Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.98.2.6
      1  1.98.2.6        ad /*	$NetBSD: ffs_alloc.c,v 1.98.2.6 2007/08/20 21:28:24 ad Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4      1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5      1.60      fvdl  * All rights reserved.
      6      1.60      fvdl  *
      7      1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8      1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9      1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10      1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11      1.60      fvdl  * research program
     12      1.60      fvdl  *
     13       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15       1.1   mycroft  *
     16       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17       1.1   mycroft  * modification, are permitted provided that the following conditions
     18       1.1   mycroft  * are met:
     19       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24      1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26       1.1   mycroft  *    without specific prior written permission.
     27       1.1   mycroft  *
     28       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1   mycroft  * SUCH DAMAGE.
     39       1.1   mycroft  *
     40      1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41       1.1   mycroft  */
     42      1.53     lukem 
     43      1.53     lukem #include <sys/cdefs.h>
     44  1.98.2.6        ad __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.98.2.6 2007/08/20 21:28:24 ad Exp $");
     45      1.17       mrg 
     46      1.43       mrg #if defined(_KERNEL_OPT)
     47      1.27   thorpej #include "opt_ffs.h"
     48      1.21    scottr #include "opt_quota.h"
     49      1.22    scottr #endif
     50       1.1   mycroft 
     51       1.1   mycroft #include <sys/param.h>
     52       1.1   mycroft #include <sys/systm.h>
     53       1.1   mycroft #include <sys/buf.h>
     54       1.1   mycroft #include <sys/proc.h>
     55       1.1   mycroft #include <sys/vnode.h>
     56       1.1   mycroft #include <sys/mount.h>
     57       1.1   mycroft #include <sys/kernel.h>
     58       1.1   mycroft #include <sys/syslog.h>
     59      1.91      elad #include <sys/kauth.h>
     60      1.29       mrg 
     61      1.76   hannken #include <miscfs/specfs/specdev.h>
     62       1.1   mycroft #include <ufs/ufs/quota.h>
     63      1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64       1.1   mycroft #include <ufs/ufs/inode.h>
     65       1.9  christos #include <ufs/ufs/ufs_extern.h>
     66      1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67       1.1   mycroft 
     68       1.1   mycroft #include <ufs/ffs/fs.h>
     69       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70       1.1   mycroft 
     71      1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72      1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73      1.55      matt #ifdef XXXUBC
     74      1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75      1.55      matt #endif
     76      1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77      1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78      1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79      1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80      1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81      1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82      1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83      1.85   thorpej 				      daddr_t, int);
     84      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85      1.55      matt #ifdef XXXUBC
     86      1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87      1.18      fvdl #endif
     88      1.55      matt #endif
     89      1.23  drochner 
     90      1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91      1.34  jdolecek int ffs_log_changeopt = 0;
     92      1.34  jdolecek 
     93      1.23  drochner /* in ffs_tables.c */
     94      1.40  jdolecek extern const int inside[], around[];
     95      1.40  jdolecek extern const u_char * const fragtbl[];
     96       1.1   mycroft 
     97       1.1   mycroft /*
     98       1.1   mycroft  * Allocate a block in the file system.
     99      1.81     perry  *
    100       1.1   mycroft  * The size of the requested block is given, which must be some
    101       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102       1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103       1.1   mycroft  * the following hierarchy is used to allocate a block:
    104       1.1   mycroft  *   1) allocate the requested block.
    105       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106       1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108       1.1   mycroft  *      available block is located.
    109      1.47       wiz  * If no block preference is given the following hierarchy is used
    110       1.1   mycroft  * to allocate a block:
    111       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112       1.1   mycroft  *      inode for the file.
    113       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114       1.1   mycroft  *      available block is located.
    115       1.1   mycroft  */
    116       1.9  christos int
    117      1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    118      1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    119       1.1   mycroft {
    120  1.98.2.2        ad 	struct ufsmount *ump;
    121      1.62      fvdl 	struct fs *fs;
    122      1.58      fvdl 	daddr_t bno;
    123       1.9  christos 	int cg;
    124       1.9  christos #ifdef QUOTA
    125       1.9  christos 	int error;
    126       1.9  christos #endif
    127      1.81     perry 
    128      1.62      fvdl 	fs = ip->i_fs;
    129  1.98.2.2        ad 	ump = ip->i_ump;
    130  1.98.2.2        ad 
    131  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
    132      1.62      fvdl 
    133      1.37       chs #ifdef UVM_PAGE_TRKOWN
    134      1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    135      1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    136      1.37       chs 		struct vm_page *pg;
    137      1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    138      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    139      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    140      1.37       chs 
    141  1.98.2.1        ad 		mutex_enter(&uobj->vmobjlock);
    142      1.37       chs 		while (off < endoff) {
    143      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    144      1.37       chs 			KASSERT(pg != NULL);
    145      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    146      1.37       chs 			off += PAGE_SIZE;
    147      1.37       chs 		}
    148  1.98.2.1        ad 		mutex_exit(&uobj->vmobjlock);
    149      1.37       chs 	}
    150      1.37       chs #endif
    151      1.37       chs 
    152       1.1   mycroft 	*bnp = 0;
    153       1.1   mycroft #ifdef DIAGNOSTIC
    154       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    155      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    156       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    157       1.1   mycroft 		panic("ffs_alloc: bad size");
    158       1.1   mycroft 	}
    159       1.1   mycroft 	if (cred == NOCRED)
    160      1.56    provos 		panic("ffs_alloc: missing credential");
    161       1.1   mycroft #endif /* DIAGNOSTIC */
    162       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    163       1.1   mycroft 		goto nospace;
    164  1.98.2.6        ad 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    165  1.98.2.6        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    166       1.1   mycroft 		goto nospace;
    167       1.1   mycroft #ifdef QUOTA
    168  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
    169      1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    170       1.1   mycroft 		return (error);
    171  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
    172       1.1   mycroft #endif
    173       1.1   mycroft 	if (bpref >= fs->fs_size)
    174       1.1   mycroft 		bpref = 0;
    175       1.1   mycroft 	if (bpref == 0)
    176       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    177       1.1   mycroft 	else
    178       1.1   mycroft 		cg = dtog(fs, bpref);
    179      1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    180       1.1   mycroft 	if (bno > 0) {
    181      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    182       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    183       1.1   mycroft 		*bnp = bno;
    184       1.1   mycroft 		return (0);
    185       1.1   mycroft 	}
    186       1.1   mycroft #ifdef QUOTA
    187       1.1   mycroft 	/*
    188       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    189       1.1   mycroft 	 */
    190      1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    191       1.1   mycroft #endif
    192       1.1   mycroft nospace:
    193  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
    194      1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    195       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    196       1.1   mycroft 	return (ENOSPC);
    197       1.1   mycroft }
    198       1.1   mycroft 
    199       1.1   mycroft /*
    200       1.1   mycroft  * Reallocate a fragment to a bigger size
    201       1.1   mycroft  *
    202       1.1   mycroft  * The number and size of the old block is given, and a preference
    203       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    204       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    205       1.1   mycroft  * invoked to get an appropriate block.
    206       1.1   mycroft  */
    207       1.9  christos int
    208      1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    209      1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    210       1.1   mycroft {
    211  1.98.2.2        ad 	struct ufsmount *ump;
    212      1.62      fvdl 	struct fs *fs;
    213       1.1   mycroft 	struct buf *bp;
    214       1.1   mycroft 	int cg, request, error;
    215      1.58      fvdl 	daddr_t bprev, bno;
    216      1.25   thorpej 
    217      1.62      fvdl 	fs = ip->i_fs;
    218  1.98.2.2        ad 	ump = ip->i_ump;
    219  1.98.2.2        ad 
    220  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
    221  1.98.2.2        ad 
    222      1.37       chs #ifdef UVM_PAGE_TRKOWN
    223      1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    224      1.37       chs 		struct vm_page *pg;
    225      1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    226      1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    227      1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    228      1.37       chs 
    229  1.98.2.1        ad 		mutex_enter(&uobj->vmobjlock);
    230      1.37       chs 		while (off < endoff) {
    231      1.37       chs 			pg = uvm_pagelookup(uobj, off);
    232      1.37       chs 			KASSERT(pg != NULL);
    233      1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    234      1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    235      1.37       chs 			off += PAGE_SIZE;
    236      1.37       chs 		}
    237  1.98.2.1        ad 		mutex_exit(&uobj->vmobjlock);
    238      1.37       chs 	}
    239      1.37       chs #endif
    240      1.37       chs 
    241       1.1   mycroft #ifdef DIAGNOSTIC
    242       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    243       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    244      1.13  christos 		printf(
    245       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    246       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    247       1.1   mycroft 		panic("ffs_realloccg: bad size");
    248       1.1   mycroft 	}
    249       1.1   mycroft 	if (cred == NOCRED)
    250      1.56    provos 		panic("ffs_realloccg: missing credential");
    251       1.1   mycroft #endif /* DIAGNOSTIC */
    252  1.98.2.6        ad 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    253  1.98.2.6        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    254  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
    255       1.1   mycroft 		goto nospace;
    256  1.98.2.2        ad 	}
    257      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    258      1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    259      1.60      fvdl 	else
    260      1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    261      1.60      fvdl 
    262      1.60      fvdl 	if (bprev == 0) {
    263      1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    264      1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    265       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    266       1.1   mycroft 	}
    267  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
    268  1.98.2.2        ad 
    269       1.1   mycroft 	/*
    270       1.1   mycroft 	 * Allocate the extra space in the buffer.
