {
    336      1.34  jdolecek 			log(LOG_NOTICE,
    337      1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    338      1.34  jdolecek 				fs->fs_fsmnt);
    339      1.34  jdolecek 		}
    340      1.34  jdolecek 
    341       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    342       1.1   mycroft 		break;
    343       1.1   mycroft 	case FS_OPTTIME:
    344       1.1   mycroft 		/*
    345       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    346       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    347       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    348       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    349       1.1   mycroft 		 * above will be able to grow it in place without further
    350       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    351       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    352       1.1   mycroft 		 * optimizing for space.
    353       1.1   mycroft 		 */
    354       1.1   mycroft 		request = fs->fs_bsize;
    355       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    356       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    357       1.1   mycroft 			break;
    358      1.34  jdolecek 
    359      1.34  jdolecek 		if (ffs_log_changeopt) {
    360      1.34  jdolecek 			log(LOG_NOTICE,
    361      1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    362      1.34  jdolecek 				fs->fs_fsmnt);
    363      1.34  jdolecek 		}
    364      1.34  jdolecek 
    365       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    366       1.1   mycroft 		break;
    367       1.1   mycroft 	default:
    368      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    369       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    370       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    371       1.1   mycroft 		/* NOTREACHED */
    372       1.1   mycroft 	}
    373      1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    374       1.1   mycroft 	if (bno > 0) {
    375      1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    376      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    377      1.76   hannken 			    ip->i_number);
    378       1.1   mycroft 		if (nsize < request)
    379      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    380      1.76   hannken 			    (long)(request - nsize), ip->i_number);
    381      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    382       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    383      1.37       chs 		if (bpp != NULL) {
    384      1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    385      1.72        pk 			allocbuf(bp, nsize, 1);
    386  1.84.2.4      yamt 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    387  1.84.2.7      yamt 			mutex_enter(bp->b_objlock);
    388  1.84.2.7      yamt 			bp->b_oflags |= BO_DONE;
    389  1.84.2.7      yamt 			mutex_exit(bp->b_objlock);
    390      1.37       chs 			*bpp = bp;
    391      1.37       chs 		}
    392      1.37       chs 		if (blknop != NULL) {
    393      1.37       chs 			*blknop = bno;
    394      1.37       chs 		}
    395       1.1   mycroft 		return (0);
    396       1.1   mycroft 	}
    397  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
    398  1.84.2.5      yamt 
    399       1.1   mycroft #ifdef QUOTA
    400       1.1   mycroft 	/*
    401       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    402       1.1   mycroft 	 */
    403      1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    404       1.1   mycroft #endif
    405      1.37       chs 	if (bpp != NULL) {
    406  1.84.2.5      yamt 		brelse(bp, 0);
    407      1.37       chs 	}
    408      1.37       chs 
    409       1.1   mycroft nospace:
    410       1.1   mycroft 	/*
    411       1.1   mycroft 	 * no space available
    412       1.1   mycroft 	 */
    413  1.84.2.1      yamt 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    414       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    415       1.1   mycroft 	return (ENOSPC);
    416       1.1   mycroft }
    417       1.1   mycroft 
    418  1.84.2.1      yamt #if 0
    419       1.1   mycroft /*
    420       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    421       1.1   mycroft  *
    422       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    423       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    424      1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    425      1.60      fvdl  * from the end of the allocation for the logical block immediately
    426      1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    427      1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    428      1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    429      1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    430      1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    431      1.60      fvdl  * allocation will be used.
    432      1.60      fvdl 
    433       1.1   mycroft  */
    434      1.55      matt #ifdef XXXUBC
    435       1.3   mycroft #ifdef DEBUG
    436       1.1   mycroft #include <sys/sysctl.h>
    437       1.5   mycroft int prtrealloc = 0;
    438       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    439       1.1   mycroft #endif
    440      1.55      matt #endif
    441       1.1   mycroft 
    442      1.60      fvdl /*
    443      1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    444      1.60      fvdl  */
    445      1.60      fvdl 
    446      1.18      fvdl int doasyncfree = 1;
    447      1.18      fvdl 
    448       1.1   mycroft int
    449  1.84.2.1      yamt ffs_reallocblks(void *v)
    450       1.9  christos {
    451      1.55      matt #ifdef XXXUBC
    452       1.1   mycroft 	struct vop_reallocblks_args /* {
    453       1.1   mycroft 		struct vnode *a_vp;
    454       1.1   mycroft 		struct cluster_save *a_buflist;
    455       1.9  christos 	} */ *ap = v;
    456       1.1   mycroft 	struct fs *fs;
    457       1.1   mycroft 	struct inode *ip;
    458       1.1   mycroft 	struct vnode *vp;
    459       1.1   mycroft 	struct buf *sbp, *ebp;
    460      1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    461       1.1   mycroft 	struct cluster_save *buflist;
    462      1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    463       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    464       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    465  1.84.2.5      yamt 	struct ufsmount *ump;
    466      1.55      matt #endif /* XXXUBC */
    467       1.1   mycroft 
    468      1.37       chs 	/* XXXUBC don't reallocblks for now */
    469      1.37       chs 	return ENOSPC;
    470      1.37       chs 
    471      1.55      matt #ifdef XXXUBC
    472       1.1   mycroft 	vp = ap->a_vp;
    473       1.1   mycroft 	ip = VTOI(vp);
    474       1.1   mycroft 	fs = ip->i_fs;
    475  1.84.2.5      yamt 	ump = ip->i_ump;
    476       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    477       1.1   mycroft 		return (ENOSPC);
    478       1.1   mycroft 	buflist = ap->a_buflist;
    479       1.1   mycroft 	len = buflist->bs_nchildren;
    480       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    481       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    482       1.1   mycroft #ifdef DIAGNOSTIC
    483      1.18      fvdl 	for (i = 0; i < len; i++)
    484      1.18      fvdl 		if (!ffs_checkblk(ip,
    485      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    486      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    487       1.1   mycroft 	for (i = 1; i < len; i++)
    488       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    489      1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    490      1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    491      1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    492      1.18      fvdl 	for (i = 1; i < len - 1; i++)
    493      1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    494      1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    495       1.1   mycroft #endif
    496       1.1   mycroft 	/*
    497       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    498       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    499       1.1   mycroft 	 * the previous cylinder group.
    500       1.1   mycroft 	 */
    501       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    502       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    503       1.1   mycroft 		return (ENOSPC);
    504       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    505       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    506       1.1   mycroft 		return (ENOSPC);
    507       1.1   mycroft 	/*
    508       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    509       1.1   mycroft 	 */
    510       1.1   mycroft 	if (start_lvl == 0) {
    511      1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    512       1.1   mycroft 		soff = start_lbn;
    513       1.1   mycroft 	} else {
    514       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    515       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    516  1.84.2.5      yamt 			brelse(sbp, 0);
    517       1.1   mycroft 			return (ENOSPC);
    518       1.1   mycroft 		}
    519      1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    520       1.1   mycroft 		soff = idp->in_off;
    521       1.1   mycroft 	}
    522       1.1   mycroft 	/*
    523       1.1   mycroft 	 * Find the preferred location for the cluster.
    524       1.1   mycroft 	 */
    525  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
    526       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    527       1.1   mycroft 	/*
    528       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    529       1.1   mycroft 	 */
    530       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    531       1.1   mycroft 		ssize = len;
    532       1.1   mycroft 	} else {
    533       1.1   mycroft #ifdef DIAGNOSTIC
    534       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    535       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    536       1.1   mycroft #endif
    537       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    538       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    539       1.1   mycroft 			goto fail;
    540      1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    541       1.1   mycroft 	}
    542       1.1   mycroft 	/*
    543       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    544       1.1   mycroft 	 */
    545      1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    546  1.84.2.5      yamt 	    len, ffs_clusteralloc)) == 0) {
    547  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
    548       1.1   mycroft 		goto fail;
    549  1.84.2.5      yamt 	}
    550       1.1   mycroft 	/*
    551       1.1   mycroft 	 * We have found a new contiguous block.
    552       1.1   mycroft 	 *
    553       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    554       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    555       1.1   mycroft 	 * with the file.
