Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.93
      1  1.93      yamt /*	$NetBSD: ffs_alloc.c,v 1.93 2006/06/23 14:13:02 yamt Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4  1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  1.60      fvdl  * All rights reserved.
      6  1.60      fvdl  *
      7  1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8  1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9  1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  1.60      fvdl  * research program
     12  1.60      fvdl  *
     13   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15   1.1   mycroft  *
     16   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17   1.1   mycroft  * modification, are permitted provided that the following conditions
     18   1.1   mycroft  * are met:
     19   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24  1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26   1.1   mycroft  *    without specific prior written permission.
     27   1.1   mycroft  *
     28   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1   mycroft  * SUCH DAMAGE.
     39   1.1   mycroft  *
     40  1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41   1.1   mycroft  */
     42  1.53     lukem 
     43  1.53     lukem #include <sys/cdefs.h>
     44  1.93      yamt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.93 2006/06/23 14:13:02 yamt Exp $");
     45  1.17       mrg 
     46  1.43       mrg #if defined(_KERNEL_OPT)
     47  1.27   thorpej #include "opt_ffs.h"
     48  1.21    scottr #include "opt_quota.h"
     49  1.22    scottr #endif
     50   1.1   mycroft 
     51   1.1   mycroft #include <sys/param.h>
     52   1.1   mycroft #include <sys/systm.h>
     53   1.1   mycroft #include <sys/buf.h>
     54   1.1   mycroft #include <sys/proc.h>
     55   1.1   mycroft #include <sys/vnode.h>
     56   1.1   mycroft #include <sys/mount.h>
     57   1.1   mycroft #include <sys/kernel.h>
     58   1.1   mycroft #include <sys/syslog.h>
     59  1.91      elad #include <sys/kauth.h>
     60  1.29       mrg 
     61  1.76   hannken #include <miscfs/specfs/specdev.h>
     62   1.1   mycroft #include <ufs/ufs/quota.h>
     63  1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64   1.1   mycroft #include <ufs/ufs/inode.h>
     65   1.9  christos #include <ufs/ufs/ufs_extern.h>
     66  1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67   1.1   mycroft 
     68   1.1   mycroft #include <ufs/ffs/fs.h>
     69   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70   1.1   mycroft 
     71  1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72  1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73  1.55      matt #ifdef XXXUBC
     74  1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75  1.55      matt #endif
     76  1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77  1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78  1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79  1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80  1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81  1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82  1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83  1.85   thorpej 				      daddr_t, int);
     84  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85  1.55      matt #ifdef XXXUBC
     86  1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87  1.18      fvdl #endif
     88  1.55      matt #endif
     89  1.23  drochner 
     90  1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91  1.34  jdolecek int ffs_log_changeopt = 0;
     92  1.34  jdolecek 
     93  1.23  drochner /* in ffs_tables.c */
     94  1.40  jdolecek extern const int inside[], around[];
     95  1.40  jdolecek extern const u_char * const fragtbl[];
     96   1.1   mycroft 
     97   1.1   mycroft /*
     98   1.1   mycroft  * Allocate a block in the file system.
     99  1.81     perry  *
    100   1.1   mycroft  * The size of the requested block is given, which must be some
    101   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102   1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103   1.1   mycroft  * the following hierarchy is used to allocate a block:
    104   1.1   mycroft  *   1) allocate the requested block.
    105   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106   1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108   1.1   mycroft  *      available block is located.
    109  1.47       wiz  * If no block preference is given the following hierarchy is used
    110   1.1   mycroft  * to allocate a block:
    111   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112   1.1   mycroft  *      inode for the file.
    113   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114   1.1   mycroft  *      available block is located.
    115   1.1   mycroft  */
    116   1.9  christos int
    117  1.85   thorpej ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    118  1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    119   1.1   mycroft {
    120  1.62      fvdl 	struct fs *fs;
    121  1.58      fvdl 	daddr_t bno;
    122   1.9  christos 	int cg;
    123   1.9  christos #ifdef QUOTA
    124   1.9  christos 	int error;
    125   1.9  christos #endif
    126  1.81     perry 
    127  1.62      fvdl 	fs = ip->i_fs;
    128  1.62      fvdl 
    129  1.37       chs #ifdef UVM_PAGE_TRKOWN
    130  1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    131  1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    132  1.37       chs 		struct vm_page *pg;
    133  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    134  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    135  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    136  1.37       chs 
    137  1.37       chs 		simple_lock(&uobj->vmobjlock);
    138  1.37       chs 		while (off < endoff) {
    139  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    140  1.37       chs 			KASSERT(pg != NULL);
    141  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    142  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    143  1.37       chs 			off += PAGE_SIZE;
    144  1.37       chs 		}
    145  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    146  1.37       chs 	}
    147  1.37       chs #endif
    148  1.37       chs 
    149   1.1   mycroft 	*bnp = 0;
    150   1.1   mycroft #ifdef DIAGNOSTIC
    151   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    152  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    153   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    154   1.1   mycroft 		panic("ffs_alloc: bad size");
    155   1.1   mycroft 	}
    156   1.1   mycroft 	if (cred == NOCRED)
    157  1.56    provos 		panic("ffs_alloc: missing credential");
    158   1.1   mycroft #endif /* DIAGNOSTIC */
    159   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    160   1.1   mycroft 		goto nospace;
    161  1.91      elad 	if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
    162   1.1   mycroft 		goto nospace;
    163   1.1   mycroft #ifdef QUOTA
    164  1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    165   1.1   mycroft 		return (error);
    166   1.1   mycroft #endif
    167   1.1   mycroft 	if (bpref >= fs->fs_size)
    168   1.1   mycroft 		bpref = 0;
    169   1.1   mycroft 	if (bpref == 0)
    170   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    171   1.1   mycroft 	else
    172   1.1   mycroft 		cg = dtog(fs, bpref);
    173  1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    174   1.1   mycroft 	if (bno > 0) {
    175  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    176   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    177   1.1   mycroft 		*bnp = bno;
    178   1.1   mycroft 		return (0);
    179   1.1   mycroft 	}
    180   1.1   mycroft #ifdef QUOTA
    181   1.1   mycroft 	/*
    182   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    183   1.1   mycroft 	 */
    184  1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    185   1.1   mycroft #endif
    186   1.1   mycroft nospace:
    187  1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    188   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    189   1.1   mycroft 	return (ENOSPC);
    190   1.1   mycroft }
    191   1.1   mycroft 
    192   1.1   mycroft /*
    193   1.1   mycroft  * Reallocate a fragment to a bigger size
    194   1.1   mycroft  *
    195   1.1   mycroft  * The number and size of the old block is given, and a preference
    196   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    197   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    198   1.1   mycroft  * invoked to get an appropriate block.
    199   1.1   mycroft  */
    200   1.9  christos int
    201  1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    202  1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    203   1.1   mycroft {
    204  1.62      fvdl 	struct fs *fs;
    205   1.1   mycroft 	struct buf *bp;
    206   1.1   mycroft 	int cg, request, error;
    207  1.58      fvdl 	daddr_t bprev, bno;
    208  1.25   thorpej 
    209  1.62      fvdl 	fs = ip->i_fs;
    210  1.37       chs #ifdef UVM_PAGE_TRKOWN
    211  1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    212  1.37       chs 		struct vm_page *pg;
    213  1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    214  1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    215  1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    216  1.37       chs 
    217  1.37       chs 		simple_lock(&uobj->vmobjlock);
    218  1.37       chs 		while (off < endoff) {
    219  1.37       chs 			pg = uvm_pagelookup(uobj, off);
    220  1.37       chs 			KASSERT(pg != NULL);
    221  1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    222  1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    223  1.37       chs 			off += PAGE_SIZE;
    224  1.37       chs 		}
    225  1.37       chs 		simple_unlock(&uobj->vmobjlock);
    226  1.37       chs 	}
    227  1.37       chs #endif
    228  1.37       chs 
    229   1.1   mycroft #ifdef DIAGNOSTIC
    230   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    231   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    232  1.13  christos 		printf(
    233   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    234   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    235   1.1   mycroft 		panic("ffs_realloccg: bad size");
    236   1.1   mycroft 	}
    237   1.1   mycroft 	if (cred == NOCRED)
    238  1.56    provos 		panic("ffs_realloccg: missing credential");
    239   1.1   mycroft #endif /* DIAGNOSTIC */
    240  1.91      elad 	if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
    241   1.1   mycroft 		goto nospace;
    242  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    243  1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    244  1.60      fvdl 	else
    245  1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    246  1.60      fvdl 
    247  1.60      fvdl 	if (bprev == 0) {
    248  1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    249  1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    250   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    251   1.1   mycroft 	}
    252   1.1   mycroft 	/*
    253   1.1   mycroft 	 * Allocate the extra space in the buffer.
