Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.1
      1 /*
      2  * Copyright (c) 1982, 1986, 1989, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
     34  *	$Id: ffs_alloc.c,v 1.1 1994/06/08 11:41:58 mycroft Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/buf.h>
     40 #include <sys/proc.h>
     41 #include <sys/vnode.h>
     42 #include <sys/mount.h>
     43 #include <sys/kernel.h>
     44 #include <sys/syslog.h>
     45 
     46 #include <vm/vm.h>
     47 
     48 #include <ufs/ufs/quota.h>
     49 #include <ufs/ufs/inode.h>
     50 
     51 #include <ufs/ffs/fs.h>
     52 #include <ufs/ffs/ffs_extern.h>
     53 
     54 extern u_long nextgennumber;
     55 
     56 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     57 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     58 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     59 static ino_t	ffs_dirpref __P((struct fs *));
     60 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     61 static void	ffs_fserr __P((struct fs *, u_int, char *));
     62 static u_long	ffs_hashalloc
     63 		    __P((struct inode *, int, long, int, u_long (*)()));
     64 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     65 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     66 
     67 /*
     68  * Allocate a block in the file system.
     69  *
     70  * The size of the requested block is given, which must be some
     71  * multiple of fs_fsize and <= fs_bsize.
     72  * A preference may be optionally specified. If a preference is given
     73  * the following hierarchy is used to allocate a block:
     74  *   1) allocate the requested block.
     75  *   2) allocate a rotationally optimal block in the same cylinder.
     76  *   3) allocate a block in the same cylinder group.
     77  *   4) quadradically rehash into other cylinder groups, until an
     78  *      available block is located.
     79  * If no block preference is given the following heirarchy is used
     80  * to allocate a block:
     81  *   1) allocate a block in the cylinder group that contains the
     82  *      inode for the file.
     83  *   2) quadradically rehash into other cylinder groups, until an
     84  *      available block is located.
     85  */
     86 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     87 	register struct inode *ip;
     88 	daddr_t lbn, bpref;
     89 	int size;
     90 	struct ucred *cred;
     91 	daddr_t *bnp;
     92 {
     93 	register struct fs *fs;
     94 	daddr_t bno;
     95 	int cg, error;
     96 
     97 	*bnp = 0;
     98 	fs = ip->i_fs;
     99 #ifdef DIAGNOSTIC
    100 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    101 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    102 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    103 		panic("ffs_alloc: bad size");
    104 	}
    105 	if (cred == NOCRED)
    106 		panic("ffs_alloc: missing credential\n");
    107 #endif /* DIAGNOSTIC */
    108 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    109 		goto nospace;
    110 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    111 		goto nospace;
    112 #ifdef QUOTA
    113 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
    114 		return (error);
    115 #endif
    116 	if (bpref >= fs->fs_size)
    117 		bpref = 0;
    118 	if (bpref == 0)
    119 		cg = ino_to_cg(fs, ip->i_number);
    120 	else
    121 		cg = dtog(fs, bpref);
    122 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    123 	    (u_long (*)())ffs_alloccg);
    124 	if (bno > 0) {
    125 		ip->i_blocks += btodb(size);
    126 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    127 		*bnp = bno;
    128 		return (0);
    129 	}
    130 #ifdef QUOTA
    131 	/*
    132 	 * Restore user's disk quota because allocation failed.
    133 	 */
    134 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    135 #endif
    136 nospace:
    137 	ffs_fserr(fs, cred->cr_uid, "file system full");
    138 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    139 	return (ENOSPC);
    140 }
    141 
    142 /*
    143  * Reallocate a fragment to a bigger size
    144  *
    145  * The number and size of the old block is given, and a preference
    146  * and new size is also specified. The allocator attempts to extend
    147  * the original block. Failing that, the regular block allocator is
    148  * invoked to get an appropriate block.
    149  */
    150 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    151 	register struct inode *ip;
    152 	daddr_t lbprev;
    153 	daddr_t bpref;
    154 	int osize, nsize;
    155 	struct ucred *cred;
    156 	struct buf **bpp;
    157 {
    158 	register struct fs *fs;
    159 	struct buf *bp;
    160 	int cg, request, error;
    161 	daddr_t bprev, bno;
    162 
    163 	*bpp = 0;
    164 	fs = ip->i_fs;
    165 #ifdef DIAGNOSTIC
    166 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    167 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    168 		printf(
    169 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    170 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    171 		panic("ffs_realloccg: bad size");
    172 	}
    173 	if (cred == NOCRED)
    174 		panic("ffs_realloccg: missing credential\n");
    175 #endif /* DIAGNOSTIC */
    176 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    177 		goto nospace;
    178 	if ((bprev = ip->i_db[lbprev]) == 0) {
    179 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    180 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    181 		panic("ffs_realloccg: bad bprev");
    182 	}
    183 	/*
    184 	 * Allocate the extra space in the buffer.
    185 	 */
    186 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
    187 		brelse(bp);
    188 		return (error);
    189 	}
    190 #ifdef QUOTA
    191 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
    192 		brelse(bp);
    193 		return (error);
    194 	}
    195 #endif
    196 	/*
    197 	 * Check for extension in the existing location.
    198 	 */
    199 	cg = dtog(fs, bprev);
    200 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
    201 		if (bp->b_blkno != fsbtodb(fs, bno))
    202 			panic("bad blockno");
    203 		ip->i_blocks += btodb(nsize - osize);
    204 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    205 		allocbuf(bp, nsize);
    206 		bp->b_flags |= B_DONE;
    207 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    208 		*bpp = bp;
    209 		return (0);
    210 	}
    211 	/*
    212 	 * Allocate a new disk location.
    213 	 */
    214 	if (bpref >= fs->fs_size)
    215 		bpref = 0;
    216 	switch ((int)fs->fs_optim) {
    217 	case FS_OPTSPACE:
    218 		/*
    219 		 * Allocate an exact sized fragment. Although this makes
    220 		 * best use of space, we will waste time relocating it if
    221 		 * the file continues to grow. If the fragmentation is
    222 		 * less than half of the minimum free reserve, we choose
    223 		 * to begin optimizing for time.