    556       1.1   mycroft 	 */
    557       1.5   mycroft #ifdef DEBUG
    558       1.5   mycroft 	if (prtrealloc)
    559      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    560       1.5   mycroft 		    start_lbn, end_lbn);
    561       1.5   mycroft #endif
    562       1.1   mycroft 	blkno = newblk;
    563       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    564      1.58      fvdl 		daddr_t ba;
    565      1.30      fvdl 
    566      1.30      fvdl 		if (i == ssize) {
    567       1.1   mycroft 			bap = ebap;
    568      1.30      fvdl 			soff = -i;
    569      1.30      fvdl 		}
    570      1.58      fvdl 		/* XXX ondisk32 */
    571      1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    572       1.1   mycroft #ifdef DIAGNOSTIC
    573      1.18      fvdl 		if (!ffs_checkblk(ip,
    574      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    575      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    576      1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    577       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    578       1.1   mycroft #endif
    579       1.5   mycroft #ifdef DEBUG
    580       1.5   mycroft 		if (prtrealloc)
    581      1.30      fvdl 			printf(" %d,", ba);
    582       1.5   mycroft #endif
    583      1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    584      1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    585      1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    586      1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    587      1.30      fvdl  				    buflist->bs_children[i]);
    588      1.30      fvdl  			else
    589      1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    590      1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    591      1.30      fvdl  				    ba, buflist->bs_children[i]);
    592      1.30      fvdl  		}
    593      1.58      fvdl 		/* XXX ondisk32 */
    594      1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    595       1.1   mycroft 	}
    596       1.1   mycroft 	/*
    597       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    598       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    599       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    600      1.81     perry 	 * they are almost never written, but if we are concerned about
    601       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    602       1.1   mycroft 	 *
    603       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    604       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    605       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    606       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    607       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    608       1.1   mycroft 	 * synchronous write only when it has been cleared.
    609       1.1   mycroft 	 */
    610      1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    611       1.1   mycroft 		if (doasyncfree)
    612       1.1   mycroft 			bdwrite(sbp);
    613       1.1   mycroft 		else
    614       1.1   mycroft 			bwrite(sbp);
    615       1.1   mycroft 	} else {
    616       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    617      1.28   mycroft 		if (!doasyncfree)
    618  1.84.2.1      yamt 			ffs_update(vp, NULL, NULL, 1);
    619       1.1   mycroft 	}
    620      1.25   thorpej 	if (ssize < len) {
    621       1.1   mycroft 		if (doasyncfree)
    622       1.1   mycroft 			bdwrite(ebp);
    623       1.1   mycroft 		else
    624       1.1   mycroft 			bwrite(ebp);
    625      1.25   thorpej 	}
    626       1.1   mycroft 	/*
    627       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    628       1.1   mycroft 	 */
    629       1.5   mycroft #ifdef DEBUG
    630       1.5   mycroft 	if (prtrealloc)
    631      1.13  christos 		printf("\n\tnew:");
    632       1.5   mycroft #endif
    633       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    634      1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    635      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    636      1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    637      1.76   hannken 			    fs->fs_bsize, ip->i_number);
    638       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    639       1.5   mycroft #ifdef DEBUG
    640      1.18      fvdl 		if (!ffs_checkblk(ip,
    641      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    643       1.5   mycroft 		if (prtrealloc)
    644      1.13  christos 			printf(" %d,", blkno);
    645       1.5   mycroft #endif
    646       1.5   mycroft 	}
    647       1.5   mycroft #ifdef DEBUG
    648       1.5   mycroft 	if (prtrealloc) {
    649       1.5   mycroft 		prtrealloc--;
    650      1.13  christos 		printf("\n");
    651       1.1   mycroft 	}
    652       1.5   mycroft #endif
    653       1.1   mycroft 	return (0);
    654       1.1   mycroft 
    655       1.1   mycroft fail:
    656       1.1   mycroft 	if (ssize < len)
    657  1.84.2.5      yamt 		brelse(ebp, 0);
    658      1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    659  1.84.2.5      yamt 		brelse(sbp, 0);
    660       1.1   mycroft 	return (ENOSPC);
    661      1.55      matt #endif /* XXXUBC */
    662       1.1   mycroft }
    663  1.84.2.1      yamt #endif /* 0 */
    664       1.1   mycroft 
    665       1.1   mycroft /*
    666       1.1   mycroft  * Allocate an inode in the file system.
    667      1.81     perry  *
    668       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    669       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    670       1.1   mycroft  *   1) allocate the preferred inode.
    671       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    672       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    673       1.1   mycroft  *      available inode is located.
    674      1.47       wiz  * If no inode preference is given the following hierarchy is used
    675       1.1   mycroft  * to allocate an inode:
    676       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    677       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    678       1.1   mycroft  *      available inode is located.
    679  1.84.2.8      yamt  *
    680  1.84.2.8      yamt  * => um_lock not held upon entry or return
    681       1.1   mycroft  */
    682       1.9  christos int
    683  1.84.2.1      yamt ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    684  1.84.2.1      yamt     struct vnode **vpp)
    685       1.9  christos {
    686  1.84.2.5      yamt 	struct ufsmount *ump;
    687      1.33  augustss 	struct inode *pip;
    688      1.33  augustss 	struct fs *fs;
    689      1.33  augustss 	struct inode *ip;
    690      1.60      fvdl 	struct timespec ts;
    691       1.1   mycroft 	ino_t ino, ipref;
    692       1.1   mycroft 	int cg, error;
    693      1.81     perry 
    694  1.84.2.1      yamt 	*vpp = NULL;
    695       1.1   mycroft 	pip = VTOI(pvp);
    696       1.1   mycroft 	fs = pip->i_fs;
    697  1.84.2.5      yamt 	ump = pip->i_ump;
    698  1.84.2.5      yamt 
    699  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
    700       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    701       1.1   mycroft 		goto noinodes;
    702       1.1   mycroft 
    703       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    704      1.50     lukem 		ipref = ffs_dirpref(pip);
    705      1.50     lukem 	else
    706      1.50     lukem 		ipref = pip->i_number;
    707       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    708       1.1   mycroft 		ipref = 0;
    709       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    710      1.50     lukem 	/*
    711      1.50     lukem 	 * Track number of dirs created one after another
    712      1.50     lukem 	 * in a same cg without intervening by files.
    713      1.50     lukem 	 */
    714      1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    715      1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    716      1.50     lukem 			fs->fs_contigdirs[cg]++;
    717      1.50     lukem 	} else {
    718      1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    719      1.50     lukem 			fs->fs_contigdirs[cg]--;
    720      1.50     lukem 	}
    721      1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    722       1.1   mycroft 	if (ino == 0)
    723       1.1   mycroft 		goto noinodes;
    724  1.84.2.1      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    725       1.1   mycroft 	if (error) {
    726  1.84.2.1      yamt 		ffs_vfree(pvp, ino, mode);
    727       1.1   mycroft 		return (error);
    728       1.1   mycroft 	}
    729  1.84.2.1      yamt 	KASSERT((*vpp)->v_type == VNON);
    730  1.84.2.1      yamt 	ip = VTOI(*vpp);
    731      1.60      fvdl 	if (ip->i_mode) {
    732      1.60      fvdl #if 0
    733      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    734      1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    735      1.60      fvdl #else
    736      1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    737      1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    738      1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    739      1.60      fvdl 		printf("size %llx blocks %llx\n",
    740      1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    741  1.84.2.1      yamt 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    742  1.84.2.1      yamt 		    (unsigned long long)ipref);
    743      1.60      fvdl #if 0
    744      1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    745      1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    746      1.60      fvdl #endif
    747      1.60      fvdl 
    748      1.60      fvdl #endif
    749       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    750       1.1   mycroft 	}
    751      1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    752  1.84.2.1      yamt 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    753  1.84.2.1      yamt 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    754      1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    755       1.1   mycroft 	}
    756      1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    757      1.61      fvdl 	ip->i_flags = 0;
    758      1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    759       1.1   mycroft 	/*
    760       1.1   mycroft 	 * Set up a new generation number for this inode.
    761       1.1   mycroft 	 */
    762      1.60      fvdl 	ip->i_gen++;
    763      1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    764      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    765  1.84.2.2      yamt 		vfs_timestamp(&ts);
    766      1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    767      1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    768      1.60      fvdl 	}
    769       1.1   mycroft 	return (0);
    770       1.1   mycroft noinodes:
    771  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
    772  1.84.2.1      yamt 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    773       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    774       1.1   mycroft 	return (ENOSPC);
    775       1.1   mycroft }
    776       1.1   mycroft 
    777       1.1   mycroft /*
    778      1.50     lukem  * Find a cylinder group in which to place a directory.
    779      1.42  sommerfe  *
    780      1.50     lukem  * The policy implemented by this algorithm is to allocate a
    781      1.50     lukem  * directory inode in the same cylinder group as its parent
    782      1.50     lukem  * directory, but also to reserve space for its files inodes
    783      1.50     lukem  * and data. Restrict the number of directories which may be
    784      1.50     lukem  * allocated one after another in the same cylinder group
    785      1.50     lukem  * without intervening allocation of files.
