ffs_alloc.c revision 1.85 1 1.85 thorpej /* $NetBSD: ffs_alloc.c,v 1.85 2005/07/15 05:01:16 thorpej Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
5 1.60 fvdl * All rights reserved.
6 1.60 fvdl *
7 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
8 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
9 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 1.60 fvdl * research program
12 1.60 fvdl *
13 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
14 1.1 mycroft * The Regents of the University of California. All rights reserved.
15 1.1 mycroft *
16 1.1 mycroft * Redistribution and use in source and binary forms, with or without
17 1.1 mycroft * modification, are permitted provided that the following conditions
18 1.1 mycroft * are met:
19 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
20 1.1 mycroft * notice, this list of conditions and the following disclaimer.
21 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
23 1.1 mycroft * documentation and/or other materials provided with the distribution.
24 1.69 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 mycroft * may be used to endorse or promote products derived from this software
26 1.1 mycroft * without specific prior written permission.
27 1.1 mycroft *
28 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 mycroft * SUCH DAMAGE.
39 1.1 mycroft *
40 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 1.1 mycroft */
42 1.53 lukem
43 1.53 lukem #include <sys/cdefs.h>
44 1.85 thorpej __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.85 2005/07/15 05:01:16 thorpej Exp $");
45 1.17 mrg
46 1.43 mrg #if defined(_KERNEL_OPT)
47 1.27 thorpej #include "opt_ffs.h"
48 1.21 scottr #include "opt_quota.h"
49 1.22 scottr #endif
50 1.1 mycroft
51 1.1 mycroft #include <sys/param.h>
52 1.1 mycroft #include <sys/systm.h>
53 1.1 mycroft #include <sys/buf.h>
54 1.1 mycroft #include <sys/proc.h>
55 1.1 mycroft #include <sys/vnode.h>
56 1.1 mycroft #include <sys/mount.h>
57 1.1 mycroft #include <sys/kernel.h>
58 1.1 mycroft #include <sys/syslog.h>
59 1.29 mrg
60 1.76 hannken #include <miscfs/specfs/specdev.h>
61 1.1 mycroft #include <ufs/ufs/quota.h>
62 1.19 bouyer #include <ufs/ufs/ufsmount.h>
63 1.1 mycroft #include <ufs/ufs/inode.h>
64 1.9 christos #include <ufs/ufs/ufs_extern.h>
65 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
66 1.1 mycroft
67 1.1 mycroft #include <ufs/ffs/fs.h>
68 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
69 1.1 mycroft
70 1.85 thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
71 1.85 thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
72 1.55 matt #ifdef XXXUBC
73 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
74 1.55 matt #endif
75 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
76 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
77 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
78 1.85 thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
79 1.85 thorpej daddr_t (*)(struct inode *, int, daddr_t, int));
80 1.85 thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
81 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
82 1.85 thorpej daddr_t, int);
83 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
84 1.55 matt #ifdef XXXUBC
85 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
86 1.18 fvdl #endif
87 1.55 matt #endif
88 1.23 drochner
89 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
90 1.34 jdolecek int ffs_log_changeopt = 0;
91 1.34 jdolecek
92 1.23 drochner /* in ffs_tables.c */
93 1.40 jdolecek extern const int inside[], around[];
94 1.40 jdolecek extern const u_char * const fragtbl[];
95 1.1 mycroft
96 1.1 mycroft /*
97 1.1 mycroft * Allocate a block in the file system.
98 1.81 perry *
99 1.1 mycroft * The size of the requested block is given, which must be some
100 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
101 1.1 mycroft * A preference may be optionally specified. If a preference is given
102 1.1 mycroft * the following hierarchy is used to allocate a block:
103 1.1 mycroft * 1) allocate the requested block.
104 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
105 1.1 mycroft * 3) allocate a block in the same cylinder group.
106 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
107 1.1 mycroft * available block is located.
108 1.47 wiz * If no block preference is given the following hierarchy is used
109 1.1 mycroft * to allocate a block:
110 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
111 1.1 mycroft * inode for the file.
112 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
113 1.1 mycroft * available block is located.
114 1.1 mycroft */
115 1.9 christos int
116 1.85 thorpej ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
117 1.85 thorpej struct ucred *cred, daddr_t *bnp)
118 1.1 mycroft {
119 1.62 fvdl struct fs *fs;
120 1.58 fvdl daddr_t bno;
121 1.9 christos int cg;
122 1.9 christos #ifdef QUOTA
123 1.9 christos int error;
124 1.9 christos #endif
125 1.81 perry
126 1.62 fvdl fs = ip->i_fs;
127 1.62 fvdl
128 1.37 chs #ifdef UVM_PAGE_TRKOWN
129 1.51 chs if (ITOV(ip)->v_type == VREG &&
130 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
131 1.37 chs struct vm_page *pg;
132 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
133 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
134 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
135 1.37 chs
136 1.37 chs simple_lock(&uobj->vmobjlock);
137 1.37 chs while (off < endoff) {
138 1.37 chs pg = uvm_pagelookup(uobj, off);
139 1.37 chs KASSERT(pg != NULL);
140 1.37 chs KASSERT(pg->owner == curproc->p_pid);
141 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
142 1.37 chs off += PAGE_SIZE;
143 1.37 chs }
144 1.37 chs simple_unlock(&uobj->vmobjlock);
145 1.37 chs }
146 1.37 chs #endif
147 1.37 chs
148 1.1 mycroft *bnp = 0;
149 1.1 mycroft #ifdef DIAGNOSTIC
150 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
151 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
152 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
153 1.1 mycroft panic("ffs_alloc: bad size");
154 1.1 mycroft }
155 1.1 mycroft if (cred == NOCRED)
156 1.56 provos panic("ffs_alloc: missing credential");
157 1.1 mycroft #endif /* DIAGNOSTIC */
158 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
159 1.1 mycroft goto nospace;
160 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
161 1.1 mycroft goto nospace;
162 1.1 mycroft #ifdef QUOTA
163 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
164 1.1 mycroft return (error);
165 1.1 mycroft #endif
166 1.1 mycroft if (bpref >= fs->fs_size)
167 1.1 mycroft bpref = 0;
168 1.1 mycroft if (bpref == 0)
169 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
170 1.1 mycroft else
171 1.1 mycroft cg = dtog(fs, bpref);
172 1.84 dbj bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
173 1.1 mycroft if (bno > 0) {
174 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
175 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
176 1.1 mycroft *bnp = bno;
177 1.1 mycroft return (0);
178 1.1 mycroft }
179 1.1 mycroft #ifdef QUOTA
180 1.1 mycroft /*
181 1.1 mycroft * Restore user's disk quota because allocation failed.
182 1.1 mycroft */
183 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
184 1.1 mycroft #endif
185 1.1 mycroft nospace:
186 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
187 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
188 1.1 mycroft return (ENOSPC);
189 1.1 mycroft }
190 1.1 mycroft
191 1.1 mycroft /*
192 1.1 mycroft * Reallocate a fragment to a bigger size
193 1.1 mycroft *
194 1.1 mycroft * The number and size of the old block is given, and a preference
195 1.1 mycroft * and new size is also specified. The allocator attempts to extend
196 1.1 mycroft * the original block. Failing that, the regular block allocator is
197 1.1 mycroft * invoked to get an appropriate block.
198 1.1 mycroft */
199 1.9 christos int
200 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
201 1.85 thorpej int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
202 1.1 mycroft {
203 1.62 fvdl struct fs *fs;
204 1.1 mycroft struct buf *bp;
205 1.1 mycroft int cg, request, error;
206 1.58 fvdl daddr_t bprev, bno;
207 1.25 thorpej
208 1.62 fvdl fs = ip->i_fs;
209 1.37 chs #ifdef UVM_PAGE_TRKOWN
210 1.37 chs if (ITOV(ip)->v_type == VREG) {
211 1.37 chs struct vm_page *pg;
212 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
213 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
214 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
215 1.37 chs
216 1.37 chs simple_lock(&uobj->vmobjlock);
217 1.37 chs while (off < endoff) {
218 1.37 chs pg = uvm_pagelookup(uobj, off);
219 1.37 chs KASSERT(pg != NULL);
220 1.37 chs KASSERT(pg->owner == curproc->p_pid);
221 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
222 1.37 chs off += PAGE_SIZE;
223 1.37 chs }
224 1.37 chs simple_unlock(&uobj->vmobjlock);
225 1.37 chs }
226 1.37 chs #endif
227 1.37 chs
228 1.1 mycroft #ifdef DIAGNOSTIC
229 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
230 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
231 1.13 christos printf(
232 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
233 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
234 1.1 mycroft panic("ffs_realloccg: bad size");
235 1.1 mycroft }
236 1.1 mycroft if (cred == NOCRED)
237 1.56 provos panic("ffs_realloccg: missing credential");
238 1.1 mycroft #endif /* DIAGNOSTIC */
239 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
240 1.1 mycroft goto nospace;
241 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
242 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
243 1.60 fvdl else
244 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
245 1.60 fvdl
246 1.60 fvdl if (bprev == 0) {
247 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
248 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
249 1.1 mycroft panic("ffs_realloccg: bad bprev");
250 1.1 mycroft }
251 1.1 mycroft /*
252 1.1 mycroft * Allocate the extra space in the buffer.