    224 		 */
    225 		request = nsize;
    226 		if (fs->fs_minfree < 5 ||
    227 		    fs->fs_cstotal.cs_nffree >
    228 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    229 			break;
    230 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    231 			fs->fs_fsmnt);
    232 		fs->fs_optim = FS_OPTTIME;
    233 		break;
    234 	case FS_OPTTIME:
    235 		/*
    236 		 * At this point we have discovered a file that is trying to
    237 		 * grow a small fragment to a larger fragment. To save time,
    238 		 * we allocate a full sized block, then free the unused portion.
    239 		 * If the file continues to grow, the `ffs_fragextend' call
    240 		 * above will be able to grow it in place without further
    241 		 * copying. If aberrant programs cause disk fragmentation to
    242 		 * grow within 2% of the free reserve, we choose to begin
    243 		 * optimizing for space.
    244 		 */
    245 		request = fs->fs_bsize;
    246 		if (fs->fs_cstotal.cs_nffree <
    247 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    248 			break;
    249 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    250 			fs->fs_fsmnt);
    251 		fs->fs_optim = FS_OPTSPACE;
    252 		break;
    253 	default:
    254 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    255 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    256 		panic("ffs_realloccg: bad optim");
    257 		/* NOTREACHED */
    258 	}
    259 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    260 	    (u_long (*)())ffs_alloccg);
    261 	if (bno > 0) {
    262 		bp->b_blkno = fsbtodb(fs, bno);
    263 		(void) vnode_pager_uncache(ITOV(ip));
    264 		ffs_blkfree(ip, bprev, (long)osize);
    265 		if (nsize < request)
    266 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    267 			    (long)(request - nsize));
    268 		ip->i_blocks += btodb(nsize - osize);
    269 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    270 		allocbuf(bp, nsize);
    271 		bp->b_flags |= B_DONE;
    272 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    273 		*bpp = bp;
    274 		return (0);
    275 	}
    276 #ifdef QUOTA
    277 	/*
    278 	 * Restore user's disk quota because allocation failed.
    279 	 */
    280 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    281 #endif
    282 	brelse(bp);
    283 nospace:
    284 	/*
    285 	 * no space available
    286 	 */
    287 	ffs_fserr(fs, cred->cr_uid, "file system full");
    288 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    289 	return (ENOSPC);
    290 }
    291 
    292 /*
    293  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    294  *
    295  * The vnode and an array of buffer pointers for a range of sequential
    296  * logical blocks to be made contiguous is given. The allocator attempts
    297  * to find a range of sequential blocks starting as close as possible to
    298  * an fs_rotdelay offset from the end of the allocation for the logical
    299  * block immediately preceeding the current range. If successful, the
    300  * physical block numbers in the buffer pointers and in the inode are
    301  * changed to reflect the new allocation. If unsuccessful, the allocation
    302  * is left unchanged. The success in doing the reallocation is returned.
    303  * Note that the error return is not reflected back to the user. Rather
    304  * the previous block allocation will be used.
    305  */
    306 #include <sys/sysctl.h>
    307 int doasyncfree = 1;
    308 
    309 #ifdef DEBUG
    310 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    311 #endif
    312 
    313 int
    314 ffs_reallocblks(ap)
    315 	struct vop_reallocblks_args /* {
    316 		struct vnode *a_vp;
    317 		struct cluster_save *a_buflist;
    318 	} */ *ap;
    319 {
    320 	struct fs *fs;
    321 	struct inode *ip;
    322 	struct vnode *vp;
    323 	struct buf *sbp, *ebp;
    324 	daddr_t *bap, *sbap, *ebap;
    325 	struct cluster_save *buflist;
    326 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
    327 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    328 	int i, len, start_lvl, end_lvl, pref, ssize;
    329 
    330 	vp = ap->a_vp;
    331 	ip = VTOI(vp);
    332 	fs = ip->i_fs;
    333 	if (fs->fs_contigsumsize <= 0)
    334 		return (ENOSPC);
    335 	buflist = ap->a_buflist;
    336 	len = buflist->bs_nchildren;
    337 	start_lbn = buflist->bs_children[0]->b_lblkno;
    338 	end_lbn = start_lbn + len - 1;
    339 #ifdef DIAGNOSTIC
    340 	for (i = 1; i < len; i++)
    341 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    342 			panic("ffs_reallocblks: non-cluster");
    343 #endif
    344 	/*
    345 	 * If the latest allocation is in a new cylinder group, assume that
    346 	 * the filesystem has decided to move and do not force it back to
    347 	 * the previous cylinder group.
    348 	 */
    349 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    350 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    351 		return (ENOSPC);
    352 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    353 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    354 		return (ENOSPC);
    355 	/*
    356 	 * Get the starting offset and block map for the first block.
    357 	 */
    358 	if (start_lvl == 0) {
    359 		sbap = &ip->i_db[0];
    360 		soff = start_lbn;
    361 	} else {
    362 		idp = &start_ap[start_lvl - 1];
    363 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    364 			brelse(sbp);
    365 			return (ENOSPC);
    366 		}
    367 		sbap = (daddr_t *)sbp->b_data;
    368 		soff = idp->in_off;
    369 	}
    370 	/*
    371 	 * Find the preferred location for the cluster.
    372 	 */
    373 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    374 	/*
    375 	 * If the block range spans two block maps, get the second map.
    376 	 */
    377 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    378 		ssize = len;
    379 	} else {
    380 #ifdef DIAGNOSTIC
    381 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    382 			panic("ffs_reallocblk: start == end");
    383 #endif
    384 		ssize = len - (idp->in_off + 1);
    385 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    386 			goto fail;
    387 		ebap = (daddr_t *)ebp->b_data;
    388 	}
    389 	/*
    390 	 * Search the block map looking for an allocation of the desired size.
    391 	 */
    392 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    393 	    len, (u_long (*)())ffs_clusteralloc)) == 0)
    394 		goto fail;
    395 	/*
    396 	 * We have found a new contiguous block.