    271       1.1   mycroft 	 */
    272      1.37       chs 	if (bpp != NULL &&
    273      1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    274  1.98.2.4        ad 		brelse(bp, 0);
    275       1.1   mycroft 		return (error);
    276       1.1   mycroft 	}
    277       1.1   mycroft #ifdef QUOTA
    278      1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    279      1.44       chs 		if (bpp != NULL) {
    280  1.98.2.4        ad 			brelse(bp, 0);
    281      1.44       chs 		}
    282       1.1   mycroft 		return (error);
    283       1.1   mycroft 	}
    284       1.1   mycroft #endif
    285       1.1   mycroft 	/*
    286       1.1   mycroft 	 * Check for extension in the existing location.
    287       1.1   mycroft 	 */
    288       1.1   mycroft 	cg = dtog(fs, bprev);
    289  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
    290      1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    291      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    292       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    293      1.37       chs 
    294      1.37       chs 		if (bpp != NULL) {
    295      1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    296      1.37       chs 				panic("bad blockno");
    297      1.72        pk 			allocbuf(bp, nsize, 1);
    298      1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    299  1.98.2.4        ad 			mutex_enter(&bp->b_interlock);
    300  1.98.2.4        ad 			bp->b_flags |= B_DONE;
    301  1.98.2.4        ad 			mutex_exit(&bp->b_interlock);
    302      1.37       chs 			*bpp = bp;
    303      1.37       chs 		}
    304      1.37       chs 		if (blknop != NULL) {
    305      1.37       chs 			*blknop = bno;
    306      1.37       chs 		}
    307       1.1   mycroft 		return (0);
    308       1.1   mycroft 	}
    309       1.1   mycroft 	/*
    310       1.1   mycroft 	 * Allocate a new disk location.
    311       1.1   mycroft 	 */
    312       1.1   mycroft 	if (bpref >= fs->fs_size)
    313       1.1   mycroft 		bpref = 0;
    314       1.1   mycroft 	switch ((int)fs->fs_optim) {
    315       1.1   mycroft 	case FS_OPTSPACE:
    316       1.1   mycroft 		/*
    317      1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    318      1.81     perry 		 * best use of space, we will waste time relocating it if
    319       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    320       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    321       1.1   mycroft 		 * to begin optimizing for time.
    322       1.1   mycroft 		 */
    323       1.1   mycroft 		request = nsize;
    324       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    325       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    326       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    327       1.1   mycroft 			break;
    328      1.34  jdolecek 
    329      1.34  jdolecek 		if (ffs_log_changeopt) {
    330      1.34  jdolecek 			log(LOG_NOTICE,
    331      1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    332      1.34  jdolecek 				fs->fs_fsmnt);
    333      1.34  jdolecek 		}
    334      1.34  jdolecek 
    335       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    336       1.1   mycroft 		break;
    337       1.1   mycroft 	case FS_OPTTIME:
    338       1.1   mycroft 		/*
    339       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    340       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    341       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    342       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    343       1.1   mycroft 		 * above will be able to grow it in place without further
    344       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    345       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    346       1.1   mycroft 		 * optimizing for space.
    347       1.1   mycroft 		 */
    348       1.1   mycroft 		request = fs->fs_bsize;
    349       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    350       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    351       1.1   mycroft 			break;
    352      1.34  jdolecek 
    353      1.34  jdolecek 		if (ffs_log_changeopt) {
    354      1.34  jdolecek 			log(LOG_NOTICE,
    355      1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    356      1.34  jdolecek 				fs->fs_fsmnt);
    357      1.34  jdolecek 		}
    358      1.34  jdolecek 
    359       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    360       1.1   mycroft 		break;
    361       1.1   mycroft 	default:
    362      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    363       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    364       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    365       1.1   mycroft 		/* NOTREACHED */
    366       1.1   mycroft 	}
    367      1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    368       1.1   mycroft 	if (bno > 0) {
    369      1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    370      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    371      1.76   hannken 			    ip->i_number);
    372       1.1   mycroft 		if (nsize < request)
    373      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    374      1.76   hannken 			    (long)(request - nsize), ip->i_number);
    375      1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    376       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    377      1.37       chs 		if (bpp != NULL) {
    378      1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    379      1.72        pk 			allocbuf(bp, nsize, 1);
    380      1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    381  1.98.2.4        ad 			mutex_enter(&bp->b_interlock);
    382  1.98.2.4        ad 			bp->b_flags |= B_DONE;
    383  1.98.2.4        ad 			mutex_exit(&bp->b_interlock);
    384      1.37       chs 			*bpp = bp;
    385      1.37       chs 		}
    386      1.37       chs 		if (blknop != NULL) {
    387      1.37       chs 			*blknop = bno;
    388      1.37       chs 		}
    389       1.1   mycroft 		return (0);
    390       1.1   mycroft 	}
    391  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
    392  1.98.2.2        ad 
    393       1.1   mycroft #ifdef QUOTA
    394       1.1   mycroft 	/*
    395       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    396       1.1   mycroft 	 */
    397      1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    398       1.1   mycroft #endif
    399      1.37       chs 	if (bpp != NULL) {
    400  1.98.2.4        ad 		brelse(bp, 0);
    401      1.37       chs 	}
    402      1.37       chs 
    403       1.1   mycroft nospace:
    404       1.1   mycroft 	/*
    405       1.1   mycroft 	 * no space available
    406       1.1   mycroft 	 */
    407      1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    408       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    409       1.1   mycroft 	return (ENOSPC);
    410       1.1   mycroft }
    411       1.1   mycroft 
    412      1.88      yamt #if 0
    413       1.1   mycroft /*
    414       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    415       1.1   mycroft  *
    416       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    417       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    418      1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    419      1.60      fvdl  * from the end of the allocation for the logical block immediately
    420      1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    421      1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    422      1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    423      1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    424      1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    425      1.60      fvdl  * allocation will be used.
    426      1.60      fvdl 
    427       1.1   mycroft  */
    428      1.55      matt #ifdef XXXUBC
    429       1.3   mycroft #ifdef DEBUG
    430       1.1   mycroft #include <sys/sysctl.h>
    431       1.5   mycroft int prtrealloc = 0;
    432       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    433       1.1   mycroft #endif
    434      1.55      matt #endif
    435       1.1   mycroft 
    436      1.60      fvdl /*
    437      1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    438      1.60      fvdl  */
    439      1.60      fvdl 
    440      1.18      fvdl int doasyncfree = 1;
    441      1.18      fvdl 
    442       1.1   mycroft int
    443      1.85   thorpej ffs_reallocblks(void *v)
    444       1.9  christos {
    445      1.55      matt #ifdef XXXUBC
    446       1.1   mycroft 	struct vop_reallocblks_args /* {
    447       1.1   mycroft 		struct vnode *a_vp;
    448       1.1   mycroft 		struct cluster_save *a_buflist;
    449       1.9  christos 	} */ *ap = v;
    450       1.1   mycroft 	struct fs *fs;
    451       1.1   mycroft 	struct inode *ip;
    452       1.1   mycroft 	struct vnode *vp;
    453       1.1   mycroft 	struct buf *sbp, *ebp;
    454      1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    455       1.1   mycroft 	struct cluster_save *buflist;
    456      1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    457       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    458       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    459  1.98.2.2        ad 	struct ufsmount *ump;
    460      1.55      matt #endif /* XXXUBC */
    461       1.1   mycroft 
    462      1.37       chs 	/* XXXUBC don't reallocblks for now */
    463      1.37       chs 	return ENOSPC;
    464      1.37       chs 
    465      1.55      matt #ifdef XXXUBC
    466       1.1   mycroft 	vp = ap->a_vp;
    467       1.1   mycroft 	ip = VTOI(vp);
    468       1.1   mycroft 	fs = ip->i_fs;
    469  1.98.2.2        ad 	ump = ip->i_ump;
    470       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    471       1.1   mycroft 		return (ENOSPC);
    472       1.1   mycroft 	buflist = ap->a_buflist;
    473       1.1   mycroft 	len = buflist->bs_nchildren;
    474       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    475       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    476       1.1   mycroft #ifdef DIAGNOSTIC
    477      1.18      fvdl 	for (i = 0; i < len; i++)
    478      1.18      fvdl 		if (!ffs_checkblk(ip,
    479      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    480      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    481       1.1   mycroft 	for (i = 1; i < len; i++)
    482       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    483      1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    484      1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    485      1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    486      1.18      fvdl 	for (i = 1; i < len - 1; i++)
    487      1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    488      1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    489       1.1   mycroft #endif
    490       1.1   mycroft 	/*
    491       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    492       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    493       1.1   mycroft 	 * the previous cylinder group.
    494       1.1   mycroft 	 */
    495       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    496       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    497       1.1   mycroft 		return (ENOSPC);
    498       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    499       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    500       1.1   mycroft 		return (ENOSPC);
    501       1.1   mycroft 	/*
    502       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    503       1.1   mycroft 	 */
    504       1.1   mycroft 	if (start_lvl == 0) {
    505      1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    506       1.1   mycroft 		soff = start_lbn;
    507       1.1   mycroft 	} else {
    508       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    509       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    510  1.98.2.4        ad 			brelse(sbp, 0);
    511       1.1   mycroft 			return (ENOSPC);
    512       1.1   mycroft 		}
    513      1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    514       1.1   mycroft 		soff = idp->in_off;
    515       1.1   mycroft 	}
    516       1.1   mycroft 	/*
    517       1.1   mycroft 	 * Find the preferred location for the cluster.
