ffs_alloc.c revision 1.93 1 1.93 yamt /* $NetBSD: ffs_alloc.c,v 1.93 2006/06/23 14:13:02 yamt Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
5 1.60 fvdl * All rights reserved.
6 1.60 fvdl *
7 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
8 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
9 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 1.60 fvdl * research program
12 1.60 fvdl *
13 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
14 1.1 mycroft * The Regents of the University of California. All rights reserved.
15 1.1 mycroft *
16 1.1 mycroft * Redistribution and use in source and binary forms, with or without
17 1.1 mycroft * modification, are permitted provided that the following conditions
18 1.1 mycroft * are met:
19 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
20 1.1 mycroft * notice, this list of conditions and the following disclaimer.
21 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
23 1.1 mycroft * documentation and/or other materials provided with the distribution.
24 1.69 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 mycroft * may be used to endorse or promote products derived from this software
26 1.1 mycroft * without specific prior written permission.
27 1.1 mycroft *
28 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 mycroft * SUCH DAMAGE.
39 1.1 mycroft *
40 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 1.1 mycroft */
42 1.53 lukem
43 1.53 lukem #include <sys/cdefs.h>
44 1.93 yamt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.93 2006/06/23 14:13:02 yamt Exp $");
45 1.17 mrg
46 1.43 mrg #if defined(_KERNEL_OPT)
47 1.27 thorpej #include "opt_ffs.h"
48 1.21 scottr #include "opt_quota.h"
49 1.22 scottr #endif
50 1.1 mycroft
51 1.1 mycroft #include <sys/param.h>
52 1.1 mycroft #include <sys/systm.h>
53 1.1 mycroft #include <sys/buf.h>
54 1.1 mycroft #include <sys/proc.h>
55 1.1 mycroft #include <sys/vnode.h>
56 1.1 mycroft #include <sys/mount.h>
57 1.1 mycroft #include <sys/kernel.h>
58 1.1 mycroft #include <sys/syslog.h>
59 1.91 elad #include <sys/kauth.h>
60 1.29 mrg
61 1.76 hannken #include <miscfs/specfs/specdev.h>
62 1.1 mycroft #include <ufs/ufs/quota.h>
63 1.19 bouyer #include <ufs/ufs/ufsmount.h>
64 1.1 mycroft #include <ufs/ufs/inode.h>
65 1.9 christos #include <ufs/ufs/ufs_extern.h>
66 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
67 1.1 mycroft
68 1.1 mycroft #include <ufs/ffs/fs.h>
69 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
70 1.1 mycroft
71 1.85 thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 1.85 thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 1.55 matt #ifdef XXXUBC
74 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
75 1.55 matt #endif
76 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
77 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
78 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
79 1.85 thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
80 1.85 thorpej daddr_t (*)(struct inode *, int, daddr_t, int));
81 1.85 thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
82 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
83 1.85 thorpej daddr_t, int);
84 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
85 1.55 matt #ifdef XXXUBC
86 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
87 1.18 fvdl #endif
88 1.55 matt #endif
89 1.23 drochner
90 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
91 1.34 jdolecek int ffs_log_changeopt = 0;
92 1.34 jdolecek
93 1.23 drochner /* in ffs_tables.c */
94 1.40 jdolecek extern const int inside[], around[];
95 1.40 jdolecek extern const u_char * const fragtbl[];
96 1.1 mycroft
97 1.1 mycroft /*
98 1.1 mycroft * Allocate a block in the file system.
99 1.81 perry *
100 1.1 mycroft * The size of the requested block is given, which must be some
101 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
102 1.1 mycroft * A preference may be optionally specified. If a preference is given
103 1.1 mycroft * the following hierarchy is used to allocate a block:
104 1.1 mycroft * 1) allocate the requested block.
105 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
106 1.1 mycroft * 3) allocate a block in the same cylinder group.
107 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
108 1.1 mycroft * available block is located.
109 1.47 wiz * If no block preference is given the following hierarchy is used
110 1.1 mycroft * to allocate a block:
111 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
112 1.1 mycroft * inode for the file.
113 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
114 1.1 mycroft * available block is located.
115 1.1 mycroft */
116 1.9 christos int
117 1.85 thorpej ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
118 1.91 elad kauth_cred_t cred, daddr_t *bnp)
119 1.1 mycroft {
120 1.62 fvdl struct fs *fs;
121 1.58 fvdl daddr_t bno;
122 1.9 christos int cg;
123 1.9 christos #ifdef QUOTA
124 1.9 christos int error;
125 1.9 christos #endif
126 1.81 perry
127 1.62 fvdl fs = ip->i_fs;
128 1.62 fvdl
129 1.37 chs #ifdef UVM_PAGE_TRKOWN
130 1.51 chs if (ITOV(ip)->v_type == VREG &&
131 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
132 1.37 chs struct vm_page *pg;
133 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
134 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
135 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
136 1.37 chs
137 1.37 chs simple_lock(&uobj->vmobjlock);
138 1.37 chs while (off < endoff) {
139 1.37 chs pg = uvm_pagelookup(uobj, off);
140 1.37 chs KASSERT(pg != NULL);
141 1.37 chs KASSERT(pg->owner == curproc->p_pid);
142 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
143 1.37 chs off += PAGE_SIZE;
144 1.37 chs }
145 1.37 chs simple_unlock(&uobj->vmobjlock);
146 1.37 chs }
147 1.37 chs #endif
148 1.37 chs
149 1.1 mycroft *bnp = 0;
150 1.1 mycroft #ifdef DIAGNOSTIC
151 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
152 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
153 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
154 1.1 mycroft panic("ffs_alloc: bad size");
155 1.1 mycroft }
156 1.1 mycroft if (cred == NOCRED)
157 1.56 provos panic("ffs_alloc: missing credential");
158 1.1 mycroft #endif /* DIAGNOSTIC */
159 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
160 1.1 mycroft goto nospace;
161 1.91 elad if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
162 1.1 mycroft goto nospace;
163 1.1 mycroft #ifdef QUOTA
164 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
165 1.1 mycroft return (error);
166 1.1 mycroft #endif
167 1.1 mycroft if (bpref >= fs->fs_size)
168 1.1 mycroft bpref = 0;
169 1.1 mycroft if (bpref == 0)
170 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
171 1.1 mycroft else
172 1.1 mycroft cg = dtog(fs, bpref);
173 1.84 dbj bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
174 1.1 mycroft if (bno > 0) {
175 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
176 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
177 1.1 mycroft *bnp = bno;
178 1.1 mycroft return (0);
179 1.1 mycroft }
180 1.1 mycroft #ifdef QUOTA
181 1.1 mycroft /*
182 1.1 mycroft * Restore user's disk quota because allocation failed.
183 1.1 mycroft */
184 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
185 1.1 mycroft #endif
186 1.1 mycroft nospace:
187 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
188 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
189 1.1 mycroft return (ENOSPC);
190 1.1 mycroft }
191 1.1 mycroft
192 1.1 mycroft /*
193 1.1 mycroft * Reallocate a fragment to a bigger size
194 1.1 mycroft *
195 1.1 mycroft * The number and size of the old block is given, and a preference
196 1.1 mycroft * and new size is also specified. The allocator attempts to extend
197 1.1 mycroft * the original block. Failing that, the regular block allocator is
198 1.1 mycroft * invoked to get an appropriate block.
199 1.1 mycroft */
200 1.9 christos int
201 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
202 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
203 1.1 mycroft {
204 1.62 fvdl struct fs *fs;
205 1.1 mycroft struct buf *bp;
206 1.1 mycroft int cg, request, error;
207 1.58 fvdl daddr_t bprev, bno;
208 1.25 thorpej
209 1.62 fvdl fs = ip->i_fs;
210 1.37 chs #ifdef UVM_PAGE_TRKOWN
211 1.37 chs if (ITOV(ip)->v_type == VREG) {
212 1.37 chs struct vm_page *pg;
213 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
214 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
215 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
216 1.37 chs
217 1.37 chs simple_lock(&uobj->vmobjlock);
218 1.37 chs while (off < endoff) {
219 1.37 chs pg = uvm_pagelookup(uobj, off);
220 1.37 chs KASSERT(pg != NULL);
221 1.37 chs KASSERT(pg->owner == curproc->p_pid);
222 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
223 1.37 chs off += PAGE_SIZE;
224 1.37 chs }
225 1.37 chs simple_unlock(&uobj->vmobjlock);
226 1.37 chs }
227 1.37 chs #endif
228 1.37 chs
229 1.1 mycroft #ifdef DIAGNOSTIC
230 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
231 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
232 1.13 christos printf(
233 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
234 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
235 1.1 mycroft panic("ffs_realloccg: bad size");
236 1.1 mycroft }
237 1.1 mycroft if (cred == NOCRED)
238 1.56 provos panic("ffs_realloccg: missing credential");
239 1.1 mycroft #endif /* DIAGNOSTIC */
240 1.91 elad if (kauth_cred_geteuid(cred) != 0 && freespace(fs, fs->fs_minfree) <= 0)
241 1.1 mycroft goto nospace;
242 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
243 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
244 1.60 fvdl else
245 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
246 1.60 fvdl
247 1.60 fvdl if (bprev == 0) {
248 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
249 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
250 1.1 mycroft panic("ffs_realloccg: bad bprev");
251 1.1 mycroft }
252 1.1 mycroft /*
253 1.1 mycroft * Allocate the extra space in the buffer.