    786      1.42  sommerfe  *
    787      1.50     lukem  * If we allocate a first level directory then force allocation
    788      1.50     lukem  * in another cylinder group.
    789       1.1   mycroft  */
    790       1.1   mycroft static ino_t
    791  1.84.2.1      yamt ffs_dirpref(struct inode *pip)
    792       1.1   mycroft {
    793      1.50     lukem 	register struct fs *fs;
    794      1.74     soren 	int cg, prefcg;
    795  1.84.2.1      yamt 	int64_t dirsize, cgsize, curdsz;
    796  1.84.2.1      yamt 	int avgifree, avgbfree, avgndir;
    797      1.50     lukem 	int minifree, minbfree, maxndir;
    798      1.50     lukem 	int mincg, minndir;
    799      1.50     lukem 	int maxcontigdirs;
    800      1.50     lukem 
    801  1.84.2.5      yamt 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    802  1.84.2.5      yamt 
    803      1.50     lukem 	fs = pip->i_fs;
    804       1.1   mycroft 
    805       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    806      1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    807      1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    808      1.50     lukem 
    809      1.50     lukem 	/*
    810      1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    811      1.50     lukem 	 */
    812  1.84.2.5      yamt 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    813      1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    814      1.50     lukem 		mincg = prefcg;
    815      1.50     lukem 		minndir = fs->fs_ipg;
    816      1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    817      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    818      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    819      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820      1.42  sommerfe 				mincg = cg;
    821      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    822      1.42  sommerfe 			}
    823      1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    824      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    825      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    826      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    827      1.50     lukem 				mincg = cg;
    828      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    829      1.42  sommerfe 			}
    830      1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    831      1.42  sommerfe 	}
    832      1.50     lukem 
    833      1.50     lukem 	/*
    834      1.50     lukem 	 * Count various limits which used for
    835      1.50     lukem 	 * optimal allocation of a directory inode.
    836      1.50     lukem 	 */
    837      1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    838      1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    839      1.50     lukem 	if (minifree < 0)
    840      1.50     lukem 		minifree = 0;
    841      1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    842      1.50     lukem 	if (minbfree < 0)
    843      1.50     lukem 		minbfree = 0;
    844  1.84.2.1      yamt 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    845  1.84.2.1      yamt 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    846  1.84.2.1      yamt 	if (avgndir != 0) {
    847  1.84.2.1      yamt 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    848  1.84.2.1      yamt 		if (dirsize < curdsz)
    849  1.84.2.1      yamt 			dirsize = curdsz;
    850  1.84.2.1      yamt 	}
    851  1.84.2.1      yamt 	if (cgsize < dirsize * 255)
    852  1.84.2.1      yamt 		maxcontigdirs = cgsize / dirsize;
    853  1.84.2.1      yamt 	else
    854  1.84.2.1      yamt 		maxcontigdirs = 255;
    855      1.50     lukem 	if (fs->fs_avgfpdir > 0)
    856      1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    857      1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    858      1.50     lukem 	if (maxcontigdirs == 0)
    859      1.50     lukem 		maxcontigdirs = 1;
    860      1.50     lukem 
    861      1.50     lukem 	/*
    862      1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    863      1.50     lukem 	 * regular files, but only if we have no deficit in
    864      1.50     lukem 	 * inodes or space.
    865      1.50     lukem 	 */
    866      1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    867      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    868      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    869      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    870      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    871      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    872      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    873      1.50     lukem 		}
    874      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    875      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    876      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    877      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    878      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    879      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    880      1.50     lukem 		}
    881      1.50     lukem 	/*
    882      1.50     lukem 	 * This is a backstop when we are deficient in space.
    883      1.50     lukem 	 */
    884      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    885      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    886      1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    887      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    888      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    889      1.50     lukem 			break;
    890      1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    891       1.1   mycroft }
    892       1.1   mycroft 
    893       1.1   mycroft /*
    894       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    895       1.1   mycroft  * logically divided into sections. The first section is composed of the
    896       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    897      1.81     perry  *
    898       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    899       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    900       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    901       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    902       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    903       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    904       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    905       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    906       1.1   mycroft  * continues until a cylinder group with greater than the average number
    907       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    908       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    909       1.1   mycroft  * here a best guess is made based upon the logical block number being
    910       1.1   mycroft  * allocated.
    911      1.81     perry  *
    912       1.1   mycroft  * If a section is already partially allocated, the policy is to
    913       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    914      1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    915      1.60      fvdl  * contigously if possible.
    916  1.84.2.8      yamt  *
    917  1.84.2.8      yamt  * => um_lock held on entry and exit
    918       1.1   mycroft  */
    919      1.58      fvdl daddr_t
    920  1.84.2.1      yamt ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    921  1.84.2.1      yamt     int32_t *bap /* XXX ondisk32 */)
    922       1.1   mycroft {
    923      1.33  augustss 	struct fs *fs;
    924      1.33  augustss 	int cg;
    925       1.1   mycroft 	int avgbfree, startcg;
    926       1.1   mycroft 
    927  1.84.2.5      yamt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    928  1.84.2.5      yamt 
    929       1.1   mycroft 	fs = ip->i_fs;
    930       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    931      1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    932       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    933       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    934       1.1   mycroft 		}
    935       1.1   mycroft 		/*
    936       1.1   mycroft 		 * Find a cylinder with greater than average number of
    937       1.1   mycroft 		 * unused data blocks.
    938       1.1   mycroft 		 */
    939       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    940       1.1   mycroft 			startcg =
    941       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    942       1.1   mycroft 		else
    943      1.19    bouyer 			startcg = dtog(fs,
    944      1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    945       1.1   mycroft 		startcg %= fs->fs_ncg;
    946       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    947       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    948       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    949       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    950       1.1   mycroft 			}
    951      1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    952       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    953       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    954       1.1   mycroft 			}
    955      1.35   thorpej 		return (0);
    956       1.1   mycroft 	}
    957       1.1   mycroft 	/*
    958      1.60      fvdl 	 * We just always try to lay things out contiguously.
    959      1.60      fvdl 	 */
    960      1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    961      1.60      fvdl }
    962      1.60      fvdl 
    963      1.60      fvdl daddr_t
    964  1.84.2.1      yamt ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    965      1.60      fvdl {
    966      1.60      fvdl 	struct fs *fs;
    967      1.60      fvdl 	int cg;
    968      1.60      fvdl 	int avgbfree, startcg;
    969      1.60      fvdl 
    970  1.84.2.5      yamt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    971  1.84.2.5      yamt 
    972      1.60      fvdl 	fs = ip->i_fs;
    973      1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    974      1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    975      1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    976      1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    977      1.60      fvdl 		}
    978       1.1   mycroft 		/*
    979      1.60      fvdl 		 * Find a cylinder with greater than average number of
    980      1.60      fvdl 		 * unused data blocks.
    981       1.1   mycroft 		 */
    982      1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    983      1.60      fvdl 			startcg =
    984      1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    985      1.60      fvdl 		else
    986      1.60      fvdl 			startcg = dtog(fs,
    987      1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    988      1.60      fvdl 		startcg %= fs->fs_ncg;
    989      1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    990      1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    991      1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    992      1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    993      1.60      fvdl 			}
    994      1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    995      1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    996      1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    997      1.60      fvdl 			}
    998      1.60      fvdl 		return (0);
    999      1.60      fvdl 	}
   1000      1.60      fvdl 	/*
   1001      1.60      fvdl 	 * We just always try to lay things out contiguously.
   1002      1.60      fvdl 	 */
   1003      1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1004       1.1   mycroft }
   1005       1.1   mycroft 
   1006      1.60      fvdl 
   1007       1.1   mycroft /*
   1008       1.1   mycroft  * Implement the cylinder overflow algorithm.
   1009       1.1   mycroft  *
   1010       1.1   mycroft  * The policy implemented by this algorithm is:
   1011       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1012       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1013       1.1   mycroft  *   3) brute force search for a free block.