    254   1.1   mycroft 	 */
    255  1.37       chs 	if (bpp != NULL &&
    256  1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    257   1.1   mycroft 		brelse(bp);
    258   1.1   mycroft 		return (error);
    259   1.1   mycroft 	}
    260   1.1   mycroft #ifdef QUOTA
    261  1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    262  1.44       chs 		if (bpp != NULL) {
    263  1.44       chs 			brelse(bp);
    264  1.44       chs 		}
    265   1.1   mycroft 		return (error);
    266   1.1   mycroft 	}
    267   1.1   mycroft #endif
    268   1.1   mycroft 	/*
    269   1.1   mycroft 	 * Check for extension in the existing location.
    270   1.1   mycroft 	 */
    271   1.1   mycroft 	cg = dtog(fs, bprev);
    272  1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    273  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    274   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    275  1.37       chs 
    276  1.37       chs 		if (bpp != NULL) {
    277  1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    278  1.37       chs 				panic("bad blockno");
    279  1.72        pk 			allocbuf(bp, nsize, 1);
    280  1.37       chs 			bp->b_flags |= B_DONE;
    281  1.37       chs 			memset(bp->b_data + osize, 0, nsize - osize);
    282  1.37       chs 			*bpp = bp;
    283  1.37       chs 		}
    284  1.37       chs 		if (blknop != NULL) {
    285  1.37       chs 			*blknop = bno;
    286  1.37       chs 		}
    287   1.1   mycroft 		return (0);
    288   1.1   mycroft 	}
    289   1.1   mycroft 	/*
    290   1.1   mycroft 	 * Allocate a new disk location.
    291   1.1   mycroft 	 */
    292   1.1   mycroft 	if (bpref >= fs->fs_size)
    293   1.1   mycroft 		bpref = 0;
    294   1.1   mycroft 	switch ((int)fs->fs_optim) {
    295   1.1   mycroft 	case FS_OPTSPACE:
    296   1.1   mycroft 		/*
    297  1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    298  1.81     perry 		 * best use of space, we will waste time relocating it if
    299   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    300   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    301   1.1   mycroft 		 * to begin optimizing for time.
    302   1.1   mycroft 		 */
    303   1.1   mycroft 		request = nsize;
    304   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    305   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    306   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    307   1.1   mycroft 			break;
    308  1.34  jdolecek 
    309  1.34  jdolecek 		if (ffs_log_changeopt) {
    310  1.34  jdolecek 			log(LOG_NOTICE,
    311  1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    312  1.34  jdolecek 				fs->fs_fsmnt);
    313  1.34  jdolecek 		}
    314  1.34  jdolecek 
    315   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    316   1.1   mycroft 		break;
    317   1.1   mycroft 	case FS_OPTTIME:
    318   1.1   mycroft 		/*
    319   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    320   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    321   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    322   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    323   1.1   mycroft 		 * above will be able to grow it in place without further
    324   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    325   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    326   1.1   mycroft 		 * optimizing for space.
    327   1.1   mycroft 		 */
    328   1.1   mycroft 		request = fs->fs_bsize;
    329   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    330   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    331   1.1   mycroft 			break;
    332  1.34  jdolecek 
    333  1.34  jdolecek 		if (ffs_log_changeopt) {
    334  1.34  jdolecek 			log(LOG_NOTICE,
    335  1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    336  1.34  jdolecek 				fs->fs_fsmnt);
    337  1.34  jdolecek 		}
    338  1.34  jdolecek 
    339   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    340   1.1   mycroft 		break;
    341   1.1   mycroft 	default:
    342  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    343   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    344   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    345   1.1   mycroft 		/* NOTREACHED */
    346   1.1   mycroft 	}
    347  1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    348   1.1   mycroft 	if (bno > 0) {
    349  1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    350  1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    351  1.76   hannken 			    ip->i_number);
    352   1.1   mycroft 		if (nsize < request)
    353  1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    354  1.76   hannken 			    (long)(request - nsize), ip->i_number);
    355  1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    356   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    357  1.37       chs 		if (bpp != NULL) {
    358  1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    359  1.72        pk 			allocbuf(bp, nsize, 1);
    360  1.37       chs 			bp->b_flags |= B_DONE;
    361  1.37       chs 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    362  1.37       chs 			*bpp = bp;
    363  1.37       chs 		}
    364  1.37       chs 		if (blknop != NULL) {
    365  1.37       chs 			*blknop = bno;
    366  1.37       chs 		}
    367   1.1   mycroft 		return (0);
    368   1.1   mycroft 	}
    369   1.1   mycroft #ifdef QUOTA
    370   1.1   mycroft 	/*
    371   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    372   1.1   mycroft 	 */
    373  1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    374   1.1   mycroft #endif
    375  1.37       chs 	if (bpp != NULL) {
    376  1.37       chs 		brelse(bp);
    377  1.37       chs 	}
    378  1.37       chs 
    379   1.1   mycroft nospace:
    380   1.1   mycroft 	/*
    381   1.1   mycroft 	 * no space available
    382   1.1   mycroft 	 */
    383  1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    384   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    385   1.1   mycroft 	return (ENOSPC);
    386   1.1   mycroft }
    387   1.1   mycroft 
    388  1.88      yamt #if 0
    389   1.1   mycroft /*
    390   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    391   1.1   mycroft  *
    392   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    393   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    394  1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    395  1.60      fvdl  * from the end of the allocation for the logical block immediately
    396  1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    397  1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    398  1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    399  1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    400  1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    401  1.60      fvdl  * allocation will be used.
    402  1.60      fvdl 
    403   1.1   mycroft  */
    404  1.55      matt #ifdef XXXUBC
    405   1.3   mycroft #ifdef DEBUG
    406   1.1   mycroft #include <sys/sysctl.h>
    407   1.5   mycroft int prtrealloc = 0;
    408   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    409   1.1   mycroft #endif
    410  1.55      matt #endif
    411   1.1   mycroft 
    412  1.60      fvdl /*
    413  1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    414  1.60      fvdl  */
    415  1.60      fvdl 
    416  1.18      fvdl int doasyncfree = 1;
    417  1.18      fvdl 
    418   1.1   mycroft int
    419  1.85   thorpej ffs_reallocblks(void *v)
    420   1.9  christos {
    421  1.55      matt #ifdef XXXUBC
    422   1.1   mycroft 	struct vop_reallocblks_args /* {
    423   1.1   mycroft 		struct vnode *a_vp;
    424   1.1   mycroft 		struct cluster_save *a_buflist;
    425   1.9  christos 	} */ *ap = v;
    426   1.1   mycroft 	struct fs *fs;
    427   1.1   mycroft 	struct inode *ip;
    428   1.1   mycroft 	struct vnode *vp;
    429   1.1   mycroft 	struct buf *sbp, *ebp;
    430  1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    431   1.1   mycroft 	struct cluster_save *buflist;
    432  1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    433   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    434   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    435  1.55      matt #endif /* XXXUBC */
    436   1.1   mycroft 
    437  1.37       chs 	/* XXXUBC don't reallocblks for now */
    438  1.37       chs 	return ENOSPC;
    439  1.37       chs 
    440  1.55      matt #ifdef XXXUBC
    441   1.1   mycroft 	vp = ap->a_vp;
    442   1.1   mycroft 	ip = VTOI(vp);
    443   1.1   mycroft 	fs = ip->i_fs;
    444   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    445   1.1   mycroft 		return (ENOSPC);
    446   1.1   mycroft 	buflist = ap->a_buflist;
    447   1.1   mycroft 	len = buflist->bs_nchildren;
    448   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    449   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    450   1.1   mycroft #ifdef DIAGNOSTIC
    451  1.18      fvdl 	for (i = 0; i < len; i++)
    452  1.18      fvdl 		if (!ffs_checkblk(ip,
    453  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    454  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    455   1.1   mycroft 	for (i = 1; i < len; i++)
    456   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    457  1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    458  1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    459  1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    460  1.18      fvdl 	for (i = 1; i < len - 1; i++)
    461  1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    462  1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    463   1.1   mycroft #endif
    464   1.1   mycroft 	/*
    465   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    466   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    467   1.1   mycroft 	 * the previous cylinder group.
    468   1.1   mycroft 	 */
    469   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    470   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    471   1.1   mycroft 		return (ENOSPC);
    472   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    473   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    474   1.1   mycroft 		return (ENOSPC);
    475   1.1   mycroft 	/*
    476   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    477   1.1   mycroft 	 */
    478   1.1   mycroft 	if (start_lvl == 0) {
    479  1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    480   1.1   mycroft 		soff = start_lbn;
    481   1.1   mycroft 	} else {
    482   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    483   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    484   1.1   mycroft 			brelse(sbp);
    485   1.1   mycroft 			return (ENOSPC);
    486   1.1   mycroft 		}
    487  1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    488   1.1   mycroft 		soff = idp->in_off;
    489   1.1   mycroft 	}
    490   1.1   mycroft 	/*
    491   1.1   mycroft 	 * Find the preferred location for the cluster.