    518       1.1   mycroft 	 */
    519  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
    520       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    521       1.1   mycroft 	/*
    522       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    523       1.1   mycroft 	 */
    524       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    525       1.1   mycroft 		ssize = len;
    526       1.1   mycroft 	} else {
    527       1.1   mycroft #ifdef DIAGNOSTIC
    528       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    529       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    530       1.1   mycroft #endif
    531       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    532       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    533       1.1   mycroft 			goto fail;
    534      1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    535       1.1   mycroft 	}
    536       1.1   mycroft 	/*
    537       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    538       1.1   mycroft 	 */
    539      1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    540  1.98.2.2        ad 	    len, ffs_clusteralloc)) == 0) {
    541  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
    542       1.1   mycroft 		goto fail;
    543  1.98.2.2        ad 	}
    544       1.1   mycroft 	/*
    545       1.1   mycroft 	 * We have found a new contiguous block.
    546       1.1   mycroft 	 *
    547       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    548       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    549       1.1   mycroft 	 * with the file.
    550       1.1   mycroft 	 */
    551       1.5   mycroft #ifdef DEBUG
    552       1.5   mycroft 	if (prtrealloc)
    553      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    554       1.5   mycroft 		    start_lbn, end_lbn);
    555       1.5   mycroft #endif
    556       1.1   mycroft 	blkno = newblk;
    557       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    558      1.58      fvdl 		daddr_t ba;
    559      1.30      fvdl 
    560      1.30      fvdl 		if (i == ssize) {
    561       1.1   mycroft 			bap = ebap;
    562      1.30      fvdl 			soff = -i;
    563      1.30      fvdl 		}
    564      1.58      fvdl 		/* XXX ondisk32 */
    565      1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    566       1.1   mycroft #ifdef DIAGNOSTIC
    567      1.18      fvdl 		if (!ffs_checkblk(ip,
    568      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    569      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    570      1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    571       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    572       1.1   mycroft #endif
    573       1.5   mycroft #ifdef DEBUG
    574       1.5   mycroft 		if (prtrealloc)
    575      1.30      fvdl 			printf(" %d,", ba);
    576       1.5   mycroft #endif
    577      1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    578      1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    579      1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    580      1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    581      1.30      fvdl  				    buflist->bs_children[i]);
    582      1.30      fvdl  			else
    583      1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    584      1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    585      1.30      fvdl  				    ba, buflist->bs_children[i]);
    586      1.30      fvdl  		}
    587      1.58      fvdl 		/* XXX ondisk32 */
    588      1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    589       1.1   mycroft 	}
    590       1.1   mycroft 	/*
    591       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    592       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    593       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    594      1.81     perry 	 * they are almost never written, but if we are concerned about
    595       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    596       1.1   mycroft 	 *
    597       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    598       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    599       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    600       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    601       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    602       1.1   mycroft 	 * synchronous write only when it has been cleared.
    603       1.1   mycroft 	 */
    604      1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    605       1.1   mycroft 		if (doasyncfree)
    606       1.1   mycroft 			bdwrite(sbp);
    607       1.1   mycroft 		else
    608       1.1   mycroft 			bwrite(sbp);
    609       1.1   mycroft 	} else {
    610       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    611      1.28   mycroft 		if (!doasyncfree)
    612      1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    613       1.1   mycroft 	}
    614      1.25   thorpej 	if (ssize < len) {
    615       1.1   mycroft 		if (doasyncfree)
    616       1.1   mycroft 			bdwrite(ebp);
    617       1.1   mycroft 		else
    618       1.1   mycroft 			bwrite(ebp);
    619      1.25   thorpej 	}
    620       1.1   mycroft 	/*
    621       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    622       1.1   mycroft 	 */
    623       1.5   mycroft #ifdef DEBUG
    624       1.5   mycroft 	if (prtrealloc)
    625      1.13  christos 		printf("\n\tnew:");
    626       1.5   mycroft #endif
    627       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    628      1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    629      1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    630      1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    631      1.76   hannken 			    fs->fs_bsize, ip->i_number);
    632       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    633       1.5   mycroft #ifdef DEBUG
    634      1.18      fvdl 		if (!ffs_checkblk(ip,
    635      1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    636      1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    637       1.5   mycroft 		if (prtrealloc)
    638      1.13  christos 			printf(" %d,", blkno);
    639       1.5   mycroft #endif
    640       1.5   mycroft 	}
    641       1.5   mycroft #ifdef DEBUG
    642       1.5   mycroft 	if (prtrealloc) {
    643       1.5   mycroft 		prtrealloc--;
    644      1.13  christos 		printf("\n");
    645       1.1   mycroft 	}
    646       1.5   mycroft #endif
    647       1.1   mycroft 	return (0);
    648       1.1   mycroft 
    649       1.1   mycroft fail:
    650       1.1   mycroft 	if (ssize < len)
    651  1.98.2.4        ad 		brelse(ebp, 0);
    652      1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    653  1.98.2.4        ad 		brelse(sbp, 0);
    654       1.1   mycroft 	return (ENOSPC);
    655      1.55      matt #endif /* XXXUBC */
    656       1.1   mycroft }
    657      1.88      yamt #endif /* 0 */
    658       1.1   mycroft 
    659       1.1   mycroft /*
    660       1.1   mycroft  * Allocate an inode in the file system.
    661      1.81     perry  *
    662       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    663       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    664       1.1   mycroft  *   1) allocate the preferred inode.
    665       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    666       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    667       1.1   mycroft  *      available inode is located.
    668      1.47       wiz  * If no inode preference is given the following hierarchy is used
    669       1.1   mycroft  * to allocate an inode:
    670       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    671       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    672       1.1   mycroft  *      available inode is located.
    673       1.1   mycroft  */
    674       1.9  christos int
    675      1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    676      1.88      yamt     struct vnode **vpp)
    677       1.9  christos {
    678  1.98.2.2        ad 	struct ufsmount *ump;
    679      1.33  augustss 	struct inode *pip;
    680      1.33  augustss 	struct fs *fs;
    681      1.33  augustss 	struct inode *ip;
    682      1.60      fvdl 	struct timespec ts;
    683       1.1   mycroft 	ino_t ino, ipref;
    684       1.1   mycroft 	int cg, error;
    685      1.81     perry 
    686      1.88      yamt 	*vpp = NULL;
    687       1.1   mycroft 	pip = VTOI(pvp);
    688       1.1   mycroft 	fs = pip->i_fs;
    689  1.98.2.2        ad 	ump = pip->i_ump;
    690  1.98.2.2        ad 
    691  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
    692       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    693       1.1   mycroft 		goto noinodes;
    694       1.1   mycroft 
    695       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    696      1.50     lukem 		ipref = ffs_dirpref(pip);
    697      1.50     lukem 	else
    698      1.50     lukem 		ipref = pip->i_number;
    699       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    700       1.1   mycroft 		ipref = 0;
    701       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    702      1.50     lukem 	/*
    703      1.50     lukem 	 * Track number of dirs created one after another
    704      1.50     lukem 	 * in a same cg without intervening by files.
    705      1.50     lukem 	 */
    706      1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    707      1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    708      1.50     lukem 			fs->fs_contigdirs[cg]++;
    709      1.50     lukem 	} else {
    710      1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    711      1.50     lukem 			fs->fs_contigdirs[cg]--;
    712      1.50     lukem 	}
    713      1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    714       1.1   mycroft 	if (ino == 0)
    715       1.1   mycroft 		goto noinodes;
    716      1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    717       1.1   mycroft 	if (error) {
    718      1.88      yamt 		ffs_vfree(pvp, ino, mode);
    719       1.1   mycroft 		return (error);
    720       1.1   mycroft 	}
    721      1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    722      1.88      yamt 	ip = VTOI(*vpp);
    723      1.60      fvdl 	if (ip->i_mode) {
    724      1.60      fvdl #if 0
    725      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    726      1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    727      1.60      fvdl #else
    728      1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    729      1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    730      1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    731      1.60      fvdl 		printf("size %llx blocks %llx\n",
    732      1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    733      1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    734      1.86  christos 		    (unsigned long long)ipref);
    735      1.60      fvdl #if 0
    736      1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    737      1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    738      1.60      fvdl #endif
    739      1.60      fvdl 
    740      1.60      fvdl #endif
    741       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    742       1.1   mycroft 	}
    743      1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    744      1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    745      1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    746      1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    747       1.1   mycroft 	}
    748      1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    749      1.61      fvdl 	ip->i_flags = 0;
    750      1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    751       1.1   mycroft 	/*
    752       1.1   mycroft 	 * Set up a new generation number for this inode.
    753       1.1   mycroft 	 */
    754      1.60      fvdl 	ip->i_gen++;
    755      1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    756      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    757      1.93      yamt 		vfs_timestamp(&ts);
    758      1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    759      1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    760      1.60      fvdl 	}
    761       1.1   mycroft 	return (0);
    762       1.1   mycroft noinodes:
    763  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
    764      1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    765       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    766       1.1   mycroft 	return (ENOSPC);
    767       1.1   mycroft }
    768       1.1   mycroft 
    769       1.1   mycroft /*
    770      1.50     lukem  * Find a cylinder group in which to place a directory.
    771      1.42  sommerfe  *
    772      1.50     lukem  * The policy implemented by this algorithm is to allocate a
    773      1.50     lukem  * directory inode in the same cylinder group as its parent
    774      1.50     lukem  * directory, but also to reserve space for its files inodes
    775      1.50     lukem  * and data. Restrict the number of directories which may be
    776      1.50     lukem  * allocated one after another in the same cylinder group
    777      1.50     lukem  * without intervening allocation of files.
    778      1.42  sommerfe  *
    779      1.50     lukem  * If we allocate a first level directory then force allocation
    780      1.50     lukem  * in another cylinder group.