    397 	 *
    398 	 * First we have to replace the old block pointers with the new
    399 	 * block pointers in the inode and indirect blocks associated
    400 	 * with the file.
    401 	 */
    402 	blkno = newblk;
    403 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    404 		if (i == ssize)
    405 			bap = ebap;
    406 #ifdef DIAGNOSTIC
    407 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
    408 			panic("ffs_reallocblks: alloc mismatch");
    409 #endif
    410 		*bap++ = blkno;
    411 	}
    412 	/*
    413 	 * Next we must write out the modified inode and indirect blocks.
    414 	 * For strict correctness, the writes should be synchronous since
    415 	 * the old block values may have been written to disk. In practise
    416 	 * they are almost never written, but if we are concerned about
    417 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    418 	 *
    419 	 * The test on `doasyncfree' should be changed to test a flag
    420 	 * that shows whether the associated buffers and inodes have
    421 	 * been written. The flag should be set when the cluster is
    422 	 * started and cleared whenever the buffer or inode is flushed.
    423 	 * We can then check below to see if it is set, and do the
    424 	 * synchronous write only when it has been cleared.
    425 	 */
    426 	if (sbap != &ip->i_db[0]) {
    427 		if (doasyncfree)
    428 			bdwrite(sbp);
    429 		else
    430 			bwrite(sbp);
    431 	} else {
    432 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    433 		if (!doasyncfree)
    434 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
    435 	}
    436 	if (ssize < len)
    437 		if (doasyncfree)
    438 			bdwrite(ebp);
    439 		else
    440 			bwrite(ebp);
    441 	/*
    442 	 * Last, free the old blocks and assign the new blocks to the buffers.
    443 	 */
    444 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    445 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    446 		    fs->fs_bsize);
    447 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    448 	}
    449 	return (0);
    450 
    451 fail:
    452 	if (ssize < len)
    453 		brelse(ebp);
    454 	if (sbap != &ip->i_db[0])
    455 		brelse(sbp);
    456 	return (ENOSPC);
    457 }
    458 
    459 /*
    460  * Allocate an inode in the file system.
    461  *
    462  * If allocating a directory, use ffs_dirpref to select the inode.
    463  * If allocating in a directory, the following hierarchy is followed:
    464  *   1) allocate the preferred inode.
    465  *   2) allocate an inode in the same cylinder group.
    466  *   3) quadradically rehash into other cylinder groups, until an
    467  *      available inode is located.
    468  * If no inode preference is given the following heirarchy is used
    469  * to allocate an inode:
    470  *   1) allocate an inode in cylinder group 0.
    471  *   2) quadradically rehash into other cylinder groups, until an
    472  *      available inode is located.
    473  */
    474 ffs_valloc(ap)
    475 	struct vop_valloc_args /* {
    476 		struct vnode *a_pvp;
    477 		int a_mode;
    478 		struct ucred *a_cred;
    479 		struct vnode **a_vpp;
    480 	} */ *ap;
    481 {
    482 	register struct vnode *pvp = ap->a_pvp;
    483 	register struct inode *pip;
    484 	register struct fs *fs;
    485 	register struct inode *ip;
    486 	mode_t mode = ap->a_mode;
    487 	ino_t ino, ipref;
    488 	int cg, error;
    489 
    490 	*ap->a_vpp = NULL;
    491 	pip = VTOI(pvp);
    492 	fs = pip->i_fs;
    493 	if (fs->fs_cstotal.cs_nifree == 0)
    494 		goto noinodes;
    495 
    496 	if ((mode & IFMT) == IFDIR)
    497 		ipref = ffs_dirpref(fs);
    498 	else
    499 		ipref = pip->i_number;
    500 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    501 		ipref = 0;
    502 	cg = ino_to_cg(fs, ipref);
    503 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    504 	if (ino == 0)
    505 		goto noinodes;
    506 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    507 	if (error) {
    508 		VOP_VFREE(pvp, ino, mode);
    509 		return (error);
    510 	}
    511 	ip = VTOI(*ap->a_vpp);
    512 	if (ip->i_mode) {
    513 		printf("mode = 0%o, inum = %d, fs = %s\n",
    514 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    515 		panic("ffs_valloc: dup alloc");
    516 	}
    517 	if (ip->i_blocks) {				/* XXX */
    518 		printf("free inode %s/%d had %d blocks\n",
    519 		    fs->fs_fsmnt, ino, ip->i_blocks);
    520 		ip->i_blocks = 0;
    521 	}
    522 	ip->i_flags = 0;
    523 	/*
    524 	 * Set up a new generation number for this inode.
    525 	 */
    526 	if (++nextgennumber < (u_long)time.tv_sec)
    527 		nextgennumber = time.tv_sec;
    528 	ip->i_gen = nextgennumber;
    529 	return (0);
    530 noinodes:
    531 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    532 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    533 	return (ENOSPC);
    534 }
    535 
    536 /*
    537  * Find a cylinder to place a directory.
    538  *
    539  * The policy implemented by this algorithm is to select from
    540  * among those cylinder groups with above the average number of
    541  * free inodes, the one with the smallest number of directories.
    542  */
    543 static ino_t
    544 ffs_dirpref(fs)
    545 	register struct fs *fs;
    546 {
    547 	int cg, minndir, mincg, avgifree;
    548 
    549 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    550 	minndir = fs->fs_ipg;
    551 	mincg = 0;
    552 	for (cg = 0; cg < fs->fs_ncg; cg++)
    553 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    554 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    555 			mincg = cg;
    556 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    557 		}
    558 	return ((ino_t)(fs->fs_ipg * mincg));
    559 }
    560 
    561 /*
    562  * Select the desired position for the next block in a file.  The file is
    563  * logically divided into sections. The first section is composed of the
    564  * direct blocks. Each additional section contains fs_maxbpg blocks.