253 1.1 mycroft */
254 1.37 chs if (bpp != NULL &&
255 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
256 1.1 mycroft brelse(bp);
257 1.1 mycroft return (error);
258 1.1 mycroft }
259 1.1 mycroft #ifdef QUOTA
260 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
261 1.44 chs if (bpp != NULL) {
262 1.44 chs brelse(bp);
263 1.44 chs }
264 1.1 mycroft return (error);
265 1.1 mycroft }
266 1.1 mycroft #endif
267 1.1 mycroft /*
268 1.1 mycroft * Check for extension in the existing location.
269 1.1 mycroft */
270 1.1 mycroft cg = dtog(fs, bprev);
271 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
272 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
273 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
274 1.37 chs
275 1.37 chs if (bpp != NULL) {
276 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
277 1.37 chs panic("bad blockno");
278 1.72 pk allocbuf(bp, nsize, 1);
279 1.37 chs bp->b_flags |= B_DONE;
280 1.37 chs memset(bp->b_data + osize, 0, nsize - osize);
281 1.37 chs *bpp = bp;
282 1.37 chs }
283 1.37 chs if (blknop != NULL) {
284 1.37 chs *blknop = bno;
285 1.37 chs }
286 1.1 mycroft return (0);
287 1.1 mycroft }
288 1.1 mycroft /*
289 1.1 mycroft * Allocate a new disk location.
290 1.1 mycroft */
291 1.1 mycroft if (bpref >= fs->fs_size)
292 1.1 mycroft bpref = 0;
293 1.1 mycroft switch ((int)fs->fs_optim) {
294 1.1 mycroft case FS_OPTSPACE:
295 1.1 mycroft /*
296 1.81 perry * Allocate an exact sized fragment. Although this makes
297 1.81 perry * best use of space, we will waste time relocating it if
298 1.1 mycroft * the file continues to grow. If the fragmentation is
299 1.1 mycroft * less than half of the minimum free reserve, we choose
300 1.1 mycroft * to begin optimizing for time.
301 1.1 mycroft */
302 1.1 mycroft request = nsize;
303 1.1 mycroft if (fs->fs_minfree < 5 ||
304 1.1 mycroft fs->fs_cstotal.cs_nffree >
305 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
306 1.1 mycroft break;
307 1.34 jdolecek
308 1.34 jdolecek if (ffs_log_changeopt) {
309 1.34 jdolecek log(LOG_NOTICE,
310 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
311 1.34 jdolecek fs->fs_fsmnt);
312 1.34 jdolecek }
313 1.34 jdolecek
314 1.1 mycroft fs->fs_optim = FS_OPTTIME;
315 1.1 mycroft break;
316 1.1 mycroft case FS_OPTTIME:
317 1.1 mycroft /*
318 1.1 mycroft * At this point we have discovered a file that is trying to
319 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
320 1.1 mycroft * we allocate a full sized block, then free the unused portion.
321 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
322 1.1 mycroft * above will be able to grow it in place without further
323 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
324 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
325 1.1 mycroft * optimizing for space.
326 1.1 mycroft */
327 1.1 mycroft request = fs->fs_bsize;
328 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
329 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
330 1.1 mycroft break;
331 1.34 jdolecek
332 1.34 jdolecek if (ffs_log_changeopt) {
333 1.34 jdolecek log(LOG_NOTICE,
334 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
335 1.34 jdolecek fs->fs_fsmnt);
336 1.34 jdolecek }
337 1.34 jdolecek
338 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
339 1.1 mycroft break;
340 1.1 mycroft default:
341 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
342 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
343 1.1 mycroft panic("ffs_realloccg: bad optim");
344 1.1 mycroft /* NOTREACHED */
345 1.1 mycroft }
346 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
347 1.1 mycroft if (bno > 0) {
348 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
349 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
350 1.76 hannken ip->i_number);
351 1.1 mycroft if (nsize < request)
352 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
353 1.76 hannken (long)(request - nsize), ip->i_number);
354 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
355 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
356 1.37 chs if (bpp != NULL) {
357 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
358 1.72 pk allocbuf(bp, nsize, 1);
359 1.37 chs bp->b_flags |= B_DONE;
360 1.37 chs memset(bp->b_data + osize, 0, (u_int)nsize - osize);
361 1.37 chs *bpp = bp;
362 1.37 chs }
363 1.37 chs if (blknop != NULL) {
364 1.37 chs *blknop = bno;
365 1.37 chs }
366 1.1 mycroft return (0);
367 1.1 mycroft }
368 1.1 mycroft #ifdef QUOTA
369 1.1 mycroft /*
370 1.1 mycroft * Restore user's disk quota because allocation failed.
371 1.1 mycroft */
372 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
373 1.1 mycroft #endif
374 1.37 chs if (bpp != NULL) {
375 1.37 chs brelse(bp);
376 1.37 chs }
377 1.37 chs
378 1.1 mycroft nospace:
379 1.1 mycroft /*
380 1.1 mycroft * no space available
381 1.1 mycroft */
382 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
383 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
384 1.1 mycroft return (ENOSPC);
385 1.1 mycroft }
386 1.1 mycroft
387 1.1 mycroft /*
388 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
389 1.1 mycroft *
390 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
391 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
392 1.60 fvdl * to find a range of sequential blocks starting as close as possible
393 1.60 fvdl * from the end of the allocation for the logical block immediately
394 1.60 fvdl * preceding the current range. If successful, the physical block numbers
395 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
396 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
397 1.60 fvdl * success in doing the reallocation is returned. Note that the error
398 1.60 fvdl * return is not reflected back to the user. Rather the previous block
399 1.60 fvdl * allocation will be used.
400 1.60 fvdl
401 1.1 mycroft */
402 1.55 matt #ifdef XXXUBC
403 1.3 mycroft #ifdef DEBUG
404 1.1 mycroft #include <sys/sysctl.h>
405 1.5 mycroft int prtrealloc = 0;
406 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
407 1.1 mycroft #endif
408 1.55 matt #endif
409 1.1 mycroft
410 1.60 fvdl /*
411 1.60 fvdl * NOTE: when re-enabling this, it must be updated for UFS2.
412 1.60 fvdl */
413 1.60 fvdl
414 1.18 fvdl int doasyncfree = 1;
415 1.18 fvdl
416 1.1 mycroft int
417 1.85 thorpej ffs_reallocblks(void *v)
418 1.9 christos {
419 1.55 matt #ifdef XXXUBC
420 1.1 mycroft struct vop_reallocblks_args /* {
421 1.1 mycroft struct vnode *a_vp;
422 1.1 mycroft struct cluster_save *a_buflist;
423 1.9 christos } */ *ap = v;
424 1.1 mycroft struct fs *fs;
425 1.1 mycroft struct inode *ip;
426 1.1 mycroft struct vnode *vp;
427 1.1 mycroft struct buf *sbp, *ebp;
428 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
429 1.1 mycroft struct cluster_save *buflist;
430 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
431 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
432 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
433 1.55 matt #endif /* XXXUBC */
434 1.1 mycroft
435 1.37 chs /* XXXUBC don't reallocblks for now */
436 1.37 chs return ENOSPC;
437 1.37 chs
438 1.55 matt #ifdef XXXUBC
439 1.1 mycroft vp = ap->a_vp;
440 1.1 mycroft ip = VTOI(vp);
441 1.1 mycroft fs = ip->i_fs;
442 1.1 mycroft if (fs->fs_contigsumsize <= 0)
443 1.1 mycroft return (ENOSPC);
444 1.1 mycroft buflist = ap->a_buflist;
445 1.1 mycroft len = buflist->bs_nchildren;
446 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
447 1.1 mycroft end_lbn = start_lbn + len - 1;
448 1.1 mycroft #ifdef DIAGNOSTIC
449 1.18 fvdl for (i = 0; i < len; i++)
450 1.18 fvdl if (!ffs_checkblk(ip,
451 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
452 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
453 1.1 mycroft for (i = 1; i < len; i++)
454 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
455 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
456 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
457 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
458 1.18 fvdl for (i = 1; i < len - 1; i++)
459 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
460 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
461 1.1 mycroft #endif
462 1.1 mycroft /*
463 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
464 1.1 mycroft * the filesystem has decided to move and do not force it back to
465 1.1 mycroft * the previous cylinder group.
466 1.1 mycroft */
467 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
468 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
469 1.1 mycroft return (ENOSPC);
470 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
471 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
472 1.1 mycroft return (ENOSPC);
473 1.1 mycroft /*
474 1.1 mycroft * Get the starting offset and block map for the first block.
475 1.1 mycroft */
476 1.1 mycroft if (start_lvl == 0) {
477 1.60 fvdl sbap = &ip->i_ffs1_db[0];
478 1.1 mycroft soff = start_lbn;
479 1.1 mycroft } else {
480 1.1 mycroft idp = &start_ap[start_lvl - 1];
481 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
482 1.1 mycroft brelse(sbp);
483 1.1 mycroft return (ENOSPC);
484 1.1 mycroft }
485 1.60 fvdl sbap = (int32_t *)sbp->b_data;
486 1.1 mycroft soff = idp->in_off;
487 1.1 mycroft }
488 1.1 mycroft /*
489 1.1 mycroft * Find the preferred location for the cluster.
490 1.1 mycroft */
491 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
492 1.1 mycroft /*
493 1.1 mycroft * If the block range spans two block maps, get the second map.