    492   1.1   mycroft 	 */
    493   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    494   1.1   mycroft 	/*
    495   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    496   1.1   mycroft 	 */
    497   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    498   1.1   mycroft 		ssize = len;
    499   1.1   mycroft 	} else {
    500   1.1   mycroft #ifdef DIAGNOSTIC
    501   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    502   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    503   1.1   mycroft #endif
    504   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    505   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    506   1.1   mycroft 			goto fail;
    507  1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    508   1.1   mycroft 	}
    509   1.1   mycroft 	/*
    510   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    511   1.1   mycroft 	 */
    512  1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    513   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    514   1.1   mycroft 		goto fail;
    515   1.1   mycroft 	/*
    516   1.1   mycroft 	 * We have found a new contiguous block.
    517   1.1   mycroft 	 *
    518   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    519   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    520   1.1   mycroft 	 * with the file.
    521   1.1   mycroft 	 */
    522   1.5   mycroft #ifdef DEBUG
    523   1.5   mycroft 	if (prtrealloc)
    524  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    525   1.5   mycroft 		    start_lbn, end_lbn);
    526   1.5   mycroft #endif
    527   1.1   mycroft 	blkno = newblk;
    528   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    529  1.58      fvdl 		daddr_t ba;
    530  1.30      fvdl 
    531  1.30      fvdl 		if (i == ssize) {
    532   1.1   mycroft 			bap = ebap;
    533  1.30      fvdl 			soff = -i;
    534  1.30      fvdl 		}
    535  1.58      fvdl 		/* XXX ondisk32 */
    536  1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    537   1.1   mycroft #ifdef DIAGNOSTIC
    538  1.18      fvdl 		if (!ffs_checkblk(ip,
    539  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    540  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    541  1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    542   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    543   1.1   mycroft #endif
    544   1.5   mycroft #ifdef DEBUG
    545   1.5   mycroft 		if (prtrealloc)
    546  1.30      fvdl 			printf(" %d,", ba);
    547   1.5   mycroft #endif
    548  1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    549  1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    550  1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    551  1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    552  1.30      fvdl  				    buflist->bs_children[i]);
    553  1.30      fvdl  			else
    554  1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    555  1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    556  1.30      fvdl  				    ba, buflist->bs_children[i]);
    557  1.30      fvdl  		}
    558  1.58      fvdl 		/* XXX ondisk32 */
    559  1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    560   1.1   mycroft 	}
    561   1.1   mycroft 	/*
    562   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    563   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    564   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    565  1.81     perry 	 * they are almost never written, but if we are concerned about
    566   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    567   1.1   mycroft 	 *
    568   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    569   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    570   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    571   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    572   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    573   1.1   mycroft 	 * synchronous write only when it has been cleared.
    574   1.1   mycroft 	 */
    575  1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    576   1.1   mycroft 		if (doasyncfree)
    577   1.1   mycroft 			bdwrite(sbp);
    578   1.1   mycroft 		else
    579   1.1   mycroft 			bwrite(sbp);
    580   1.1   mycroft 	} else {
    581   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    582  1.28   mycroft 		if (!doasyncfree)
    583  1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    584   1.1   mycroft 	}
    585  1.25   thorpej 	if (ssize < len) {
    586   1.1   mycroft 		if (doasyncfree)
    587   1.1   mycroft 			bdwrite(ebp);
    588   1.1   mycroft 		else
    589   1.1   mycroft 			bwrite(ebp);
    590  1.25   thorpej 	}
    591   1.1   mycroft 	/*
    592   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    593   1.1   mycroft 	 */
    594   1.5   mycroft #ifdef DEBUG
    595   1.5   mycroft 	if (prtrealloc)
    596  1.13  christos 		printf("\n\tnew:");
    597   1.5   mycroft #endif
    598   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    599  1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    600  1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    601  1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    602  1.76   hannken 			    fs->fs_bsize, ip->i_number);
    603   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    604   1.5   mycroft #ifdef DEBUG
    605  1.18      fvdl 		if (!ffs_checkblk(ip,
    606  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    607  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    608   1.5   mycroft 		if (prtrealloc)
    609  1.13  christos 			printf(" %d,", blkno);
    610   1.5   mycroft #endif
    611   1.5   mycroft 	}
    612   1.5   mycroft #ifdef DEBUG
    613   1.5   mycroft 	if (prtrealloc) {
    614   1.5   mycroft 		prtrealloc--;
    615  1.13  christos 		printf("\n");
    616   1.1   mycroft 	}
    617   1.5   mycroft #endif
    618   1.1   mycroft 	return (0);
    619   1.1   mycroft 
    620   1.1   mycroft fail:
    621   1.1   mycroft 	if (ssize < len)
    622   1.1   mycroft 		brelse(ebp);
    623  1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    624   1.1   mycroft 		brelse(sbp);
    625   1.1   mycroft 	return (ENOSPC);
    626  1.55      matt #endif /* XXXUBC */
    627   1.1   mycroft }
    628  1.88      yamt #endif /* 0 */
    629   1.1   mycroft 
    630   1.1   mycroft /*
    631   1.1   mycroft  * Allocate an inode in the file system.
    632  1.81     perry  *
    633   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    634   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    635   1.1   mycroft  *   1) allocate the preferred inode.
    636   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    637   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    638   1.1   mycroft  *      available inode is located.
    639  1.47       wiz  * If no inode preference is given the following hierarchy is used
    640   1.1   mycroft  * to allocate an inode:
    641   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    642   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    643   1.1   mycroft  *      available inode is located.
    644   1.1   mycroft  */
    645   1.9  christos int
    646  1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    647  1.88      yamt     struct vnode **vpp)
    648   1.9  christos {
    649  1.33  augustss 	struct inode *pip;
    650  1.33  augustss 	struct fs *fs;
    651  1.33  augustss 	struct inode *ip;
    652  1.60      fvdl 	struct timespec ts;
    653   1.1   mycroft 	ino_t ino, ipref;
    654   1.1   mycroft 	int cg, error;
    655  1.81     perry 
    656  1.88      yamt 	*vpp = NULL;
    657   1.1   mycroft 	pip = VTOI(pvp);
    658   1.1   mycroft 	fs = pip->i_fs;
    659   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    660   1.1   mycroft 		goto noinodes;
    661   1.1   mycroft 
    662   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    663  1.50     lukem 		ipref = ffs_dirpref(pip);
    664  1.50     lukem 	else
    665  1.50     lukem 		ipref = pip->i_number;
    666   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    667   1.1   mycroft 		ipref = 0;
    668   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    669  1.50     lukem 	/*
    670  1.50     lukem 	 * Track number of dirs created one after another
    671  1.50     lukem 	 * in a same cg without intervening by files.
    672  1.50     lukem 	 */
    673  1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    674  1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    675  1.50     lukem 			fs->fs_contigdirs[cg]++;
    676  1.50     lukem 	} else {
    677  1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    678  1.50     lukem 			fs->fs_contigdirs[cg]--;
    679  1.50     lukem 	}
    680  1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    681   1.1   mycroft 	if (ino == 0)
    682   1.1   mycroft 		goto noinodes;
    683  1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    684   1.1   mycroft 	if (error) {
    685  1.88      yamt 		ffs_vfree(pvp, ino, mode);
    686   1.1   mycroft 		return (error);
    687   1.1   mycroft 	}
    688  1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    689  1.88      yamt 	ip = VTOI(*vpp);
    690  1.60      fvdl 	if (ip->i_mode) {
    691  1.60      fvdl #if 0
    692  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    693  1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    694  1.60      fvdl #else
    695  1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    696  1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    697  1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    698  1.60      fvdl 		printf("size %llx blocks %llx\n",
    699  1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    700  1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    701  1.86  christos 		    (unsigned long long)ipref);
    702  1.60      fvdl #if 0
    703  1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    704  1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    705  1.60      fvdl #endif
    706  1.60      fvdl 
    707  1.60      fvdl #endif
    708   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    709   1.1   mycroft 	}
    710  1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    711  1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    712  1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    713  1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    714   1.1   mycroft 	}
    715  1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    716  1.61      fvdl 	ip->i_flags = 0;
    717  1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    718   1.1   mycroft 	/*
    719   1.1   mycroft 	 * Set up a new generation number for this inode.
    720   1.1   mycroft 	 */
    721  1.60      fvdl 	ip->i_gen++;
    722  1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    723  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    724  1.93      yamt 		vfs_timestamp(&ts);
    725  1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    726  1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    727  1.60      fvdl 	}
    728   1.1   mycroft 	return (0);
    729   1.1   mycroft noinodes:
    730  1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    731   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    732   1.1   mycroft 	return (ENOSPC);
    733   1.1   mycroft }
    734   1.1   mycroft 
    735   1.1   mycroft /*
    736  1.50     lukem  * Find a cylinder group in which to place a directory.
    737  1.42  sommerfe  *
    738  1.50     lukem  * The policy implemented by this algorithm is to allocate a
    739  1.50     lukem  * directory inode in the same cylinder group as its parent
    740  1.50     lukem  * directory, but also to reserve space for its files inodes
    741  1.50     lukem  * and data. Restrict the number of directories which may be
    742  1.50     lukem  * allocated one after another in the same cylinder group
    743  1.50     lukem  * without intervening allocation of files.