    781       1.1   mycroft  */
    782       1.1   mycroft static ino_t
    783      1.85   thorpej ffs_dirpref(struct inode *pip)
    784       1.1   mycroft {
    785      1.50     lukem 	register struct fs *fs;
    786      1.74     soren 	int cg, prefcg;
    787      1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    788      1.89       dsl 	int avgifree, avgbfree, avgndir;
    789      1.50     lukem 	int minifree, minbfree, maxndir;
    790      1.50     lukem 	int mincg, minndir;
    791      1.50     lukem 	int maxcontigdirs;
    792      1.50     lukem 
    793  1.98.2.2        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    794  1.98.2.2        ad 
    795      1.50     lukem 	fs = pip->i_fs;
    796       1.1   mycroft 
    797       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    798      1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    799      1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    800      1.50     lukem 
    801      1.50     lukem 	/*
    802      1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    803      1.50     lukem 	 */
    804  1.98.2.5        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    805      1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    806      1.50     lukem 		mincg = prefcg;
    807      1.50     lukem 		minndir = fs->fs_ipg;
    808      1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    809      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    810      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    811      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    812      1.42  sommerfe 				mincg = cg;
    813      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    814      1.42  sommerfe 			}
    815      1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    816      1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    817      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    818      1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    819      1.50     lukem 				mincg = cg;
    820      1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    821      1.42  sommerfe 			}
    822      1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    823      1.42  sommerfe 	}
    824      1.50     lukem 
    825      1.50     lukem 	/*
    826      1.50     lukem 	 * Count various limits which used for
    827      1.50     lukem 	 * optimal allocation of a directory inode.
    828      1.50     lukem 	 */
    829      1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    830      1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    831      1.50     lukem 	if (minifree < 0)
    832      1.50     lukem 		minifree = 0;
    833      1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    834      1.50     lukem 	if (minbfree < 0)
    835      1.50     lukem 		minbfree = 0;
    836      1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    837      1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    838      1.89       dsl 	if (avgndir != 0) {
    839      1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    840      1.89       dsl 		if (dirsize < curdsz)
    841      1.89       dsl 			dirsize = curdsz;
    842      1.89       dsl 	}
    843      1.89       dsl 	if (cgsize < dirsize * 255)
    844      1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    845      1.89       dsl 	else
    846      1.89       dsl 		maxcontigdirs = 255;
    847      1.50     lukem 	if (fs->fs_avgfpdir > 0)
    848      1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    849      1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    850      1.50     lukem 	if (maxcontigdirs == 0)
    851      1.50     lukem 		maxcontigdirs = 1;
    852      1.50     lukem 
    853      1.50     lukem 	/*
    854      1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    855      1.50     lukem 	 * regular files, but only if we have no deficit in
    856      1.50     lukem 	 * inodes or space.
    857      1.50     lukem 	 */
    858      1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    859      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    860      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    861      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    862      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    863      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    864      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    865      1.50     lukem 		}
    866      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    867      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    868      1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    869      1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    870      1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    871      1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    872      1.50     lukem 		}
    873      1.50     lukem 	/*
    874      1.50     lukem 	 * This is a backstop when we are deficient in space.
    875      1.50     lukem 	 */
    876      1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    877      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    878      1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    879      1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    880      1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    881      1.50     lukem 			break;
    882      1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    883       1.1   mycroft }
    884       1.1   mycroft 
    885       1.1   mycroft /*
    886       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    887       1.1   mycroft  * logically divided into sections. The first section is composed of the
    888       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    889      1.81     perry  *
    890       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    891       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    892       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    893       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    894       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    895       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    896       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    897       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    898       1.1   mycroft  * continues until a cylinder group with greater than the average number
    899       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    900       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    901       1.1   mycroft  * here a best guess is made based upon the logical block number being
    902       1.1   mycroft  * allocated.
    903      1.81     perry  *
    904       1.1   mycroft  * If a section is already partially allocated, the policy is to
    905       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    906      1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    907      1.60      fvdl  * contigously if possible.
    908       1.1   mycroft  */
    909      1.58      fvdl daddr_t
    910      1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    911      1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    912       1.1   mycroft {
    913      1.33  augustss 	struct fs *fs;
    914      1.33  augustss 	int cg;
    915       1.1   mycroft 	int avgbfree, startcg;
    916       1.1   mycroft 
    917  1.98.2.2        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    918  1.98.2.2        ad 
    919       1.1   mycroft 	fs = ip->i_fs;
    920       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    921      1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    922       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    923       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    924       1.1   mycroft 		}
    925       1.1   mycroft 		/*
    926       1.1   mycroft 		 * Find a cylinder with greater than average number of
    927       1.1   mycroft 		 * unused data blocks.
    928       1.1   mycroft 		 */
    929       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    930       1.1   mycroft 			startcg =
    931       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    932       1.1   mycroft 		else
    933      1.19    bouyer 			startcg = dtog(fs,
    934      1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    935       1.1   mycroft 		startcg %= fs->fs_ncg;
    936       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    937       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    938       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    939       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    940       1.1   mycroft 			}
    941      1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    942       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    943       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    944       1.1   mycroft 			}
    945      1.35   thorpej 		return (0);
    946       1.1   mycroft 	}
    947       1.1   mycroft 	/*
    948      1.60      fvdl 	 * We just always try to lay things out contiguously.
    949      1.60      fvdl 	 */
    950      1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    951      1.60      fvdl }
    952      1.60      fvdl 
    953      1.60      fvdl daddr_t
    954      1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    955      1.60      fvdl {
    956      1.60      fvdl 	struct fs *fs;
    957      1.60      fvdl 	int cg;
    958      1.60      fvdl 	int avgbfree, startcg;
    959      1.60      fvdl 
    960  1.98.2.2        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    961  1.98.2.2        ad 
    962      1.60      fvdl 	fs = ip->i_fs;
    963      1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    964      1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    965      1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    966      1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    967      1.60      fvdl 		}
    968       1.1   mycroft 		/*
    969      1.60      fvdl 		 * Find a cylinder with greater than average number of
    970      1.60      fvdl 		 * unused data blocks.
    971       1.1   mycroft 		 */
    972      1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    973      1.60      fvdl 			startcg =
    974      1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    975      1.60      fvdl 		else
    976      1.60      fvdl 			startcg = dtog(fs,
    977      1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    978      1.60      fvdl 		startcg %= fs->fs_ncg;
    979      1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    980      1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    981      1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    982      1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    983      1.60      fvdl 			}
    984      1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    985      1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    986      1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    987      1.60      fvdl 			}
    988      1.60      fvdl 		return (0);
    989      1.60      fvdl 	}
    990      1.60      fvdl 	/*
    991      1.60      fvdl 	 * We just always try to lay things out contiguously.
    992      1.60      fvdl 	 */
    993      1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    994       1.1   mycroft }
    995       1.1   mycroft 
    996      1.60      fvdl 
    997       1.1   mycroft /*
    998       1.1   mycroft  * Implement the cylinder overflow algorithm.
    999       1.1   mycroft  *
   1000       1.1   mycroft  * The policy implemented by this algorithm is:
   1001       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1002       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1003       1.1   mycroft  *   3) brute force search for a free block.
   1004       1.1   mycroft  */
   1005       1.1   mycroft /*VARARGS5*/
   1006      1.58      fvdl static daddr_t
   1007      1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1008      1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1009      1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1010       1.1   mycroft {
   1011      1.33  augustss 	struct fs *fs;
   1012      1.58      fvdl 	daddr_t result;
   1013       1.1   mycroft 	int i, icg = cg;
   1014       1.1   mycroft 
   1015       1.1   mycroft 	fs = ip->i_fs;
   1016       1.1   mycroft 	/*
   1017       1.1   mycroft 	 * 1: preferred cylinder group
   1018       1.1   mycroft 	 */
   1019       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1020       1.1   mycroft 	if (result)
   1021       1.1   mycroft 		return (result);
   1022       1.1   mycroft 	/*
   1023       1.1   mycroft 	 * 2: quadratic rehash
   1024       1.1   mycroft 	 */
   1025       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1026       1.1   mycroft 		cg += i;
   1027       1.1   mycroft 		if (cg >= fs->fs_ncg)
   1028       1.1   mycroft 			cg -= fs->fs_ncg;
   1029       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1030       1.1   mycroft 		if (result)
   1031       1.1   mycroft 			return (result);
   1032       1.1   mycroft 	}
   1033       1.1   mycroft 	/*
   1034       1.1   mycroft 	 * 3: brute force search
   1035       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1036       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1037       1.1   mycroft 	 */
   1038       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1039       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1040       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1041       1.1   mycroft 		if (result)
   1042       1.1   mycroft 			return (result);
   1043       1.1   mycroft 		cg++;
   1044       1.1   mycroft 		if (cg == fs->fs_ncg)
   1045       1.1   mycroft 			cg = 0;
   1046       1.1   mycroft 	}
   1047      1.35   thorpej 	return (0);
   1048       1.1   mycroft }
   1049       1.1   mycroft 
   1050       1.1   mycroft /*
   1051       1.1   mycroft  * Determine whether a fragment can be extended.
   1052       1.1   mycroft  *
   1053      1.81     perry  * Check to see if the necessary fragments are available, and
   1054       1.1   mycroft  * if they are, allocate them.