    565  *
    566  * If no blocks have been allocated in the first section, the policy is to
    567  * request a block in the same cylinder group as the inode that describes
    568  * the file. If no blocks have been allocated in any other section, the
    569  * policy is to place the section in a cylinder group with a greater than
    570  * average number of free blocks.  An appropriate cylinder group is found
    571  * by using a rotor that sweeps the cylinder groups. When a new group of
    572  * blocks is needed, the sweep begins in the cylinder group following the
    573  * cylinder group from which the previous allocation was made. The sweep
    574  * continues until a cylinder group with greater than the average number
    575  * of free blocks is found. If the allocation is for the first block in an
    576  * indirect block, the information on the previous allocation is unavailable;
    577  * here a best guess is made based upon the logical block number being
    578  * allocated.
    579  *
    580  * If a section is already partially allocated, the policy is to
    581  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    582  * contiguous blocks and the beginning of the next is physically separated
    583  * so that the disk head will be in transit between them for at least
    584  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    585  * schedule another I/O transfer.
    586  */
    587 daddr_t
    588 ffs_blkpref(ip, lbn, indx, bap)
    589 	struct inode *ip;
    590 	daddr_t lbn;
    591 	int indx;
    592 	daddr_t *bap;
    593 {
    594 	register struct fs *fs;
    595 	register int cg;
    596 	int avgbfree, startcg;
    597 	daddr_t nextblk;
    598 
    599 	fs = ip->i_fs;
    600 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    601 		if (lbn < NDADDR) {
    602 			cg = ino_to_cg(fs, ip->i_number);
    603 			return (fs->fs_fpg * cg + fs->fs_frag);
    604 		}
    605 		/*
    606 		 * Find a cylinder with greater than average number of
    607 		 * unused data blocks.
    608 		 */
    609 		if (indx == 0 || bap[indx - 1] == 0)
    610 			startcg =
    611 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    612 		else
    613 			startcg = dtog(fs, bap[indx - 1]) + 1;
    614 		startcg %= fs->fs_ncg;
    615 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    616 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    617 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    618 				fs->fs_cgrotor = cg;
    619 				return (fs->fs_fpg * cg + fs->fs_frag);
    620 			}
    621 		for (cg = 0; cg <= startcg; cg++)
    622 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    623 				fs->fs_cgrotor = cg;
    624 				return (fs->fs_fpg * cg + fs->fs_frag);
    625 			}
    626 		return (NULL);
    627 	}
    628 	/*
    629 	 * One or more previous blocks have been laid out. If less
    630 	 * than fs_maxcontig previous blocks are contiguous, the
    631 	 * next block is requested contiguously, otherwise it is
    632 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    633 	 */
    634 	nextblk = bap[indx - 1] + fs->fs_frag;
    635 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    636 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    637 		return (nextblk);
    638 	if (fs->fs_rotdelay != 0)
    639 		/*
    640 		 * Here we convert ms of delay to frags as:
    641 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    642 		 *	((sect/frag) * (ms/sec))
    643 		 * then round up to the next block.
    644 		 */
    645 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    646 		    (NSPF(fs) * 1000), fs->fs_frag);
    647 	return (nextblk);
    648 }
    649 
    650 /*
    651  * Implement the cylinder overflow algorithm.
    652  *
    653  * The policy implemented by this algorithm is:
    654  *   1) allocate the block in its requested cylinder group.
    655  *   2) quadradically rehash on the cylinder group number.
    656  *   3) brute force search for a free block.
    657  */
    658 /*VARARGS5*/
    659 static u_long
    660 ffs_hashalloc(ip, cg, pref, size, allocator)
    661 	struct inode *ip;
    662 	int cg;
    663 	long pref;
    664 	int size;	/* size for data blocks, mode for inodes */
    665 	u_long (*allocator)();
    666 {
    667 	register struct fs *fs;
    668 	long result;
    669 	int i, icg = cg;
    670 
    671 	fs = ip->i_fs;
    672 	/*
    673 	 * 1: preferred cylinder group
    674 	 */
    675 	result = (*allocator)(ip, cg, pref, size);
    676 	if (result)
    677 		return (result);
    678 	/*
    679 	 * 2: quadratic rehash
    680 	 */
    681 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    682 		cg += i;
    683 		if (cg >= fs->fs_ncg)
    684 			cg -= fs->fs_ncg;
    685 		result = (*allocator)(ip, cg, 0, size);
    686 		if (result)
    687 			return (result);
    688 	}
    689 	/*
    690 	 * 3: brute force search
    691 	 * Note that we start at i == 2, since 0 was checked initially,
    692 	 * and 1 is always checked in the quadratic rehash.
    693 	 */
    694 	cg = (icg + 2) % fs->fs_ncg;
    695 	for (i = 2; i < fs->fs_ncg; i++) {
    696 		result = (*allocator)(ip, cg, 0, size);
    697 		if (result)
    698 			return (result);
    699 		cg++;
    700 		if (cg == fs->fs_ncg)
    701 			cg = 0;
    702 	}
    703 	return (NULL);
    704 }
    705 
    706 /*
    707  * Determine whether a fragment can be extended.
    708  *
    709  * Check to see if the necessary fragments are available, and
    710  * if they are, allocate them.
    711  */
    712 static daddr_t
    713 ffs_fragextend(ip, cg, bprev, osize, nsize)
    714 	struct inode *ip;
    715 	int cg;
    716 	long bprev;
    717 	int osize, nsize;
    718 {
    719 	register struct fs *fs;
    720 	register struct cg *cgp;
    721 	struct buf *bp;
    722 	long bno;
    723 	int frags, bbase;
    724 	int i, error;
    725 
    726 	fs = ip->i_fs;
    727 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    728 		return (NULL);
    729 	frags = numfrags(fs, nsize);
    730 	bbase = fragnum(fs, bprev);
    731 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    732 		/* cannot extend across a block boundary */
    733 		return (NULL);
    734 	}
    735 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    736 		(int)fs->fs_cgsize, NOCRED, &bp);
    737 	if (error) {
    738 		brelse(bp);
    739 		return (NULL);
    740 	}
    741 	cgp = (struct cg *)bp->b_data;
    742 	if (!cg_chkmagic(cgp)) {
    743 		brelse(bp);
    744 		return (NULL);
    745 	}
    746 	cgp->cg_time = time.tv_sec;
    747 	bno = dtogd(fs, bprev);
    748 	for (i = numfrags(fs, osize); i < frags; i++)
    749 		if (isclr(cg_blksfree(cgp), bno + i)) {
    750 			brelse(bp);
    751 			return (NULL);
    752 		}
    753 	/*
    754 	 * the current fragment can be extended
    755 	 * deduct the count on fragment being extended into
    756 	 * increase the count on the remaining fragment (if any)
    757 	 * allocate the extended piece
    758 	 */
    759 	for (i = frags; i < fs->fs_frag - bbase; i++)
    760 		if (isclr(cg_blksfree(cgp), bno + i))
    761 			break;
    762 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    763 	if (i != frags)
    764 		cgp->cg_frsum[i - frags]++;
    765 	for (i = numfrags(fs, osize); i < frags; i++) {
    766 		clrbit(cg_blksfree(cgp), bno + i);
    767 		cgp->cg_cs.cs_nffree--;
    768 		fs->fs_cstotal.cs_nffree--;
    769 		fs->fs_cs(fs, cg).cs_nffree--;
    770 	}
    771 	fs->fs_fmod = 1;
    772 	bdwrite(bp);
    773 	return (bprev);
    774 }
    775 
    776 /*
    777  * Determine whether a block can be allocated.