   1014  1.84.2.8      yamt  *
   1015  1.84.2.8      yamt  * => called with um_lock held
   1016  1.84.2.8      yamt  * => returns with um_lock released on success, held on failure
   1017  1.84.2.8      yamt  *    (*allocator releases lock on success, retains lock on failure)
   1018       1.1   mycroft  */
   1019       1.1   mycroft /*VARARGS5*/
   1020      1.58      fvdl static daddr_t
   1021  1.84.2.1      yamt ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1022  1.84.2.1      yamt     int size /* size for data blocks, mode for inodes */,
   1023  1.84.2.1      yamt     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1024       1.1   mycroft {
   1025      1.33  augustss 	struct fs *fs;
   1026      1.58      fvdl 	daddr_t result;
   1027       1.1   mycroft 	int i, icg = cg;
   1028       1.1   mycroft 
   1029       1.1   mycroft 	fs = ip->i_fs;
   1030       1.1   mycroft 	/*
   1031       1.1   mycroft 	 * 1: preferred cylinder group
   1032       1.1   mycroft 	 */
   1033       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1034       1.1   mycroft 	if (result)
   1035       1.1   mycroft 		return (result);
   1036       1.1   mycroft 	/*
   1037       1.1   mycroft 	 * 2: quadratic rehash
   1038       1.1   mycroft 	 */
   1039       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1040       1.1   mycroft 		cg += i;
   1041       1.1   mycroft 		if (cg >= fs->fs_ncg)
   1042       1.1   mycroft 			cg -= fs->fs_ncg;
   1043       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1044       1.1   mycroft 		if (result)
   1045       1.1   mycroft 			return (result);
   1046       1.1   mycroft 	}
   1047       1.1   mycroft 	/*
   1048       1.1   mycroft 	 * 3: brute force search
   1049       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1050       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1051       1.1   mycroft 	 */
   1052       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1053       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1054       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1055       1.1   mycroft 		if (result)
   1056       1.1   mycroft 			return (result);
   1057       1.1   mycroft 		cg++;
   1058       1.1   mycroft 		if (cg == fs->fs_ncg)
   1059       1.1   mycroft 			cg = 0;
   1060       1.1   mycroft 	}
   1061      1.35   thorpej 	return (0);
   1062       1.1   mycroft }
   1063       1.1   mycroft 
   1064       1.1   mycroft /*
   1065       1.1   mycroft  * Determine whether a fragment can be extended.
   1066       1.1   mycroft  *
   1067      1.81     perry  * Check to see if the necessary fragments are available, and
   1068       1.1   mycroft  * if they are, allocate them.
   1069  1.84.2.8      yamt  *
   1070  1.84.2.8      yamt  * => called with um_lock held
   1071  1.84.2.8      yamt  * => returns with um_lock released on success, held on failure
   1072       1.1   mycroft  */
   1073      1.58      fvdl static daddr_t
   1074  1.84.2.1      yamt ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1075       1.1   mycroft {
   1076  1.84.2.5      yamt 	struct ufsmount *ump;
   1077      1.33  augustss 	struct fs *fs;
   1078      1.33  augustss 	struct cg *cgp;
   1079       1.1   mycroft 	struct buf *bp;
   1080      1.58      fvdl 	daddr_t bno;
   1081       1.1   mycroft 	int frags, bbase;
   1082       1.1   mycroft 	int i, error;
   1083      1.62      fvdl 	u_int8_t *blksfree;
   1084       1.1   mycroft 
   1085       1.1   mycroft 	fs = ip->i_fs;
   1086  1.84.2.5      yamt 	ump = ip->i_ump;
   1087  1.84.2.5      yamt 
   1088  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
   1089  1.84.2.5      yamt 
   1090       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1091      1.35   thorpej 		return (0);
   1092       1.1   mycroft 	frags = numfrags(fs, nsize);
   1093       1.1   mycroft 	bbase = fragnum(fs, bprev);
   1094       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1095       1.1   mycroft 		/* cannot extend across a block boundary */
   1096      1.35   thorpej 		return (0);
   1097       1.1   mycroft 	}
   1098  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1099       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1100       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1101  1.84.2.5      yamt 	if (error)
   1102  1.84.2.5      yamt 		goto fail;
   1103       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1104  1.84.2.5      yamt 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1105  1.84.2.5      yamt 		goto fail;
   1106  1.84.2.1      yamt 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1107      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1108      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1109  1.84.2.1      yamt 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1110       1.1   mycroft 	bno = dtogd(fs, bprev);
   1111      1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1112       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1113  1.84.2.5      yamt 		if (isclr(blksfree, bno + i))
   1114  1.84.2.5      yamt 			goto fail;
   1115       1.1   mycroft 	/*
   1116       1.1   mycroft 	 * the current fragment can be extended
   1117       1.1   mycroft 	 * deduct the count on fragment being extended into
   1118       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1119       1.1   mycroft 	 * allocate the extended piece
   1120       1.1   mycroft 	 */
   1121       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1122      1.62      fvdl 		if (isclr(blksfree, bno + i))
   1123       1.1   mycroft 			break;
   1124      1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1125       1.1   mycroft 	if (i != frags)
   1126      1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1127  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1128       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1129      1.62      fvdl 		clrbit(blksfree, bno + i);
   1130      1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1131       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1132       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1133       1.1   mycroft 	}
   1134       1.1   mycroft 	fs->fs_fmod = 1;
   1135  1.84.2.5      yamt 	ACTIVECG_CLR(fs, cg);
   1136  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1137      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1138      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1139       1.1   mycroft 	bdwrite(bp);
   1140       1.1   mycroft 	return (bprev);
   1141  1.84.2.5      yamt 
   1142  1.84.2.5      yamt  fail:
   1143  1.84.2.5      yamt  	brelse(bp, 0);
   1144  1.84.2.5      yamt  	mutex_enter(&ump->um_lock);
   1145  1.84.2.5      yamt  	return (0);
   1146       1.1   mycroft }
   1147       1.1   mycroft 
   1148       1.1   mycroft /*
   1149       1.1   mycroft  * Determine whether a block can be allocated.
   1150       1.1   mycroft  *
   1151       1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1152       1.1   mycroft  * and if it is, allocate it.
   1153       1.1   mycroft  */
   1154      1.58      fvdl static daddr_t
   1155  1.84.2.1      yamt ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1156       1.1   mycroft {
   1157  1.84.2.5      yamt 	struct ufsmount *ump;
   1158      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1159      1.30      fvdl 	struct cg *cgp;
   1160       1.1   mycroft 	struct buf *bp;
   1161      1.60      fvdl 	int32_t bno;
   1162      1.60      fvdl 	daddr_t blkno;
   1163      1.30      fvdl 	int error, frags, allocsiz, i;
   1164      1.62      fvdl 	u_int8_t *blksfree;
   1165      1.30      fvdl #ifdef FFS_EI
   1166      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1167      1.30      fvdl #endif
   1168       1.1   mycroft 
   1169  1.84.2.5      yamt 	ump = ip->i_ump;
   1170  1.84.2.5      yamt 
   1171  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
   1172  1.84.2.5      yamt 
   1173       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1174      1.35   thorpej 		return (0);
   1175  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1176       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1177       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1178  1.84.2.5      yamt 	if (error)
   1179  1.84.2.5      yamt 		goto fail;
   1180       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1181      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1182  1.84.2.5      yamt 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1183  1.84.2.5      yamt 		goto fail;
   1184  1.84.2.1      yamt 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1185      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1186      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1187  1.84.2.1      yamt 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1188       1.1   mycroft 	if (size == fs->fs_bsize) {
   1189  1.84.2.5      yamt 		mutex_enter(&ump->um_lock);
   1190      1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1191      1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1192  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
   1193       1.1   mycroft 		bdwrite(bp);
   1194      1.60      fvdl 		return (blkno);
   1195       1.1   mycroft 	}
   1196       1.1   mycroft 	/*
   1197       1.1   mycroft 	 * check to see if any fragments are already available
   1198       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1199       1.1   mycroft 	 * it down to a smaller size if necessary
   1200       1.1   mycroft 	 */
   1201      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1202       1.1   mycroft 	frags = numfrags(fs, size);
   1203       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1204       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1205       1.1   mycroft 			break;
   1206       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1207       1.1   mycroft 		/*
   1208      1.81     perry 		 * no fragments were available, so a block will be
   1209       1.1   mycroft 		 * allocated, and hacked up
   1210       1.1   mycroft 		 */
   1211  1.84.2.5      yamt 		if (cgp->cg_cs.cs_nbfree == 0)
   1212  1.84.2.5      yamt 			goto fail;
   1213  1.84.2.5      yamt 		mutex_enter(&ump->um_lock);
   1214      1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1215      1.60      fvdl 		bno = dtogd(fs, blkno);
   1216       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1217      1.62      fvdl 			setbit(blksfree, bno + i);
   1218       1.1   mycroft 		i = fs->fs_frag - frags;
   1219      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1220       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1221      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1222       1.1   mycroft 		fs->fs_fmod = 1;
   1223      1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1224      1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1225  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
   1226       1.1   mycroft 		bdwrite(bp);
   1227      1.60      fvdl 		return (blkno);
   1228       1.1   mycroft 	}
   1229      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1230      1.30      fvdl #if 0
   1231      1.30      fvdl 	/*
   1232      1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1233      1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1234      1.30      fvdl 	 */
   1235  1.84.2.5      yamt 	if (bno < 0)
   1236  1.84.2.5      yamt 		goto fail;
   1237      1.30      fvdl #endif
   1238       1.1   mycroft 	for (i = 0; i < frags; i++)
   1239      1.62      fvdl 		clrbit(blksfree, bno + i);
   1240  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1241      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1242       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1243       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1244       1.1   mycroft 	fs->fs_fmod = 1;
   1245      1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1246       1.1   mycroft 	if (frags != allocsiz)
   1247      1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1248      1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1249  1.84.2.5      yamt 	ACTIVECG_CLR(fs, cg);
   1250  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1251      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1252      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1253       1.1   mycroft 	bdwrite(bp);
   1254      1.30      fvdl 	return blkno;
   1255  1.84.2.5      yamt 
   1256  1.84.2.5      yamt  fail:
   1257  1.84.2.5      yamt  	brelse(bp, 0);
   1258  1.84.2.5      yamt  	mutex_enter(&ump->um_lock);
   1259  1.84.2.5      yamt  	return (0);
   1260       1.1   mycroft }
   1261       1.1   mycroft 
   1262       1.1   mycroft /*
   1263       1.1   mycroft  * Allocate a block in a cylinder group.