    744  1.42  sommerfe  *
    745  1.50     lukem  * If we allocate a first level directory then force allocation
    746  1.50     lukem  * in another cylinder group.
    747   1.1   mycroft  */
    748   1.1   mycroft static ino_t
    749  1.85   thorpej ffs_dirpref(struct inode *pip)
    750   1.1   mycroft {
    751  1.50     lukem 	register struct fs *fs;
    752  1.74     soren 	int cg, prefcg;
    753  1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    754  1.89       dsl 	int avgifree, avgbfree, avgndir;
    755  1.50     lukem 	int minifree, minbfree, maxndir;
    756  1.50     lukem 	int mincg, minndir;
    757  1.50     lukem 	int maxcontigdirs;
    758  1.50     lukem 
    759  1.50     lukem 	fs = pip->i_fs;
    760   1.1   mycroft 
    761   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    762  1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    763  1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    764  1.50     lukem 
    765  1.50     lukem 	/*
    766  1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    767  1.50     lukem 	 */
    768  1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    769  1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    770  1.50     lukem 		mincg = prefcg;
    771  1.50     lukem 		minndir = fs->fs_ipg;
    772  1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    773  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    774  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    775  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    776  1.42  sommerfe 				mincg = cg;
    777  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    778  1.42  sommerfe 			}
    779  1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    780  1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    781  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    782  1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    783  1.50     lukem 				mincg = cg;
    784  1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    785  1.42  sommerfe 			}
    786  1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    787  1.42  sommerfe 	}
    788  1.50     lukem 
    789  1.50     lukem 	/*
    790  1.50     lukem 	 * Count various limits which used for
    791  1.50     lukem 	 * optimal allocation of a directory inode.
    792  1.50     lukem 	 */
    793  1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    794  1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    795  1.50     lukem 	if (minifree < 0)
    796  1.50     lukem 		minifree = 0;
    797  1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    798  1.50     lukem 	if (minbfree < 0)
    799  1.50     lukem 		minbfree = 0;
    800  1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    801  1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    802  1.89       dsl 	if (avgndir != 0) {
    803  1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    804  1.89       dsl 		if (dirsize < curdsz)
    805  1.89       dsl 			dirsize = curdsz;
    806  1.89       dsl 	}
    807  1.89       dsl 	if (cgsize < dirsize * 255)
    808  1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    809  1.89       dsl 	else
    810  1.89       dsl 		maxcontigdirs = 255;
    811  1.50     lukem 	if (fs->fs_avgfpdir > 0)
    812  1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    813  1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    814  1.50     lukem 	if (maxcontigdirs == 0)
    815  1.50     lukem 		maxcontigdirs = 1;
    816  1.50     lukem 
    817  1.50     lukem 	/*
    818  1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    819  1.50     lukem 	 * regular files, but only if we have no deficit in
    820  1.50     lukem 	 * inodes or space.
    821  1.50     lukem 	 */
    822  1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    823  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    824  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    825  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    826  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    827  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    828  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    829  1.50     lukem 		}
    830  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    831  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    832  1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    833  1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    834  1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    835  1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    836  1.50     lukem 		}
    837  1.50     lukem 	/*
    838  1.50     lukem 	 * This is a backstop when we are deficient in space.
    839  1.50     lukem 	 */
    840  1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    841  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    842  1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    843  1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    844  1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    845  1.50     lukem 			break;
    846  1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    847   1.1   mycroft }
    848   1.1   mycroft 
    849   1.1   mycroft /*
    850   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    851   1.1   mycroft  * logically divided into sections. The first section is composed of the
    852   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    853  1.81     perry  *
    854   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    855   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    856   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    857   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    858   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    859   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    860   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    861   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    862   1.1   mycroft  * continues until a cylinder group with greater than the average number
    863   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    864   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    865   1.1   mycroft  * here a best guess is made based upon the logical block number being
    866   1.1   mycroft  * allocated.
    867  1.81     perry  *
    868   1.1   mycroft  * If a section is already partially allocated, the policy is to
    869   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    870  1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    871  1.60      fvdl  * contigously if possible.
    872   1.1   mycroft  */
    873  1.58      fvdl daddr_t
    874  1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    875  1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    876   1.1   mycroft {
    877  1.33  augustss 	struct fs *fs;
    878  1.33  augustss 	int cg;
    879   1.1   mycroft 	int avgbfree, startcg;
    880   1.1   mycroft 
    881   1.1   mycroft 	fs = ip->i_fs;
    882   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    883  1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    884   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    885   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    886   1.1   mycroft 		}
    887   1.1   mycroft 		/*
    888   1.1   mycroft 		 * Find a cylinder with greater than average number of
    889   1.1   mycroft 		 * unused data blocks.
    890   1.1   mycroft 		 */
    891   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    892   1.1   mycroft 			startcg =
    893   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    894   1.1   mycroft 		else
    895  1.19    bouyer 			startcg = dtog(fs,
    896  1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    897   1.1   mycroft 		startcg %= fs->fs_ncg;
    898   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    899   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    900   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    901   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    902   1.1   mycroft 			}
    903  1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    904   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    905   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    906   1.1   mycroft 			}
    907  1.35   thorpej 		return (0);
    908   1.1   mycroft 	}
    909   1.1   mycroft 	/*
    910  1.60      fvdl 	 * We just always try to lay things out contiguously.
    911  1.60      fvdl 	 */
    912  1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    913  1.60      fvdl }
    914  1.60      fvdl 
    915  1.60      fvdl daddr_t
    916  1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    917  1.60      fvdl {
    918  1.60      fvdl 	struct fs *fs;
    919  1.60      fvdl 	int cg;
    920  1.60      fvdl 	int avgbfree, startcg;
    921  1.60      fvdl 
    922  1.60      fvdl 	fs = ip->i_fs;
    923  1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    924  1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    925  1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    926  1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    927  1.60      fvdl 		}
    928   1.1   mycroft 		/*
    929  1.60      fvdl 		 * Find a cylinder with greater than average number of
    930  1.60      fvdl 		 * unused data blocks.
    931   1.1   mycroft 		 */
    932  1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    933  1.60      fvdl 			startcg =
    934  1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    935  1.60      fvdl 		else
    936  1.60      fvdl 			startcg = dtog(fs,
    937  1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    938  1.60      fvdl 		startcg %= fs->fs_ncg;
    939  1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    940  1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    941  1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    942  1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    943  1.60      fvdl 			}
    944  1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    945  1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    946  1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    947  1.60      fvdl 			}
    948  1.60      fvdl 		return (0);
    949  1.60      fvdl 	}
    950  1.60      fvdl 	/*
    951  1.60      fvdl 	 * We just always try to lay things out contiguously.
    952  1.60      fvdl 	 */
    953  1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    954   1.1   mycroft }
    955   1.1   mycroft 
    956  1.60      fvdl 
    957   1.1   mycroft /*
    958   1.1   mycroft  * Implement the cylinder overflow algorithm.
    959   1.1   mycroft  *
    960   1.1   mycroft  * The policy implemented by this algorithm is:
    961   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    962   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    963   1.1   mycroft  *   3) brute force search for a free block.
    964   1.1   mycroft  */
    965   1.1   mycroft /*VARARGS5*/
    966  1.58      fvdl static daddr_t
    967  1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    968  1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    969  1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    970   1.1   mycroft {
    971  1.33  augustss 	struct fs *fs;
    972  1.58      fvdl 	daddr_t result;
    973   1.1   mycroft 	int i, icg = cg;
    974   1.1   mycroft 
    975   1.1   mycroft 	fs = ip->i_fs;
    976   1.1   mycroft 	/*
    977   1.1   mycroft 	 * 1: preferred cylinder group
    978   1.1   mycroft 	 */
    979   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    980   1.1   mycroft 	if (result)
    981   1.1   mycroft 		return (result);
    982   1.1   mycroft 	/*
    983   1.1   mycroft 	 * 2: quadratic rehash
    984   1.1   mycroft 	 */
    985   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    986   1.1   mycroft 		cg += i;
    987   1.1   mycroft 		if (cg >= fs->fs_ncg)
    988   1.1   mycroft 			cg -= fs->fs_ncg;
    989   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    990   1.1   mycroft 		if (result)
    991   1.1   mycroft 			return (result);
    992   1.1   mycroft 	}
    993   1.1   mycroft 	/*
    994   1.1   mycroft 	 * 3: brute force search
    995   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    996   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    997   1.1   mycroft 	 */
    998   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    999   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1000   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1001   1.1   mycroft 		if (result)
   1002   1.1   mycroft 			return (result);
   1003   1.1   mycroft 		cg++;
   1004   1.1   mycroft 		if (cg == fs->fs_ncg)
   1005   1.1   mycroft 			cg = 0;
   1006   1.1   mycroft 	}
   1007  1.35   thorpej 	return (0);
   1008   1.1   mycroft }
   1009   1.1   mycroft 
   1010   1.1   mycroft /*
   1011   1.1   mycroft  * Determine whether a fragment can be extended.