    778  *
    779  * Check to see if a block of the appropriate size is available,
    780  * and if it is, allocate it.
    781  */
    782 static daddr_t
    783 ffs_alloccg(ip, cg, bpref, size)
    784 	struct inode *ip;
    785 	int cg;
    786 	daddr_t bpref;
    787 	int size;
    788 {
    789 	register struct fs *fs;
    790 	register struct cg *cgp;
    791 	struct buf *bp;
    792 	register int i;
    793 	int error, bno, frags, allocsiz;
    794 
    795 	fs = ip->i_fs;
    796 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    797 		return (NULL);
    798 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    799 		(int)fs->fs_cgsize, NOCRED, &bp);
    800 	if (error) {
    801 		brelse(bp);
    802 		return (NULL);
    803 	}
    804 	cgp = (struct cg *)bp->b_data;
    805 	if (!cg_chkmagic(cgp) ||
    806 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    807 		brelse(bp);
    808 		return (NULL);
    809 	}
    810 	cgp->cg_time = time.tv_sec;
    811 	if (size == fs->fs_bsize) {
    812 		bno = ffs_alloccgblk(fs, cgp, bpref);
    813 		bdwrite(bp);
    814 		return (bno);
    815 	}
    816 	/*
    817 	 * check to see if any fragments are already available
    818 	 * allocsiz is the size which will be allocated, hacking
    819 	 * it down to a smaller size if necessary
    820 	 */
    821 	frags = numfrags(fs, size);
    822 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    823 		if (cgp->cg_frsum[allocsiz] != 0)
    824 			break;
    825 	if (allocsiz == fs->fs_frag) {
    826 		/*
    827 		 * no fragments were available, so a block will be
    828 		 * allocated, and hacked up
    829 		 */
    830 		if (cgp->cg_cs.cs_nbfree == 0) {
    831 			brelse(bp);
    832 			return (NULL);
    833 		}
    834 		bno = ffs_alloccgblk(fs, cgp, bpref);
    835 		bpref = dtogd(fs, bno);
    836 		for (i = frags; i < fs->fs_frag; i++)
    837 			setbit(cg_blksfree(cgp), bpref + i);
    838 		i = fs->fs_frag - frags;
    839 		cgp->cg_cs.cs_nffree += i;
    840 		fs->fs_cstotal.cs_nffree += i;
    841 		fs->fs_cs(fs, cg).cs_nffree += i;
    842 		fs->fs_fmod = 1;
    843 		cgp->cg_frsum[i]++;
    844 		bdwrite(bp);
    845 		return (bno);
    846 	}
    847 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    848 	if (bno < 0) {
    849 		brelse(bp);
    850 		return (NULL);
    851 	}
    852 	for (i = 0; i < frags; i++)
    853 		clrbit(cg_blksfree(cgp), bno + i);
    854 	cgp->cg_cs.cs_nffree -= frags;
    855 	fs->fs_cstotal.cs_nffree -= frags;
    856 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    857 	fs->fs_fmod = 1;
    858 	cgp->cg_frsum[allocsiz]--;
    859 	if (frags != allocsiz)
    860 		cgp->cg_frsum[allocsiz - frags]++;
    861 	bdwrite(bp);
    862 	return (cg * fs->fs_fpg + bno);
    863 }
    864 
    865 /*
    866  * Allocate a block in a cylinder group.
    867  *
    868  * This algorithm implements the following policy:
    869  *   1) allocate the requested block.
    870  *   2) allocate a rotationally optimal block in the same cylinder.
    871  *   3) allocate the next available block on the block rotor for the
    872  *      specified cylinder group.
    873  * Note that this routine only allocates fs_bsize blocks; these
    874  * blocks may be fragmented by the routine that allocates them.
    875  */
    876 static daddr_t
    877 ffs_alloccgblk(fs, cgp, bpref)
    878 	register struct fs *fs;
    879 	register struct cg *cgp;
    880 	daddr_t bpref;
    881 {
    882 	daddr_t bno, blkno;
    883 	int cylno, pos, delta;
    884 	short *cylbp;
    885 	register int i;
    886 
    887 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    888 		bpref = cgp->cg_rotor;
    889 		goto norot;
    890 	}
    891 	bpref = blknum(fs, bpref);
    892 	bpref = dtogd(fs, bpref);
    893 	/*
    894 	 * if the requested block is available, use it
    895 	 */
    896 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    897 		bno = bpref;
    898 		goto gotit;
    899 	}
    900 	/*
    901 	 * check for a block available on the same cylinder
    902 	 */
    903 	cylno = cbtocylno(fs, bpref);
    904 	if (cg_blktot(cgp)[cylno] == 0)
    905 		goto norot;
    906 	if (fs->fs_cpc == 0) {
    907 		/*
    908 		 * Block layout information is not available.
    909 		 * Leaving bpref unchanged means we take the
    910 		 * next available free block following the one
    911 		 * we just allocated. Hopefully this will at
    912 		 * least hit a track cache on drives of unknown
    913 		 * geometry (e.g. SCSI).