   1264       1.1   mycroft  *
   1265       1.1   mycroft  * This algorithm implements the following policy:
   1266       1.1   mycroft  *   1) allocate the requested block.
   1267       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1268       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1269       1.1   mycroft  *      specified cylinder group.
   1270       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1271       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1272       1.1   mycroft  */
   1273      1.58      fvdl static daddr_t
   1274  1.84.2.1      yamt ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1275       1.1   mycroft {
   1276  1.84.2.5      yamt 	struct ufsmount *ump;
   1277      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1278      1.30      fvdl 	struct cg *cgp;
   1279      1.60      fvdl 	daddr_t blkno;
   1280      1.60      fvdl 	int32_t bno;
   1281      1.60      fvdl 	u_int8_t *blksfree;
   1282      1.30      fvdl #ifdef FFS_EI
   1283      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1284      1.30      fvdl #endif
   1285       1.1   mycroft 
   1286  1.84.2.5      yamt 	ump = ip->i_ump;
   1287  1.84.2.5      yamt 
   1288  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
   1289  1.84.2.5      yamt 
   1290      1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1291      1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1292      1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1293      1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1294      1.60      fvdl 	} else {
   1295      1.60      fvdl 		bpref = blknum(fs, bpref);
   1296      1.60      fvdl 		bno = dtogd(fs, bpref);
   1297       1.1   mycroft 		/*
   1298      1.60      fvdl 		 * if the requested block is available, use it
   1299       1.1   mycroft 		 */
   1300      1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1301      1.60      fvdl 			goto gotit;
   1302       1.1   mycroft 	}
   1303       1.1   mycroft 	/*
   1304      1.60      fvdl 	 * Take the next available block in this cylinder group.
   1305       1.1   mycroft 	 */
   1306      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1307       1.1   mycroft 	if (bno < 0)
   1308      1.35   thorpej 		return (0);
   1309      1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1310       1.1   mycroft gotit:
   1311       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1312      1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1313      1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1314      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1315       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1316      1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1317      1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1318      1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1319      1.73       dbj 		int cylno;
   1320      1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1321      1.75       dbj 		KASSERT(cylno >= 0);
   1322      1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1323      1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1324      1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1325      1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1326      1.73       dbj 		    needswap);
   1327      1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1328      1.73       dbj 	}
   1329       1.1   mycroft 	fs->fs_fmod = 1;
   1330      1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1331  1.84.2.5      yamt 	if (DOINGSOFTDEP(ITOV(ip))) {
   1332  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
   1333      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1334  1.84.2.5      yamt 		mutex_enter(&ump->um_lock);
   1335  1.84.2.5      yamt 	}
   1336      1.30      fvdl 	return (blkno);
   1337       1.1   mycroft }
   1338       1.1   mycroft 
   1339      1.55      matt #ifdef XXXUBC
   1340       1.1   mycroft /*
   1341       1.1   mycroft  * Determine whether a cluster can be allocated.
   1342       1.1   mycroft  *
   1343       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1344       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1345       1.1   mycroft  * take the first one that we find following bpref.
   1346       1.1   mycroft  */
   1347      1.60      fvdl 
   1348      1.60      fvdl /*
   1349      1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1350      1.60      fvdl  */
   1351      1.58      fvdl static daddr_t
   1352  1.84.2.1      yamt ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1353       1.1   mycroft {
   1354  1.84.2.5      yamt 	struct ufsmount *ump;
   1355      1.33  augustss 	struct fs *fs;
   1356      1.33  augustss 	struct cg *cgp;
   1357       1.1   mycroft 	struct buf *bp;
   1358      1.18      fvdl 	int i, got, run, bno, bit, map;
   1359       1.1   mycroft 	u_char *mapp;
   1360       1.5   mycroft 	int32_t *lp;
   1361       1.1   mycroft 
   1362       1.1   mycroft 	fs = ip->i_fs;
   1363  1.84.2.5      yamt 	ump = ip->i_ump;
   1364  1.84.2.5      yamt 
   1365  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
   1366       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1367      1.35   thorpej 		return (0);
   1368  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1369       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1370       1.1   mycroft 	    NOCRED, &bp))
   1371       1.1   mycroft 		goto fail;
   1372       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1373      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1374       1.1   mycroft 		goto fail;
   1375       1.1   mycroft 	/*
   1376       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1377       1.1   mycroft 	 * available in this cylinder group.
   1378       1.1   mycroft 	 */
   1379      1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1380       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1381      1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1382       1.1   mycroft 			break;
   1383       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1384       1.5   mycroft 		/*
   1385       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1386       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1387       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1388       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1389       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1390       1.5   mycroft 		 */
   1391      1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1392       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1393      1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1394       1.5   mycroft 				break;
   1395  1.84.2.5      yamt 		mutex_enter(&ump->um_lock);
   1396       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1397  1.84.2.5      yamt 		mutex_exit(&ump->um_lock);
   1398       1.1   mycroft 		goto fail;
   1399       1.5   mycroft 	}
   1400       1.1   mycroft 	/*
   1401       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1402       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1403       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1404       1.1   mycroft 	 * block allocation. We do not search before the current
   1405       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1406       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1407       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1408       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1409       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1410       1.1   mycroft 	 */
   1411       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1412       1.1   mycroft 		bpref = 0;
   1413       1.1   mycroft 	else
   1414       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1415      1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1416       1.1   mycroft 	map = *mapp++;
   1417       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1418      1.19    bouyer 	for (run = 0, got = bpref;
   1419      1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1420       1.1   mycroft 		if ((map & bit) == 0) {
   1421       1.1   mycroft 			run = 0;
   1422       1.1   mycroft 		} else {
   1423       1.1   mycroft 			run++;
   1424       1.1   mycroft 			if (run == len)
   1425       1.1   mycroft 				break;
   1426       1.1   mycroft 		}
   1427      1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1428       1.1   mycroft 			bit <<= 1;
   1429       1.1   mycroft 		} else {
   1430       1.1   mycroft 			map = *mapp++;
   1431       1.1   mycroft 			bit = 1;
   1432       1.1   mycroft 		}
   1433       1.1   mycroft 	}
   1434      1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1435       1.1   mycroft 		goto fail;
   1436       1.1   mycroft 	/*
   1437       1.1   mycroft 	 * Allocate the cluster that we have found.
   1438       1.1   mycroft 	 */
   1439      1.30      fvdl #ifdef DIAGNOSTIC
   1440      1.18      fvdl 	for (i = 1; i <= len; i++)
   1441      1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1442      1.30      fvdl 		    got - run + i))
   1443      1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1444      1.30      fvdl #endif
   1445      1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1446      1.18      fvdl 	if (dtog(fs, bno) != cg)
   1447      1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1448       1.1   mycroft 	len = blkstofrags(fs, len);
   1449  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1450       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1451      1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1452       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1453      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1454  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1455       1.8       cgd 	bdwrite(bp);
   1456       1.1   mycroft 	return (bno);
   1457       1.1   mycroft 
   1458       1.1   mycroft fail:
   1459  1.84.2.5      yamt 	brelse(bp, 0);
   1460  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1461       1.1   mycroft 	return (0);
   1462       1.1   mycroft }
   1463      1.55      matt #endif /* XXXUBC */
   1464       1.1   mycroft 
   1465       1.1   mycroft /*
   1466       1.1   mycroft  * Determine whether an inode can be allocated.