   1012   1.1   mycroft  *
   1013  1.81     perry  * Check to see if the necessary fragments are available, and
   1014   1.1   mycroft  * if they are, allocate them.
   1015   1.1   mycroft  */
   1016  1.58      fvdl static daddr_t
   1017  1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1018   1.1   mycroft {
   1019  1.33  augustss 	struct fs *fs;
   1020  1.33  augustss 	struct cg *cgp;
   1021   1.1   mycroft 	struct buf *bp;
   1022  1.58      fvdl 	daddr_t bno;
   1023   1.1   mycroft 	int frags, bbase;
   1024   1.1   mycroft 	int i, error;
   1025  1.62      fvdl 	u_int8_t *blksfree;
   1026   1.1   mycroft 
   1027   1.1   mycroft 	fs = ip->i_fs;
   1028   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1029  1.35   thorpej 		return (0);
   1030   1.1   mycroft 	frags = numfrags(fs, nsize);
   1031   1.1   mycroft 	bbase = fragnum(fs, bprev);
   1032   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1033   1.1   mycroft 		/* cannot extend across a block boundary */
   1034  1.35   thorpej 		return (0);
   1035   1.1   mycroft 	}
   1036   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1037   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1038   1.1   mycroft 	if (error) {
   1039   1.1   mycroft 		brelse(bp);
   1040  1.35   thorpej 		return (0);
   1041   1.1   mycroft 	}
   1042   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1043  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1044   1.1   mycroft 		brelse(bp);
   1045  1.35   thorpej 		return (0);
   1046   1.1   mycroft 	}
   1047  1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1048  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1049  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1050  1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1051   1.1   mycroft 	bno = dtogd(fs, bprev);
   1052  1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1053   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1054  1.62      fvdl 		if (isclr(blksfree, bno + i)) {
   1055   1.1   mycroft 			brelse(bp);
   1056  1.35   thorpej 			return (0);
   1057   1.1   mycroft 		}
   1058   1.1   mycroft 	/*
   1059   1.1   mycroft 	 * the current fragment can be extended
   1060   1.1   mycroft 	 * deduct the count on fragment being extended into
   1061   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1062   1.1   mycroft 	 * allocate the extended piece
   1063   1.1   mycroft 	 */
   1064   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1065  1.62      fvdl 		if (isclr(blksfree, bno + i))
   1066   1.1   mycroft 			break;
   1067  1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1068   1.1   mycroft 	if (i != frags)
   1069  1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1070   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1071  1.62      fvdl 		clrbit(blksfree, bno + i);
   1072  1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1073   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1074   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1075   1.1   mycroft 	}
   1076   1.1   mycroft 	fs->fs_fmod = 1;
   1077  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1078  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1079  1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1080   1.1   mycroft 	bdwrite(bp);
   1081   1.1   mycroft 	return (bprev);
   1082   1.1   mycroft }
   1083   1.1   mycroft 
   1084   1.1   mycroft /*
   1085   1.1   mycroft  * Determine whether a block can be allocated.
   1086   1.1   mycroft  *
   1087   1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1088   1.1   mycroft  * and if it is, allocate it.
   1089   1.1   mycroft  */
   1090  1.58      fvdl static daddr_t
   1091  1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1092   1.1   mycroft {
   1093  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1094  1.30      fvdl 	struct cg *cgp;
   1095   1.1   mycroft 	struct buf *bp;
   1096  1.60      fvdl 	int32_t bno;
   1097  1.60      fvdl 	daddr_t blkno;
   1098  1.30      fvdl 	int error, frags, allocsiz, i;
   1099  1.62      fvdl 	u_int8_t *blksfree;
   1100  1.30      fvdl #ifdef FFS_EI
   1101  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1102  1.30      fvdl #endif
   1103   1.1   mycroft 
   1104   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1105  1.35   thorpej 		return (0);
   1106   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1107   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1108   1.1   mycroft 	if (error) {
   1109   1.1   mycroft 		brelse(bp);
   1110  1.35   thorpej 		return (0);
   1111   1.1   mycroft 	}
   1112   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1113  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1114   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
   1115   1.1   mycroft 		brelse(bp);
   1116  1.35   thorpej 		return (0);
   1117   1.1   mycroft 	}
   1118  1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1119  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1120  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1121  1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1122   1.1   mycroft 	if (size == fs->fs_bsize) {
   1123  1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1124  1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1125   1.1   mycroft 		bdwrite(bp);
   1126  1.60      fvdl 		return (blkno);
   1127   1.1   mycroft 	}
   1128   1.1   mycroft 	/*
   1129   1.1   mycroft 	 * check to see if any fragments are already available
   1130   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1131   1.1   mycroft 	 * it down to a smaller size if necessary
   1132   1.1   mycroft 	 */
   1133  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1134   1.1   mycroft 	frags = numfrags(fs, size);
   1135   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1136   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1137   1.1   mycroft 			break;
   1138   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1139   1.1   mycroft 		/*
   1140  1.81     perry 		 * no fragments were available, so a block will be
   1141   1.1   mycroft 		 * allocated, and hacked up
   1142   1.1   mycroft 		 */
   1143   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
   1144   1.1   mycroft 			brelse(bp);
   1145  1.35   thorpej 			return (0);
   1146   1.1   mycroft 		}
   1147  1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1148  1.60      fvdl 		bno = dtogd(fs, blkno);
   1149   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1150  1.62      fvdl 			setbit(blksfree, bno + i);
   1151   1.1   mycroft 		i = fs->fs_frag - frags;
   1152  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1153   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1154  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1155   1.1   mycroft 		fs->fs_fmod = 1;
   1156  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1157  1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1158   1.1   mycroft 		bdwrite(bp);
   1159  1.60      fvdl 		return (blkno);
   1160   1.1   mycroft 	}
   1161  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1162  1.30      fvdl #if 0
   1163  1.30      fvdl 	/*
   1164  1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1165  1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1166  1.30      fvdl 	 */
   1167   1.1   mycroft 	if (bno < 0) {
   1168   1.1   mycroft 		brelse(bp);
   1169  1.35   thorpej 		return (0);
   1170   1.1   mycroft 	}
   1171  1.30      fvdl #endif
   1172   1.1   mycroft 	for (i = 0; i < frags; i++)
   1173  1.62      fvdl 		clrbit(blksfree, bno + i);
   1174  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1175   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1176   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1177   1.1   mycroft 	fs->fs_fmod = 1;
   1178  1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1179   1.1   mycroft 	if (frags != allocsiz)
   1180  1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1181  1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1182  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1183  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1184  1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1185   1.1   mycroft 	bdwrite(bp);
   1186  1.30      fvdl 	return blkno;
   1187   1.1   mycroft }
   1188   1.1   mycroft 
   1189   1.1   mycroft /*
   1190   1.1   mycroft  * Allocate a block in a cylinder group.
   1191   1.1   mycroft  *
   1192   1.1   mycroft  * This algorithm implements the following policy:
   1193   1.1   mycroft  *   1) allocate the requested block.
   1194   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1195   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1196   1.1   mycroft  *      specified cylinder group.
   1197   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1198   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1199   1.1   mycroft  */
   1200  1.58      fvdl static daddr_t
   1201  1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1202   1.1   mycroft {
   1203  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1204  1.30      fvdl 	struct cg *cgp;
   1205  1.60      fvdl 	daddr_t blkno;
   1206  1.60      fvdl 	int32_t bno;
   1207  1.60      fvdl 	u_int8_t *blksfree;
   1208  1.30      fvdl #ifdef FFS_EI
   1209  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1210  1.30      fvdl #endif
   1211   1.1   mycroft 
   1212  1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1213  1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1214  1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1215  1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1216  1.60      fvdl 	} else {
   1217  1.60      fvdl 		bpref = blknum(fs, bpref);
   1218  1.60      fvdl 		bno = dtogd(fs, bpref);
   1219   1.1   mycroft 		/*
   1220  1.60      fvdl 		 * if the requested block is available, use it
   1221   1.1   mycroft 		 */
   1222  1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1223  1.60      fvdl 			goto gotit;
   1224   1.1   mycroft 	}
   1225   1.1   mycroft 	/*
   1226  1.60      fvdl 	 * Take the next available block in this cylinder group.
   1227   1.1   mycroft 	 */
   1228  1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1229   1.1   mycroft 	if (bno < 0)
   1230  1.35   thorpej 		return (0);
   1231  1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1232   1.1   mycroft gotit:
   1233   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1234  1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1235  1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1236  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1237   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1238  1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1239  1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1240  1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1241  1.73       dbj 		int cylno;
   1242  1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1243  1.75       dbj 		KASSERT(cylno >= 0);
   1244  1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1245  1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1246  1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1247  1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1248  1.73       dbj 		    needswap);
   1249  1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1250  1.73       dbj 	}
   1251   1.1   mycroft 	fs->fs_fmod = 1;
   1252  1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1253  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1254  1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1255  1.30      fvdl 	return (blkno);
   1256   1.1   mycroft }
   1257   1.1   mycroft 
   1258  1.55      matt #ifdef XXXUBC
   1259   1.1   mycroft /*
   1260   1.1   mycroft  * Determine whether a cluster can be allocated.