494 1.1 mycroft */
495 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
496 1.1 mycroft ssize = len;
497 1.1 mycroft } else {
498 1.1 mycroft #ifdef DIAGNOSTIC
499 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
500 1.1 mycroft panic("ffs_reallocblk: start == end");
501 1.1 mycroft #endif
502 1.1 mycroft ssize = len - (idp->in_off + 1);
503 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
504 1.1 mycroft goto fail;
505 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
506 1.1 mycroft }
507 1.1 mycroft /*
508 1.1 mycroft * Search the block map looking for an allocation of the desired size.
509 1.1 mycroft */
510 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
511 1.9 christos len, ffs_clusteralloc)) == 0)
512 1.1 mycroft goto fail;
513 1.1 mycroft /*
514 1.1 mycroft * We have found a new contiguous block.
515 1.1 mycroft *
516 1.1 mycroft * First we have to replace the old block pointers with the new
517 1.1 mycroft * block pointers in the inode and indirect blocks associated
518 1.1 mycroft * with the file.
519 1.1 mycroft */
520 1.5 mycroft #ifdef DEBUG
521 1.5 mycroft if (prtrealloc)
522 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
523 1.5 mycroft start_lbn, end_lbn);
524 1.5 mycroft #endif
525 1.1 mycroft blkno = newblk;
526 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
527 1.58 fvdl daddr_t ba;
528 1.30 fvdl
529 1.30 fvdl if (i == ssize) {
530 1.1 mycroft bap = ebap;
531 1.30 fvdl soff = -i;
532 1.30 fvdl }
533 1.58 fvdl /* XXX ondisk32 */
534 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
535 1.1 mycroft #ifdef DIAGNOSTIC
536 1.18 fvdl if (!ffs_checkblk(ip,
537 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
538 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
539 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
540 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
541 1.1 mycroft #endif
542 1.5 mycroft #ifdef DEBUG
543 1.5 mycroft if (prtrealloc)
544 1.30 fvdl printf(" %d,", ba);
545 1.5 mycroft #endif
546 1.30 fvdl if (DOINGSOFTDEP(vp)) {
547 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
548 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
549 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
550 1.30 fvdl buflist->bs_children[i]);
551 1.30 fvdl else
552 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
553 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
554 1.30 fvdl ba, buflist->bs_children[i]);
555 1.30 fvdl }
556 1.58 fvdl /* XXX ondisk32 */
557 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
558 1.1 mycroft }
559 1.1 mycroft /*
560 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
561 1.1 mycroft * For strict correctness, the writes should be synchronous since
562 1.1 mycroft * the old block values may have been written to disk. In practise
563 1.81 perry * they are almost never written, but if we are concerned about
564 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
565 1.1 mycroft *
566 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
567 1.1 mycroft * that shows whether the associated buffers and inodes have
568 1.1 mycroft * been written. The flag should be set when the cluster is
569 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
570 1.1 mycroft * We can then check below to see if it is set, and do the
571 1.1 mycroft * synchronous write only when it has been cleared.
572 1.1 mycroft */
573 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
574 1.1 mycroft if (doasyncfree)
575 1.1 mycroft bdwrite(sbp);
576 1.1 mycroft else
577 1.1 mycroft bwrite(sbp);
578 1.1 mycroft } else {
579 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
580 1.28 mycroft if (!doasyncfree)
581 1.28 mycroft VOP_UPDATE(vp, NULL, NULL, 1);
582 1.1 mycroft }
583 1.25 thorpej if (ssize < len) {
584 1.1 mycroft if (doasyncfree)
585 1.1 mycroft bdwrite(ebp);
586 1.1 mycroft else
587 1.1 mycroft bwrite(ebp);
588 1.25 thorpej }
589 1.1 mycroft /*
590 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
591 1.1 mycroft */
592 1.5 mycroft #ifdef DEBUG
593 1.5 mycroft if (prtrealloc)
594 1.13 christos printf("\n\tnew:");
595 1.5 mycroft #endif
596 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
597 1.30 fvdl if (!DOINGSOFTDEP(vp))
598 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
599 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
600 1.76 hannken fs->fs_bsize, ip->i_number);
601 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
602 1.5 mycroft #ifdef DEBUG
603 1.18 fvdl if (!ffs_checkblk(ip,
604 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
605 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
606 1.5 mycroft if (prtrealloc)
607 1.13 christos printf(" %d,", blkno);
608 1.5 mycroft #endif
609 1.5 mycroft }
610 1.5 mycroft #ifdef DEBUG
611 1.5 mycroft if (prtrealloc) {
612 1.5 mycroft prtrealloc--;
613 1.13 christos printf("\n");
614 1.1 mycroft }
615 1.5 mycroft #endif
616 1.1 mycroft return (0);
617 1.1 mycroft
618 1.1 mycroft fail:
619 1.1 mycroft if (ssize < len)
620 1.1 mycroft brelse(ebp);
621 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
622 1.1 mycroft brelse(sbp);
623 1.1 mycroft return (ENOSPC);
624 1.55 matt #endif /* XXXUBC */
625 1.1 mycroft }
626 1.1 mycroft
627 1.1 mycroft /*
628 1.1 mycroft * Allocate an inode in the file system.
629 1.81 perry *
630 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
631 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
632 1.1 mycroft * 1) allocate the preferred inode.
633 1.1 mycroft * 2) allocate an inode in the same cylinder group.
634 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
635 1.1 mycroft * available inode is located.
636 1.47 wiz * If no inode preference is given the following hierarchy is used
637 1.1 mycroft * to allocate an inode:
638 1.1 mycroft * 1) allocate an inode in cylinder group 0.
639 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
640 1.1 mycroft * available inode is located.
641 1.1 mycroft */
642 1.9 christos int
643 1.85 thorpej ffs_valloc(void *v)
644 1.9 christos {
645 1.1 mycroft struct vop_valloc_args /* {
646 1.1 mycroft struct vnode *a_pvp;
647 1.1 mycroft int a_mode;
648 1.1 mycroft struct ucred *a_cred;
649 1.1 mycroft struct vnode **a_vpp;
650 1.9 christos } */ *ap = v;
651 1.33 augustss struct vnode *pvp = ap->a_pvp;
652 1.33 augustss struct inode *pip;
653 1.33 augustss struct fs *fs;
654 1.33 augustss struct inode *ip;
655 1.60 fvdl struct timespec ts;
656 1.1 mycroft mode_t mode = ap->a_mode;
657 1.1 mycroft ino_t ino, ipref;
658 1.1 mycroft int cg, error;
659 1.81 perry
660 1.1 mycroft *ap->a_vpp = NULL;
661 1.1 mycroft pip = VTOI(pvp);
662 1.1 mycroft fs = pip->i_fs;
663 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
664 1.1 mycroft goto noinodes;
665 1.1 mycroft
666 1.1 mycroft if ((mode & IFMT) == IFDIR)
667 1.50 lukem ipref = ffs_dirpref(pip);
668 1.50 lukem else
669 1.50 lukem ipref = pip->i_number;
670 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
671 1.1 mycroft ipref = 0;
672 1.1 mycroft cg = ino_to_cg(fs, ipref);
673 1.50 lukem /*
674 1.50 lukem * Track number of dirs created one after another
675 1.50 lukem * in a same cg without intervening by files.
676 1.50 lukem */
677 1.50 lukem if ((mode & IFMT) == IFDIR) {
678 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
679 1.50 lukem fs->fs_contigdirs[cg]++;
680 1.50 lukem } else {
681 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
682 1.50 lukem fs->fs_contigdirs[cg]--;
683 1.50 lukem }
684 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
685 1.1 mycroft if (ino == 0)
686 1.1 mycroft goto noinodes;
687 1.67 thorpej error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
688 1.1 mycroft if (error) {
689 1.1 mycroft VOP_VFREE(pvp, ino, mode);
690 1.1 mycroft return (error);
691 1.1 mycroft }
692 1.1 mycroft ip = VTOI(*ap->a_vpp);
693 1.60 fvdl if (ip->i_mode) {
694 1.60 fvdl #if 0
695 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
696 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
697 1.60 fvdl #else
698 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
699 1.60 fvdl DIP(ip, mode), ip->i_mode,
700 1.60 fvdl DIP(ip, gen), ip->i_gen);
701 1.60 fvdl printf("size %llx blocks %llx\n",
702 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
703 1.60 fvdl printf("ino %u ipref %u\n", ino, ipref);
704 1.60 fvdl #if 0
705 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
706 1.60 fvdl (int)fs->fs_bsize, NOCRED, &bp);
707 1.60 fvdl #endif
708 1.60 fvdl
709 1.60 fvdl #endif
710 1.1 mycroft panic("ffs_valloc: dup alloc");
711 1.1 mycroft }
712 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
713 1.60 fvdl printf("free inode %s/%d had %" PRId64 " blocks\n",
714 1.60 fvdl fs->fs_fsmnt, ino, DIP(ip, blocks));
715 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
716 1.1 mycroft }
717 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
718 1.61 fvdl ip->i_flags = 0;
719 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
720 1.1 mycroft /*
721 1.1 mycroft * Set up a new generation number for this inode.
722 1.1 mycroft */
723 1.60 fvdl ip->i_gen++;
724 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
725 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
726 1.60 fvdl TIMEVAL_TO_TIMESPEC(&time, &ts);
727 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
728 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
729 1.60 fvdl }
730 1.1 mycroft return (0);
731 1.1 mycroft noinodes:
732 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
733 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
734 1.1 mycroft return (ENOSPC);
735 1.1 mycroft }
736 1.1 mycroft
737 1.1 mycroft /*
738 1.50 lukem * Find a cylinder group in which to place a directory.