   1467       1.1   mycroft  *
   1468       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1469       1.1   mycroft  * allocate it using the following policy:
   1470       1.1   mycroft  *   1) allocate the requested inode.
   1471       1.1   mycroft  *   2) allocate the next available inode after the requested
   1472       1.1   mycroft  *      inode in the specified cylinder group.
   1473       1.1   mycroft  */
   1474      1.58      fvdl static daddr_t
   1475  1.84.2.1      yamt ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1476       1.1   mycroft {
   1477  1.84.2.5      yamt 	struct ufsmount *ump = ip->i_ump;
   1478      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1479      1.33  augustss 	struct cg *cgp;
   1480      1.60      fvdl 	struct buf *bp, *ibp;
   1481      1.60      fvdl 	u_int8_t *inosused;
   1482       1.1   mycroft 	int error, start, len, loc, map, i;
   1483      1.60      fvdl 	int32_t initediblk;
   1484      1.60      fvdl 	struct ufs2_dinode *dp2;
   1485      1.19    bouyer #ifdef FFS_EI
   1486      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1487      1.19    bouyer #endif
   1488       1.1   mycroft 
   1489  1.84.2.5      yamt 	KASSERT(mutex_owned(&ump->um_lock));
   1490  1.84.2.5      yamt 
   1491       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1492      1.35   thorpej 		return (0);
   1493  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1494       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1495       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1496  1.84.2.5      yamt 	if (error)
   1497  1.84.2.5      yamt 		goto fail;
   1498       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1499  1.84.2.5      yamt 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1500  1.84.2.5      yamt 		goto fail;
   1501  1.84.2.1      yamt 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1502      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1503      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1504  1.84.2.1      yamt 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1505      1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1506       1.1   mycroft 	if (ipref) {
   1507       1.1   mycroft 		ipref %= fs->fs_ipg;
   1508      1.60      fvdl 		if (isclr(inosused, ipref))
   1509       1.1   mycroft 			goto gotit;
   1510       1.1   mycroft 	}
   1511      1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1512      1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1513      1.19    bouyer 		NBBY);
   1514      1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1515       1.1   mycroft 	if (loc == 0) {
   1516       1.1   mycroft 		len = start + 1;
   1517       1.1   mycroft 		start = 0;
   1518      1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1519       1.1   mycroft 		if (loc == 0) {
   1520      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1521      1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1522      1.19    bouyer 				fs->fs_fsmnt);
   1523       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1524       1.1   mycroft 			/* NOTREACHED */
   1525       1.1   mycroft 		}
   1526       1.1   mycroft 	}
   1527       1.1   mycroft 	i = start + len - loc;
   1528      1.60      fvdl 	map = inosused[i];
   1529       1.1   mycroft 	ipref = i * NBBY;
   1530       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1531       1.1   mycroft 		if ((map & i) == 0) {
   1532      1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1533       1.1   mycroft 			goto gotit;
   1534       1.1   mycroft 		}
   1535       1.1   mycroft 	}
   1536      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1537       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1538       1.1   mycroft 	/* NOTREACHED */
   1539       1.1   mycroft gotit:
   1540      1.60      fvdl 	/*
   1541      1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1542      1.60      fvdl 	 */
   1543      1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1544  1.84.2.6      yamt 	ibp = NULL;
   1545      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1546      1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1547      1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1548      1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1549      1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1550      1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1551      1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1552      1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1553      1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1554      1.60      fvdl 			/*
   1555      1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1556      1.60      fvdl 			 * random, after all.
   1557      1.60      fvdl 			 */
   1558      1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1559      1.60      fvdl 			dp2++;
   1560      1.60      fvdl 		}
   1561      1.60      fvdl 		initediblk += INOPB(fs);
   1562      1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1563      1.60      fvdl 	}
   1564      1.60      fvdl 
   1565  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1566      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1567  1.84.2.5      yamt 	setbit(inosused, ipref);
   1568  1.84.2.5      yamt 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1569  1.84.2.5      yamt 	fs->fs_cstotal.cs_nifree--;
   1570  1.84.2.5      yamt 	fs->fs_cs(fs, cg).cs_nifree--;
   1571  1.84.2.5      yamt 	fs->fs_fmod = 1;
   1572  1.84.2.5      yamt 	if ((mode & IFMT) == IFDIR) {
   1573  1.84.2.5      yamt 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1574  1.84.2.5      yamt 		fs->fs_cstotal.cs_ndir++;
   1575  1.84.2.5      yamt 		fs->fs_cs(fs, cg).cs_ndir++;
   1576  1.84.2.5      yamt 	}
   1577  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1578  1.84.2.5      yamt 	if (DOINGSOFTDEP(ITOV(ip)))
   1579  1.84.2.5      yamt 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1580       1.1   mycroft 	bdwrite(bp);
   1581  1.84.2.6      yamt 	if (ibp != NULL)
   1582  1.84.2.6      yamt 		bawrite(ibp);
   1583       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1584  1.84.2.5      yamt  fail:
   1585  1.84.2.5      yamt 	brelse(bp, 0);
   1586  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1587  1.84.2.5      yamt 	return (0);
   1588       1.1   mycroft }
   1589       1.1   mycroft 
   1590       1.1   mycroft /*
   1591       1.1   mycroft  * Free a block or fragment.
   1592       1.1   mycroft  *
   1593       1.1   mycroft  * The specified block or fragment is placed back in the
   1594      1.81     perry  * free map. If a fragment is deallocated, a possible
   1595       1.1   mycroft  * block reassembly is checked.
   1596  1.84.2.8      yamt  *
   1597  1.84.2.8      yamt  * => um_lock not held on entry or exit
   1598       1.1   mycroft  */
   1599       1.9  christos void
   1600  1.84.2.1      yamt ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1601  1.84.2.1      yamt     ino_t inum)
   1602       1.1   mycroft {
   1603      1.33  augustss 	struct cg *cgp;
   1604       1.1   mycroft 	struct buf *bp;
   1605      1.76   hannken 	struct ufsmount *ump;
   1606      1.60      fvdl 	int32_t fragno, cgbno;
   1607      1.76   hannken 	daddr_t cgblkno;
   1608       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1609      1.62      fvdl 	u_int8_t *blksfree;
   1610      1.76   hannken 	dev_t dev;
   1611      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1612       1.1   mycroft 
   1613      1.76   hannken 	cg = dtog(fs, bno);
   1614      1.77   hannken 	if (devvp->v_type != VBLK) {
   1615      1.77   hannken 		/* devvp is a snapshot */
   1616      1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1617  1.84.2.5      yamt 		ump = VFSTOUFS(devvp->v_mount);
   1618      1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1619      1.76   hannken 	} else {
   1620      1.76   hannken 		dev = devvp->v_rdev;
   1621      1.76   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1622      1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1623  1.84.2.4      yamt 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1624      1.76   hannken 			return;
   1625      1.76   hannken 	}
   1626      1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1627      1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1628      1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1629      1.58      fvdl 		       "size = %ld, fs = %s\n",
   1630      1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1631       1.1   mycroft 		panic("blkfree: bad size");
   1632       1.1   mycroft 	}
   1633      1.76   hannken 
   1634      1.60      fvdl 	if (bno >= fs->fs_size) {
   1635  1.84.2.1      yamt 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1636  1.84.2.1      yamt 		    (unsigned long long)inum);
   1637      1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1638       1.1   mycroft 		return;
   1639       1.1   mycroft 	}
   1640      1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1641       1.1   mycroft 	if (error) {
   1642  1.84.2.5      yamt 		brelse(bp, 0);
   1643       1.1   mycroft 		return;
   1644       1.1   mycroft 	}
   1645       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1646      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1647  1.84.2.5      yamt 		brelse(bp, 0);
   1648       1.1   mycroft 		return;
   1649       1.1   mycroft 	}
   1650  1.84.2.1      yamt 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1651      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1652      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1653  1.84.2.1      yamt 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1654      1.60      fvdl 	cgbno = dtogd(fs, bno);
   1655      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1656  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1657       1.1   mycroft 	if (size == fs->fs_bsize) {
   1658      1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1659      1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1660      1.77   hannken 			if (devvp->v_type != VBLK) {
   1661      1.77   hannken 				/* devvp is a snapshot */
   1662  1.84.2.5      yamt 				mutex_exit(&ump->um_lock);
   1663  1.84.2.5      yamt 				brelse(bp, 0);
   1664      1.76   hannken 				return;
   1665      1.76   hannken 			}
   1666      1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1667      1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1668       1.1   mycroft 			panic("blkfree: freeing free block");
   1669       1.1   mycroft 		}
   1670      1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1671      1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1672      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1673       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1674       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1675      1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1676      1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1677      1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1678      1.75       dbj 			KASSERT(i >= 0);
   1679      1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1680      1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1681      1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1682      1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1683      1.73       dbj 			    needswap);
   1684      1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1685      1.73       dbj 		}
   1686       1.1   mycroft 	} else {
   1687      1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1688       1.1   mycroft 		/*
   1689       1.1   mycroft 		 * decrement the counts associated with the old frags
   1690       1.1   mycroft 		 */
   1691      1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1692      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1693       1.1   mycroft 		/*
   1694       1.1   mycroft 		 * deallocate the fragment
   1695       1.1   mycroft 		 */
   1696       1.1   mycroft 		frags = numfrags(fs, size);
   1697       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1698      1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1699      1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1700      1.59   tsutsui 				       ", fs = %s\n",
   1701      1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1702       1.1   mycroft 				panic("blkfree: freeing free frag");
   1703       1.1   mycroft 			}
   1704      1.62      fvdl 			setbit(blksfree, cgbno + i);
   1705       1.1   mycroft 		}
   1706      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1707       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1708      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1709       1.1   mycroft 		/*
   1710       1.1   mycroft 		 * add back in counts associated with the new frags
   1711       1.1   mycroft 		 */
   1712      1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1713      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1714       1.1   mycroft 		/*
   1715       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1716       1.1   mycroft 		 */
   1717      1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1718      1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1719      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1720       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1721       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1722      1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1723      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1724       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1725       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1726      1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1727      1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1728      1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1729      1.75       dbj 				KASSERT(i >= 0);
   1730      1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1731      1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1732      1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1733      1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1734      1.73       dbj 				    bbase)], 1, needswap);
   1735      1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1736      1.73       dbj 			}
   1737       1.1   mycroft 		}
   1738       1.1   mycroft 	}
   1739       1.1   mycroft 	fs->fs_fmod = 1;
   1740      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1741  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1742       1.1   mycroft 	bdwrite(bp);
   1743       1.1   mycroft }
   1744       1.1   mycroft 
   1745      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1746      1.55      matt #ifdef XXXUBC
   1747      1.18      fvdl /*
   1748      1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1749      1.18      fvdl  * fragment is allocated, false if it is free.