   1055       1.1   mycroft  */
   1056      1.58      fvdl static daddr_t
   1057      1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1058       1.1   mycroft {
   1059  1.98.2.2        ad 	struct ufsmount *ump;
   1060      1.33  augustss 	struct fs *fs;
   1061      1.33  augustss 	struct cg *cgp;
   1062       1.1   mycroft 	struct buf *bp;
   1063      1.58      fvdl 	daddr_t bno;
   1064       1.1   mycroft 	int frags, bbase;
   1065       1.1   mycroft 	int i, error;
   1066      1.62      fvdl 	u_int8_t *blksfree;
   1067       1.1   mycroft 
   1068       1.1   mycroft 	fs = ip->i_fs;
   1069  1.98.2.2        ad 	ump = ip->i_ump;
   1070  1.98.2.2        ad 
   1071  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1072  1.98.2.2        ad 
   1073       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1074      1.35   thorpej 		return (0);
   1075       1.1   mycroft 	frags = numfrags(fs, nsize);
   1076       1.1   mycroft 	bbase = fragnum(fs, bprev);
   1077       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1078       1.1   mycroft 		/* cannot extend across a block boundary */
   1079      1.35   thorpej 		return (0);
   1080       1.1   mycroft 	}
   1081  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1082       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1083       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1084  1.98.2.2        ad 	if (error)
   1085  1.98.2.2        ad 		goto fail;
   1086       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1087  1.98.2.2        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1088  1.98.2.2        ad 		goto fail;
   1089      1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1090      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1091      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1092      1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1093       1.1   mycroft 	bno = dtogd(fs, bprev);
   1094      1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1095       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1096  1.98.2.2        ad 		if (isclr(blksfree, bno + i))
   1097  1.98.2.2        ad 			goto fail;
   1098       1.1   mycroft 	/*
   1099       1.1   mycroft 	 * the current fragment can be extended
   1100       1.1   mycroft 	 * deduct the count on fragment being extended into
   1101       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1102       1.1   mycroft 	 * allocate the extended piece
   1103       1.1   mycroft 	 */
   1104       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1105      1.62      fvdl 		if (isclr(blksfree, bno + i))
   1106       1.1   mycroft 			break;
   1107      1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1108       1.1   mycroft 	if (i != frags)
   1109      1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1110  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1111       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1112      1.62      fvdl 		clrbit(blksfree, bno + i);
   1113      1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1114       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1115       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1116       1.1   mycroft 	}
   1117       1.1   mycroft 	fs->fs_fmod = 1;
   1118  1.98.2.2        ad 	ACTIVECG_CLR(fs, cg);
   1119  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1120      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1121      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1122       1.1   mycroft 	bdwrite(bp);
   1123       1.1   mycroft 	return (bprev);
   1124  1.98.2.2        ad 
   1125  1.98.2.2        ad  fail:
   1126  1.98.2.4        ad  	brelse(bp, 0);
   1127  1.98.2.2        ad  	mutex_enter(&ump->um_lock);
   1128  1.98.2.2        ad  	return (0);
   1129       1.1   mycroft }
   1130       1.1   mycroft 
   1131       1.1   mycroft /*
   1132       1.1   mycroft  * Determine whether a block can be allocated.
   1133       1.1   mycroft  *
   1134       1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1135       1.1   mycroft  * and if it is, allocate it.
   1136       1.1   mycroft  */
   1137      1.58      fvdl static daddr_t
   1138      1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1139       1.1   mycroft {
   1140  1.98.2.2        ad 	struct ufsmount *ump;
   1141      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1142      1.30      fvdl 	struct cg *cgp;
   1143       1.1   mycroft 	struct buf *bp;
   1144      1.60      fvdl 	int32_t bno;
   1145      1.60      fvdl 	daddr_t blkno;
   1146      1.30      fvdl 	int error, frags, allocsiz, i;
   1147      1.62      fvdl 	u_int8_t *blksfree;
   1148      1.30      fvdl #ifdef FFS_EI
   1149      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1150      1.30      fvdl #endif
   1151       1.1   mycroft 
   1152  1.98.2.2        ad 	ump = ip->i_ump;
   1153  1.98.2.2        ad 
   1154  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1155  1.98.2.2        ad 
   1156       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1157      1.35   thorpej 		return (0);
   1158  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1159       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1160       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1161  1.98.2.2        ad 	if (error)
   1162  1.98.2.2        ad 		goto fail;
   1163       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1164      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1165  1.98.2.2        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1166  1.98.2.2        ad 		goto fail;
   1167      1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1168      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1169      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1170      1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1171       1.1   mycroft 	if (size == fs->fs_bsize) {
   1172  1.98.2.2        ad 		mutex_enter(&ump->um_lock);
   1173      1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1174      1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1175  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
   1176       1.1   mycroft 		bdwrite(bp);
   1177      1.60      fvdl 		return (blkno);
   1178       1.1   mycroft 	}
   1179       1.1   mycroft 	/*
   1180       1.1   mycroft 	 * check to see if any fragments are already available
   1181       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1182       1.1   mycroft 	 * it down to a smaller size if necessary
   1183       1.1   mycroft 	 */
   1184      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1185       1.1   mycroft 	frags = numfrags(fs, size);
   1186       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1187       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1188       1.1   mycroft 			break;
   1189       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1190       1.1   mycroft 		/*
   1191      1.81     perry 		 * no fragments were available, so a block will be
   1192       1.1   mycroft 		 * allocated, and hacked up
   1193       1.1   mycroft 		 */
   1194  1.98.2.2        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1195  1.98.2.2        ad 			goto fail;
   1196  1.98.2.2        ad 		mutex_enter(&ump->um_lock);
   1197      1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1198      1.60      fvdl 		bno = dtogd(fs, blkno);
   1199       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1200      1.62      fvdl 			setbit(blksfree, bno + i);
   1201       1.1   mycroft 		i = fs->fs_frag - frags;
   1202      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1203       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1204      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1205       1.1   mycroft 		fs->fs_fmod = 1;
   1206      1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1207      1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1208  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
   1209       1.1   mycroft 		bdwrite(bp);
   1210      1.60      fvdl 		return (blkno);
   1211       1.1   mycroft 	}
   1212      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1213      1.30      fvdl #if 0
   1214      1.30      fvdl 	/*
   1215      1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1216      1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1217      1.30      fvdl 	 */
   1218  1.98.2.2        ad 	if (bno < 0)
   1219  1.98.2.2        ad 		goto fail;
   1220      1.30      fvdl #endif
   1221       1.1   mycroft 	for (i = 0; i < frags; i++)
   1222      1.62      fvdl 		clrbit(blksfree, bno + i);
   1223  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1224      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1225       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1226       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1227       1.1   mycroft 	fs->fs_fmod = 1;
   1228      1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1229       1.1   mycroft 	if (frags != allocsiz)
   1230      1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1231      1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1232  1.98.2.2        ad 	ACTIVECG_CLR(fs, cg);
   1233  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1234      1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1235      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1236       1.1   mycroft 	bdwrite(bp);
   1237      1.30      fvdl 	return blkno;
   1238  1.98.2.2        ad 
   1239  1.98.2.2        ad  fail:
   1240  1.98.2.4        ad  	brelse(bp, 0);
   1241  1.98.2.2        ad  	mutex_enter(&ump->um_lock);
   1242  1.98.2.2        ad  	return (0);
   1243       1.1   mycroft }
   1244       1.1   mycroft 
   1245       1.1   mycroft /*
   1246       1.1   mycroft  * Allocate a block in a cylinder group.
   1247       1.1   mycroft  *
   1248       1.1   mycroft  * This algorithm implements the following policy:
   1249       1.1   mycroft  *   1) allocate the requested block.
   1250       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1251       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1252       1.1   mycroft  *      specified cylinder group.
   1253       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1254       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1255       1.1   mycroft  */
   1256      1.58      fvdl static daddr_t
   1257      1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1258       1.1   mycroft {
   1259  1.98.2.2        ad 	struct ufsmount *ump;
   1260      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1261      1.30      fvdl 	struct cg *cgp;
   1262      1.60      fvdl 	daddr_t blkno;
   1263      1.60      fvdl 	int32_t bno;
   1264      1.60      fvdl 	u_int8_t *blksfree;
   1265      1.30      fvdl #ifdef FFS_EI
   1266      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1267      1.30      fvdl #endif
   1268       1.1   mycroft 
   1269  1.98.2.2        ad 	ump = ip->i_ump;
   1270  1.98.2.2        ad 
   1271  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1272  1.98.2.2        ad 
   1273      1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1274      1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1275      1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1276      1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1277      1.60      fvdl 	} else {
   1278      1.60      fvdl 		bpref = blknum(fs, bpref);
   1279      1.60      fvdl 		bno = dtogd(fs, bpref);
   1280       1.1   mycroft 		/*
   1281      1.60      fvdl 		 * if the requested block is available, use it
   1282       1.1   mycroft 		 */
   1283      1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1284      1.60      fvdl 			goto gotit;
   1285       1.1   mycroft 	}
   1286       1.1   mycroft 	/*
   1287      1.60      fvdl 	 * Take the next available block in this cylinder group.
   1288       1.1   mycroft 	 */
   1289      1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1290       1.1   mycroft 	if (bno < 0)
   1291      1.35   thorpej 		return (0);
   1292      1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1293       1.1   mycroft gotit:
   1294       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1295      1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1296      1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1297      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1298       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1299      1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1300      1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1301      1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1302      1.73       dbj 		int cylno;
   1303      1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1304      1.75       dbj 		KASSERT(cylno >= 0);
   1305      1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1306      1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1307      1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1308      1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1309      1.73       dbj 		    needswap);
   1310      1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1311      1.73       dbj 	}
   1312       1.1   mycroft 	fs->fs_fmod = 1;
   1313      1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1314  1.98.2.2        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1315  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
   1316      1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1317  1.98.2.2        ad 		mutex_enter(&ump->um_lock);
   1318  1.98.2.2        ad 	}
   1319      1.30      fvdl 	return (blkno);
   1320       1.1   mycroft }
   1321       1.1   mycroft 
   1322      1.55      matt #ifdef XXXUBC
   1323       1.1   mycroft /*
   1324       1.1   mycroft  * Determine whether a cluster can be allocated.