739 1.42 sommerfe *
740 1.50 lukem * The policy implemented by this algorithm is to allocate a
741 1.50 lukem * directory inode in the same cylinder group as its parent
742 1.50 lukem * directory, but also to reserve space for its files inodes
743 1.50 lukem * and data. Restrict the number of directories which may be
744 1.50 lukem * allocated one after another in the same cylinder group
745 1.50 lukem * without intervening allocation of files.
746 1.42 sommerfe *
747 1.50 lukem * If we allocate a first level directory then force allocation
748 1.50 lukem * in another cylinder group.
749 1.1 mycroft */
750 1.1 mycroft static ino_t
751 1.85 thorpej ffs_dirpref(struct inode *pip)
752 1.1 mycroft {
753 1.50 lukem register struct fs *fs;
754 1.74 soren int cg, prefcg;
755 1.74 soren int64_t dirsize, cgsize;
756 1.50 lukem int avgifree, avgbfree, avgndir, curdirsize;
757 1.50 lukem int minifree, minbfree, maxndir;
758 1.50 lukem int mincg, minndir;
759 1.50 lukem int maxcontigdirs;
760 1.50 lukem
761 1.50 lukem fs = pip->i_fs;
762 1.1 mycroft
763 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
764 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
765 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
766 1.50 lukem
767 1.50 lukem /*
768 1.50 lukem * Force allocation in another cg if creating a first level dir.
769 1.50 lukem */
770 1.50 lukem if (ITOV(pip)->v_flag & VROOT) {
771 1.71 mycroft prefcg = random() % fs->fs_ncg;
772 1.50 lukem mincg = prefcg;
773 1.50 lukem minndir = fs->fs_ipg;
774 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
775 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
776 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
777 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
778 1.42 sommerfe mincg = cg;
779 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
780 1.42 sommerfe }
781 1.50 lukem for (cg = 0; cg < prefcg; cg++)
782 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
783 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
784 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
785 1.50 lukem mincg = cg;
786 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
787 1.42 sommerfe }
788 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
789 1.42 sommerfe }
790 1.50 lukem
791 1.50 lukem /*
792 1.50 lukem * Count various limits which used for
793 1.50 lukem * optimal allocation of a directory inode.
794 1.50 lukem */
795 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
796 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
797 1.50 lukem if (minifree < 0)
798 1.50 lukem minifree = 0;
799 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
800 1.50 lukem if (minbfree < 0)
801 1.50 lukem minbfree = 0;
802 1.50 lukem cgsize = fs->fs_fsize * fs->fs_fpg;
803 1.50 lukem dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
804 1.50 lukem curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
805 1.50 lukem if (dirsize < curdirsize)
806 1.50 lukem dirsize = curdirsize;
807 1.50 lukem maxcontigdirs = min(cgsize / dirsize, 255);
808 1.50 lukem if (fs->fs_avgfpdir > 0)
809 1.50 lukem maxcontigdirs = min(maxcontigdirs,
810 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
811 1.50 lukem if (maxcontigdirs == 0)
812 1.50 lukem maxcontigdirs = 1;
813 1.50 lukem
814 1.50 lukem /*
815 1.81 perry * Limit number of dirs in one cg and reserve space for
816 1.50 lukem * regular files, but only if we have no deficit in
817 1.50 lukem * inodes or space.
818 1.50 lukem */
819 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
820 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
821 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
822 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
823 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
824 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
825 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
826 1.50 lukem }
827 1.50 lukem for (cg = 0; cg < prefcg; cg++)
828 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
829 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
830 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
831 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
832 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
833 1.50 lukem }
834 1.50 lukem /*
835 1.50 lukem * This is a backstop when we are deficient in space.
836 1.50 lukem */
837 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
838 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
839 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
840 1.50 lukem for (cg = 0; cg < prefcg; cg++)
841 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
842 1.50 lukem break;
843 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
844 1.1 mycroft }
845 1.1 mycroft
846 1.1 mycroft /*
847 1.1 mycroft * Select the desired position for the next block in a file. The file is
848 1.1 mycroft * logically divided into sections. The first section is composed of the
849 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
850 1.81 perry *
851 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
852 1.1 mycroft * request a block in the same cylinder group as the inode that describes
853 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
854 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
855 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
856 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
857 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
858 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
859 1.1 mycroft * continues until a cylinder group with greater than the average number
860 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
861 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
862 1.1 mycroft * here a best guess is made based upon the logical block number being
863 1.1 mycroft * allocated.
864 1.81 perry *
865 1.1 mycroft * If a section is already partially allocated, the policy is to
866 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
867 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
868 1.60 fvdl * contigously if possible.
869 1.1 mycroft */
870 1.58 fvdl daddr_t
871 1.85 thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
872 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
873 1.1 mycroft {
874 1.33 augustss struct fs *fs;
875 1.33 augustss int cg;
876 1.1 mycroft int avgbfree, startcg;
877 1.1 mycroft
878 1.1 mycroft fs = ip->i_fs;
879 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
880 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
881 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
882 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
883 1.1 mycroft }
884 1.1 mycroft /*
885 1.1 mycroft * Find a cylinder with greater than average number of
886 1.1 mycroft * unused data blocks.
887 1.1 mycroft */
888 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
889 1.1 mycroft startcg =
890 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
891 1.1 mycroft else
892 1.19 bouyer startcg = dtog(fs,
893 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
894 1.1 mycroft startcg %= fs->fs_ncg;
895 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
896 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
897 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
898 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
899 1.1 mycroft }
900 1.52 lukem for (cg = 0; cg < startcg; cg++)
901 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
902 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
903 1.1 mycroft }
904 1.35 thorpej return (0);
905 1.1 mycroft }
906 1.1 mycroft /*
907 1.60 fvdl * We just always try to lay things out contiguously.
908 1.60 fvdl */
909 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
910 1.60 fvdl }
911 1.60 fvdl
912 1.60 fvdl daddr_t
913 1.85 thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
914 1.60 fvdl {
915 1.60 fvdl struct fs *fs;
916 1.60 fvdl int cg;
917 1.60 fvdl int avgbfree, startcg;
918 1.60 fvdl
919 1.60 fvdl fs = ip->i_fs;
920 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
921 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
922 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
923 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
924 1.60 fvdl }
925 1.1 mycroft /*
926 1.60 fvdl * Find a cylinder with greater than average number of
927 1.60 fvdl * unused data blocks.
928 1.1 mycroft */
929 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
930 1.60 fvdl startcg =
931 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
932 1.60 fvdl else
933 1.60 fvdl startcg = dtog(fs,
934 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
935 1.60 fvdl startcg %= fs->fs_ncg;
936 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
937 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
938 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
939 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
940 1.60 fvdl }
941 1.60 fvdl for (cg = 0; cg < startcg; cg++)
942 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
943 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
944 1.60 fvdl }
945 1.60 fvdl return (0);
946 1.60 fvdl }
947 1.60 fvdl /*
948 1.60 fvdl * We just always try to lay things out contiguously.
949 1.60 fvdl */
950 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
951 1.1 mycroft }
952 1.1 mycroft
953 1.60 fvdl
954 1.1 mycroft /*
955 1.1 mycroft * Implement the cylinder overflow algorithm.
956 1.1 mycroft *
957 1.1 mycroft * The policy implemented by this algorithm is:
958 1.1 mycroft * 1) allocate the block in its requested cylinder group.
959 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
960 1.1 mycroft * 3) brute force search for a free block.
961 1.1 mycroft */
962 1.1 mycroft /*VARARGS5*/
963 1.58 fvdl static daddr_t
964 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
965 1.85 thorpej int size /* size for data blocks, mode for inodes */,
966 1.85 thorpej daddr_t (*allocator)(struct inode *, int, daddr_t, int))
967 1.1 mycroft {
968 1.33 augustss struct fs *fs;
969 1.58 fvdl daddr_t result;
970 1.1 mycroft int i, icg = cg;
971 1.1 mycroft
972 1.1 mycroft fs = ip->i_fs;
973 1.1 mycroft /*
974 1.1 mycroft * 1: preferred cylinder group
975 1.1 mycroft */
976 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
977 1.1 mycroft if (result)
978 1.1 mycroft return (result);
979 1.1 mycroft /*
980 1.1 mycroft * 2: quadratic rehash
981 1.1 mycroft */
982 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
983 1.1 mycroft cg += i;
984 1.1 mycroft if (cg >= fs->fs_ncg)
985 1.1 mycroft cg -= fs->fs_ncg;
986 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
987 1.1 mycroft if (result)
988 1.1 mycroft return (result);
989 1.1 mycroft }
990 1.1 mycroft /*
991 1.1 mycroft * 3: brute force search
992 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
993 1.1 mycroft * and 1 is always checked in the quadratic rehash.
994 1.1 mycroft */
995 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
996 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
997 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
998 1.1 mycroft if (result)
999 1.1 mycroft return (result);
1000 1.1 mycroft cg++;
1001 1.1 mycroft if (cg == fs->fs_ncg)
1002 1.1 mycroft cg = 0;
1003 1.1 mycroft }
1004 1.35 thorpej return (0);
1005 1.1 mycroft }
1006 1.1 mycroft
1007 1.1 mycroft /*
1008 1.1 mycroft * Determine whether a fragment can be extended.