    914 		 */
    915 		goto norot;
    916 	}
    917 	/*
    918 	 * check the summary information to see if a block is
    919 	 * available in the requested cylinder starting at the
    920 	 * requested rotational position and proceeding around.
    921 	 */
    922 	cylbp = cg_blks(fs, cgp, cylno);
    923 	pos = cbtorpos(fs, bpref);
    924 	for (i = pos; i < fs->fs_nrpos; i++)
    925 		if (cylbp[i] > 0)
    926 			break;
    927 	if (i == fs->fs_nrpos)
    928 		for (i = 0; i < pos; i++)
    929 			if (cylbp[i] > 0)
    930 				break;
    931 	if (cylbp[i] > 0) {
    932 		/*
    933 		 * found a rotational position, now find the actual
    934 		 * block. A panic if none is actually there.
    935 		 */
    936 		pos = cylno % fs->fs_cpc;
    937 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    938 		if (fs_postbl(fs, pos)[i] == -1) {
    939 			printf("pos = %d, i = %d, fs = %s\n",
    940 			    pos, i, fs->fs_fsmnt);
    941 			panic("ffs_alloccgblk: cyl groups corrupted");
    942 		}
    943 		for (i = fs_postbl(fs, pos)[i];; ) {
    944 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    945 				bno = blkstofrags(fs, (bno + i));
    946 				goto gotit;
    947 			}
    948 			delta = fs_rotbl(fs)[i];
    949 			if (delta <= 0 ||
    950 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    951 				break;
    952 			i += delta;
    953 		}
    954 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    955 		panic("ffs_alloccgblk: can't find blk in cyl");
    956 	}
    957 norot:
    958 	/*
    959 	 * no blocks in the requested cylinder, so take next
    960 	 * available one in this cylinder group.
    961 	 */
    962 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    963 	if (bno < 0)
    964 		return (NULL);
    965 	cgp->cg_rotor = bno;
    966 gotit:
    967 	blkno = fragstoblks(fs, bno);
    968 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
    969 	ffs_clusteracct(fs, cgp, blkno, -1);
    970 	cgp->cg_cs.cs_nbfree--;
    971 	fs->fs_cstotal.cs_nbfree--;
    972 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
    973 	cylno = cbtocylno(fs, bno);
    974 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
    975 	cg_blktot(cgp)[cylno]--;
    976 	fs->fs_fmod = 1;
    977 	return (cgp->cg_cgx * fs->fs_fpg + bno);
    978 }
    979 
    980 /*
    981  * Determine whether a cluster can be allocated.
    982  *
    983  * We do not currently check for optimal rotational layout if there
    984  * are multiple choices in the same cylinder group. Instead we just
    985  * take the first one that we find following bpref.
    986  */
    987 static daddr_t
    988 ffs_clusteralloc(ip, cg, bpref, len)
    989 	struct inode *ip;
    990 	int cg;
    991 	daddr_t bpref;
    992 	int len;
    993 {
    994 	register struct fs *fs;
    995 	register struct cg *cgp;
    996 	struct buf *bp;
    997 	int i, run, bno, bit, map;
    998 	u_char *mapp;
    999 
   1000 	fs = ip->i_fs;
   1001 	if (fs->fs_cs(fs, cg).cs_nbfree < len)
   1002 		return (NULL);
   1003 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1004 	    NOCRED, &bp))
   1005 		goto fail;
   1006 	cgp = (struct cg *)bp->b_data;
   1007 	if (!cg_chkmagic(cgp))
   1008 		goto fail;
   1009 	/*
   1010 	 * Check to see if a cluster of the needed size (or bigger) is
   1011 	 * available in this cylinder group.
   1012 	 */
   1013 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1014 		if (cg_clustersum(cgp)[i] > 0)
   1015 			break;
   1016 	if (i > fs->fs_contigsumsize)
   1017 		goto fail;
   1018 	/*
   1019 	 * Search the cluster map to find a big enough cluster.
   1020 	 * We take the first one that we find, even if it is larger
   1021 	 * than we need as we prefer to get one close to the previous
   1022 	 * block allocation. We do not search before the current
   1023 	 * preference point as we do not want to allocate a block
   1024 	 * that is allocated before the previous one (as we will
   1025 	 * then have to wait for another pass of the elevator
   1026 	 * algorithm before it will be read). We prefer to fail and
   1027 	 * be recalled to try an allocation in the next cylinder group.
   1028 	 */
   1029 	if (dtog(fs, bpref) != cg)
   1030 		bpref = 0;
   1031 	else
   1032 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1033 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1034 	map = *mapp++;
   1035 	bit = 1 << (bpref % NBBY);
   1036 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1037 		if ((map & bit) == 0) {
   1038 			run = 0;
   1039 		} else {
   1040 			run++;
   1041 			if (run == len)
   1042 				break;
   1043 		}
   1044 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1045 			bit <<= 1;
   1046 		} else {
   1047 			map = *mapp++;
   1048 			bit = 1;
   1049 		}
   1050 	}
   1051 	if (i == cgp->cg_nclusterblks)
   1052 		goto fail;
   1053 	/*
   1054 	 * Allocate the cluster that we have found.
   1055 	 */
   1056 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1057 	len = blkstofrags(fs, len);
   1058 	for (i = 0; i < len; i += fs->fs_frag)
   1059 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1060 			panic("ffs_clusteralloc: lost block");
   1061 	brelse(bp);
   1062 	return (bno);
   1063 
   1064 fail:
   1065 	brelse(bp);
   1066 	return (0);
   1067 }
   1068 
   1069 /*
   1070  * Determine whether an inode can be allocated.
   1071  *
   1072  * Check to see if an inode is available, and if it is,
   1073  * allocate it using the following policy:
   1074  *   1) allocate the requested inode.
   1075  *   2) allocate the next available inode after the requested
   1076  *      inode in the specified cylinder group.