   1261   1.1   mycroft  *
   1262   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1263   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1264   1.1   mycroft  * take the first one that we find following bpref.
   1265   1.1   mycroft  */
   1266  1.60      fvdl 
   1267  1.60      fvdl /*
   1268  1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1269  1.60      fvdl  */
   1270  1.58      fvdl static daddr_t
   1271  1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1272   1.1   mycroft {
   1273  1.33  augustss 	struct fs *fs;
   1274  1.33  augustss 	struct cg *cgp;
   1275   1.1   mycroft 	struct buf *bp;
   1276  1.18      fvdl 	int i, got, run, bno, bit, map;
   1277   1.1   mycroft 	u_char *mapp;
   1278   1.5   mycroft 	int32_t *lp;
   1279   1.1   mycroft 
   1280   1.1   mycroft 	fs = ip->i_fs;
   1281   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1282  1.35   thorpej 		return (0);
   1283   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1284   1.1   mycroft 	    NOCRED, &bp))
   1285   1.1   mycroft 		goto fail;
   1286   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1287  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1288   1.1   mycroft 		goto fail;
   1289   1.1   mycroft 	/*
   1290   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1291   1.1   mycroft 	 * available in this cylinder group.
   1292   1.1   mycroft 	 */
   1293  1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1294   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1295  1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1296   1.1   mycroft 			break;
   1297   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1298   1.5   mycroft 		/*
   1299   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1300   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1301   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1302   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1303   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1304   1.5   mycroft 		 */
   1305  1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1306   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1307  1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1308   1.5   mycroft 				break;
   1309   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1310   1.1   mycroft 		goto fail;
   1311   1.5   mycroft 	}
   1312   1.1   mycroft 	/*
   1313   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1314   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1315   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1316   1.1   mycroft 	 * block allocation. We do not search before the current
   1317   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1318   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1319   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1320   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1321   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1322   1.1   mycroft 	 */
   1323   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1324   1.1   mycroft 		bpref = 0;
   1325   1.1   mycroft 	else
   1326   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1327  1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1328   1.1   mycroft 	map = *mapp++;
   1329   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1330  1.19    bouyer 	for (run = 0, got = bpref;
   1331  1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1332   1.1   mycroft 		if ((map & bit) == 0) {
   1333   1.1   mycroft 			run = 0;
   1334   1.1   mycroft 		} else {
   1335   1.1   mycroft 			run++;
   1336   1.1   mycroft 			if (run == len)
   1337   1.1   mycroft 				break;
   1338   1.1   mycroft 		}
   1339  1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1340   1.1   mycroft 			bit <<= 1;
   1341   1.1   mycroft 		} else {
   1342   1.1   mycroft 			map = *mapp++;
   1343   1.1   mycroft 			bit = 1;
   1344   1.1   mycroft 		}
   1345   1.1   mycroft 	}
   1346  1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1347   1.1   mycroft 		goto fail;
   1348   1.1   mycroft 	/*
   1349   1.1   mycroft 	 * Allocate the cluster that we have found.
   1350   1.1   mycroft 	 */
   1351  1.30      fvdl #ifdef DIAGNOSTIC
   1352  1.18      fvdl 	for (i = 1; i <= len; i++)
   1353  1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1354  1.30      fvdl 		    got - run + i))
   1355  1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1356  1.30      fvdl #endif
   1357  1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1358  1.18      fvdl 	if (dtog(fs, bno) != cg)
   1359  1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1360   1.1   mycroft 	len = blkstofrags(fs, len);
   1361   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1362  1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1363   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1364  1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1365   1.8       cgd 	bdwrite(bp);
   1366   1.1   mycroft 	return (bno);
   1367   1.1   mycroft 
   1368   1.1   mycroft fail:
   1369   1.1   mycroft 	brelse(bp);
   1370   1.1   mycroft 	return (0);
   1371   1.1   mycroft }
   1372  1.55      matt #endif /* XXXUBC */
   1373   1.1   mycroft 
   1374   1.1   mycroft /*
   1375   1.1   mycroft  * Determine whether an inode can be allocated.
   1376   1.1   mycroft  *
   1377   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1378   1.1   mycroft  * allocate it using the following policy:
   1379   1.1   mycroft  *   1) allocate the requested inode.
   1380   1.1   mycroft  *   2) allocate the next available inode after the requested
   1381   1.1   mycroft  *      inode in the specified cylinder group.
   1382   1.1   mycroft  */
   1383  1.58      fvdl static daddr_t
   1384  1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1385   1.1   mycroft {
   1386  1.62      fvdl 	struct fs *fs = ip->i_fs;
   1387  1.33  augustss 	struct cg *cgp;
   1388  1.60      fvdl 	struct buf *bp, *ibp;
   1389  1.60      fvdl 	u_int8_t *inosused;
   1390   1.1   mycroft 	int error, start, len, loc, map, i;
   1391  1.60      fvdl 	int32_t initediblk;
   1392  1.60      fvdl 	struct ufs2_dinode *dp2;
   1393  1.19    bouyer #ifdef FFS_EI
   1394  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1395  1.19    bouyer #endif
   1396   1.1   mycroft 
   1397   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1398  1.35   thorpej 		return (0);
   1399   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1400   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1401   1.1   mycroft 	if (error) {
   1402   1.1   mycroft 		brelse(bp);
   1403  1.35   thorpej 		return (0);
   1404   1.1   mycroft 	}
   1405   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1406  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1407   1.1   mycroft 		brelse(bp);
   1408  1.35   thorpej 		return (0);
   1409   1.1   mycroft 	}
   1410  1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1411  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1412  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1413  1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1414  1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1415   1.1   mycroft 	if (ipref) {
   1416   1.1   mycroft 		ipref %= fs->fs_ipg;
   1417  1.60      fvdl 		if (isclr(inosused, ipref))
   1418   1.1   mycroft 			goto gotit;
   1419   1.1   mycroft 	}
   1420  1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1421  1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1422  1.19    bouyer 		NBBY);
   1423  1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1424   1.1   mycroft 	if (loc == 0) {
   1425   1.1   mycroft 		len = start + 1;
   1426   1.1   mycroft 		start = 0;
   1427  1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1428   1.1   mycroft 		if (loc == 0) {
   1429  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1430  1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1431  1.19    bouyer 				fs->fs_fsmnt);
   1432   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1433   1.1   mycroft 			/* NOTREACHED */
   1434   1.1   mycroft 		}
   1435   1.1   mycroft 	}
   1436   1.1   mycroft 	i = start + len - loc;
   1437  1.60      fvdl 	map = inosused[i];
   1438   1.1   mycroft 	ipref = i * NBBY;
   1439   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1440   1.1   mycroft 		if ((map & i) == 0) {
   1441  1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1442   1.1   mycroft 			goto gotit;
   1443   1.1   mycroft 		}
   1444   1.1   mycroft 	}
   1445  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1446   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1447   1.1   mycroft 	/* NOTREACHED */
   1448   1.1   mycroft gotit:
   1449  1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1450  1.30      fvdl 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1451  1.60      fvdl 	setbit(inosused, ipref);
   1452  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1453   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1454  1.30      fvdl 	fs->fs_cs(fs, cg).cs_nifree--;
   1455   1.1   mycroft 	fs->fs_fmod = 1;
   1456   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1457  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1458   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1459   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1460   1.1   mycroft 	}
   1461  1.60      fvdl 	/*
   1462  1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1463  1.60      fvdl 	 */
   1464  1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1465  1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1466  1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1467  1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1468  1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1469  1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1470  1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1471  1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1472  1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1473  1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1474  1.60      fvdl 			/*
   1475  1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1476  1.60      fvdl 			 * random, after all.
   1477  1.60      fvdl 			 */
   1478  1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1479  1.60      fvdl 			dp2++;
   1480  1.60      fvdl 		}
   1481  1.60      fvdl 		bawrite(ibp);
   1482  1.60      fvdl 		initediblk += INOPB(fs);
   1483  1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1484  1.60      fvdl 	}
   1485  1.60      fvdl 
   1486  1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1487   1.1   mycroft 	bdwrite(bp);
   1488   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1489   1.1   mycroft }
   1490   1.1   mycroft 
   1491   1.1   mycroft /*
   1492   1.1   mycroft  * Free a block or fragment.
   1493   1.1   mycroft  *
   1494   1.1   mycroft  * The specified block or fragment is placed back in the
   1495  1.81     perry  * free map. If a fragment is deallocated, a possible
   1496   1.1   mycroft  * block reassembly is checked.