254 1.1 mycroft */
255 1.37 chs if (bpp != NULL &&
256 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
257 1.1 mycroft brelse(bp);
258 1.1 mycroft return (error);
259 1.1 mycroft }
260 1.1 mycroft #ifdef QUOTA
261 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
262 1.44 chs if (bpp != NULL) {
263 1.44 chs brelse(bp);
264 1.44 chs }
265 1.1 mycroft return (error);
266 1.1 mycroft }
267 1.1 mycroft #endif
268 1.1 mycroft /*
269 1.1 mycroft * Check for extension in the existing location.
270 1.1 mycroft */
271 1.1 mycroft cg = dtog(fs, bprev);
272 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
273 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
274 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
275 1.37 chs
276 1.37 chs if (bpp != NULL) {
277 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
278 1.37 chs panic("bad blockno");
279 1.72 pk allocbuf(bp, nsize, 1);
280 1.37 chs bp->b_flags |= B_DONE;
281 1.37 chs memset(bp->b_data + osize, 0, nsize - osize);
282 1.37 chs *bpp = bp;
283 1.37 chs }
284 1.37 chs if (blknop != NULL) {
285 1.37 chs *blknop = bno;
286 1.37 chs }
287 1.1 mycroft return (0);
288 1.1 mycroft }
289 1.1 mycroft /*
290 1.1 mycroft * Allocate a new disk location.
291 1.1 mycroft */
292 1.1 mycroft if (bpref >= fs->fs_size)
293 1.1 mycroft bpref = 0;
294 1.1 mycroft switch ((int)fs->fs_optim) {
295 1.1 mycroft case FS_OPTSPACE:
296 1.1 mycroft /*
297 1.81 perry * Allocate an exact sized fragment. Although this makes
298 1.81 perry * best use of space, we will waste time relocating it if
299 1.1 mycroft * the file continues to grow. If the fragmentation is
300 1.1 mycroft * less than half of the minimum free reserve, we choose
301 1.1 mycroft * to begin optimizing for time.
302 1.1 mycroft */
303 1.1 mycroft request = nsize;
304 1.1 mycroft if (fs->fs_minfree < 5 ||
305 1.1 mycroft fs->fs_cstotal.cs_nffree >
306 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
307 1.1 mycroft break;
308 1.34 jdolecek
309 1.34 jdolecek if (ffs_log_changeopt) {
310 1.34 jdolecek log(LOG_NOTICE,
311 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
312 1.34 jdolecek fs->fs_fsmnt);
313 1.34 jdolecek }
314 1.34 jdolecek
315 1.1 mycroft fs->fs_optim = FS_OPTTIME;
316 1.1 mycroft break;
317 1.1 mycroft case FS_OPTTIME:
318 1.1 mycroft /*
319 1.1 mycroft * At this point we have discovered a file that is trying to
320 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
321 1.1 mycroft * we allocate a full sized block, then free the unused portion.
322 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
323 1.1 mycroft * above will be able to grow it in place without further
324 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
325 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
326 1.1 mycroft * optimizing for space.
327 1.1 mycroft */
328 1.1 mycroft request = fs->fs_bsize;
329 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
330 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
331 1.1 mycroft break;
332 1.34 jdolecek
333 1.34 jdolecek if (ffs_log_changeopt) {
334 1.34 jdolecek log(LOG_NOTICE,
335 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
336 1.34 jdolecek fs->fs_fsmnt);
337 1.34 jdolecek }
338 1.34 jdolecek
339 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
340 1.1 mycroft break;
341 1.1 mycroft default:
342 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
343 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
344 1.1 mycroft panic("ffs_realloccg: bad optim");
345 1.1 mycroft /* NOTREACHED */
346 1.1 mycroft }
347 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
348 1.1 mycroft if (bno > 0) {
349 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
350 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
351 1.76 hannken ip->i_number);
352 1.1 mycroft if (nsize < request)
353 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
354 1.76 hannken (long)(request - nsize), ip->i_number);
355 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
356 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
357 1.37 chs if (bpp != NULL) {
358 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
359 1.72 pk allocbuf(bp, nsize, 1);
360 1.37 chs bp->b_flags |= B_DONE;
361 1.37 chs memset(bp->b_data + osize, 0, (u_int)nsize - osize);
362 1.37 chs *bpp = bp;
363 1.37 chs }
364 1.37 chs if (blknop != NULL) {
365 1.37 chs *blknop = bno;
366 1.37 chs }
367 1.1 mycroft return (0);
368 1.1 mycroft }
369 1.1 mycroft #ifdef QUOTA
370 1.1 mycroft /*
371 1.1 mycroft * Restore user's disk quota because allocation failed.
372 1.1 mycroft */
373 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
374 1.1 mycroft #endif
375 1.37 chs if (bpp != NULL) {
376 1.37 chs brelse(bp);
377 1.37 chs }
378 1.37 chs
379 1.1 mycroft nospace:
380 1.1 mycroft /*
381 1.1 mycroft * no space available
382 1.1 mycroft */
383 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
384 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
385 1.1 mycroft return (ENOSPC);
386 1.1 mycroft }
387 1.1 mycroft
388 1.88 yamt #if 0
389 1.1 mycroft /*
390 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
391 1.1 mycroft *
392 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
393 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
394 1.60 fvdl * to find a range of sequential blocks starting as close as possible
395 1.60 fvdl * from the end of the allocation for the logical block immediately
396 1.60 fvdl * preceding the current range. If successful, the physical block numbers
397 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
398 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
399 1.60 fvdl * success in doing the reallocation is returned. Note that the error
400 1.60 fvdl * return is not reflected back to the user. Rather the previous block
401 1.60 fvdl * allocation will be used.
402 1.60 fvdl
403 1.1 mycroft */
404 1.55 matt #ifdef XXXUBC
405 1.3 mycroft #ifdef DEBUG
406 1.1 mycroft #include <sys/sysctl.h>
407 1.5 mycroft int prtrealloc = 0;
408 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
409 1.1 mycroft #endif
410 1.55 matt #endif
411 1.1 mycroft
412 1.60 fvdl /*
413 1.60 fvdl * NOTE: when re-enabling this, it must be updated for UFS2.
414 1.60 fvdl */
415 1.60 fvdl
416 1.18 fvdl int doasyncfree = 1;
417 1.18 fvdl
418 1.1 mycroft int
419 1.85 thorpej ffs_reallocblks(void *v)
420 1.9 christos {
421 1.55 matt #ifdef XXXUBC
422 1.1 mycroft struct vop_reallocblks_args /* {
423 1.1 mycroft struct vnode *a_vp;
424 1.1 mycroft struct cluster_save *a_buflist;
425 1.9 christos } */ *ap = v;
426 1.1 mycroft struct fs *fs;
427 1.1 mycroft struct inode *ip;
428 1.1 mycroft struct vnode *vp;
429 1.1 mycroft struct buf *sbp, *ebp;
430 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
431 1.1 mycroft struct cluster_save *buflist;
432 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
433 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
434 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
435 1.55 matt #endif /* XXXUBC */
436 1.1 mycroft
437 1.37 chs /* XXXUBC don't reallocblks for now */
438 1.37 chs return ENOSPC;
439 1.37 chs
440 1.55 matt #ifdef XXXUBC
441 1.1 mycroft vp = ap->a_vp;
442 1.1 mycroft ip = VTOI(vp);
443 1.1 mycroft fs = ip->i_fs;
444 1.1 mycroft if (fs->fs_contigsumsize <= 0)
445 1.1 mycroft return (ENOSPC);
446 1.1 mycroft buflist = ap->a_buflist;
447 1.1 mycroft len = buflist->bs_nchildren;
448 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
449 1.1 mycroft end_lbn = start_lbn + len - 1;
450 1.1 mycroft #ifdef DIAGNOSTIC
451 1.18 fvdl for (i = 0; i < len; i++)
452 1.18 fvdl if (!ffs_checkblk(ip,
453 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
454 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
455 1.1 mycroft for (i = 1; i < len; i++)
456 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
457 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
458 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
459 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
460 1.18 fvdl for (i = 1; i < len - 1; i++)
461 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
462 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
463 1.1 mycroft #endif
464 1.1 mycroft /*
465 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
466 1.1 mycroft * the filesystem has decided to move and do not force it back to
467 1.1 mycroft * the previous cylinder group.
468 1.1 mycroft */
469 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
470 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
471 1.1 mycroft return (ENOSPC);
472 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
473 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
474 1.1 mycroft return (ENOSPC);
475 1.1 mycroft /*
476 1.1 mycroft * Get the starting offset and block map for the first block.
477 1.1 mycroft */
478 1.1 mycroft if (start_lvl == 0) {
479 1.60 fvdl sbap = &ip->i_ffs1_db[0];
480 1.1 mycroft soff = start_lbn;
481 1.1 mycroft } else {
482 1.1 mycroft idp = &start_ap[start_lvl - 1];
483 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
484 1.1 mycroft brelse(sbp);
485 1.1 mycroft return (ENOSPC);
486 1.1 mycroft }
487 1.60 fvdl sbap = (int32_t *)sbp->b_data;
488 1.1 mycroft soff = idp->in_off;
489 1.1 mycroft }
490 1.1 mycroft /*
491 1.1 mycroft * Find the preferred location for the cluster.