   1077  */
   1078 static ino_t
   1079 ffs_nodealloccg(ip, cg, ipref, mode)
   1080 	struct inode *ip;
   1081 	int cg;
   1082 	daddr_t ipref;
   1083 	int mode;
   1084 {
   1085 	register struct fs *fs;
   1086 	register struct cg *cgp;
   1087 	struct buf *bp;
   1088 	int error, start, len, loc, map, i;
   1089 
   1090 	fs = ip->i_fs;
   1091 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1092 		return (NULL);
   1093 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1094 		(int)fs->fs_cgsize, NOCRED, &bp);
   1095 	if (error) {
   1096 		brelse(bp);
   1097 		return (NULL);
   1098 	}
   1099 	cgp = (struct cg *)bp->b_data;
   1100 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1101 		brelse(bp);
   1102 		return (NULL);
   1103 	}
   1104 	cgp->cg_time = time.tv_sec;
   1105 	if (ipref) {
   1106 		ipref %= fs->fs_ipg;
   1107 		if (isclr(cg_inosused(cgp), ipref))
   1108 			goto gotit;
   1109 	}
   1110 	start = cgp->cg_irotor / NBBY;
   1111 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1112 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1113 	if (loc == 0) {
   1114 		len = start + 1;
   1115 		start = 0;
   1116 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1117 		if (loc == 0) {
   1118 			printf("cg = %d, irotor = %d, fs = %s\n",
   1119 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1120 			panic("ffs_nodealloccg: map corrupted");
   1121 			/* NOTREACHED */
   1122 		}
   1123 	}
   1124 	i = start + len - loc;
   1125 	map = cg_inosused(cgp)[i];
   1126 	ipref = i * NBBY;
   1127 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1128 		if ((map & i) == 0) {
   1129 			cgp->cg_irotor = ipref;
   1130 			goto gotit;
   1131 		}
   1132 	}
   1133 	printf("fs = %s\n", fs->fs_fsmnt);
   1134 	panic("ffs_nodealloccg: block not in map");
   1135 	/* NOTREACHED */
   1136 gotit:
   1137 	setbit(cg_inosused(cgp), ipref);
   1138 	cgp->cg_cs.cs_nifree--;
   1139 	fs->fs_cstotal.cs_nifree--;
   1140 	fs->fs_cs(fs, cg).cs_nifree--;
   1141 	fs->fs_fmod = 1;
   1142 	if ((mode & IFMT) == IFDIR) {
   1143 		cgp->cg_cs.cs_ndir++;
   1144 		fs->fs_cstotal.cs_ndir++;
   1145 		fs->fs_cs(fs, cg).cs_ndir++;
   1146 	}
   1147 	bdwrite(bp);
   1148 	return (cg * fs->fs_ipg + ipref);
   1149 }
   1150 
   1151 /*
   1152  * Free a block or fragment.
   1153  *
   1154  * The specified block or fragment is placed back in the
   1155  * free map. If a fragment is deallocated, a possible
   1156  * block reassembly is checked.
   1157  */
   1158 ffs_blkfree(ip, bno, size)
   1159 	register struct inode *ip;
   1160 	daddr_t bno;
   1161 	long size;
   1162 {
   1163 	register struct fs *fs;
   1164 	register struct cg *cgp;
   1165 	struct buf *bp;
   1166 	daddr_t blkno;
   1167 	int i, error, cg, blk, frags, bbase;
   1168 
   1169 	fs = ip->i_fs;
   1170 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1171 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
   1172 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1173 		panic("blkfree: bad size");
   1174 	}
   1175 	cg = dtog(fs, bno);
   1176 	if ((u_int)bno >= fs->fs_size) {
   1177 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1178 		ffs_fserr(fs, ip->i_uid, "bad block");
   1179 		return;
   1180 	}
   1181 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1182 		(int)fs->fs_cgsize, NOCRED, &bp);
   1183 	if (error) {
   1184 		brelse(bp);
   1185 		return;
   1186 	}
   1187 	cgp = (struct cg *)bp->b_data;
   1188 	if (!cg_chkmagic(cgp)) {
   1189 		brelse(bp);
   1190 		return;
   1191 	}
   1192 	cgp->cg_time = time.tv_sec;
   1193 	bno = dtogd(fs, bno);
   1194 	if (size == fs->fs_bsize) {
   1195 		blkno = fragstoblks(fs, bno);
   1196 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1197 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1198 			    ip->i_dev, bno, fs->fs_fsmnt);
   1199 			panic("blkfree: freeing free block");
   1200 		}
   1201 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1202 		ffs_clusteracct(fs, cgp, blkno, 1);
   1203 		cgp->cg_cs.cs_nbfree++;
   1204 		fs->fs_cstotal.cs_nbfree++;
   1205 		fs->fs_cs(fs, cg).cs_nbfree++;
   1206 		i = cbtocylno(fs, bno);
   1207 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1208 		cg_blktot(cgp)[i]++;
   1209 	} else {
   1210 		bbase = bno - fragnum(fs, bno);
   1211 		/*
   1212 		 * decrement the counts associated with the old frags
   1213 		 */
   1214 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1215 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1216 		/*
   1217 		 * deallocate the fragment
   1218 		 */
   1219 		frags = numfrags(fs, size);
   1220 		for (i = 0; i < frags; i++) {
   1221 			if (isset(cg_blksfree(cgp), bno + i)) {
   1222 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1223 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1224 				panic("blkfree: freeing free frag");
   1225 			}
   1226 			setbit(cg_blksfree(cgp), bno + i);
   1227 		}
   1228 		cgp->cg_cs.cs_nffree += i;
   1229 		fs->fs_cstotal.cs_nffree += i;
   1230 		fs->fs_cs(fs, cg).cs_nffree += i;
   1231 		/*
   1232 		 * add back in counts associated with the new frags
   1233 		 */
   1234 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1235 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1236 		/*
   1237 		 * if a complete block has been reassembled, account for it
   1238 		 */
   1239 		blkno = fragstoblks(fs, bbase);
   1240 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1241 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1242 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1243 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1244 			ffs_clusteracct(fs, cgp, blkno, 1);
   1245 			cgp->cg_cs.cs_nbfree++;
   1246 			fs->fs_cstotal.cs_nbfree++;
   1247 			fs->fs_cs(fs, cg).cs_nbfree++;
   1248 			i = cbtocylno(fs, bbase);
   1249 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1250 			cg_blktot(cgp)[i]++;
   1251 		}
   1252 	}
   1253 	fs->fs_fmod = 1;
   1254 	bdwrite(bp);
   1255 }
   1256 
   1257 /*
   1258  * Free an inode.