   1497   1.1   mycroft  */
   1498   1.9  christos void
   1499  1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1500  1.85   thorpej     ino_t inum)
   1501   1.1   mycroft {
   1502  1.33  augustss 	struct cg *cgp;
   1503   1.1   mycroft 	struct buf *bp;
   1504  1.76   hannken 	struct ufsmount *ump;
   1505  1.60      fvdl 	int32_t fragno, cgbno;
   1506  1.76   hannken 	daddr_t cgblkno;
   1507   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1508  1.62      fvdl 	u_int8_t *blksfree;
   1509  1.76   hannken 	dev_t dev;
   1510  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1511   1.1   mycroft 
   1512  1.76   hannken 	cg = dtog(fs, bno);
   1513  1.77   hannken 	if (devvp->v_type != VBLK) {
   1514  1.77   hannken 		/* devvp is a snapshot */
   1515  1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1516  1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1517  1.76   hannken 	} else {
   1518  1.76   hannken 		dev = devvp->v_rdev;
   1519  1.76   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1520  1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1521  1.76   hannken 		if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
   1522  1.76   hannken 		    ffs_snapblkfree(fs, devvp, bno, size, inum))
   1523  1.76   hannken 			return;
   1524  1.76   hannken 	}
   1525  1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1526  1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1527  1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1528  1.58      fvdl 		       "size = %ld, fs = %s\n",
   1529  1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1530   1.1   mycroft 		panic("blkfree: bad size");
   1531   1.1   mycroft 	}
   1532  1.76   hannken 
   1533  1.60      fvdl 	if (bno >= fs->fs_size) {
   1534  1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1535  1.86  christos 		    (unsigned long long)inum);
   1536  1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1537   1.1   mycroft 		return;
   1538   1.1   mycroft 	}
   1539  1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1540   1.1   mycroft 	if (error) {
   1541   1.1   mycroft 		brelse(bp);
   1542   1.1   mycroft 		return;
   1543   1.1   mycroft 	}
   1544   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1545  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1546   1.1   mycroft 		brelse(bp);
   1547   1.1   mycroft 		return;
   1548   1.1   mycroft 	}
   1549  1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1550  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1551  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1552  1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1553  1.60      fvdl 	cgbno = dtogd(fs, bno);
   1554  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1555   1.1   mycroft 	if (size == fs->fs_bsize) {
   1556  1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1557  1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1558  1.77   hannken 			if (devvp->v_type != VBLK) {
   1559  1.77   hannken 				/* devvp is a snapshot */
   1560  1.76   hannken 				brelse(bp);
   1561  1.76   hannken 				return;
   1562  1.76   hannken 			}
   1563  1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1564  1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1565   1.1   mycroft 			panic("blkfree: freeing free block");
   1566   1.1   mycroft 		}
   1567  1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1568  1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1569  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1570   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1571   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1572  1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1573  1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1574  1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1575  1.75       dbj 			KASSERT(i >= 0);
   1576  1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1577  1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1578  1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1579  1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1580  1.73       dbj 			    needswap);
   1581  1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1582  1.73       dbj 		}
   1583   1.1   mycroft 	} else {
   1584  1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1585   1.1   mycroft 		/*
   1586   1.1   mycroft 		 * decrement the counts associated with the old frags
   1587   1.1   mycroft 		 */
   1588  1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1589  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1590   1.1   mycroft 		/*
   1591   1.1   mycroft 		 * deallocate the fragment
   1592   1.1   mycroft 		 */
   1593   1.1   mycroft 		frags = numfrags(fs, size);
   1594   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1595  1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1596  1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1597  1.59   tsutsui 				       ", fs = %s\n",
   1598  1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1599   1.1   mycroft 				panic("blkfree: freeing free frag");
   1600   1.1   mycroft 			}
   1601  1.62      fvdl 			setbit(blksfree, cgbno + i);
   1602   1.1   mycroft 		}
   1603  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1604   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1605  1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1606   1.1   mycroft 		/*
   1607   1.1   mycroft 		 * add back in counts associated with the new frags
   1608   1.1   mycroft 		 */
   1609  1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1610  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1611   1.1   mycroft 		/*
   1612   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1613   1.1   mycroft 		 */
   1614  1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1615  1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1616  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1617   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1618   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1619  1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1620  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1621   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1622   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1623  1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1624  1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1625  1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1626  1.75       dbj 				KASSERT(i >= 0);
   1627  1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1628  1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1629  1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1630  1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1631  1.73       dbj 				    bbase)], 1, needswap);
   1632  1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1633  1.73       dbj 			}
   1634   1.1   mycroft 		}
   1635   1.1   mycroft 	}
   1636   1.1   mycroft 	fs->fs_fmod = 1;
   1637  1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1638   1.1   mycroft 	bdwrite(bp);
   1639   1.1   mycroft }
   1640   1.1   mycroft 
   1641  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1642  1.55      matt #ifdef XXXUBC
   1643  1.18      fvdl /*
   1644  1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1645  1.18      fvdl  * fragment is allocated, false if it is free.
   1646  1.18      fvdl  */
   1647  1.18      fvdl static int
   1648  1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1649  1.18      fvdl {
   1650  1.18      fvdl 	struct fs *fs;
   1651  1.18      fvdl 	struct cg *cgp;
   1652  1.18      fvdl 	struct buf *bp;
   1653  1.18      fvdl 	int i, error, frags, free;
   1654  1.18      fvdl 
   1655  1.18      fvdl 	fs = ip->i_fs;
   1656  1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1657  1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1658  1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1659  1.18      fvdl 		panic("checkblk: bad size");
   1660  1.18      fvdl 	}
   1661  1.60      fvdl 	if (bno >= fs->fs_size)
   1662  1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1663  1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1664  1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1665  1.18      fvdl 	if (error) {
   1666  1.18      fvdl 		brelse(bp);
   1667  1.18      fvdl 		return 0;
   1668  1.18      fvdl 	}
   1669  1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1670  1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1671  1.18      fvdl 		brelse(bp);
   1672  1.18      fvdl 		return 0;
   1673  1.18      fvdl 	}
   1674  1.18      fvdl 	bno = dtogd(fs, bno);
   1675  1.18      fvdl 	if (size == fs->fs_bsize) {
   1676  1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1677  1.19    bouyer 			fragstoblks(fs, bno));
   1678  1.18      fvdl 	} else {
   1679  1.18      fvdl 		frags = numfrags(fs, size);
   1680  1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1681  1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1682  1.18      fvdl 				free++;
   1683  1.18      fvdl 		if (free != 0 && free != frags)
   1684  1.18      fvdl 			panic("checkblk: partially free fragment");
   1685  1.18      fvdl 	}
   1686  1.18      fvdl 	brelse(bp);
   1687  1.18      fvdl 	return (!free);
   1688  1.18      fvdl }
   1689  1.55      matt #endif /* XXXUBC */
   1690  1.18      fvdl #endif /* DIAGNOSTIC */
   1691  1.18      fvdl 
   1692   1.1   mycroft /*
   1693   1.1   mycroft  * Free an inode.
   1694  1.30      fvdl  */
   1695  1.30      fvdl int
   1696  1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1697  1.30      fvdl {
   1698  1.30      fvdl 
   1699  1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1700  1.88      yamt 		softdep_freefile(vp, ino, mode);
   1701  1.30      fvdl 		return (0);
   1702  1.30      fvdl 	}
   1703  1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1704  1.30      fvdl }
   1705  1.30      fvdl 
   1706  1.30      fvdl /*
   1707  1.30      fvdl  * Do the actual free operation.
   1708   1.1   mycroft  * The specified inode is placed back in the free map.
   1709   1.1   mycroft  */
   1710   1.1   mycroft int
   1711  1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1712   1.9  christos {
   1713  1.33  augustss 	struct cg *cgp;
   1714   1.1   mycroft 	struct buf *bp;
   1715   1.1   mycroft 	int error, cg;
   1716  1.76   hannken 	daddr_t cgbno;
   1717  1.62      fvdl 	u_int8_t *inosused;
   1718  1.78   hannken 	dev_t dev;
   1719  1.19    bouyer #ifdef FFS_EI
   1720  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1721  1.19    bouyer #endif
   1722   1.1   mycroft 
   1723  1.76   hannken 	cg = ino_to_cg(fs, ino);
   1724  1.78   hannken 	if (devvp->v_type != VBLK) {
   1725  1.78   hannken 		/* devvp is a snapshot */
   1726  1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1727  1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1728  1.76   hannken 	} else {
   1729  1.78   hannken 		dev = devvp->v_rdev;
   1730  1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1731  1.76   hannken 	}
   1732   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1733  1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1734  1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1735  1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1736   1.1   mycroft 	if (error) {
   1737   1.1   mycroft 		brelse(bp);
   1738  1.30      fvdl 		return (error);
   1739   1.1   mycroft 	}
   1740   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1741  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1742   1.1   mycroft 		brelse(bp);
   1743   1.1   mycroft 		return (0);
   1744   1.1   mycroft 	}
   1745  1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1746  1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1747  1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1748  1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1749  1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1750   1.1   mycroft 	ino %= fs->fs_ipg;
   1751  1.62      fvdl 	if (isclr(inosused, ino)) {
   1752  1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1753  1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1754  1.86  christos 		    fs->fs_fsmnt);
   1755   1.1   mycroft 		if (fs->fs_ronly == 0)
   1756   1.1   mycroft 			panic("ifree: freeing free inode");
   1757   1.1   mycroft 	}
   1758  1.62      fvdl 	clrbit(inosused, ino);
   1759  1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1760  1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1761  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1762   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1763   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1764  1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1765  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1766   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1767   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1768   1.1   mycroft 	}
   1769   1.1   mycroft 	fs->fs_fmod = 1;
   1770  1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1771   1.1   mycroft 	bdwrite(bp);
   1772   1.1   mycroft 	return (0);
   1773   1.1   mycroft }
   1774   1.1   mycroft 
   1775   1.1   mycroft /*
   1776  1.76   hannken  * Check to see if a file is free.