1009 1.1 mycroft *
1010 1.81 perry * Check to see if the necessary fragments are available, and
1011 1.1 mycroft * if they are, allocate them.
1012 1.1 mycroft */
1013 1.58 fvdl static daddr_t
1014 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1015 1.1 mycroft {
1016 1.33 augustss struct fs *fs;
1017 1.33 augustss struct cg *cgp;
1018 1.1 mycroft struct buf *bp;
1019 1.58 fvdl daddr_t bno;
1020 1.1 mycroft int frags, bbase;
1021 1.1 mycroft int i, error;
1022 1.62 fvdl u_int8_t *blksfree;
1023 1.1 mycroft
1024 1.1 mycroft fs = ip->i_fs;
1025 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1026 1.35 thorpej return (0);
1027 1.1 mycroft frags = numfrags(fs, nsize);
1028 1.1 mycroft bbase = fragnum(fs, bprev);
1029 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1030 1.1 mycroft /* cannot extend across a block boundary */
1031 1.35 thorpej return (0);
1032 1.1 mycroft }
1033 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1034 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1035 1.1 mycroft if (error) {
1036 1.1 mycroft brelse(bp);
1037 1.35 thorpej return (0);
1038 1.1 mycroft }
1039 1.1 mycroft cgp = (struct cg *)bp->b_data;
1040 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1041 1.1 mycroft brelse(bp);
1042 1.35 thorpej return (0);
1043 1.1 mycroft }
1044 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1045 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1046 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1047 1.73 dbj cgp->cg_time = ufs_rw64(time.tv_sec, UFS_FSNEEDSWAP(fs));
1048 1.1 mycroft bno = dtogd(fs, bprev);
1049 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1050 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1051 1.62 fvdl if (isclr(blksfree, bno + i)) {
1052 1.1 mycroft brelse(bp);
1053 1.35 thorpej return (0);
1054 1.1 mycroft }
1055 1.1 mycroft /*
1056 1.1 mycroft * the current fragment can be extended
1057 1.1 mycroft * deduct the count on fragment being extended into
1058 1.1 mycroft * increase the count on the remaining fragment (if any)
1059 1.1 mycroft * allocate the extended piece
1060 1.1 mycroft */
1061 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1062 1.62 fvdl if (isclr(blksfree, bno + i))
1063 1.1 mycroft break;
1064 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1065 1.1 mycroft if (i != frags)
1066 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1067 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1068 1.62 fvdl clrbit(blksfree, bno + i);
1069 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1070 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1071 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1072 1.1 mycroft }
1073 1.1 mycroft fs->fs_fmod = 1;
1074 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1075 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1076 1.76 hannken ACTIVECG_CLR(fs, cg);
1077 1.1 mycroft bdwrite(bp);
1078 1.1 mycroft return (bprev);
1079 1.1 mycroft }
1080 1.1 mycroft
1081 1.1 mycroft /*
1082 1.1 mycroft * Determine whether a block can be allocated.
1083 1.1 mycroft *
1084 1.1 mycroft * Check to see if a block of the appropriate size is available,
1085 1.1 mycroft * and if it is, allocate it.
1086 1.1 mycroft */
1087 1.58 fvdl static daddr_t
1088 1.85 thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1089 1.1 mycroft {
1090 1.62 fvdl struct fs *fs = ip->i_fs;
1091 1.30 fvdl struct cg *cgp;
1092 1.1 mycroft struct buf *bp;
1093 1.60 fvdl int32_t bno;
1094 1.60 fvdl daddr_t blkno;
1095 1.30 fvdl int error, frags, allocsiz, i;
1096 1.62 fvdl u_int8_t *blksfree;
1097 1.30 fvdl #ifdef FFS_EI
1098 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1099 1.30 fvdl #endif
1100 1.1 mycroft
1101 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1102 1.35 thorpej return (0);
1103 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1104 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1105 1.1 mycroft if (error) {
1106 1.1 mycroft brelse(bp);
1107 1.35 thorpej return (0);
1108 1.1 mycroft }
1109 1.1 mycroft cgp = (struct cg *)bp->b_data;
1110 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1111 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1112 1.1 mycroft brelse(bp);
1113 1.35 thorpej return (0);
1114 1.1 mycroft }
1115 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1116 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1117 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1118 1.73 dbj cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1119 1.1 mycroft if (size == fs->fs_bsize) {
1120 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1121 1.76 hannken ACTIVECG_CLR(fs, cg);
1122 1.1 mycroft bdwrite(bp);
1123 1.60 fvdl return (blkno);
1124 1.1 mycroft }
1125 1.1 mycroft /*
1126 1.1 mycroft * check to see if any fragments are already available
1127 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1128 1.1 mycroft * it down to a smaller size if necessary
1129 1.1 mycroft */
1130 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1131 1.1 mycroft frags = numfrags(fs, size);
1132 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1133 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1134 1.1 mycroft break;
1135 1.1 mycroft if (allocsiz == fs->fs_frag) {
1136 1.1 mycroft /*
1137 1.81 perry * no fragments were available, so a block will be
1138 1.1 mycroft * allocated, and hacked up
1139 1.1 mycroft */
1140 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
1141 1.1 mycroft brelse(bp);
1142 1.35 thorpej return (0);
1143 1.1 mycroft }
1144 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1145 1.60 fvdl bno = dtogd(fs, blkno);
1146 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1147 1.62 fvdl setbit(blksfree, bno + i);
1148 1.1 mycroft i = fs->fs_frag - frags;
1149 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1150 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1151 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1152 1.1 mycroft fs->fs_fmod = 1;
1153 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1154 1.76 hannken ACTIVECG_CLR(fs, cg);
1155 1.1 mycroft bdwrite(bp);
1156 1.60 fvdl return (blkno);
1157 1.1 mycroft }
1158 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1159 1.30 fvdl #if 0
1160 1.30 fvdl /*
1161 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1162 1.58 fvdl * also: returning NULL as daddr_t ?
1163 1.30 fvdl */
1164 1.1 mycroft if (bno < 0) {
1165 1.1 mycroft brelse(bp);
1166 1.35 thorpej return (0);
1167 1.1 mycroft }
1168 1.30 fvdl #endif
1169 1.1 mycroft for (i = 0; i < frags; i++)
1170 1.62 fvdl clrbit(blksfree, bno + i);
1171 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1172 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1173 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1174 1.1 mycroft fs->fs_fmod = 1;
1175 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1176 1.1 mycroft if (frags != allocsiz)
1177 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1178 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1179 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1180 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1181 1.76 hannken ACTIVECG_CLR(fs, cg);
1182 1.1 mycroft bdwrite(bp);
1183 1.30 fvdl return blkno;
1184 1.1 mycroft }
1185 1.1 mycroft
1186 1.1 mycroft /*
1187 1.1 mycroft * Allocate a block in a cylinder group.
1188 1.1 mycroft *
1189 1.1 mycroft * This algorithm implements the following policy:
1190 1.1 mycroft * 1) allocate the requested block.
1191 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1192 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1193 1.1 mycroft * specified cylinder group.
1194 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1195 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1196 1.1 mycroft */
1197 1.58 fvdl static daddr_t
1198 1.85 thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1199 1.1 mycroft {
1200 1.62 fvdl struct fs *fs = ip->i_fs;
1201 1.30 fvdl struct cg *cgp;
1202 1.60 fvdl daddr_t blkno;
1203 1.60 fvdl int32_t bno;
1204 1.60 fvdl u_int8_t *blksfree;
1205 1.30 fvdl #ifdef FFS_EI
1206 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1207 1.30 fvdl #endif
1208 1.1 mycroft
1209 1.30 fvdl cgp = (struct cg *)bp->b_data;
1210 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1211 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1212 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1213 1.60 fvdl } else {
1214 1.60 fvdl bpref = blknum(fs, bpref);
1215 1.60 fvdl bno = dtogd(fs, bpref);
1216 1.1 mycroft /*
1217 1.60 fvdl * if the requested block is available, use it
1218 1.1 mycroft */
1219 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1220 1.60 fvdl goto gotit;
1221 1.1 mycroft }
1222 1.1 mycroft /*
1223 1.60 fvdl * Take the next available block in this cylinder group.
1224 1.1 mycroft */
1225 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1226 1.1 mycroft if (bno < 0)
1227 1.35 thorpej return (0);
1228 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1229 1.1 mycroft gotit:
1230 1.1 mycroft blkno = fragstoblks(fs, bno);
1231 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1232 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1233 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1234 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1235 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1236 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1237 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1238 1.73 dbj int cylno;
1239 1.73 dbj cylno = old_cbtocylno(fs, bno);
1240 1.75 dbj KASSERT(cylno >= 0);
1241 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1242 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1243 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1244 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1245 1.73 dbj needswap);
1246 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1247 1.73 dbj }
1248 1.1 mycroft fs->fs_fmod = 1;
1249 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1250 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1251 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1252 1.30 fvdl return (blkno);
1253 1.1 mycroft }
1254 1.1 mycroft
1255 1.55 matt #ifdef XXXUBC
1256 1.1 mycroft /*
1257 1.1 mycroft * Determine whether a cluster can be allocated.
1258 1.1 mycroft *
1259 1.1 mycroft * We do not currently check for optimal rotational layout if there
1260 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1261 1.1 mycroft * take the first one that we find following bpref.