492 1.1 mycroft */
493 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
494 1.1 mycroft /*
495 1.1 mycroft * If the block range spans two block maps, get the second map.
496 1.1 mycroft */
497 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
498 1.1 mycroft ssize = len;
499 1.1 mycroft } else {
500 1.1 mycroft #ifdef DIAGNOSTIC
501 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
502 1.1 mycroft panic("ffs_reallocblk: start == end");
503 1.1 mycroft #endif
504 1.1 mycroft ssize = len - (idp->in_off + 1);
505 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
506 1.1 mycroft goto fail;
507 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
508 1.1 mycroft }
509 1.1 mycroft /*
510 1.1 mycroft * Search the block map looking for an allocation of the desired size.
511 1.1 mycroft */
512 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
513 1.9 christos len, ffs_clusteralloc)) == 0)
514 1.1 mycroft goto fail;
515 1.1 mycroft /*
516 1.1 mycroft * We have found a new contiguous block.
517 1.1 mycroft *
518 1.1 mycroft * First we have to replace the old block pointers with the new
519 1.1 mycroft * block pointers in the inode and indirect blocks associated
520 1.1 mycroft * with the file.
521 1.1 mycroft */
522 1.5 mycroft #ifdef DEBUG
523 1.5 mycroft if (prtrealloc)
524 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
525 1.5 mycroft start_lbn, end_lbn);
526 1.5 mycroft #endif
527 1.1 mycroft blkno = newblk;
528 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
529 1.58 fvdl daddr_t ba;
530 1.30 fvdl
531 1.30 fvdl if (i == ssize) {
532 1.1 mycroft bap = ebap;
533 1.30 fvdl soff = -i;
534 1.30 fvdl }
535 1.58 fvdl /* XXX ondisk32 */
536 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
537 1.1 mycroft #ifdef DIAGNOSTIC
538 1.18 fvdl if (!ffs_checkblk(ip,
539 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
540 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
541 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
542 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
543 1.1 mycroft #endif
544 1.5 mycroft #ifdef DEBUG
545 1.5 mycroft if (prtrealloc)
546 1.30 fvdl printf(" %d,", ba);
547 1.5 mycroft #endif
548 1.30 fvdl if (DOINGSOFTDEP(vp)) {
549 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
550 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
551 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
552 1.30 fvdl buflist->bs_children[i]);
553 1.30 fvdl else
554 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
555 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
556 1.30 fvdl ba, buflist->bs_children[i]);
557 1.30 fvdl }
558 1.58 fvdl /* XXX ondisk32 */
559 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
560 1.1 mycroft }
561 1.1 mycroft /*
562 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
563 1.1 mycroft * For strict correctness, the writes should be synchronous since
564 1.1 mycroft * the old block values may have been written to disk. In practise
565 1.81 perry * they are almost never written, but if we are concerned about
566 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
567 1.1 mycroft *
568 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
569 1.1 mycroft * that shows whether the associated buffers and inodes have
570 1.1 mycroft * been written. The flag should be set when the cluster is
571 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
572 1.1 mycroft * We can then check below to see if it is set, and do the
573 1.1 mycroft * synchronous write only when it has been cleared.
574 1.1 mycroft */
575 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
576 1.1 mycroft if (doasyncfree)
577 1.1 mycroft bdwrite(sbp);
578 1.1 mycroft else
579 1.1 mycroft bwrite(sbp);
580 1.1 mycroft } else {
581 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
582 1.28 mycroft if (!doasyncfree)
583 1.88 yamt ffs_update(vp, NULL, NULL, 1);
584 1.1 mycroft }
585 1.25 thorpej if (ssize < len) {
586 1.1 mycroft if (doasyncfree)
587 1.1 mycroft bdwrite(ebp);
588 1.1 mycroft else
589 1.1 mycroft bwrite(ebp);
590 1.25 thorpej }
591 1.1 mycroft /*
592 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
593 1.1 mycroft */
594 1.5 mycroft #ifdef DEBUG
595 1.5 mycroft if (prtrealloc)
596 1.13 christos printf("\n\tnew:");
597 1.5 mycroft #endif
598 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
599 1.30 fvdl if (!DOINGSOFTDEP(vp))
600 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
601 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
602 1.76 hannken fs->fs_bsize, ip->i_number);
603 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
604 1.5 mycroft #ifdef DEBUG
605 1.18 fvdl if (!ffs_checkblk(ip,
606 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
607 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
608 1.5 mycroft if (prtrealloc)
609 1.13 christos printf(" %d,", blkno);
610 1.5 mycroft #endif
611 1.5 mycroft }
612 1.5 mycroft #ifdef DEBUG
613 1.5 mycroft if (prtrealloc) {
614 1.5 mycroft prtrealloc--;
615 1.13 christos printf("\n");
616 1.1 mycroft }
617 1.5 mycroft #endif
618 1.1 mycroft return (0);
619 1.1 mycroft
620 1.1 mycroft fail:
621 1.1 mycroft if (ssize < len)
622 1.1 mycroft brelse(ebp);
623 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
624 1.1 mycroft brelse(sbp);
625 1.1 mycroft return (ENOSPC);
626 1.55 matt #endif /* XXXUBC */
627 1.1 mycroft }
628 1.88 yamt #endif /* 0 */
629 1.1 mycroft
630 1.1 mycroft /*
631 1.1 mycroft * Allocate an inode in the file system.
632 1.81 perry *
633 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
634 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
635 1.1 mycroft * 1) allocate the preferred inode.
636 1.1 mycroft * 2) allocate an inode in the same cylinder group.
637 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
638 1.1 mycroft * available inode is located.
639 1.47 wiz * If no inode preference is given the following hierarchy is used
640 1.1 mycroft * to allocate an inode:
641 1.1 mycroft * 1) allocate an inode in cylinder group 0.
642 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
643 1.1 mycroft * available inode is located.
644 1.1 mycroft */
645 1.9 christos int
646 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
647 1.88 yamt struct vnode **vpp)
648 1.9 christos {
649 1.33 augustss struct inode *pip;
650 1.33 augustss struct fs *fs;
651 1.33 augustss struct inode *ip;
652 1.60 fvdl struct timespec ts;
653 1.1 mycroft ino_t ino, ipref;
654 1.1 mycroft int cg, error;
655 1.81 perry
656 1.88 yamt *vpp = NULL;
657 1.1 mycroft pip = VTOI(pvp);
658 1.1 mycroft fs = pip->i_fs;
659 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
660 1.1 mycroft goto noinodes;
661 1.1 mycroft
662 1.1 mycroft if ((mode & IFMT) == IFDIR)
663 1.50 lukem ipref = ffs_dirpref(pip);
664 1.50 lukem else
665 1.50 lukem ipref = pip->i_number;
666 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
667 1.1 mycroft ipref = 0;
668 1.1 mycroft cg = ino_to_cg(fs, ipref);
669 1.50 lukem /*
670 1.50 lukem * Track number of dirs created one after another
671 1.50 lukem * in a same cg without intervening by files.
672 1.50 lukem */
673 1.50 lukem if ((mode & IFMT) == IFDIR) {
674 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
675 1.50 lukem fs->fs_contigdirs[cg]++;
676 1.50 lukem } else {
677 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
678 1.50 lukem fs->fs_contigdirs[cg]--;
679 1.50 lukem }
680 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
681 1.1 mycroft if (ino == 0)
682 1.1 mycroft goto noinodes;
683 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
684 1.1 mycroft if (error) {
685 1.88 yamt ffs_vfree(pvp, ino, mode);
686 1.1 mycroft return (error);
687 1.1 mycroft }
688 1.90 yamt KASSERT((*vpp)->v_type == VNON);
689 1.88 yamt ip = VTOI(*vpp);
690 1.60 fvdl if (ip->i_mode) {
691 1.60 fvdl #if 0
692 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
693 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
694 1.60 fvdl #else
695 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
696 1.60 fvdl DIP(ip, mode), ip->i_mode,
697 1.60 fvdl DIP(ip, gen), ip->i_gen);
698 1.60 fvdl printf("size %llx blocks %llx\n",
699 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
700 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
701 1.86 christos (unsigned long long)ipref);
702 1.60 fvdl #if 0
703 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
704 1.60 fvdl (int)fs->fs_bsize, NOCRED, &bp);
705 1.60 fvdl #endif
706 1.60 fvdl
707 1.60 fvdl #endif
708 1.1 mycroft panic("ffs_valloc: dup alloc");
709 1.1 mycroft }
710 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
711 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
712 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
713 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
714 1.1 mycroft }
715 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
716 1.61 fvdl ip->i_flags = 0;
717 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
718 1.1 mycroft /*
719 1.1 mycroft * Set up a new generation number for this inode.