   1750      1.18      fvdl  */
   1751      1.18      fvdl static int
   1752  1.84.2.1      yamt ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1753      1.18      fvdl {
   1754      1.18      fvdl 	struct fs *fs;
   1755      1.18      fvdl 	struct cg *cgp;
   1756      1.18      fvdl 	struct buf *bp;
   1757      1.18      fvdl 	int i, error, frags, free;
   1758      1.18      fvdl 
   1759      1.18      fvdl 	fs = ip->i_fs;
   1760      1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1761      1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1762      1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1763      1.18      fvdl 		panic("checkblk: bad size");
   1764      1.18      fvdl 	}
   1765      1.60      fvdl 	if (bno >= fs->fs_size)
   1766      1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1767      1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1768      1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1769      1.18      fvdl 	if (error) {
   1770  1.84.2.5      yamt 		brelse(bp, 0);
   1771      1.18      fvdl 		return 0;
   1772      1.18      fvdl 	}
   1773      1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1774      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1775  1.84.2.5      yamt 		brelse(bp, 0);
   1776      1.18      fvdl 		return 0;
   1777      1.18      fvdl 	}
   1778      1.18      fvdl 	bno = dtogd(fs, bno);
   1779      1.18      fvdl 	if (size == fs->fs_bsize) {
   1780      1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1781      1.19    bouyer 			fragstoblks(fs, bno));
   1782      1.18      fvdl 	} else {
   1783      1.18      fvdl 		frags = numfrags(fs, size);
   1784      1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1785      1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1786      1.18      fvdl 				free++;
   1787      1.18      fvdl 		if (free != 0 && free != frags)
   1788      1.18      fvdl 			panic("checkblk: partially free fragment");
   1789      1.18      fvdl 	}
   1790  1.84.2.5      yamt 	brelse(bp, 0);
   1791      1.18      fvdl 	return (!free);
   1792      1.18      fvdl }
   1793      1.55      matt #endif /* XXXUBC */
   1794      1.18      fvdl #endif /* DIAGNOSTIC */
   1795      1.18      fvdl 
   1796       1.1   mycroft /*
   1797       1.1   mycroft  * Free an inode.
   1798      1.30      fvdl  */
   1799      1.30      fvdl int
   1800  1.84.2.1      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1801      1.30      fvdl {
   1802      1.30      fvdl 
   1803  1.84.2.1      yamt 	if (DOINGSOFTDEP(vp)) {
   1804  1.84.2.1      yamt 		softdep_freefile(vp, ino, mode);
   1805      1.30      fvdl 		return (0);
   1806      1.30      fvdl 	}
   1807  1.84.2.1      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1808      1.30      fvdl }
   1809      1.30      fvdl 
   1810      1.30      fvdl /*
   1811      1.30      fvdl  * Do the actual free operation.
   1812       1.1   mycroft  * The specified inode is placed back in the free map.
   1813       1.1   mycroft  */
   1814       1.1   mycroft int
   1815  1.84.2.1      yamt ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1816       1.9  christos {
   1817  1.84.2.5      yamt 	struct ufsmount *ump;
   1818      1.33  augustss 	struct cg *cgp;
   1819       1.1   mycroft 	struct buf *bp;
   1820       1.1   mycroft 	int error, cg;
   1821      1.76   hannken 	daddr_t cgbno;
   1822      1.62      fvdl 	u_int8_t *inosused;
   1823      1.78   hannken 	dev_t dev;
   1824      1.19    bouyer #ifdef FFS_EI
   1825      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1826      1.19    bouyer #endif
   1827       1.1   mycroft 
   1828      1.76   hannken 	cg = ino_to_cg(fs, ino);
   1829      1.78   hannken 	if (devvp->v_type != VBLK) {
   1830      1.78   hannken 		/* devvp is a snapshot */
   1831      1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1832  1.84.2.5      yamt 		ump = VFSTOUFS(devvp->v_mount);
   1833      1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1834      1.76   hannken 	} else {
   1835      1.78   hannken 		dev = devvp->v_rdev;
   1836  1.84.2.5      yamt 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1837      1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1838      1.76   hannken 	}
   1839       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1840  1.84.2.1      yamt 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1841  1.84.2.1      yamt 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1842      1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1843       1.1   mycroft 	if (error) {
   1844  1.84.2.5      yamt 		brelse(bp, 0);
   1845      1.30      fvdl 		return (error);
   1846       1.1   mycroft 	}
   1847       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1848      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1849  1.84.2.5      yamt 		brelse(bp, 0);
   1850       1.1   mycroft 		return (0);
   1851       1.1   mycroft 	}
   1852  1.84.2.1      yamt 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1853      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1854      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1855  1.84.2.1      yamt 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1856      1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1857       1.1   mycroft 	ino %= fs->fs_ipg;
   1858      1.62      fvdl 	if (isclr(inosused, ino)) {
   1859  1.84.2.1      yamt 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1860  1.84.2.1      yamt 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1861  1.84.2.1      yamt 		    fs->fs_fsmnt);
   1862       1.1   mycroft 		if (fs->fs_ronly == 0)
   1863       1.1   mycroft 			panic("ifree: freeing free inode");
   1864       1.1   mycroft 	}
   1865      1.62      fvdl 	clrbit(inosused, ino);
   1866      1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1867      1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1868      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1869  1.84.2.5      yamt 	mutex_enter(&ump->um_lock);
   1870       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1871       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1872      1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1873      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1874       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1875       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1876       1.1   mycroft 	}
   1877       1.1   mycroft 	fs->fs_fmod = 1;
   1878      1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1879  1.84.2.5      yamt 	mutex_exit(&ump->um_lock);
   1880       1.1   mycroft 	bdwrite(bp);
   1881       1.1   mycroft 	return (0);
   1882       1.1   mycroft }
   1883       1.1   mycroft 
   1884       1.1   mycroft /*
   1885      1.76   hannken  * Check to see if a file is free.