   1777  1.76   hannken  */
   1778  1.76   hannken int
   1779  1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1780  1.76   hannken {
   1781  1.76   hannken 	struct cg *cgp;
   1782  1.76   hannken 	struct buf *bp;
   1783  1.76   hannken 	daddr_t cgbno;
   1784  1.76   hannken 	int ret, cg;
   1785  1.76   hannken 	u_int8_t *inosused;
   1786  1.76   hannken 
   1787  1.76   hannken 	cg = ino_to_cg(fs, ino);
   1788  1.77   hannken 	if (devvp->v_type != VBLK) {
   1789  1.77   hannken 		/* devvp is a snapshot */
   1790  1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1791  1.77   hannken 	} else
   1792  1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1793  1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1794  1.76   hannken 		return 1;
   1795  1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1796  1.76   hannken 		brelse(bp);
   1797  1.76   hannken 		return 1;
   1798  1.76   hannken 	}
   1799  1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1800  1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1801  1.76   hannken 		brelse(bp);
   1802  1.76   hannken 		return 1;
   1803  1.76   hannken 	}
   1804  1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1805  1.76   hannken 	ino %= fs->fs_ipg;
   1806  1.76   hannken 	ret = isclr(inosused, ino);
   1807  1.76   hannken 	brelse(bp);
   1808  1.76   hannken 	return ret;
   1809  1.76   hannken }
   1810  1.76   hannken 
   1811  1.76   hannken /*
   1812   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1813   1.1   mycroft  *
   1814   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1815   1.1   mycroft  * available.
   1816   1.1   mycroft  */
   1817  1.60      fvdl static int32_t
   1818  1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1819   1.1   mycroft {
   1820  1.60      fvdl 	int32_t bno;
   1821   1.1   mycroft 	int start, len, loc, i;
   1822   1.1   mycroft 	int blk, field, subfield, pos;
   1823  1.19    bouyer 	int ostart, olen;
   1824  1.62      fvdl 	u_int8_t *blksfree;
   1825  1.30      fvdl #ifdef FFS_EI
   1826  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1827  1.30      fvdl #endif
   1828   1.1   mycroft 
   1829   1.1   mycroft 	/*
   1830   1.1   mycroft 	 * find the fragment by searching through the free block
   1831   1.1   mycroft 	 * map for an appropriate bit pattern
   1832   1.1   mycroft 	 */
   1833   1.1   mycroft 	if (bpref)
   1834   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1835   1.1   mycroft 	else
   1836  1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1837  1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1838   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1839  1.19    bouyer 	ostart = start;
   1840  1.19    bouyer 	olen = len;
   1841  1.45     lukem 	loc = scanc((u_int)len,
   1842  1.62      fvdl 		(const u_char *)&blksfree[start],
   1843  1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1844  1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1845   1.1   mycroft 	if (loc == 0) {
   1846   1.1   mycroft 		len = start + 1;
   1847   1.1   mycroft 		start = 0;
   1848  1.45     lukem 		loc = scanc((u_int)len,
   1849  1.62      fvdl 			(const u_char *)&blksfree[0],
   1850  1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1851  1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1852   1.1   mycroft 		if (loc == 0) {
   1853  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1854  1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1855  1.20      ross 			printf("offset=%d %ld\n",
   1856  1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1857  1.62      fvdl 				(long)blksfree - (long)cgp);
   1858  1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1859   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1860   1.1   mycroft 			/* NOTREACHED */
   1861   1.1   mycroft 		}
   1862   1.1   mycroft 	}
   1863   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1864  1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1865   1.1   mycroft 	/*
   1866   1.1   mycroft 	 * found the byte in the map
   1867   1.1   mycroft 	 * sift through the bits to find the selected frag
   1868   1.1   mycroft 	 */
   1869   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1870  1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1871   1.1   mycroft 		blk <<= 1;
   1872   1.1   mycroft 		field = around[allocsiz];
   1873   1.1   mycroft 		subfield = inside[allocsiz];
   1874   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1875   1.1   mycroft 			if ((blk & field) == subfield)
   1876   1.1   mycroft 				return (bno + pos);
   1877   1.1   mycroft 			field <<= 1;
   1878   1.1   mycroft 			subfield <<= 1;
   1879   1.1   mycroft 		}
   1880   1.1   mycroft 	}
   1881  1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1882   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1883  1.58      fvdl 	/* return (-1); */
   1884   1.1   mycroft }
   1885   1.1   mycroft 
   1886   1.1   mycroft /*
   1887   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1888   1.1   mycroft  *
   1889   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1890   1.1   mycroft  */
   1891   1.9  christos void
   1892  1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1893   1.1   mycroft {
   1894   1.4       cgd 	int32_t *sump;
   1895   1.5   mycroft 	int32_t *lp;
   1896   1.1   mycroft 	u_char *freemapp, *mapp;
   1897   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1898  1.30      fvdl #ifdef FFS_EI
   1899  1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1900  1.30      fvdl #endif
   1901   1.1   mycroft 
   1902   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1903   1.1   mycroft 		return;
   1904  1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1905  1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1906   1.1   mycroft 	/*
   1907   1.1   mycroft 	 * Allocate or clear the actual block.
   1908   1.1   mycroft 	 */
   1909   1.1   mycroft 	if (cnt > 0)
   1910   1.1   mycroft 		setbit(freemapp, blkno);
   1911   1.1   mycroft 	else
   1912   1.1   mycroft 		clrbit(freemapp, blkno);
   1913   1.1   mycroft 	/*
   1914   1.1   mycroft 	 * Find the size of the cluster going forward.
   1915   1.1   mycroft 	 */
   1916   1.1   mycroft 	start = blkno + 1;
   1917   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1918  1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1919  1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1920   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1921   1.1   mycroft 	map = *mapp++;
   1922   1.1   mycroft 	bit = 1 << (start % NBBY);
   1923   1.1   mycroft 	for (i = start; i < end; i++) {
   1924   1.1   mycroft 		if ((map & bit) == 0)
   1925   1.1   mycroft 			break;
   1926   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1927   1.1   mycroft 			bit <<= 1;
   1928   1.1   mycroft 		} else {
   1929   1.1   mycroft 			map = *mapp++;
   1930   1.1   mycroft 			bit = 1;
   1931   1.1   mycroft 		}
   1932   1.1   mycroft 	}
   1933   1.1   mycroft 	forw = i - start;
   1934   1.1   mycroft 	/*
   1935   1.1   mycroft 	 * Find the size of the cluster going backward.
   1936   1.1   mycroft 	 */
   1937   1.1   mycroft 	start = blkno - 1;
   1938   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1939   1.1   mycroft 	if (end < 0)
   1940   1.1   mycroft 		end = -1;
   1941   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1942   1.1   mycroft 	map = *mapp--;
   1943   1.1   mycroft 	bit = 1 << (start % NBBY);
   1944   1.1   mycroft 	for (i = start; i > end; i--) {
   1945   1.1   mycroft 		if ((map & bit) == 0)
   1946   1.1   mycroft 			break;
   1947   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1948   1.1   mycroft 			bit >>= 1;
   1949   1.1   mycroft 		} else {
   1950   1.1   mycroft 			map = *mapp--;
   1951   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1952   1.1   mycroft 		}
   1953   1.1   mycroft 	}
   1954   1.1   mycroft 	back = start - i;
   1955   1.1   mycroft 	/*
   1956   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1957   1.1   mycroft 	 * back clusters.
   1958   1.1   mycroft 	 */
   1959   1.1   mycroft 	i = back + forw + 1;
   1960   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1961   1.1   mycroft 		i = fs->fs_contigsumsize;
   1962  1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1963   1.1   mycroft 	if (back > 0)
   1964  1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1965   1.1   mycroft 	if (forw > 0)
   1966  1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1967  1.19    bouyer 
   1968   1.5   mycroft 	/*
   1969   1.5   mycroft 	 * Update cluster summary information.
   1970   1.5   mycroft 	 */
   1971   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1972   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1973  1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1974   1.5   mycroft 			break;
   1975  1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1976   1.1   mycroft }
   1977   1.1   mycroft 
   1978   1.1   mycroft /*
   1979   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1980  1.81     perry  *
   1981   1.1   mycroft  * The form of the error message is:
   1982   1.1   mycroft  *	fs: error message
   1983   1.1   mycroft  */
   1984   1.1   mycroft static void
   1985  1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   1986   1.1   mycroft {
   1987   1.1   mycroft 
   1988  1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1989  1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1990   1.1   mycroft }
   1991