720 1.1 mycroft */
721 1.60 fvdl ip->i_gen++;
722 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
723 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
724 1.93 yamt vfs_timestamp(&ts);
725 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
726 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
727 1.60 fvdl }
728 1.1 mycroft return (0);
729 1.1 mycroft noinodes:
730 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
731 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
732 1.1 mycroft return (ENOSPC);
733 1.1 mycroft }
734 1.1 mycroft
735 1.1 mycroft /*
736 1.50 lukem * Find a cylinder group in which to place a directory.
737 1.42 sommerfe *
738 1.50 lukem * The policy implemented by this algorithm is to allocate a
739 1.50 lukem * directory inode in the same cylinder group as its parent
740 1.50 lukem * directory, but also to reserve space for its files inodes
741 1.50 lukem * and data. Restrict the number of directories which may be
742 1.50 lukem * allocated one after another in the same cylinder group
743 1.50 lukem * without intervening allocation of files.
744 1.42 sommerfe *
745 1.50 lukem * If we allocate a first level directory then force allocation
746 1.50 lukem * in another cylinder group.
747 1.1 mycroft */
748 1.1 mycroft static ino_t
749 1.85 thorpej ffs_dirpref(struct inode *pip)
750 1.1 mycroft {
751 1.50 lukem register struct fs *fs;
752 1.74 soren int cg, prefcg;
753 1.89 dsl int64_t dirsize, cgsize, curdsz;
754 1.89 dsl int avgifree, avgbfree, avgndir;
755 1.50 lukem int minifree, minbfree, maxndir;
756 1.50 lukem int mincg, minndir;
757 1.50 lukem int maxcontigdirs;
758 1.50 lukem
759 1.50 lukem fs = pip->i_fs;
760 1.1 mycroft
761 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
762 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
763 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
764 1.50 lukem
765 1.50 lukem /*
766 1.50 lukem * Force allocation in another cg if creating a first level dir.
767 1.50 lukem */
768 1.50 lukem if (ITOV(pip)->v_flag & VROOT) {
769 1.71 mycroft prefcg = random() % fs->fs_ncg;
770 1.50 lukem mincg = prefcg;
771 1.50 lukem minndir = fs->fs_ipg;
772 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
773 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
774 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
775 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
776 1.42 sommerfe mincg = cg;
777 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
778 1.42 sommerfe }
779 1.50 lukem for (cg = 0; cg < prefcg; cg++)
780 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
781 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
782 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
783 1.50 lukem mincg = cg;
784 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
785 1.42 sommerfe }
786 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
787 1.42 sommerfe }
788 1.50 lukem
789 1.50 lukem /*
790 1.50 lukem * Count various limits which used for
791 1.50 lukem * optimal allocation of a directory inode.
792 1.50 lukem */
793 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
794 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
795 1.50 lukem if (minifree < 0)
796 1.50 lukem minifree = 0;
797 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
798 1.50 lukem if (minbfree < 0)
799 1.50 lukem minbfree = 0;
800 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
801 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
802 1.89 dsl if (avgndir != 0) {
803 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
804 1.89 dsl if (dirsize < curdsz)
805 1.89 dsl dirsize = curdsz;
806 1.89 dsl }
807 1.89 dsl if (cgsize < dirsize * 255)
808 1.89 dsl maxcontigdirs = cgsize / dirsize;
809 1.89 dsl else
810 1.89 dsl maxcontigdirs = 255;
811 1.50 lukem if (fs->fs_avgfpdir > 0)
812 1.50 lukem maxcontigdirs = min(maxcontigdirs,
813 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
814 1.50 lukem if (maxcontigdirs == 0)
815 1.50 lukem maxcontigdirs = 1;
816 1.50 lukem
817 1.50 lukem /*
818 1.81 perry * Limit number of dirs in one cg and reserve space for
819 1.50 lukem * regular files, but only if we have no deficit in
820 1.50 lukem * inodes or space.
821 1.50 lukem */
822 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
823 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
824 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
825 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
826 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
827 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
828 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
829 1.50 lukem }
830 1.50 lukem for (cg = 0; cg < prefcg; cg++)
831 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
832 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
833 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
834 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
835 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
836 1.50 lukem }
837 1.50 lukem /*
838 1.50 lukem * This is a backstop when we are deficient in space.
839 1.50 lukem */
840 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
841 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
842 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
843 1.50 lukem for (cg = 0; cg < prefcg; cg++)
844 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
845 1.50 lukem break;
846 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
847 1.1 mycroft }
848 1.1 mycroft
849 1.1 mycroft /*
850 1.1 mycroft * Select the desired position for the next block in a file. The file is
851 1.1 mycroft * logically divided into sections. The first section is composed of the
852 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
853 1.81 perry *
854 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
855 1.1 mycroft * request a block in the same cylinder group as the inode that describes
856 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
857 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
858 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
859 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
860 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
861 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
862 1.1 mycroft * continues until a cylinder group with greater than the average number
863 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
864 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
865 1.1 mycroft * here a best guess is made based upon the logical block number being
866 1.1 mycroft * allocated.
867 1.81 perry *
868 1.1 mycroft * If a section is already partially allocated, the policy is to
869 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
870 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
871 1.60 fvdl * contigously if possible.
872 1.1 mycroft */
873 1.58 fvdl daddr_t
874 1.85 thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
875 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
876 1.1 mycroft {
877 1.33 augustss struct fs *fs;
878 1.33 augustss int cg;
879 1.1 mycroft int avgbfree, startcg;
880 1.1 mycroft
881 1.1 mycroft fs = ip->i_fs;
882 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
883 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
884 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
885 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
886 1.1 mycroft }
887 1.1 mycroft /*
888 1.1 mycroft * Find a cylinder with greater than average number of
889 1.1 mycroft * unused data blocks.
890 1.1 mycroft */
891 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
892 1.1 mycroft startcg =
893 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
894 1.1 mycroft else
895 1.19 bouyer startcg = dtog(fs,
896 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
897 1.1 mycroft startcg %= fs->fs_ncg;
898 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
899 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
900 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
901 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
902 1.1 mycroft }
903 1.52 lukem for (cg = 0; cg < startcg; cg++)
904 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
905 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
906 1.1 mycroft }
907 1.35 thorpej return (0);
908 1.1 mycroft }
909 1.1 mycroft /*
910 1.60 fvdl * We just always try to lay things out contiguously.
911 1.60 fvdl */
912 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
913 1.60 fvdl }
914 1.60 fvdl
915 1.60 fvdl daddr_t
916 1.85 thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
917 1.60 fvdl {
918 1.60 fvdl struct fs *fs;
919 1.60 fvdl int cg;
920 1.60 fvdl int avgbfree, startcg;
921 1.60 fvdl
922 1.60 fvdl fs = ip->i_fs;
923 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
924 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
925 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
926 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
927 1.60 fvdl }
928 1.1 mycroft /*
929 1.60 fvdl * Find a cylinder with greater than average number of
930 1.60 fvdl * unused data blocks.
931 1.1 mycroft */
932 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
933 1.60 fvdl startcg =
934 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
935 1.60 fvdl else
936 1.60 fvdl startcg = dtog(fs,
937 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
938 1.60 fvdl startcg %= fs->fs_ncg;
939 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
940 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
941 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
942 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
943 1.60 fvdl }
944 1.60 fvdl for (cg = 0; cg < startcg; cg++)
945 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
946 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
947 1.60 fvdl }
948 1.60 fvdl return (0);
949 1.60 fvdl }
950 1.60 fvdl /*
951 1.60 fvdl * We just always try to lay things out contiguously.
952 1.60 fvdl */
953 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
954 1.1 mycroft }
955 1.1 mycroft
956 1.60 fvdl
957 1.1 mycroft /*
958 1.1 mycroft * Implement the cylinder overflow algorithm.
959 1.1 mycroft *
960 1.1 mycroft * The policy implemented by this algorithm is:
961 1.1 mycroft * 1) allocate the block in its requested cylinder group.
962 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
963 1.1 mycroft * 3) brute force search for a free block.
964 1.1 mycroft */
965 1.1 mycroft /*VARARGS5*/
966 1.58 fvdl static daddr_t
967 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
968 1.85 thorpej int size /* size for data blocks, mode for inodes */,
969 1.85 thorpej daddr_t (*allocator)(struct inode *, int, daddr_t, int))
970 1.1 mycroft {
971 1.33 augustss struct fs *fs;
972 1.58 fvdl daddr_t result;
973 1.1 mycroft int i, icg = cg;
974 1.1 mycroft
975 1.1 mycroft fs = ip->i_fs;
976 1.1 mycroft /*
977 1.1 mycroft * 1: preferred cylinder group
978 1.1 mycroft */
979 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
980 1.1 mycroft if (result)
981 1.1 mycroft return (result);
982 1.1 mycroft /*
983 1.1 mycroft * 2: quadratic rehash
984 1.1 mycroft */
985 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
986 1.1 mycroft cg += i;
987 1.1 mycroft if (cg >= fs->fs_ncg)
988 1.1 mycroft cg -= fs->fs_ncg;
989 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
990 1.1 mycroft if (result)
991 1.1 mycroft return (result);
992 1.1 mycroft }
993 1.1 mycroft /*
994 1.1 mycroft * 3: brute force search
995 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
996 1.1 mycroft * and 1 is always checked in the quadratic rehash.