1262 1.1 mycroft */
1263 1.60 fvdl
1264 1.60 fvdl /*
1265 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1266 1.60 fvdl */
1267 1.58 fvdl static daddr_t
1268 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1269 1.1 mycroft {
1270 1.33 augustss struct fs *fs;
1271 1.33 augustss struct cg *cgp;
1272 1.1 mycroft struct buf *bp;
1273 1.18 fvdl int i, got, run, bno, bit, map;
1274 1.1 mycroft u_char *mapp;
1275 1.5 mycroft int32_t *lp;
1276 1.1 mycroft
1277 1.1 mycroft fs = ip->i_fs;
1278 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1279 1.35 thorpej return (0);
1280 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1281 1.1 mycroft NOCRED, &bp))
1282 1.1 mycroft goto fail;
1283 1.1 mycroft cgp = (struct cg *)bp->b_data;
1284 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1285 1.1 mycroft goto fail;
1286 1.1 mycroft /*
1287 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1288 1.1 mycroft * available in this cylinder group.
1289 1.1 mycroft */
1290 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1291 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1292 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1293 1.1 mycroft break;
1294 1.5 mycroft if (i > fs->fs_contigsumsize) {
1295 1.5 mycroft /*
1296 1.5 mycroft * This is the first time looking for a cluster in this
1297 1.5 mycroft * cylinder group. Update the cluster summary information
1298 1.5 mycroft * to reflect the true maximum sized cluster so that
1299 1.5 mycroft * future cluster allocation requests can avoid reading
1300 1.5 mycroft * the cylinder group map only to find no clusters.
1301 1.5 mycroft */
1302 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1303 1.5 mycroft for (i = len - 1; i > 0; i--)
1304 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1305 1.5 mycroft break;
1306 1.5 mycroft fs->fs_maxcluster[cg] = i;
1307 1.1 mycroft goto fail;
1308 1.5 mycroft }
1309 1.1 mycroft /*
1310 1.1 mycroft * Search the cluster map to find a big enough cluster.
1311 1.1 mycroft * We take the first one that we find, even if it is larger
1312 1.1 mycroft * than we need as we prefer to get one close to the previous
1313 1.1 mycroft * block allocation. We do not search before the current
1314 1.1 mycroft * preference point as we do not want to allocate a block
1315 1.1 mycroft * that is allocated before the previous one (as we will
1316 1.1 mycroft * then have to wait for another pass of the elevator
1317 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1318 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1319 1.1 mycroft */
1320 1.1 mycroft if (dtog(fs, bpref) != cg)
1321 1.1 mycroft bpref = 0;
1322 1.1 mycroft else
1323 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1324 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1325 1.1 mycroft map = *mapp++;
1326 1.1 mycroft bit = 1 << (bpref % NBBY);
1327 1.19 bouyer for (run = 0, got = bpref;
1328 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1329 1.1 mycroft if ((map & bit) == 0) {
1330 1.1 mycroft run = 0;
1331 1.1 mycroft } else {
1332 1.1 mycroft run++;
1333 1.1 mycroft if (run == len)
1334 1.1 mycroft break;
1335 1.1 mycroft }
1336 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1337 1.1 mycroft bit <<= 1;
1338 1.1 mycroft } else {
1339 1.1 mycroft map = *mapp++;
1340 1.1 mycroft bit = 1;
1341 1.1 mycroft }
1342 1.1 mycroft }
1343 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1344 1.1 mycroft goto fail;
1345 1.1 mycroft /*
1346 1.1 mycroft * Allocate the cluster that we have found.
1347 1.1 mycroft */
1348 1.30 fvdl #ifdef DIAGNOSTIC
1349 1.18 fvdl for (i = 1; i <= len; i++)
1350 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1351 1.30 fvdl got - run + i))
1352 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1353 1.30 fvdl #endif
1354 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1355 1.18 fvdl if (dtog(fs, bno) != cg)
1356 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1357 1.1 mycroft len = blkstofrags(fs, len);
1358 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1359 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1360 1.1 mycroft panic("ffs_clusteralloc: lost block");
1361 1.76 hannken ACTIVECG_CLR(fs, cg);
1362 1.8 cgd bdwrite(bp);
1363 1.1 mycroft return (bno);
1364 1.1 mycroft
1365 1.1 mycroft fail:
1366 1.1 mycroft brelse(bp);
1367 1.1 mycroft return (0);
1368 1.1 mycroft }
1369 1.55 matt #endif /* XXXUBC */
1370 1.1 mycroft
1371 1.1 mycroft /*
1372 1.1 mycroft * Determine whether an inode can be allocated.
1373 1.1 mycroft *
1374 1.1 mycroft * Check to see if an inode is available, and if it is,
1375 1.1 mycroft * allocate it using the following policy:
1376 1.1 mycroft * 1) allocate the requested inode.
1377 1.1 mycroft * 2) allocate the next available inode after the requested
1378 1.1 mycroft * inode in the specified cylinder group.
1379 1.1 mycroft */
1380 1.58 fvdl static daddr_t
1381 1.85 thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1382 1.1 mycroft {
1383 1.62 fvdl struct fs *fs = ip->i_fs;
1384 1.33 augustss struct cg *cgp;
1385 1.60 fvdl struct buf *bp, *ibp;
1386 1.60 fvdl u_int8_t *inosused;
1387 1.1 mycroft int error, start, len, loc, map, i;
1388 1.60 fvdl int32_t initediblk;
1389 1.60 fvdl struct ufs2_dinode *dp2;
1390 1.19 bouyer #ifdef FFS_EI
1391 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1392 1.19 bouyer #endif
1393 1.1 mycroft
1394 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1395 1.35 thorpej return (0);
1396 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1397 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1398 1.1 mycroft if (error) {
1399 1.1 mycroft brelse(bp);
1400 1.35 thorpej return (0);
1401 1.1 mycroft }
1402 1.1 mycroft cgp = (struct cg *)bp->b_data;
1403 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1404 1.1 mycroft brelse(bp);
1405 1.35 thorpej return (0);
1406 1.1 mycroft }
1407 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1408 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1409 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1410 1.73 dbj cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1411 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1412 1.1 mycroft if (ipref) {
1413 1.1 mycroft ipref %= fs->fs_ipg;
1414 1.60 fvdl if (isclr(inosused, ipref))
1415 1.1 mycroft goto gotit;
1416 1.1 mycroft }
1417 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1418 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1419 1.19 bouyer NBBY);
1420 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1421 1.1 mycroft if (loc == 0) {
1422 1.1 mycroft len = start + 1;
1423 1.1 mycroft start = 0;
1424 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1425 1.1 mycroft if (loc == 0) {
1426 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1427 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1428 1.19 bouyer fs->fs_fsmnt);
1429 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1430 1.1 mycroft /* NOTREACHED */
1431 1.1 mycroft }
1432 1.1 mycroft }
1433 1.1 mycroft i = start + len - loc;
1434 1.60 fvdl map = inosused[i];
1435 1.1 mycroft ipref = i * NBBY;
1436 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1437 1.1 mycroft if ((map & i) == 0) {
1438 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1439 1.1 mycroft goto gotit;
1440 1.1 mycroft }
1441 1.1 mycroft }
1442 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1443 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1444 1.1 mycroft /* NOTREACHED */
1445 1.1 mycroft gotit:
1446 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1447 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1448 1.60 fvdl setbit(inosused, ipref);
1449 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1450 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1451 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1452 1.1 mycroft fs->fs_fmod = 1;
1453 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1454 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1455 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1456 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1457 1.1 mycroft }
1458 1.60 fvdl /*
1459 1.60 fvdl * Check to see if we need to initialize more inodes.
1460 1.60 fvdl */
1461 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1462 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1463 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1464 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1465 1.60 fvdl ibp = getblk(ip->i_devvp, fsbtodb(fs,
1466 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1467 1.60 fvdl (int)fs->fs_bsize, 0, 0);
1468 1.60 fvdl memset(ibp->b_data, 0, fs->fs_bsize);
1469 1.60 fvdl dp2 = (struct ufs2_dinode *)(ibp->b_data);
1470 1.60 fvdl for (i = 0; i < INOPB(fs); i++) {
1471 1.60 fvdl /*
1472 1.60 fvdl * Don't bother to swap, it's supposed to be
1473 1.60 fvdl * random, after all.
1474 1.60 fvdl */
1475 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1476 1.60 fvdl dp2++;
1477 1.60 fvdl }
1478 1.60 fvdl bawrite(ibp);
1479 1.60 fvdl initediblk += INOPB(fs);
1480 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1481 1.60 fvdl }
1482 1.60 fvdl
1483 1.76 hannken ACTIVECG_CLR(fs, cg);
1484 1.1 mycroft bdwrite(bp);
1485 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1486 1.1 mycroft }
1487 1.1 mycroft
1488 1.1 mycroft /*
1489 1.1 mycroft * Free a block or fragment.
1490 1.1 mycroft *
1491 1.1 mycroft * The specified block or fragment is placed back in the
1492 1.81 perry * free map. If a fragment is deallocated, a possible
1493 1.1 mycroft * block reassembly is checked.