   1325       1.1   mycroft  *
   1326       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1327       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1328       1.1   mycroft  * take the first one that we find following bpref.
   1329       1.1   mycroft  */
   1330      1.60      fvdl 
   1331      1.60      fvdl /*
   1332      1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1333      1.60      fvdl  */
   1334      1.58      fvdl static daddr_t
   1335      1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1336       1.1   mycroft {
   1337  1.98.2.2        ad 	struct ufsmount *ump;
   1338      1.33  augustss 	struct fs *fs;
   1339      1.33  augustss 	struct cg *cgp;
   1340       1.1   mycroft 	struct buf *bp;
   1341      1.18      fvdl 	int i, got, run, bno, bit, map;
   1342       1.1   mycroft 	u_char *mapp;
   1343       1.5   mycroft 	int32_t *lp;
   1344       1.1   mycroft 
   1345       1.1   mycroft 	fs = ip->i_fs;
   1346  1.98.2.2        ad 	ump = ip->i_ump;
   1347  1.98.2.2        ad 
   1348  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1349       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1350      1.35   thorpej 		return (0);
   1351  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1352       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1353       1.1   mycroft 	    NOCRED, &bp))
   1354       1.1   mycroft 		goto fail;
   1355       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1356      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1357       1.1   mycroft 		goto fail;
   1358       1.1   mycroft 	/*
   1359       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1360       1.1   mycroft 	 * available in this cylinder group.
   1361       1.1   mycroft 	 */
   1362      1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1363       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1364      1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1365       1.1   mycroft 			break;
   1366       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1367       1.5   mycroft 		/*
   1368       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1369       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1370       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1371       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1372       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1373       1.5   mycroft 		 */
   1374      1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1375       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1376      1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1377       1.5   mycroft 				break;
   1378  1.98.2.2        ad 		mutex_enter(&ump->um_lock);
   1379       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1380  1.98.2.2        ad 		mutex_exit(&ump->um_lock);
   1381       1.1   mycroft 		goto fail;
   1382       1.5   mycroft 	}
   1383       1.1   mycroft 	/*
   1384       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1385       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1386       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1387       1.1   mycroft 	 * block allocation. We do not search before the current
   1388       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1389       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1390       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1391       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1392       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1393       1.1   mycroft 	 */
   1394       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1395       1.1   mycroft 		bpref = 0;
   1396       1.1   mycroft 	else
   1397       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1398      1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1399       1.1   mycroft 	map = *mapp++;
   1400       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1401      1.19    bouyer 	for (run = 0, got = bpref;
   1402      1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1403       1.1   mycroft 		if ((map & bit) == 0) {
   1404       1.1   mycroft 			run = 0;
   1405       1.1   mycroft 		} else {
   1406       1.1   mycroft 			run++;
   1407       1.1   mycroft 			if (run == len)
   1408       1.1   mycroft 				break;
   1409       1.1   mycroft 		}
   1410      1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1411       1.1   mycroft 			bit <<= 1;
   1412       1.1   mycroft 		} else {
   1413       1.1   mycroft 			map = *mapp++;
   1414       1.1   mycroft 			bit = 1;
   1415       1.1   mycroft 		}
   1416       1.1   mycroft 	}
   1417      1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1418       1.1   mycroft 		goto fail;
   1419       1.1   mycroft 	/*
   1420       1.1   mycroft 	 * Allocate the cluster that we have found.
   1421       1.1   mycroft 	 */
   1422      1.30      fvdl #ifdef DIAGNOSTIC
   1423      1.18      fvdl 	for (i = 1; i <= len; i++)
   1424      1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1425      1.30      fvdl 		    got - run + i))
   1426      1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1427      1.30      fvdl #endif
   1428      1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1429      1.18      fvdl 	if (dtog(fs, bno) != cg)
   1430      1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1431       1.1   mycroft 	len = blkstofrags(fs, len);
   1432  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1433       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1434      1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1435       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1436      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1437  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1438       1.8       cgd 	bdwrite(bp);
   1439       1.1   mycroft 	return (bno);
   1440       1.1   mycroft 
   1441       1.1   mycroft fail:
   1442  1.98.2.4        ad 	brelse(bp, 0);
   1443  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1444       1.1   mycroft 	return (0);
   1445       1.1   mycroft }
   1446      1.55      matt #endif /* XXXUBC */
   1447       1.1   mycroft 
   1448       1.1   mycroft /*
   1449       1.1   mycroft  * Determine whether an inode can be allocated.
   1450       1.1   mycroft  *
   1451       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1452       1.1   mycroft  * allocate it using the following policy:
   1453       1.1   mycroft  *   1) allocate the requested inode.
   1454       1.1   mycroft  *   2) allocate the next available inode after the requested
   1455       1.1   mycroft  *      inode in the specified cylinder group.
   1456       1.1   mycroft  */
   1457      1.58      fvdl static daddr_t
   1458      1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1459       1.1   mycroft {
   1460  1.98.2.2        ad 	struct ufsmount *ump = ip->i_ump;
   1461      1.62      fvdl 	struct fs *fs = ip->i_fs;
   1462      1.33  augustss 	struct cg *cgp;
   1463      1.60      fvdl 	struct buf *bp, *ibp;
   1464      1.60      fvdl 	u_int8_t *inosused;
   1465       1.1   mycroft 	int error, start, len, loc, map, i;
   1466      1.60      fvdl 	int32_t initediblk;
   1467      1.60      fvdl 	struct ufs2_dinode *dp2;
   1468      1.19    bouyer #ifdef FFS_EI
   1469      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1470      1.19    bouyer #endif
   1471       1.1   mycroft 
   1472  1.98.2.2        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1473  1.98.2.2        ad 
   1474       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1475      1.35   thorpej 		return (0);
   1476  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1477       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1478       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1479  1.98.2.2        ad 	if (error)
   1480  1.98.2.2        ad 		goto fail;
   1481       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1482  1.98.2.2        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1483  1.98.2.2        ad 		goto fail;
   1484      1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1485      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1486      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1487      1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1488      1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1489       1.1   mycroft 	if (ipref) {
   1490       1.1   mycroft 		ipref %= fs->fs_ipg;
   1491      1.60      fvdl 		if (isclr(inosused, ipref))
   1492       1.1   mycroft 			goto gotit;
   1493       1.1   mycroft 	}
   1494      1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1495      1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1496      1.19    bouyer 		NBBY);
   1497      1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1498       1.1   mycroft 	if (loc == 0) {
   1499       1.1   mycroft 		len = start + 1;
   1500       1.1   mycroft 		start = 0;
   1501      1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1502       1.1   mycroft 		if (loc == 0) {
   1503      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1504      1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1505      1.19    bouyer 				fs->fs_fsmnt);
   1506       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1507       1.1   mycroft 			/* NOTREACHED */
   1508       1.1   mycroft 		}
   1509       1.1   mycroft 	}
   1510       1.1   mycroft 	i = start + len - loc;
   1511      1.60      fvdl 	map = inosused[i];
   1512       1.1   mycroft 	ipref = i * NBBY;
   1513       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1514       1.1   mycroft 		if ((map & i) == 0) {
   1515      1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1516       1.1   mycroft 			goto gotit;
   1517       1.1   mycroft 		}
   1518       1.1   mycroft 	}
   1519      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1520       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1521       1.1   mycroft 	/* NOTREACHED */
   1522       1.1   mycroft gotit:
   1523      1.60      fvdl 	/*
   1524      1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1525      1.60      fvdl 	 */
   1526      1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1527      1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1528      1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1529      1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1530      1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1531      1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1532      1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1533      1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1534      1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1535      1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1536      1.60      fvdl 			/*
   1537      1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1538      1.60      fvdl 			 * random, after all.
   1539      1.60      fvdl 			 */
   1540      1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1541      1.60      fvdl 			dp2++;
   1542      1.60      fvdl 		}
   1543      1.60      fvdl 		bawrite(ibp);
   1544      1.60      fvdl 		initediblk += INOPB(fs);
   1545      1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1546      1.60      fvdl 	}
   1547      1.60      fvdl 
   1548  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1549      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1550  1.98.2.2        ad 	setbit(inosused, ipref);
   1551  1.98.2.2        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1552  1.98.2.2        ad 	fs->fs_cstotal.cs_nifree--;
   1553  1.98.2.2        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1554  1.98.2.2        ad 	fs->fs_fmod = 1;
   1555  1.98.2.2        ad 	if ((mode & IFMT) == IFDIR) {
   1556  1.98.2.2        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1557  1.98.2.2        ad 		fs->fs_cstotal.cs_ndir++;
   1558  1.98.2.2        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1559  1.98.2.2        ad 	}
   1560  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1561  1.98.2.2        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1562  1.98.2.2        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1563       1.1   mycroft 	bdwrite(bp);
   1564       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1565  1.98.2.2        ad  fail:
   1566  1.98.2.4        ad 	brelse(bp, 0);
   1567  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1568  1.98.2.2        ad 	return (0);
   1569       1.1   mycroft }
   1570       1.1   mycroft 
   1571       1.1   mycroft /*
   1572       1.1   mycroft  * Free a block or fragment.
   1573       1.1   mycroft  *
   1574       1.1   mycroft  * The specified block or fragment is placed back in the
   1575      1.81     perry  * free map. If a fragment is deallocated, a possible
   1576       1.1   mycroft  * block reassembly is checked.