997 1.1 mycroft */
998 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
999 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1000 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1001 1.1 mycroft if (result)
1002 1.1 mycroft return (result);
1003 1.1 mycroft cg++;
1004 1.1 mycroft if (cg == fs->fs_ncg)
1005 1.1 mycroft cg = 0;
1006 1.1 mycroft }
1007 1.35 thorpej return (0);
1008 1.1 mycroft }
1009 1.1 mycroft
1010 1.1 mycroft /*
1011 1.1 mycroft * Determine whether a fragment can be extended.
1012 1.1 mycroft *
1013 1.81 perry * Check to see if the necessary fragments are available, and
1014 1.1 mycroft * if they are, allocate them.
1015 1.1 mycroft */
1016 1.58 fvdl static daddr_t
1017 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1018 1.1 mycroft {
1019 1.33 augustss struct fs *fs;
1020 1.33 augustss struct cg *cgp;
1021 1.1 mycroft struct buf *bp;
1022 1.58 fvdl daddr_t bno;
1023 1.1 mycroft int frags, bbase;
1024 1.1 mycroft int i, error;
1025 1.62 fvdl u_int8_t *blksfree;
1026 1.1 mycroft
1027 1.1 mycroft fs = ip->i_fs;
1028 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1029 1.35 thorpej return (0);
1030 1.1 mycroft frags = numfrags(fs, nsize);
1031 1.1 mycroft bbase = fragnum(fs, bprev);
1032 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1033 1.1 mycroft /* cannot extend across a block boundary */
1034 1.35 thorpej return (0);
1035 1.1 mycroft }
1036 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1037 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1038 1.1 mycroft if (error) {
1039 1.1 mycroft brelse(bp);
1040 1.35 thorpej return (0);
1041 1.1 mycroft }
1042 1.1 mycroft cgp = (struct cg *)bp->b_data;
1043 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1044 1.1 mycroft brelse(bp);
1045 1.35 thorpej return (0);
1046 1.1 mycroft }
1047 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1048 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1049 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1050 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1051 1.1 mycroft bno = dtogd(fs, bprev);
1052 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1053 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1054 1.62 fvdl if (isclr(blksfree, bno + i)) {
1055 1.1 mycroft brelse(bp);
1056 1.35 thorpej return (0);
1057 1.1 mycroft }
1058 1.1 mycroft /*
1059 1.1 mycroft * the current fragment can be extended
1060 1.1 mycroft * deduct the count on fragment being extended into
1061 1.1 mycroft * increase the count on the remaining fragment (if any)
1062 1.1 mycroft * allocate the extended piece
1063 1.1 mycroft */
1064 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1065 1.62 fvdl if (isclr(blksfree, bno + i))
1066 1.1 mycroft break;
1067 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1068 1.1 mycroft if (i != frags)
1069 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1070 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1071 1.62 fvdl clrbit(blksfree, bno + i);
1072 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1073 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1074 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1075 1.1 mycroft }
1076 1.1 mycroft fs->fs_fmod = 1;
1077 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1078 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1079 1.76 hannken ACTIVECG_CLR(fs, cg);
1080 1.1 mycroft bdwrite(bp);
1081 1.1 mycroft return (bprev);
1082 1.1 mycroft }
1083 1.1 mycroft
1084 1.1 mycroft /*
1085 1.1 mycroft * Determine whether a block can be allocated.
1086 1.1 mycroft *
1087 1.1 mycroft * Check to see if a block of the appropriate size is available,
1088 1.1 mycroft * and if it is, allocate it.
1089 1.1 mycroft */
1090 1.58 fvdl static daddr_t
1091 1.85 thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1092 1.1 mycroft {
1093 1.62 fvdl struct fs *fs = ip->i_fs;
1094 1.30 fvdl struct cg *cgp;
1095 1.1 mycroft struct buf *bp;
1096 1.60 fvdl int32_t bno;
1097 1.60 fvdl daddr_t blkno;
1098 1.30 fvdl int error, frags, allocsiz, i;
1099 1.62 fvdl u_int8_t *blksfree;
1100 1.30 fvdl #ifdef FFS_EI
1101 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1102 1.30 fvdl #endif
1103 1.1 mycroft
1104 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1105 1.35 thorpej return (0);
1106 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1107 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1108 1.1 mycroft if (error) {
1109 1.1 mycroft brelse(bp);
1110 1.35 thorpej return (0);
1111 1.1 mycroft }
1112 1.1 mycroft cgp = (struct cg *)bp->b_data;
1113 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1114 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1115 1.1 mycroft brelse(bp);
1116 1.35 thorpej return (0);
1117 1.1 mycroft }
1118 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1119 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1120 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1121 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1122 1.1 mycroft if (size == fs->fs_bsize) {
1123 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1124 1.76 hannken ACTIVECG_CLR(fs, cg);
1125 1.1 mycroft bdwrite(bp);
1126 1.60 fvdl return (blkno);
1127 1.1 mycroft }
1128 1.1 mycroft /*
1129 1.1 mycroft * check to see if any fragments are already available
1130 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1131 1.1 mycroft * it down to a smaller size if necessary
1132 1.1 mycroft */
1133 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1134 1.1 mycroft frags = numfrags(fs, size);
1135 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1136 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1137 1.1 mycroft break;
1138 1.1 mycroft if (allocsiz == fs->fs_frag) {
1139 1.1 mycroft /*
1140 1.81 perry * no fragments were available, so a block will be
1141 1.1 mycroft * allocated, and hacked up
1142 1.1 mycroft */
1143 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
1144 1.1 mycroft brelse(bp);
1145 1.35 thorpej return (0);
1146 1.1 mycroft }
1147 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1148 1.60 fvdl bno = dtogd(fs, blkno);
1149 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1150 1.62 fvdl setbit(blksfree, bno + i);
1151 1.1 mycroft i = fs->fs_frag - frags;
1152 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1153 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1154 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1155 1.1 mycroft fs->fs_fmod = 1;
1156 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1157 1.76 hannken ACTIVECG_CLR(fs, cg);
1158 1.1 mycroft bdwrite(bp);
1159 1.60 fvdl return (blkno);
1160 1.1 mycroft }
1161 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1162 1.30 fvdl #if 0
1163 1.30 fvdl /*
1164 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1165 1.58 fvdl * also: returning NULL as daddr_t ?
1166 1.30 fvdl */
1167 1.1 mycroft if (bno < 0) {
1168 1.1 mycroft brelse(bp);
1169 1.35 thorpej return (0);
1170 1.1 mycroft }
1171 1.30 fvdl #endif
1172 1.1 mycroft for (i = 0; i < frags; i++)
1173 1.62 fvdl clrbit(blksfree, bno + i);
1174 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1175 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1176 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1177 1.1 mycroft fs->fs_fmod = 1;
1178 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1179 1.1 mycroft if (frags != allocsiz)
1180 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1181 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1182 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1183 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1184 1.76 hannken ACTIVECG_CLR(fs, cg);
1185 1.1 mycroft bdwrite(bp);
1186 1.30 fvdl return blkno;
1187 1.1 mycroft }
1188 1.1 mycroft
1189 1.1 mycroft /*
1190 1.1 mycroft * Allocate a block in a cylinder group.
1191 1.1 mycroft *
1192 1.1 mycroft * This algorithm implements the following policy:
1193 1.1 mycroft * 1) allocate the requested block.
1194 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1195 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1196 1.1 mycroft * specified cylinder group.
1197 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1198 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1199 1.1 mycroft */
1200 1.58 fvdl static daddr_t
1201 1.85 thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1202 1.1 mycroft {
1203 1.62 fvdl struct fs *fs = ip->i_fs;
1204 1.30 fvdl struct cg *cgp;
1205 1.60 fvdl daddr_t blkno;
1206 1.60 fvdl int32_t bno;
1207 1.60 fvdl u_int8_t *blksfree;
1208 1.30 fvdl #ifdef FFS_EI
1209 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1210 1.30 fvdl #endif
1211 1.1 mycroft
1212 1.30 fvdl cgp = (struct cg *)bp->b_data;
1213 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1214 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1215 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1216 1.60 fvdl } else {
1217 1.60 fvdl bpref = blknum(fs, bpref);
1218 1.60 fvdl bno = dtogd(fs, bpref);
1219 1.1 mycroft /*
1220 1.60 fvdl * if the requested block is available, use it
1221 1.1 mycroft */
1222 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1223 1.60 fvdl goto gotit;
1224 1.1 mycroft }
1225 1.1 mycroft /*
1226 1.60 fvdl * Take the next available block in this cylinder group.
1227 1.1 mycroft */
1228 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1229 1.1 mycroft if (bno < 0)
1230 1.35 thorpej return (0);
1231 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1232 1.1 mycroft gotit:
1233 1.1 mycroft blkno = fragstoblks(fs, bno);
1234 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1235 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1236 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1237 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1238 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1239 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1240 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1241 1.73 dbj int cylno;
1242 1.73 dbj cylno = old_cbtocylno(fs, bno);
1243 1.75 dbj KASSERT(cylno >= 0);
1244 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1245 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1246 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1247 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1248 1.73 dbj needswap);
1249 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1250 1.73 dbj }
1251 1.1 mycroft fs->fs_fmod = 1;
1252 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1253 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1254 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1255 1.30 fvdl return (blkno);
1256 1.1 mycroft }
1257 1.1 mycroft
1258 1.55 matt #ifdef XXXUBC
1259 1.1 mycroft /*
1260 1.1 mycroft * Determine whether a cluster can be allocated.