1494 1.1 mycroft */
1495 1.9 christos void
1496 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1497 1.85 thorpej ino_t inum)
1498 1.1 mycroft {
1499 1.33 augustss struct cg *cgp;
1500 1.1 mycroft struct buf *bp;
1501 1.76 hannken struct ufsmount *ump;
1502 1.60 fvdl int32_t fragno, cgbno;
1503 1.76 hannken daddr_t cgblkno;
1504 1.1 mycroft int i, error, cg, blk, frags, bbase;
1505 1.62 fvdl u_int8_t *blksfree;
1506 1.76 hannken dev_t dev;
1507 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1508 1.1 mycroft
1509 1.76 hannken cg = dtog(fs, bno);
1510 1.77 hannken if (devvp->v_type != VBLK) {
1511 1.77 hannken /* devvp is a snapshot */
1512 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1513 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1514 1.76 hannken } else {
1515 1.76 hannken dev = devvp->v_rdev;
1516 1.76 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1517 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1518 1.76 hannken if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
1519 1.76 hannken ffs_snapblkfree(fs, devvp, bno, size, inum))
1520 1.76 hannken return;
1521 1.76 hannken }
1522 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1523 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1524 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1525 1.58 fvdl "size = %ld, fs = %s\n",
1526 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1527 1.1 mycroft panic("blkfree: bad size");
1528 1.1 mycroft }
1529 1.76 hannken
1530 1.60 fvdl if (bno >= fs->fs_size) {
1531 1.76 hannken printf("bad block %" PRId64 ", ino %d\n", bno, inum);
1532 1.76 hannken ffs_fserr(fs, inum, "bad block");
1533 1.1 mycroft return;
1534 1.1 mycroft }
1535 1.76 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
1536 1.1 mycroft if (error) {
1537 1.1 mycroft brelse(bp);
1538 1.1 mycroft return;
1539 1.1 mycroft }
1540 1.1 mycroft cgp = (struct cg *)bp->b_data;
1541 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1542 1.1 mycroft brelse(bp);
1543 1.1 mycroft return;
1544 1.1 mycroft }
1545 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1546 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1547 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1548 1.73 dbj cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1549 1.60 fvdl cgbno = dtogd(fs, bno);
1550 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1551 1.1 mycroft if (size == fs->fs_bsize) {
1552 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1553 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1554 1.77 hannken if (devvp->v_type != VBLK) {
1555 1.77 hannken /* devvp is a snapshot */
1556 1.76 hannken brelse(bp);
1557 1.76 hannken return;
1558 1.76 hannken }
1559 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1560 1.76 hannken dev, bno, fs->fs_fsmnt);
1561 1.1 mycroft panic("blkfree: freeing free block");
1562 1.1 mycroft }
1563 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1564 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1565 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1566 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1567 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1568 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1569 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1570 1.73 dbj i = old_cbtocylno(fs, cgbno);
1571 1.75 dbj KASSERT(i >= 0);
1572 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1573 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1574 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1575 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1576 1.73 dbj needswap);
1577 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1578 1.73 dbj }
1579 1.1 mycroft } else {
1580 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1581 1.1 mycroft /*
1582 1.1 mycroft * decrement the counts associated with the old frags
1583 1.1 mycroft */
1584 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1585 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1586 1.1 mycroft /*
1587 1.1 mycroft * deallocate the fragment
1588 1.1 mycroft */
1589 1.1 mycroft frags = numfrags(fs, size);
1590 1.1 mycroft for (i = 0; i < frags; i++) {
1591 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1592 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1593 1.59 tsutsui ", fs = %s\n",
1594 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1595 1.1 mycroft panic("blkfree: freeing free frag");
1596 1.1 mycroft }
1597 1.62 fvdl setbit(blksfree, cgbno + i);
1598 1.1 mycroft }
1599 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1600 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1601 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1602 1.1 mycroft /*
1603 1.1 mycroft * add back in counts associated with the new frags
1604 1.1 mycroft */
1605 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1606 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1607 1.1 mycroft /*
1608 1.1 mycroft * if a complete block has been reassembled, account for it
1609 1.1 mycroft */
1610 1.60 fvdl fragno = fragstoblks(fs, bbase);
1611 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1612 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1613 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1614 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1615 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1616 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1617 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1618 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1619 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1620 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1621 1.73 dbj i = old_cbtocylno(fs, bbase);
1622 1.75 dbj KASSERT(i >= 0);
1623 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1624 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1625 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1626 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1627 1.73 dbj bbase)], 1, needswap);
1628 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1629 1.73 dbj }
1630 1.1 mycroft }
1631 1.1 mycroft }
1632 1.1 mycroft fs->fs_fmod = 1;
1633 1.76 hannken ACTIVECG_CLR(fs, cg);
1634 1.1 mycroft bdwrite(bp);
1635 1.1 mycroft }
1636 1.1 mycroft
1637 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1638 1.55 matt #ifdef XXXUBC
1639 1.18 fvdl /*
1640 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1641 1.18 fvdl * fragment is allocated, false if it is free.
1642 1.18 fvdl */
1643 1.18 fvdl static int
1644 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1645 1.18 fvdl {
1646 1.18 fvdl struct fs *fs;
1647 1.18 fvdl struct cg *cgp;
1648 1.18 fvdl struct buf *bp;
1649 1.18 fvdl int i, error, frags, free;
1650 1.18 fvdl
1651 1.18 fvdl fs = ip->i_fs;
1652 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1653 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1654 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1655 1.18 fvdl panic("checkblk: bad size");
1656 1.18 fvdl }
1657 1.60 fvdl if (bno >= fs->fs_size)
1658 1.18 fvdl panic("checkblk: bad block %d", bno);
1659 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1660 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1661 1.18 fvdl if (error) {
1662 1.18 fvdl brelse(bp);
1663 1.18 fvdl return 0;
1664 1.18 fvdl }
1665 1.18 fvdl cgp = (struct cg *)bp->b_data;
1666 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1667 1.18 fvdl brelse(bp);
1668 1.18 fvdl return 0;
1669 1.18 fvdl }
1670 1.18 fvdl bno = dtogd(fs, bno);
1671 1.18 fvdl if (size == fs->fs_bsize) {
1672 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1673 1.19 bouyer fragstoblks(fs, bno));
1674 1.18 fvdl } else {
1675 1.18 fvdl frags = numfrags(fs, size);
1676 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1677 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1678 1.18 fvdl free++;
1679 1.18 fvdl if (free != 0 && free != frags)
1680 1.18 fvdl panic("checkblk: partially free fragment");
1681 1.18 fvdl }
1682 1.18 fvdl brelse(bp);
1683 1.18 fvdl return (!free);
1684 1.18 fvdl }
1685 1.55 matt #endif /* XXXUBC */
1686 1.18 fvdl #endif /* DIAGNOSTIC */
1687 1.18 fvdl
1688 1.1 mycroft /*
1689 1.1 mycroft * Free an inode.
1690 1.30 fvdl */
1691 1.30 fvdl int
1692 1.85 thorpej ffs_vfree(void *v)
1693 1.30 fvdl {
1694 1.30 fvdl struct vop_vfree_args /* {
1695 1.30 fvdl struct vnode *a_pvp;
1696 1.30 fvdl ino_t a_ino;
1697 1.30 fvdl int a_mode;
1698 1.30 fvdl } */ *ap = v;
1699 1.30 fvdl
1700 1.30 fvdl if (DOINGSOFTDEP(ap->a_pvp)) {
1701 1.30 fvdl softdep_freefile(ap);
1702 1.30 fvdl return (0);
1703 1.30 fvdl }
1704 1.78 hannken return (ffs_freefile(VTOI(ap->a_pvp)->i_fs, VTOI(ap->a_pvp)->i_devvp,
1705 1.78 hannken ap->a_ino, ap->a_mode));
1706 1.30 fvdl }
1707 1.30 fvdl
1708 1.30 fvdl /*
1709 1.30 fvdl * Do the actual free operation.
1710 1.1 mycroft * The specified inode is placed back in the free map.
1711 1.1 mycroft */
1712 1.1 mycroft int
1713 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1714 1.9 christos {
1715 1.33 augustss struct cg *cgp;
1716 1.1 mycroft struct buf *bp;
1717 1.1 mycroft int error, cg;
1718 1.76 hannken daddr_t cgbno;
1719 1.62 fvdl u_int8_t *inosused;
1720 1.78 hannken dev_t dev;
1721 1.19 bouyer #ifdef FFS_EI
1722 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1723 1.19 bouyer #endif
1724 1.1 mycroft
1725 1.76 hannken cg = ino_to_cg(fs, ino);
1726 1.78 hannken if (devvp->v_type != VBLK) {
1727 1.78 hannken /* devvp is a snapshot */
1728 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1729 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1730 1.76 hannken } else {
1731 1.78 hannken dev = devvp->v_rdev;
1732 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1733 1.76 hannken }
1734 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1735 1.56 provos panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1736 1.78 hannken dev, ino, fs->fs_fsmnt);
1737 1.78 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
1738 1.1 mycroft if (error) {
1739 1.1 mycroft brelse(bp);
1740 1.30 fvdl return (error);
1741 1.1 mycroft }
1742 1.1 mycroft cgp = (struct cg *)bp->b_data;
1743 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1744 1.1 mycroft brelse(bp);
1745 1.1 mycroft return (0);
1746 1.1 mycroft }
1747 1.62 fvdl cgp->cg_old_time = ufs_rw32(time.tv_sec, needswap);
1748 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1749 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1750 1.73 dbj cgp->cg_time = ufs_rw64(time.tv_sec, needswap);
1751 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1752 1.1 mycroft ino %= fs->fs_ipg;
1753 1.62 fvdl if (isclr(inosused, ino)) {
1754 1.79 dbj printf("ifree: dev = 0x%x, ino = %d, fs = %s\n",
1755 1.79 dbj dev, ino + cg * fs->fs_ipg, fs->fs_fsmnt);
1756 1.1 mycroft if (fs->fs_ronly == 0)
1757 1.1 mycroft panic("ifree: freeing free inode");
1758 1.1 mycroft }
1759 1.62 fvdl clrbit(inosused, ino);
1760 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1761 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1762 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1763 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1764 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1765 1.78 hannken if ((mode & IFMT) == IFDIR) {
1766 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1767 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1768 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1769 1.1 mycroft }
1770 1.1 mycroft fs->fs_fmod = 1;
1771 1.82 hannken ACTIVECG_CLR(fs, cg);
1772 1.1 mycroft bdwrite(bp);
1773 1.1 mycroft return (0);
1774 1.1 mycroft }
1775 1.1 mycroft
1776 1.1 mycroft /*
1777 1.76 hannken * Check to see if a file is free.