   1577       1.1   mycroft  */
   1578       1.9  christos void
   1579      1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1580      1.85   thorpej     ino_t inum)
   1581       1.1   mycroft {
   1582      1.33  augustss 	struct cg *cgp;
   1583       1.1   mycroft 	struct buf *bp;
   1584      1.76   hannken 	struct ufsmount *ump;
   1585      1.60      fvdl 	int32_t fragno, cgbno;
   1586      1.76   hannken 	daddr_t cgblkno;
   1587       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1588      1.62      fvdl 	u_int8_t *blksfree;
   1589      1.76   hannken 	dev_t dev;
   1590      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1591       1.1   mycroft 
   1592  1.98.2.2        ad 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1593      1.76   hannken 	cg = dtog(fs, bno);
   1594      1.77   hannken 	if (devvp->v_type != VBLK) {
   1595      1.77   hannken 		/* devvp is a snapshot */
   1596      1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1597      1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1598      1.76   hannken 	} else {
   1599      1.76   hannken 		dev = devvp->v_rdev;
   1600      1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1601  1.98.2.6        ad 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1602      1.76   hannken 			return;
   1603      1.76   hannken 	}
   1604      1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1605      1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1606      1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1607      1.58      fvdl 		       "size = %ld, fs = %s\n",
   1608      1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1609       1.1   mycroft 		panic("blkfree: bad size");
   1610       1.1   mycroft 	}
   1611      1.76   hannken 
   1612      1.60      fvdl 	if (bno >= fs->fs_size) {
   1613      1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1614      1.86  christos 		    (unsigned long long)inum);
   1615      1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1616       1.1   mycroft 		return;
   1617       1.1   mycroft 	}
   1618      1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1619       1.1   mycroft 	if (error) {
   1620  1.98.2.4        ad 		brelse(bp, 0);
   1621       1.1   mycroft 		return;
   1622       1.1   mycroft 	}
   1623       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1624      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1625  1.98.2.4        ad 		brelse(bp, 0);
   1626       1.1   mycroft 		return;
   1627       1.1   mycroft 	}
   1628      1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1629      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1630      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1631      1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1632      1.60      fvdl 	cgbno = dtogd(fs, bno);
   1633      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1634  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1635       1.1   mycroft 	if (size == fs->fs_bsize) {
   1636      1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1637      1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1638      1.77   hannken 			if (devvp->v_type != VBLK) {
   1639      1.77   hannken 				/* devvp is a snapshot */
   1640  1.98.2.3        ad 				mutex_exit(&ump->um_lock);
   1641  1.98.2.4        ad 				brelse(bp, 0);
   1642      1.76   hannken 				return;
   1643      1.76   hannken 			}
   1644      1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1645      1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1646       1.1   mycroft 			panic("blkfree: freeing free block");
   1647       1.1   mycroft 		}
   1648      1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1649      1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1650      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1651       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1652       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1653      1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1654      1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1655      1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1656      1.75       dbj 			KASSERT(i >= 0);
   1657      1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1658      1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1659      1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1660      1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1661      1.73       dbj 			    needswap);
   1662      1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1663      1.73       dbj 		}
   1664       1.1   mycroft 	} else {
   1665      1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1666       1.1   mycroft 		/*
   1667       1.1   mycroft 		 * decrement the counts associated with the old frags
   1668       1.1   mycroft 		 */
   1669      1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1670      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1671       1.1   mycroft 		/*
   1672       1.1   mycroft 		 * deallocate the fragment
   1673       1.1   mycroft 		 */
   1674       1.1   mycroft 		frags = numfrags(fs, size);
   1675       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1676      1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1677      1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1678      1.59   tsutsui 				       ", fs = %s\n",
   1679      1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1680       1.1   mycroft 				panic("blkfree: freeing free frag");
   1681       1.1   mycroft 			}
   1682      1.62      fvdl 			setbit(blksfree, cgbno + i);
   1683       1.1   mycroft 		}
   1684      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1685       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1686      1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1687       1.1   mycroft 		/*
   1688       1.1   mycroft 		 * add back in counts associated with the new frags
   1689       1.1   mycroft 		 */
   1690      1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1691      1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1692       1.1   mycroft 		/*
   1693       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1694       1.1   mycroft 		 */
   1695      1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1696      1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1697      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1698       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1699       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1700      1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1701      1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1702       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1703       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1704      1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1705      1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1706      1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1707      1.75       dbj 				KASSERT(i >= 0);
   1708      1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1709      1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1710      1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1711      1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1712      1.73       dbj 				    bbase)], 1, needswap);
   1713      1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1714      1.73       dbj 			}
   1715       1.1   mycroft 		}
   1716       1.1   mycroft 	}
   1717       1.1   mycroft 	fs->fs_fmod = 1;
   1718      1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1719  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1720       1.1   mycroft 	bdwrite(bp);
   1721       1.1   mycroft }
   1722       1.1   mycroft 
   1723      1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1724      1.55      matt #ifdef XXXUBC
   1725      1.18      fvdl /*
   1726      1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1727      1.18      fvdl  * fragment is allocated, false if it is free.
   1728      1.18      fvdl  */
   1729      1.18      fvdl static int
   1730      1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1731      1.18      fvdl {
   1732      1.18      fvdl 	struct fs *fs;
   1733      1.18      fvdl 	struct cg *cgp;
   1734      1.18      fvdl 	struct buf *bp;
   1735      1.18      fvdl 	int i, error, frags, free;
   1736      1.18      fvdl 
   1737      1.18      fvdl 	fs = ip->i_fs;
   1738      1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1739      1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1740      1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1741      1.18      fvdl 		panic("checkblk: bad size");
   1742      1.18      fvdl 	}
   1743      1.60      fvdl 	if (bno >= fs->fs_size)
   1744      1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1745      1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1746      1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1747      1.18      fvdl 	if (error) {
   1748  1.98.2.4        ad 		brelse(bp, 0);
   1749      1.18      fvdl 		return 0;
   1750      1.18      fvdl 	}
   1751      1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1752      1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1753  1.98.2.4        ad 		brelse(bp, 0);
   1754      1.18      fvdl 		return 0;
   1755      1.18      fvdl 	}
   1756      1.18      fvdl 	bno = dtogd(fs, bno);
   1757      1.18      fvdl 	if (size == fs->fs_bsize) {
   1758      1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1759      1.19    bouyer 			fragstoblks(fs, bno));
   1760      1.18      fvdl 	} else {
   1761      1.18      fvdl 		frags = numfrags(fs, size);
   1762      1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1763      1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1764      1.18      fvdl 				free++;
   1765      1.18      fvdl 		if (free != 0 && free != frags)
   1766      1.18      fvdl 			panic("checkblk: partially free fragment");
   1767      1.18      fvdl 	}
   1768  1.98.2.4        ad 	brelse(bp, 0);
   1769      1.18      fvdl 	return (!free);
   1770      1.18      fvdl }
   1771      1.55      matt #endif /* XXXUBC */
   1772      1.18      fvdl #endif /* DIAGNOSTIC */
   1773      1.18      fvdl 
   1774       1.1   mycroft /*
   1775       1.1   mycroft  * Free an inode.
   1776      1.30      fvdl  */
   1777      1.30      fvdl int
   1778      1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1779      1.30      fvdl {
   1780      1.30      fvdl 
   1781      1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1782      1.88      yamt 		softdep_freefile(vp, ino, mode);
   1783      1.30      fvdl 		return (0);
   1784      1.30      fvdl 	}
   1785      1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1786      1.30      fvdl }
   1787      1.30      fvdl 
   1788      1.30      fvdl /*
   1789      1.30      fvdl  * Do the actual free operation.
   1790       1.1   mycroft  * The specified inode is placed back in the free map.
   1791       1.1   mycroft  */
   1792       1.1   mycroft int
   1793      1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1794       1.9  christos {
   1795  1.98.2.2        ad 	struct ufsmount *ump;
   1796      1.33  augustss 	struct cg *cgp;
   1797       1.1   mycroft 	struct buf *bp;
   1798       1.1   mycroft 	int error, cg;
   1799      1.76   hannken 	daddr_t cgbno;
   1800      1.62      fvdl 	u_int8_t *inosused;
   1801      1.78   hannken 	dev_t dev;
   1802      1.19    bouyer #ifdef FFS_EI
   1803      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1804      1.19    bouyer #endif
   1805       1.1   mycroft 
   1806      1.76   hannken 	cg = ino_to_cg(fs, ino);
   1807  1.98.2.2        ad 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1808      1.78   hannken 	if (devvp->v_type != VBLK) {
   1809      1.78   hannken 		/* devvp is a snapshot */
   1810      1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1811      1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1812      1.76   hannken 	} else {
   1813      1.78   hannken 		dev = devvp->v_rdev;
   1814      1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1815      1.76   hannken 	}
   1816       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1817      1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1818      1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1819      1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1820       1.1   mycroft 	if (error) {
   1821  1.98.2.4        ad 		brelse(bp, 0);
   1822      1.30      fvdl 		return (error);
   1823       1.1   mycroft 	}
   1824       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1825      1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1826  1.98.2.4        ad 		brelse(bp, 0);
   1827       1.1   mycroft 		return (0);
   1828       1.1   mycroft 	}
   1829      1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1830      1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1831      1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1832      1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1833      1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1834       1.1   mycroft 	ino %= fs->fs_ipg;
   1835      1.62      fvdl 	if (isclr(inosused, ino)) {
   1836      1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1837      1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1838      1.86  christos 		    fs->fs_fsmnt);
   1839       1.1   mycroft 		if (fs->fs_ronly == 0)
   1840       1.1   mycroft 			panic("ifree: freeing free inode");
   1841       1.1   mycroft 	}
   1842      1.62      fvdl 	clrbit(inosused, ino);
   1843      1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1844      1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1845      1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1846  1.98.2.2        ad 	mutex_enter(&ump->um_lock);
   1847       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1848       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1849      1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1850      1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1851       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1852       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1853       1.1   mycroft 	}
   1854       1.1   mycroft 	fs->fs_fmod = 1;
   1855      1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1856  1.98.2.2        ad 	mutex_exit(&ump->um_lock);
   1857       1.1   mycroft 	bdwrite(bp);
   1858       1.1   mycroft 	return (0);
   1859       1.1   mycroft }
   1860       1.1   mycroft 
   1861       1.1   mycroft /*
   1862      1.76   hannken  * Check to see if a file is free.