1261 1.1 mycroft *
1262 1.1 mycroft * We do not currently check for optimal rotational layout if there
1263 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1264 1.1 mycroft * take the first one that we find following bpref.
1265 1.1 mycroft */
1266 1.60 fvdl
1267 1.60 fvdl /*
1268 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1269 1.60 fvdl */
1270 1.58 fvdl static daddr_t
1271 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1272 1.1 mycroft {
1273 1.33 augustss struct fs *fs;
1274 1.33 augustss struct cg *cgp;
1275 1.1 mycroft struct buf *bp;
1276 1.18 fvdl int i, got, run, bno, bit, map;
1277 1.1 mycroft u_char *mapp;
1278 1.5 mycroft int32_t *lp;
1279 1.1 mycroft
1280 1.1 mycroft fs = ip->i_fs;
1281 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1282 1.35 thorpej return (0);
1283 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1284 1.1 mycroft NOCRED, &bp))
1285 1.1 mycroft goto fail;
1286 1.1 mycroft cgp = (struct cg *)bp->b_data;
1287 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1288 1.1 mycroft goto fail;
1289 1.1 mycroft /*
1290 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1291 1.1 mycroft * available in this cylinder group.
1292 1.1 mycroft */
1293 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1294 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1295 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1296 1.1 mycroft break;
1297 1.5 mycroft if (i > fs->fs_contigsumsize) {
1298 1.5 mycroft /*
1299 1.5 mycroft * This is the first time looking for a cluster in this
1300 1.5 mycroft * cylinder group. Update the cluster summary information
1301 1.5 mycroft * to reflect the true maximum sized cluster so that
1302 1.5 mycroft * future cluster allocation requests can avoid reading
1303 1.5 mycroft * the cylinder group map only to find no clusters.
1304 1.5 mycroft */
1305 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1306 1.5 mycroft for (i = len - 1; i > 0; i--)
1307 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1308 1.5 mycroft break;
1309 1.5 mycroft fs->fs_maxcluster[cg] = i;
1310 1.1 mycroft goto fail;
1311 1.5 mycroft }
1312 1.1 mycroft /*
1313 1.1 mycroft * Search the cluster map to find a big enough cluster.
1314 1.1 mycroft * We take the first one that we find, even if it is larger
1315 1.1 mycroft * than we need as we prefer to get one close to the previous
1316 1.1 mycroft * block allocation. We do not search before the current
1317 1.1 mycroft * preference point as we do not want to allocate a block
1318 1.1 mycroft * that is allocated before the previous one (as we will
1319 1.1 mycroft * then have to wait for another pass of the elevator
1320 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1321 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1322 1.1 mycroft */
1323 1.1 mycroft if (dtog(fs, bpref) != cg)
1324 1.1 mycroft bpref = 0;
1325 1.1 mycroft else
1326 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1327 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1328 1.1 mycroft map = *mapp++;
1329 1.1 mycroft bit = 1 << (bpref % NBBY);
1330 1.19 bouyer for (run = 0, got = bpref;
1331 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1332 1.1 mycroft if ((map & bit) == 0) {
1333 1.1 mycroft run = 0;
1334 1.1 mycroft } else {
1335 1.1 mycroft run++;
1336 1.1 mycroft if (run == len)
1337 1.1 mycroft break;
1338 1.1 mycroft }
1339 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1340 1.1 mycroft bit <<= 1;
1341 1.1 mycroft } else {
1342 1.1 mycroft map = *mapp++;
1343 1.1 mycroft bit = 1;
1344 1.1 mycroft }
1345 1.1 mycroft }
1346 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1347 1.1 mycroft goto fail;
1348 1.1 mycroft /*
1349 1.1 mycroft * Allocate the cluster that we have found.
1350 1.1 mycroft */
1351 1.30 fvdl #ifdef DIAGNOSTIC
1352 1.18 fvdl for (i = 1; i <= len; i++)
1353 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1354 1.30 fvdl got - run + i))
1355 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1356 1.30 fvdl #endif
1357 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1358 1.18 fvdl if (dtog(fs, bno) != cg)
1359 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1360 1.1 mycroft len = blkstofrags(fs, len);
1361 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1362 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1363 1.1 mycroft panic("ffs_clusteralloc: lost block");
1364 1.76 hannken ACTIVECG_CLR(fs, cg);
1365 1.8 cgd bdwrite(bp);
1366 1.1 mycroft return (bno);
1367 1.1 mycroft
1368 1.1 mycroft fail:
1369 1.1 mycroft brelse(bp);
1370 1.1 mycroft return (0);
1371 1.1 mycroft }
1372 1.55 matt #endif /* XXXUBC */
1373 1.1 mycroft
1374 1.1 mycroft /*
1375 1.1 mycroft * Determine whether an inode can be allocated.
1376 1.1 mycroft *
1377 1.1 mycroft * Check to see if an inode is available, and if it is,
1378 1.1 mycroft * allocate it using the following policy:
1379 1.1 mycroft * 1) allocate the requested inode.
1380 1.1 mycroft * 2) allocate the next available inode after the requested
1381 1.1 mycroft * inode in the specified cylinder group.
1382 1.1 mycroft */
1383 1.58 fvdl static daddr_t
1384 1.85 thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1385 1.1 mycroft {
1386 1.62 fvdl struct fs *fs = ip->i_fs;
1387 1.33 augustss struct cg *cgp;
1388 1.60 fvdl struct buf *bp, *ibp;
1389 1.60 fvdl u_int8_t *inosused;
1390 1.1 mycroft int error, start, len, loc, map, i;
1391 1.60 fvdl int32_t initediblk;
1392 1.60 fvdl struct ufs2_dinode *dp2;
1393 1.19 bouyer #ifdef FFS_EI
1394 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1395 1.19 bouyer #endif
1396 1.1 mycroft
1397 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1398 1.35 thorpej return (0);
1399 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1400 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1401 1.1 mycroft if (error) {
1402 1.1 mycroft brelse(bp);
1403 1.35 thorpej return (0);
1404 1.1 mycroft }
1405 1.1 mycroft cgp = (struct cg *)bp->b_data;
1406 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1407 1.1 mycroft brelse(bp);
1408 1.35 thorpej return (0);
1409 1.1 mycroft }
1410 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1411 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1412 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1413 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1414 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1415 1.1 mycroft if (ipref) {
1416 1.1 mycroft ipref %= fs->fs_ipg;
1417 1.60 fvdl if (isclr(inosused, ipref))
1418 1.1 mycroft goto gotit;
1419 1.1 mycroft }
1420 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1421 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1422 1.19 bouyer NBBY);
1423 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1424 1.1 mycroft if (loc == 0) {
1425 1.1 mycroft len = start + 1;
1426 1.1 mycroft start = 0;
1427 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1428 1.1 mycroft if (loc == 0) {
1429 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1430 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1431 1.19 bouyer fs->fs_fsmnt);
1432 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1433 1.1 mycroft /* NOTREACHED */
1434 1.1 mycroft }
1435 1.1 mycroft }
1436 1.1 mycroft i = start + len - loc;
1437 1.60 fvdl map = inosused[i];
1438 1.1 mycroft ipref = i * NBBY;
1439 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1440 1.1 mycroft if ((map & i) == 0) {
1441 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1442 1.1 mycroft goto gotit;
1443 1.1 mycroft }
1444 1.1 mycroft }
1445 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1446 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1447 1.1 mycroft /* NOTREACHED */
1448 1.1 mycroft gotit:
1449 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1450 1.30 fvdl softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1451 1.60 fvdl setbit(inosused, ipref);
1452 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1453 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1454 1.30 fvdl fs->fs_cs(fs, cg).cs_nifree--;
1455 1.1 mycroft fs->fs_fmod = 1;
1456 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1457 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1458 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1459 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1460 1.1 mycroft }
1461 1.60 fvdl /*
1462 1.60 fvdl * Check to see if we need to initialize more inodes.
1463 1.60 fvdl */
1464 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1465 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1466 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1467 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1468 1.60 fvdl ibp = getblk(ip->i_devvp, fsbtodb(fs,
1469 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1470 1.60 fvdl (int)fs->fs_bsize, 0, 0);
1471 1.60 fvdl memset(ibp->b_data, 0, fs->fs_bsize);
1472 1.60 fvdl dp2 = (struct ufs2_dinode *)(ibp->b_data);
1473 1.60 fvdl for (i = 0; i < INOPB(fs); i++) {
1474 1.60 fvdl /*
1475 1.60 fvdl * Don't bother to swap, it's supposed to be
1476 1.60 fvdl * random, after all.
1477 1.60 fvdl */
1478 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1479 1.60 fvdl dp2++;
1480 1.60 fvdl }
1481 1.60 fvdl bawrite(ibp);
1482 1.60 fvdl initediblk += INOPB(fs);
1483 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1484 1.60 fvdl }
1485 1.60 fvdl
1486 1.76 hannken ACTIVECG_CLR(fs, cg);
1487 1.1 mycroft bdwrite(bp);
1488 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1489 1.1 mycroft }
1490 1.1 mycroft
1491 1.1 mycroft /*
1492 1.1 mycroft * Free a block or fragment.