1778 1.76 hannken */
1779 1.76 hannken int
1780 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1781 1.76 hannken {
1782 1.76 hannken struct cg *cgp;
1783 1.76 hannken struct buf *bp;
1784 1.76 hannken daddr_t cgbno;
1785 1.76 hannken int ret, cg;
1786 1.76 hannken u_int8_t *inosused;
1787 1.76 hannken
1788 1.76 hannken cg = ino_to_cg(fs, ino);
1789 1.77 hannken if (devvp->v_type != VBLK) {
1790 1.77 hannken /* devvp is a snapshot */
1791 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1792 1.77 hannken } else
1793 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1794 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1795 1.76 hannken return 1;
1796 1.76 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1797 1.76 hannken brelse(bp);
1798 1.76 hannken return 1;
1799 1.76 hannken }
1800 1.76 hannken cgp = (struct cg *)bp->b_data;
1801 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1802 1.76 hannken brelse(bp);
1803 1.76 hannken return 1;
1804 1.76 hannken }
1805 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1806 1.76 hannken ino %= fs->fs_ipg;
1807 1.76 hannken ret = isclr(inosused, ino);
1808 1.76 hannken brelse(bp);
1809 1.76 hannken return ret;
1810 1.76 hannken }
1811 1.76 hannken
1812 1.76 hannken /*
1813 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1814 1.1 mycroft *
1815 1.1 mycroft * It is a panic if a request is made to find a block if none are
1816 1.1 mycroft * available.
1817 1.1 mycroft */
1818 1.60 fvdl static int32_t
1819 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1820 1.1 mycroft {
1821 1.60 fvdl int32_t bno;
1822 1.1 mycroft int start, len, loc, i;
1823 1.1 mycroft int blk, field, subfield, pos;
1824 1.19 bouyer int ostart, olen;
1825 1.62 fvdl u_int8_t *blksfree;
1826 1.30 fvdl #ifdef FFS_EI
1827 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1828 1.30 fvdl #endif
1829 1.1 mycroft
1830 1.1 mycroft /*
1831 1.1 mycroft * find the fragment by searching through the free block
1832 1.1 mycroft * map for an appropriate bit pattern
1833 1.1 mycroft */
1834 1.1 mycroft if (bpref)
1835 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1836 1.1 mycroft else
1837 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1838 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1839 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1840 1.19 bouyer ostart = start;
1841 1.19 bouyer olen = len;
1842 1.45 lukem loc = scanc((u_int)len,
1843 1.62 fvdl (const u_char *)&blksfree[start],
1844 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1845 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1846 1.1 mycroft if (loc == 0) {
1847 1.1 mycroft len = start + 1;
1848 1.1 mycroft start = 0;
1849 1.45 lukem loc = scanc((u_int)len,
1850 1.62 fvdl (const u_char *)&blksfree[0],
1851 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1852 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1853 1.1 mycroft if (loc == 0) {
1854 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1855 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1856 1.20 ross printf("offset=%d %ld\n",
1857 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1858 1.62 fvdl (long)blksfree - (long)cgp);
1859 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1860 1.1 mycroft panic("ffs_alloccg: map corrupted");
1861 1.1 mycroft /* NOTREACHED */
1862 1.1 mycroft }
1863 1.1 mycroft }
1864 1.1 mycroft bno = (start + len - loc) * NBBY;
1865 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1866 1.1 mycroft /*
1867 1.1 mycroft * found the byte in the map
1868 1.1 mycroft * sift through the bits to find the selected frag
1869 1.1 mycroft */
1870 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1871 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1872 1.1 mycroft blk <<= 1;
1873 1.1 mycroft field = around[allocsiz];
1874 1.1 mycroft subfield = inside[allocsiz];
1875 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1876 1.1 mycroft if ((blk & field) == subfield)
1877 1.1 mycroft return (bno + pos);
1878 1.1 mycroft field <<= 1;
1879 1.1 mycroft subfield <<= 1;
1880 1.1 mycroft }
1881 1.1 mycroft }
1882 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1883 1.1 mycroft panic("ffs_alloccg: block not in map");
1884 1.58 fvdl /* return (-1); */
1885 1.1 mycroft }
1886 1.1 mycroft
1887 1.1 mycroft /*
1888 1.1 mycroft * Update the cluster map because of an allocation or free.
1889 1.1 mycroft *
1890 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1891 1.1 mycroft */
1892 1.9 christos void
1893 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1894 1.1 mycroft {
1895 1.4 cgd int32_t *sump;
1896 1.5 mycroft int32_t *lp;
1897 1.1 mycroft u_char *freemapp, *mapp;
1898 1.1 mycroft int i, start, end, forw, back, map, bit;
1899 1.30 fvdl #ifdef FFS_EI
1900 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1901 1.30 fvdl #endif
1902 1.1 mycroft
1903 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1904 1.1 mycroft return;
1905 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1906 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1907 1.1 mycroft /*
1908 1.1 mycroft * Allocate or clear the actual block.
1909 1.1 mycroft */
1910 1.1 mycroft if (cnt > 0)
1911 1.1 mycroft setbit(freemapp, blkno);
1912 1.1 mycroft else
1913 1.1 mycroft clrbit(freemapp, blkno);
1914 1.1 mycroft /*
1915 1.1 mycroft * Find the size of the cluster going forward.
1916 1.1 mycroft */
1917 1.1 mycroft start = blkno + 1;
1918 1.1 mycroft end = start + fs->fs_contigsumsize;
1919 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1920 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1921 1.1 mycroft mapp = &freemapp[start / NBBY];
1922 1.1 mycroft map = *mapp++;
1923 1.1 mycroft bit = 1 << (start % NBBY);
1924 1.1 mycroft for (i = start; i < end; i++) {
1925 1.1 mycroft if ((map & bit) == 0)
1926 1.1 mycroft break;
1927 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1928 1.1 mycroft bit <<= 1;
1929 1.1 mycroft } else {
1930 1.1 mycroft map = *mapp++;
1931 1.1 mycroft bit = 1;
1932 1.1 mycroft }
1933 1.1 mycroft }
1934 1.1 mycroft forw = i - start;
1935 1.1 mycroft /*
1936 1.1 mycroft * Find the size of the cluster going backward.
1937 1.1 mycroft */
1938 1.1 mycroft start = blkno - 1;
1939 1.1 mycroft end = start - fs->fs_contigsumsize;
1940 1.1 mycroft if (end < 0)
1941 1.1 mycroft end = -1;
1942 1.1 mycroft mapp = &freemapp[start / NBBY];
1943 1.1 mycroft map = *mapp--;
1944 1.1 mycroft bit = 1 << (start % NBBY);
1945 1.1 mycroft for (i = start; i > end; i--) {
1946 1.1 mycroft if ((map & bit) == 0)
1947 1.1 mycroft break;
1948 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1949 1.1 mycroft bit >>= 1;
1950 1.1 mycroft } else {
1951 1.1 mycroft map = *mapp--;
1952 1.1 mycroft bit = 1 << (NBBY - 1);
1953 1.1 mycroft }
1954 1.1 mycroft }
1955 1.1 mycroft back = start - i;
1956 1.1 mycroft /*
1957 1.1 mycroft * Account for old cluster and the possibly new forward and
1958 1.1 mycroft * back clusters.
1959 1.1 mycroft */
1960 1.1 mycroft i = back + forw + 1;
1961 1.1 mycroft if (i > fs->fs_contigsumsize)
1962 1.1 mycroft i = fs->fs_contigsumsize;
1963 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1964 1.1 mycroft if (back > 0)
1965 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1966 1.1 mycroft if (forw > 0)
1967 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1968 1.19 bouyer
1969 1.5 mycroft /*
1970 1.5 mycroft * Update cluster summary information.
1971 1.5 mycroft */
1972 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1973 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1974 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1975 1.5 mycroft break;
1976 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1977 1.1 mycroft }
1978 1.1 mycroft
1979 1.1 mycroft /*
1980 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1981 1.81 perry *
1982 1.1 mycroft * The form of the error message is:
1983 1.1 mycroft * fs: error message
1984 1.1 mycroft */
1985 1.1 mycroft static void
1986 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
1987 1.1 mycroft {
1988 1.1 mycroft
1989 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1990 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1991 1.1 mycroft }
1992