   1863      1.76   hannken  */
   1864      1.76   hannken int
   1865      1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1866      1.76   hannken {
   1867      1.76   hannken 	struct cg *cgp;
   1868      1.76   hannken 	struct buf *bp;
   1869      1.76   hannken 	daddr_t cgbno;
   1870      1.76   hannken 	int ret, cg;
   1871      1.76   hannken 	u_int8_t *inosused;
   1872      1.76   hannken 
   1873      1.76   hannken 	cg = ino_to_cg(fs, ino);
   1874      1.77   hannken 	if (devvp->v_type != VBLK) {
   1875      1.77   hannken 		/* devvp is a snapshot */
   1876      1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1877      1.77   hannken 	} else
   1878      1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1879      1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1880      1.76   hannken 		return 1;
   1881      1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1882  1.98.2.4        ad 		brelse(bp, 0);
   1883      1.76   hannken 		return 1;
   1884      1.76   hannken 	}
   1885      1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1886      1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1887  1.98.2.4        ad 		brelse(bp, 0);
   1888      1.76   hannken 		return 1;
   1889      1.76   hannken 	}
   1890      1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1891      1.76   hannken 	ino %= fs->fs_ipg;
   1892      1.76   hannken 	ret = isclr(inosused, ino);
   1893  1.98.2.4        ad 	brelse(bp, 0);
   1894      1.76   hannken 	return ret;
   1895      1.76   hannken }
   1896      1.76   hannken 
   1897      1.76   hannken /*
   1898       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1899       1.1   mycroft  *
   1900       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1901       1.1   mycroft  * available.
   1902       1.1   mycroft  */
   1903      1.60      fvdl static int32_t
   1904      1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1905       1.1   mycroft {
   1906      1.60      fvdl 	int32_t bno;
   1907       1.1   mycroft 	int start, len, loc, i;
   1908       1.1   mycroft 	int blk, field, subfield, pos;
   1909      1.19    bouyer 	int ostart, olen;
   1910      1.62      fvdl 	u_int8_t *blksfree;
   1911      1.30      fvdl #ifdef FFS_EI
   1912      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1913      1.30      fvdl #endif
   1914       1.1   mycroft 
   1915  1.98.2.2        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1916  1.98.2.2        ad 
   1917       1.1   mycroft 	/*
   1918       1.1   mycroft 	 * find the fragment by searching through the free block
   1919       1.1   mycroft 	 * map for an appropriate bit pattern
   1920       1.1   mycroft 	 */
   1921       1.1   mycroft 	if (bpref)
   1922       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1923       1.1   mycroft 	else
   1924      1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1925      1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1926       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1927      1.19    bouyer 	ostart = start;
   1928      1.19    bouyer 	olen = len;
   1929      1.45     lukem 	loc = scanc((u_int)len,
   1930      1.62      fvdl 		(const u_char *)&blksfree[start],
   1931      1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1932      1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1933       1.1   mycroft 	if (loc == 0) {
   1934       1.1   mycroft 		len = start + 1;
   1935       1.1   mycroft 		start = 0;
   1936      1.45     lukem 		loc = scanc((u_int)len,
   1937      1.62      fvdl 			(const u_char *)&blksfree[0],
   1938      1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1939      1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1940       1.1   mycroft 		if (loc == 0) {
   1941      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1942      1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1943      1.20      ross 			printf("offset=%d %ld\n",
   1944      1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1945      1.62      fvdl 				(long)blksfree - (long)cgp);
   1946      1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1947       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1948       1.1   mycroft 			/* NOTREACHED */
   1949       1.1   mycroft 		}
   1950       1.1   mycroft 	}
   1951       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1952      1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1953       1.1   mycroft 	/*
   1954       1.1   mycroft 	 * found the byte in the map
   1955       1.1   mycroft 	 * sift through the bits to find the selected frag
   1956       1.1   mycroft 	 */
   1957       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1958      1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1959       1.1   mycroft 		blk <<= 1;
   1960       1.1   mycroft 		field = around[allocsiz];
   1961       1.1   mycroft 		subfield = inside[allocsiz];
   1962       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1963       1.1   mycroft 			if ((blk & field) == subfield)
   1964       1.1   mycroft 				return (bno + pos);
   1965       1.1   mycroft 			field <<= 1;
   1966       1.1   mycroft 			subfield <<= 1;
   1967       1.1   mycroft 		}
   1968       1.1   mycroft 	}
   1969      1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1970       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1971      1.58      fvdl 	/* return (-1); */
   1972       1.1   mycroft }
   1973       1.1   mycroft 
   1974       1.1   mycroft /*
   1975       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1976       1.1   mycroft  *
   1977       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1978       1.1   mycroft  */
   1979       1.9  christos void
   1980      1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1981       1.1   mycroft {
   1982       1.4       cgd 	int32_t *sump;
   1983       1.5   mycroft 	int32_t *lp;
   1984       1.1   mycroft 	u_char *freemapp, *mapp;
   1985       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1986      1.30      fvdl #ifdef FFS_EI
   1987      1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1988      1.30      fvdl #endif
   1989       1.1   mycroft 
   1990  1.98.2.2        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1991  1.98.2.2        ad 
   1992       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1993       1.1   mycroft 		return;
   1994      1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1995      1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1996       1.1   mycroft 	/*
   1997       1.1   mycroft 	 * Allocate or clear the actual block.
   1998       1.1   mycroft 	 */
   1999       1.1   mycroft 	if (cnt > 0)
   2000       1.1   mycroft 		setbit(freemapp, blkno);
   2001       1.1   mycroft 	else
   2002       1.1   mycroft 		clrbit(freemapp, blkno);
   2003       1.1   mycroft 	/*
   2004       1.1   mycroft 	 * Find the size of the cluster going forward.
   2005       1.1   mycroft 	 */
   2006       1.1   mycroft 	start = blkno + 1;
   2007       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2008      1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2009      1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2010       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2011       1.1   mycroft 	map = *mapp++;
   2012       1.1   mycroft 	bit = 1 << (start % NBBY);
   2013       1.1   mycroft 	for (i = start; i < end; i++) {
   2014       1.1   mycroft 		if ((map & bit) == 0)
   2015       1.1   mycroft 			break;
   2016       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2017       1.1   mycroft 			bit <<= 1;
   2018       1.1   mycroft 		} else {
   2019       1.1   mycroft 			map = *mapp++;
   2020       1.1   mycroft 			bit = 1;
   2021       1.1   mycroft 		}
   2022       1.1   mycroft 	}
   2023       1.1   mycroft 	forw = i - start;
   2024       1.1   mycroft 	/*
   2025       1.1   mycroft 	 * Find the size of the cluster going backward.
   2026       1.1   mycroft 	 */
   2027       1.1   mycroft 	start = blkno - 1;
   2028       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2029       1.1   mycroft 	if (end < 0)
   2030       1.1   mycroft 		end = -1;
   2031       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2032       1.1   mycroft 	map = *mapp--;
   2033       1.1   mycroft 	bit = 1 << (start % NBBY);
   2034       1.1   mycroft 	for (i = start; i > end; i--) {
   2035       1.1   mycroft 		if ((map & bit) == 0)
   2036       1.1   mycroft 			break;
   2037       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2038       1.1   mycroft 			bit >>= 1;
   2039       1.1   mycroft 		} else {
   2040       1.1   mycroft 			map = *mapp--;
   2041       1.1   mycroft 			bit = 1 << (NBBY - 1);
   2042       1.1   mycroft 		}
   2043       1.1   mycroft 	}
   2044       1.1   mycroft 	back = start - i;
   2045       1.1   mycroft 	/*
   2046       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2047       1.1   mycroft 	 * back clusters.
   2048       1.1   mycroft 	 */
   2049       1.1   mycroft 	i = back + forw + 1;
   2050       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2051       1.1   mycroft 		i = fs->fs_contigsumsize;
   2052      1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2053       1.1   mycroft 	if (back > 0)
   2054      1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2055       1.1   mycroft 	if (forw > 0)
   2056      1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2057      1.19    bouyer 
   2058       1.5   mycroft 	/*
   2059       1.5   mycroft 	 * Update cluster summary information.
   2060       1.5   mycroft 	 */
   2061       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2062       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2063      1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2064       1.5   mycroft 			break;
   2065      1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2066       1.1   mycroft }
   2067       1.1   mycroft 
   2068       1.1   mycroft /*
   2069       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2070      1.81     perry  *
   2071       1.1   mycroft  * The form of the error message is:
   2072       1.1   mycroft  *	fs: error message
   2073       1.1   mycroft  */
   2074       1.1   mycroft static void
   2075      1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2076       1.1   mycroft {
   2077       1.1   mycroft 
   2078      1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2079      1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2080       1.1   mycroft }
   2081