   1886      1.76   hannken  */
   1887      1.76   hannken int
   1888  1.84.2.1      yamt ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1889      1.76   hannken {
   1890      1.76   hannken 	struct cg *cgp;
   1891      1.76   hannken 	struct buf *bp;
   1892      1.76   hannken 	daddr_t cgbno;
   1893      1.76   hannken 	int ret, cg;
   1894      1.76   hannken 	u_int8_t *inosused;
   1895      1.76   hannken 
   1896      1.76   hannken 	cg = ino_to_cg(fs, ino);
   1897      1.77   hannken 	if (devvp->v_type != VBLK) {
   1898      1.77   hannken 		/* devvp is a snapshot */
   1899      1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1900      1.77   hannken 	} else
   1901      1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1902      1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1903      1.76   hannken 		return 1;
   1904      1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1905  1.84.2.5      yamt 		brelse(bp, 0);
   1906      1.76   hannken 		return 1;
   1907      1.76   hannken 	}
   1908      1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1909      1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1910  1.84.2.5      yamt 		brelse(bp, 0);
   1911      1.76   hannken 		return 1;
   1912      1.76   hannken 	}
   1913      1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1914      1.76   hannken 	ino %= fs->fs_ipg;
   1915      1.76   hannken 	ret = isclr(inosused, ino);
   1916  1.84.2.5      yamt 	brelse(bp, 0);
   1917      1.76   hannken 	return ret;
   1918      1.76   hannken }
   1919      1.76   hannken 
   1920      1.76   hannken /*
   1921       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1922       1.1   mycroft  *
   1923       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1924       1.1   mycroft  * available.
   1925       1.1   mycroft  */
   1926      1.60      fvdl static int32_t
   1927  1.84.2.1      yamt ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1928       1.1   mycroft {
   1929      1.60      fvdl 	int32_t bno;
   1930       1.1   mycroft 	int start, len, loc, i;
   1931       1.1   mycroft 	int blk, field, subfield, pos;
   1932      1.19    bouyer 	int ostart, olen;
   1933      1.62      fvdl 	u_int8_t *blksfree;
   1934      1.30      fvdl #ifdef FFS_EI
   1935      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1936      1.30      fvdl #endif
   1937       1.1   mycroft 
   1938  1.84.2.5      yamt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1939  1.84.2.5      yamt 
   1940       1.1   mycroft 	/*
   1941       1.1   mycroft 	 * find the fragment by searching through the free block
   1942       1.1   mycroft 	 * map for an appropriate bit pattern
   1943       1.1   mycroft 	 */
   1944       1.1   mycroft 	if (bpref)
   1945       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1946       1.1   mycroft 	else
   1947      1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1948      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1949       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1950      1.19    bouyer 	ostart = start;
   1951      1.19    bouyer 	olen = len;
   1952      1.45     lukem 	loc = scanc((u_int)len,
   1953      1.62      fvdl 		(const u_char *)&blksfree[start],
   1954      1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1955      1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1956       1.1   mycroft 	if (loc == 0) {
   1957       1.1   mycroft 		len = start + 1;
   1958       1.1   mycroft 		start = 0;
   1959      1.45     lukem 		loc = scanc((u_int)len,
   1960      1.62      fvdl 			(const u_char *)&blksfree[0],
   1961      1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1962      1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1963       1.1   mycroft 		if (loc == 0) {
   1964      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1965      1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1966      1.20      ross 			printf("offset=%d %ld\n",
   1967      1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1968      1.62      fvdl 				(long)blksfree - (long)cgp);
   1969      1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1970       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1971       1.1   mycroft 			/* NOTREACHED */
   1972       1.1   mycroft 		}
   1973       1.1   mycroft 	}
   1974       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1975      1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1976       1.1   mycroft 	/*
   1977       1.1   mycroft 	 * found the byte in the map
   1978       1.1   mycroft 	 * sift through the bits to find the selected frag
   1979       1.1   mycroft 	 */
   1980       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1981      1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1982       1.1   mycroft 		blk <<= 1;
   1983       1.1   mycroft 		field = around[allocsiz];
   1984       1.1   mycroft 		subfield = inside[allocsiz];
   1985       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1986       1.1   mycroft 			if ((blk & field) == subfield)
   1987       1.1   mycroft 				return (bno + pos);
   1988       1.1   mycroft 			field <<= 1;
   1989       1.1   mycroft 			subfield <<= 1;
   1990       1.1   mycroft 		}
   1991       1.1   mycroft 	}
   1992      1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1993       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1994      1.58      fvdl 	/* return (-1); */
   1995       1.1   mycroft }
   1996       1.1   mycroft 
   1997       1.1   mycroft /*
   1998       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1999       1.1   mycroft  *
   2000       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2001       1.1   mycroft  */
   2002       1.9  christos void
   2003  1.84.2.1      yamt ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2004       1.1   mycroft {
   2005       1.4       cgd 	int32_t *sump;
   2006       1.5   mycroft 	int32_t *lp;
   2007       1.1   mycroft 	u_char *freemapp, *mapp;
   2008       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2009      1.30      fvdl #ifdef FFS_EI
   2010      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2011      1.30      fvdl #endif
   2012       1.1   mycroft 
   2013  1.84.2.5      yamt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2014  1.84.2.5      yamt 
   2015       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2016       1.1   mycroft 		return;
   2017      1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2018      1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2019       1.1   mycroft 	/*
   2020       1.1   mycroft 	 * Allocate or clear the actual block.
   2021       1.1   mycroft 	 */
   2022       1.1   mycroft 	if (cnt > 0)
   2023       1.1   mycroft 		setbit(freemapp, blkno);
   2024       1.1   mycroft 	else
   2025       1.1   mycroft 		clrbit(freemapp, blkno);
   2026       1.1   mycroft 	/*
   2027       1.1   mycroft 	 * Find the size of the cluster going forward.
   2028       1.1   mycroft 	 */
   2029       1.1   mycroft 	start = blkno + 1;
   2030       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2031      1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2032      1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2033       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2034       1.1   mycroft 	map = *mapp++;
   2035       1.1   mycroft 	bit = 1 << (start % NBBY);
   2036       1.1   mycroft 	for (i = start; i < end; i++) {
   2037       1.1   mycroft 		if ((map & bit) == 0)
   2038       1.1   mycroft 			break;
   2039       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2040       1.1   mycroft 			bit <<= 1;
   2041       1.1   mycroft 		} else {
   2042       1.1   mycroft 			map = *mapp++;
   2043       1.1   mycroft 			bit = 1;
   2044       1.1   mycroft 		}
   2045       1.1   mycroft 	}
   2046       1.1   mycroft 	forw = i - start;
   2047       1.1   mycroft 	/*
   2048       1.1   mycroft 	 * Find the size of the cluster going backward.
   2049       1.1   mycroft 	 */
   2050       1.1   mycroft 	start = blkno - 1;
   2051       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2052       1.1   mycroft 	if (end < 0)
   2053       1.1   mycroft 		end = -1;
   2054       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2055       1.1   mycroft 	map = *mapp--;
   2056       1.1   mycroft 	bit = 1 << (start % NBBY);
   2057       1.1   mycroft 	for (i = start; i > end; i--) {
   2058       1.1   mycroft 		if ((map & bit) == 0)
   2059       1.1   mycroft 			break;
   2060       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2061       1.1   mycroft 			bit >>= 1;
   2062       1.1   mycroft 		} else {
   2063       1.1   mycroft 			map = *mapp--;
   2064       1.1   mycroft 			bit = 1 << (NBBY - 1);
   2065       1.1   mycroft 		}
   2066       1.1   mycroft 	}
   2067       1.1   mycroft 	back = start - i;
   2068       1.1   mycroft 	/*
   2069       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2070       1.1   mycroft 	 * back clusters.
   2071       1.1   mycroft 	 */
   2072       1.1   mycroft 	i = back + forw + 1;
   2073       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2074       1.1   mycroft 		i = fs->fs_contigsumsize;
   2075      1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2076       1.1   mycroft 	if (back > 0)
   2077      1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2078       1.1   mycroft 	if (forw > 0)
   2079      1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2080      1.19    bouyer 
   2081       1.5   mycroft 	/*
   2082       1.5   mycroft 	 * Update cluster summary information.
   2083       1.5   mycroft 	 */
   2084       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2085       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2086      1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2087       1.5   mycroft 			break;
   2088      1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2089       1.1   mycroft }
   2090       1.1   mycroft 
   2091       1.1   mycroft /*
   2092       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2093      1.81     perry  *
   2094       1.1   mycroft  * The form of the error message is:
   2095       1.1   mycroft  *	fs: error message
   2096       1.1   mycroft  */
   2097       1.1   mycroft static void
   2098  1.84.2.1      yamt ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2099       1.1   mycroft {
   2100       1.1   mycroft 
   2101      1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2102      1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2103       1.1   mycroft }
   2104