1493 1.1 mycroft *
1494 1.1 mycroft * The specified block or fragment is placed back in the
1495 1.81 perry * free map. If a fragment is deallocated, a possible
1496 1.1 mycroft * block reassembly is checked.
1497 1.1 mycroft */
1498 1.9 christos void
1499 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1500 1.85 thorpej ino_t inum)
1501 1.1 mycroft {
1502 1.33 augustss struct cg *cgp;
1503 1.1 mycroft struct buf *bp;
1504 1.76 hannken struct ufsmount *ump;
1505 1.60 fvdl int32_t fragno, cgbno;
1506 1.76 hannken daddr_t cgblkno;
1507 1.1 mycroft int i, error, cg, blk, frags, bbase;
1508 1.62 fvdl u_int8_t *blksfree;
1509 1.76 hannken dev_t dev;
1510 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1511 1.1 mycroft
1512 1.76 hannken cg = dtog(fs, bno);
1513 1.77 hannken if (devvp->v_type != VBLK) {
1514 1.77 hannken /* devvp is a snapshot */
1515 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1516 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1517 1.76 hannken } else {
1518 1.76 hannken dev = devvp->v_rdev;
1519 1.76 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1520 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1521 1.76 hannken if (TAILQ_FIRST(&ump->um_snapshots) != NULL &&
1522 1.76 hannken ffs_snapblkfree(fs, devvp, bno, size, inum))
1523 1.76 hannken return;
1524 1.76 hannken }
1525 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1526 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1527 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1528 1.58 fvdl "size = %ld, fs = %s\n",
1529 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1530 1.1 mycroft panic("blkfree: bad size");
1531 1.1 mycroft }
1532 1.76 hannken
1533 1.60 fvdl if (bno >= fs->fs_size) {
1534 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1535 1.86 christos (unsigned long long)inum);
1536 1.76 hannken ffs_fserr(fs, inum, "bad block");
1537 1.1 mycroft return;
1538 1.1 mycroft }
1539 1.76 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
1540 1.1 mycroft if (error) {
1541 1.1 mycroft brelse(bp);
1542 1.1 mycroft return;
1543 1.1 mycroft }
1544 1.1 mycroft cgp = (struct cg *)bp->b_data;
1545 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1546 1.1 mycroft brelse(bp);
1547 1.1 mycroft return;
1548 1.1 mycroft }
1549 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1550 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1551 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1552 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1553 1.60 fvdl cgbno = dtogd(fs, bno);
1554 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1555 1.1 mycroft if (size == fs->fs_bsize) {
1556 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1557 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1558 1.77 hannken if (devvp->v_type != VBLK) {
1559 1.77 hannken /* devvp is a snapshot */
1560 1.76 hannken brelse(bp);
1561 1.76 hannken return;
1562 1.76 hannken }
1563 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1564 1.76 hannken dev, bno, fs->fs_fsmnt);
1565 1.1 mycroft panic("blkfree: freeing free block");
1566 1.1 mycroft }
1567 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1568 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1569 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1570 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1571 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1572 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1573 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1574 1.73 dbj i = old_cbtocylno(fs, cgbno);
1575 1.75 dbj KASSERT(i >= 0);
1576 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1577 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1578 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1579 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1580 1.73 dbj needswap);
1581 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1582 1.73 dbj }
1583 1.1 mycroft } else {
1584 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1585 1.1 mycroft /*
1586 1.1 mycroft * decrement the counts associated with the old frags
1587 1.1 mycroft */
1588 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1589 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1590 1.1 mycroft /*
1591 1.1 mycroft * deallocate the fragment
1592 1.1 mycroft */
1593 1.1 mycroft frags = numfrags(fs, size);
1594 1.1 mycroft for (i = 0; i < frags; i++) {
1595 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1596 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1597 1.59 tsutsui ", fs = %s\n",
1598 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1599 1.1 mycroft panic("blkfree: freeing free frag");
1600 1.1 mycroft }
1601 1.62 fvdl setbit(blksfree, cgbno + i);
1602 1.1 mycroft }
1603 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1604 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1605 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1606 1.1 mycroft /*
1607 1.1 mycroft * add back in counts associated with the new frags
1608 1.1 mycroft */
1609 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1610 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1611 1.1 mycroft /*
1612 1.1 mycroft * if a complete block has been reassembled, account for it
1613 1.1 mycroft */
1614 1.60 fvdl fragno = fragstoblks(fs, bbase);
1615 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1616 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1617 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1618 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1619 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1620 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1621 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1622 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1623 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1624 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1625 1.73 dbj i = old_cbtocylno(fs, bbase);
1626 1.75 dbj KASSERT(i >= 0);
1627 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1628 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1629 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1630 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1631 1.73 dbj bbase)], 1, needswap);
1632 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1633 1.73 dbj }
1634 1.1 mycroft }
1635 1.1 mycroft }
1636 1.1 mycroft fs->fs_fmod = 1;
1637 1.76 hannken ACTIVECG_CLR(fs, cg);
1638 1.1 mycroft bdwrite(bp);
1639 1.1 mycroft }
1640 1.1 mycroft
1641 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1642 1.55 matt #ifdef XXXUBC
1643 1.18 fvdl /*
1644 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1645 1.18 fvdl * fragment is allocated, false if it is free.
1646 1.18 fvdl */
1647 1.18 fvdl static int
1648 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1649 1.18 fvdl {
1650 1.18 fvdl struct fs *fs;
1651 1.18 fvdl struct cg *cgp;
1652 1.18 fvdl struct buf *bp;
1653 1.18 fvdl int i, error, frags, free;
1654 1.18 fvdl
1655 1.18 fvdl fs = ip->i_fs;
1656 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1657 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1658 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1659 1.18 fvdl panic("checkblk: bad size");
1660 1.18 fvdl }
1661 1.60 fvdl if (bno >= fs->fs_size)
1662 1.18 fvdl panic("checkblk: bad block %d", bno);
1663 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1664 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1665 1.18 fvdl if (error) {
1666 1.18 fvdl brelse(bp);
1667 1.18 fvdl return 0;
1668 1.18 fvdl }
1669 1.18 fvdl cgp = (struct cg *)bp->b_data;
1670 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1671 1.18 fvdl brelse(bp);
1672 1.18 fvdl return 0;
1673 1.18 fvdl }
1674 1.18 fvdl bno = dtogd(fs, bno);
1675 1.18 fvdl if (size == fs->fs_bsize) {
1676 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1677 1.19 bouyer fragstoblks(fs, bno));
1678 1.18 fvdl } else {
1679 1.18 fvdl frags = numfrags(fs, size);
1680 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1681 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1682 1.18 fvdl free++;
1683 1.18 fvdl if (free != 0 && free != frags)
1684 1.18 fvdl panic("checkblk: partially free fragment");
1685 1.18 fvdl }
1686 1.18 fvdl brelse(bp);
1687 1.18 fvdl return (!free);
1688 1.18 fvdl }
1689 1.55 matt #endif /* XXXUBC */
1690 1.18 fvdl #endif /* DIAGNOSTIC */
1691 1.18 fvdl
1692 1.1 mycroft /*
1693 1.1 mycroft * Free an inode.
1694 1.30 fvdl */
1695 1.30 fvdl int
1696 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1697 1.30 fvdl {
1698 1.30 fvdl
1699 1.88 yamt if (DOINGSOFTDEP(vp)) {
1700 1.88 yamt softdep_freefile(vp, ino, mode);
1701 1.30 fvdl return (0);
1702 1.30 fvdl }
1703 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1704 1.30 fvdl }
1705 1.30 fvdl
1706 1.30 fvdl /*
1707 1.30 fvdl * Do the actual free operation.
1708 1.1 mycroft * The specified inode is placed back in the free map.
1709 1.1 mycroft */
1710 1.1 mycroft int
1711 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1712 1.9 christos {
1713 1.33 augustss struct cg *cgp;
1714 1.1 mycroft struct buf *bp;
1715 1.1 mycroft int error, cg;
1716 1.76 hannken daddr_t cgbno;
1717 1.62 fvdl u_int8_t *inosused;
1718 1.78 hannken dev_t dev;
1719 1.19 bouyer #ifdef FFS_EI
1720 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1721 1.19 bouyer #endif
1722 1.1 mycroft
1723 1.76 hannken cg = ino_to_cg(fs, ino);
1724 1.78 hannken if (devvp->v_type != VBLK) {
1725 1.78 hannken /* devvp is a snapshot */
1726 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1727 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1728 1.76 hannken } else {
1729 1.78 hannken dev = devvp->v_rdev;
1730 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1731 1.76 hannken }
1732 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1733 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1734 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
1735 1.78 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
1736 1.1 mycroft if (error) {
1737 1.1 mycroft brelse(bp);
1738 1.30 fvdl return (error);
1739 1.1 mycroft }
1740 1.1 mycroft cgp = (struct cg *)bp->b_data;
1741 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1742 1.1 mycroft brelse(bp);
1743 1.1 mycroft return (0);
1744 1.1 mycroft }
1745 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1746 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1747 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1748 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1749 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1750 1.1 mycroft ino %= fs->fs_ipg;
1751 1.62 fvdl if (isclr(inosused, ino)) {
1752 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1753 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
1754 1.86 christos fs->fs_fsmnt);
1755 1.1 mycroft if (fs->fs_ronly == 0)
1756 1.1 mycroft panic("ifree: freeing free inode");
1757 1.1 mycroft }
1758 1.62 fvdl clrbit(inosused, ino);
1759 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1760 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1761 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1762 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1763 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1764 1.78 hannken if ((mode & IFMT) == IFDIR) {
1765 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1766 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1767 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1768 1.1 mycroft }
1769 1.1 mycroft fs->fs_fmod = 1;
1770 1.82 hannken ACTIVECG_CLR(fs, cg);
1771 1.1 mycroft bdwrite(bp);
1772 1.1 mycroft return (0);
1773 1.1 mycroft }
1774 1.1 mycroft
1775 1.1 mycroft /*
1776 1.76 hannken * Check to see if a file is free.
1777 1.76 hannken */
1778 1.76 hannken int
1779 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1780 1.76 hannken {
1781 1.76 hannken struct cg *cgp;
1782 1.76 hannken struct buf *bp;
1783 1.76 hannken daddr_t cgbno;
1784 1.76 hannken int ret, cg;
1785 1.76 hannken u_int8_t *inosused;
1786 1.76 hannken
1787 1.76 hannken cg = ino_to_cg(fs, ino);
1788 1.77 hannken if (devvp->v_type != VBLK) {
1789 1.77 hannken /* devvp is a snapshot */
1790 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1791 1.77 hannken } else
1792 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1793 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1794 1.76 hannken return 1;
1795 1.76 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1796 1.76 hannken brelse(bp);
1797 1.76 hannken return 1;
1798 1.76 hannken }
1799 1.76 hannken cgp = (struct cg *)bp->b_data;
1800 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1801 1.76 hannken brelse(bp);
1802 1.76 hannken return 1;
1803 1.76 hannken }
1804 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1805 1.76 hannken ino %= fs->fs_ipg;
1806 1.76 hannken ret = isclr(inosused, ino);
1807 1.76 hannken brelse(bp);
1808 1.76 hannken return ret;
1809 1.76 hannken }
1810 1.76 hannken
1811 1.76 hannken /*
1812 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1813 1.1 mycroft *
1814 1.1 mycroft * It is a panic if a request is made to find a block if none are
1815 1.1 mycroft * available.
1816 1.1 mycroft */
1817 1.60 fvdl static int32_t
1818 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1819 1.1 mycroft {
1820 1.60 fvdl int32_t bno;
1821 1.1 mycroft int start, len, loc, i;
1822 1.1 mycroft int blk, field, subfield, pos;
1823 1.19 bouyer int ostart, olen;
1824 1.62 fvdl u_int8_t *blksfree;
1825 1.30 fvdl #ifdef FFS_EI
1826 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1827 1.30 fvdl #endif
1828 1.1 mycroft
1829 1.1 mycroft /*
1830 1.1 mycroft * find the fragment by searching through the free block
1831 1.1 mycroft * map for an appropriate bit pattern
1832 1.1 mycroft */
1833 1.1 mycroft if (bpref)
1834 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1835 1.1 mycroft else
1836 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1837 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1838 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1839 1.19 bouyer ostart = start;
1840 1.19 bouyer olen = len;
1841 1.45 lukem loc = scanc((u_int)len,
1842 1.62 fvdl (const u_char *)&blksfree[start],
1843 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1844 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1845 1.1 mycroft if (loc == 0) {
1846 1.1 mycroft len = start + 1;
1847 1.1 mycroft start = 0;
1848 1.45 lukem loc = scanc((u_int)len,
1849 1.62 fvdl (const u_char *)&blksfree[0],
1850 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1851 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1852 1.1 mycroft if (loc == 0) {
1853 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1854 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1855 1.20 ross printf("offset=%d %ld\n",
1856 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1857 1.62 fvdl (long)blksfree - (long)cgp);
1858 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1859 1.1 mycroft panic("ffs_alloccg: map corrupted");
1860 1.1 mycroft /* NOTREACHED */
1861 1.1 mycroft }
1862 1.1 mycroft }
1863 1.1 mycroft bno = (start + len - loc) * NBBY;
1864 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1865 1.1 mycroft /*
1866 1.1 mycroft * found the byte in the map
1867 1.1 mycroft * sift through the bits to find the selected frag
1868 1.1 mycroft */
1869 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1870 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1871 1.1 mycroft blk <<= 1;
1872 1.1 mycroft field = around[allocsiz];
1873 1.1 mycroft subfield = inside[allocsiz];
1874 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1875 1.1 mycroft if ((blk & field) == subfield)
1876 1.1 mycroft return (bno + pos);
1877 1.1 mycroft field <<= 1;
1878 1.1 mycroft subfield <<= 1;
1879 1.1 mycroft }
1880 1.1 mycroft }
1881 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1882 1.1 mycroft panic("ffs_alloccg: block not in map");
1883 1.58 fvdl /* return (-1); */
1884 1.1 mycroft }
1885 1.1 mycroft
1886 1.1 mycroft /*
1887 1.1 mycroft * Update the cluster map because of an allocation or free.
1888 1.1 mycroft *
1889 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1890 1.1 mycroft */
1891 1.9 christos void
1892 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1893 1.1 mycroft {
1894 1.4 cgd int32_t *sump;
1895 1.5 mycroft int32_t *lp;
1896 1.1 mycroft u_char *freemapp, *mapp;
1897 1.1 mycroft int i, start, end, forw, back, map, bit;
1898 1.30 fvdl #ifdef FFS_EI
1899 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1900 1.30 fvdl #endif
1901 1.1 mycroft
1902 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1903 1.1 mycroft return;
1904 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1905 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1906 1.1 mycroft /*
1907 1.1 mycroft * Allocate or clear the actual block.
1908 1.1 mycroft */
1909 1.1 mycroft if (cnt > 0)
1910 1.1 mycroft setbit(freemapp, blkno);
1911 1.1 mycroft else
1912 1.1 mycroft clrbit(freemapp, blkno);
1913 1.1 mycroft /*
1914 1.1 mycroft * Find the size of the cluster going forward.
1915 1.1 mycroft */
1916 1.1 mycroft start = blkno + 1;
1917 1.1 mycroft end = start + fs->fs_contigsumsize;
1918 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1919 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1920 1.1 mycroft mapp = &freemapp[start / NBBY];
1921 1.1 mycroft map = *mapp++;
1922 1.1 mycroft bit = 1 << (start % NBBY);
1923 1.1 mycroft for (i = start; i < end; i++) {
1924 1.1 mycroft if ((map & bit) == 0)
1925 1.1 mycroft break;
1926 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1927 1.1 mycroft bit <<= 1;
1928 1.1 mycroft } else {
1929 1.1 mycroft map = *mapp++;
1930 1.1 mycroft bit = 1;
1931 1.1 mycroft }
1932 1.1 mycroft }
1933 1.1 mycroft forw = i - start;
1934 1.1 mycroft /*
1935 1.1 mycroft * Find the size of the cluster going backward.
1936 1.1 mycroft */
1937 1.1 mycroft start = blkno - 1;
1938 1.1 mycroft end = start - fs->fs_contigsumsize;
1939 1.1 mycroft if (end < 0)
1940 1.1 mycroft end = -1;
1941 1.1 mycroft mapp = &freemapp[start / NBBY];
1942 1.1 mycroft map = *mapp--;
1943 1.1 mycroft bit = 1 << (start % NBBY);
1944 1.1 mycroft for (i = start; i > end; i--) {
1945 1.1 mycroft if ((map & bit) == 0)
1946 1.1 mycroft break;
1947 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1948 1.1 mycroft bit >>= 1;
1949 1.1 mycroft } else {
1950 1.1 mycroft map = *mapp--;
1951 1.1 mycroft bit = 1 << (NBBY - 1);
1952 1.1 mycroft }
1953 1.1 mycroft }
1954 1.1 mycroft back = start - i;
1955 1.1 mycroft /*
1956 1.1 mycroft * Account for old cluster and the possibly new forward and
1957 1.1 mycroft * back clusters.
1958 1.1 mycroft */
1959 1.1 mycroft i = back + forw + 1;
1960 1.1 mycroft if (i > fs->fs_contigsumsize)
1961 1.1 mycroft i = fs->fs_contigsumsize;
1962 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1963 1.1 mycroft if (back > 0)
1964 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1965 1.1 mycroft if (forw > 0)
1966 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1967 1.19 bouyer
1968 1.5 mycroft /*
1969 1.5 mycroft * Update cluster summary information.
1970 1.5 mycroft */
1971 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1972 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1973 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1974 1.5 mycroft break;
1975 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1976 1.1 mycroft }
1977 1.1 mycroft
1978 1.1 mycroft /*
1979 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1980 1.81 perry *
1981 1.1 mycroft * The form of the error message is:
1982 1.1 mycroft * fs: error message
1983 1.1 mycroft */
1984 1.1 mycroft static void
1985 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
1986 1.1 mycroft {
1987 1.1 mycroft
1988 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1989 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1990 1.1 mycroft }
1991