   1259  *
   1260  * The specified inode is placed back in the free map.
   1261  */
   1262 int
   1263 ffs_vfree(ap)
   1264 	struct vop_vfree_args /* {
   1265 		struct vnode *a_pvp;
   1266 		ino_t a_ino;
   1267 		int a_mode;
   1268 	} */ *ap;
   1269 {
   1270 	register struct fs *fs;
   1271 	register struct cg *cgp;
   1272 	register struct inode *pip;
   1273 	ino_t ino = ap->a_ino;
   1274 	struct buf *bp;
   1275 	int error, cg;
   1276 
   1277 	pip = VTOI(ap->a_pvp);
   1278 	fs = pip->i_fs;
   1279 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1280 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1281 		    pip->i_dev, ino, fs->fs_fsmnt);
   1282 	cg = ino_to_cg(fs, ino);
   1283 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1284 		(int)fs->fs_cgsize, NOCRED, &bp);
   1285 	if (error) {
   1286 		brelse(bp);
   1287 		return (0);
   1288 	}
   1289 	cgp = (struct cg *)bp->b_data;
   1290 	if (!cg_chkmagic(cgp)) {
   1291 		brelse(bp);
   1292 		return (0);
   1293 	}
   1294 	cgp->cg_time = time.tv_sec;
   1295 	ino %= fs->fs_ipg;
   1296 	if (isclr(cg_inosused(cgp), ino)) {
   1297 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1298 		    pip->i_dev, ino, fs->fs_fsmnt);
   1299 		if (fs->fs_ronly == 0)
   1300 			panic("ifree: freeing free inode");
   1301 	}
   1302 	clrbit(cg_inosused(cgp), ino);
   1303 	if (ino < cgp->cg_irotor)
   1304 		cgp->cg_irotor = ino;
   1305 	cgp->cg_cs.cs_nifree++;
   1306 	fs->fs_cstotal.cs_nifree++;
   1307 	fs->fs_cs(fs, cg).cs_nifree++;
   1308 	if ((ap->a_mode & IFMT) == IFDIR) {
   1309 		cgp->cg_cs.cs_ndir--;
   1310 		fs->fs_cstotal.cs_ndir--;
   1311 		fs->fs_cs(fs, cg).cs_ndir--;
   1312 	}
   1313 	fs->fs_fmod = 1;
   1314 	bdwrite(bp);
   1315 	return (0);
   1316 }
   1317 
   1318 /*
   1319  * Find a block of the specified size in the specified cylinder group.
   1320  *
   1321  * It is a panic if a request is made to find a block if none are
   1322  * available.
   1323  */
   1324 static daddr_t
   1325 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1326 	register struct fs *fs;
   1327 	register struct cg *cgp;
   1328 	daddr_t bpref;
   1329 	int allocsiz;
   1330 {
   1331 	daddr_t bno;
   1332 	int start, len, loc, i;
   1333 	int blk, field, subfield, pos;
   1334 
   1335 	/*
   1336 	 * find the fragment by searching through the free block
   1337 	 * map for an appropriate bit pattern
   1338 	 */
   1339 	if (bpref)
   1340 		start = dtogd(fs, bpref) / NBBY;
   1341 	else
   1342 		start = cgp->cg_frotor / NBBY;
   1343 	len = howmany(fs->fs_fpg, NBBY) - start;
   1344 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1345 		(u_char *)fragtbl[fs->fs_frag],
   1346 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1347 	if (loc == 0) {
   1348 		len = start + 1;
   1349 		start = 0;
   1350 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1351 			(u_char *)fragtbl[fs->fs_frag],
   1352 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1353 		if (loc == 0) {
   1354 			printf("start = %d, len = %d, fs = %s\n",
   1355 			    start, len, fs->fs_fsmnt);
   1356 			panic("ffs_alloccg: map corrupted");
   1357 			/* NOTREACHED */
   1358 		}
   1359 	}
   1360 	bno = (start + len - loc) * NBBY;
   1361 	cgp->cg_frotor = bno;
   1362 	/*
   1363 	 * found the byte in the map
   1364 	 * sift through the bits to find the selected frag
   1365 	 */
   1366 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1367 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1368 		blk <<= 1;
   1369 		field = around[allocsiz];
   1370 		subfield = inside[allocsiz];
   1371 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1372 			if ((blk & field) == subfield)
   1373 				return (bno + pos);
   1374 			field <<= 1;
   1375 			subfield <<= 1;
   1376 		}
   1377 	}
   1378 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1379 	panic("ffs_alloccg: block not in map");
   1380 	return (-1);
   1381 }
   1382 
   1383 /*
   1384  * Update the cluster map because of an allocation or free.
   1385  *
   1386  * Cnt == 1 means free; cnt == -1 means allocating.
   1387  */
   1388 ffs_clusteracct(fs, cgp, blkno, cnt)
   1389 	struct fs *fs;
   1390 	struct cg *cgp;
   1391 	daddr_t blkno;
   1392 	int cnt;
   1393 {
   1394 	long *sump;
   1395 	u_char *freemapp, *mapp;
   1396 	int i, start, end, forw, back, map, bit;
   1397 
   1398 	if (fs->fs_contigsumsize <= 0)
   1399 		return;
   1400 	freemapp = cg_clustersfree(cgp);
   1401 	sump = cg_clustersum(cgp);
   1402 	/*
   1403 	 * Allocate or clear the actual block.
   1404 	 */
   1405 	if (cnt > 0)
   1406 		setbit(freemapp, blkno);
   1407 	else
   1408 		clrbit(freemapp, blkno);
   1409 	/*
   1410 	 * Find the size of the cluster going forward.
   1411 	 */
   1412 	start = blkno + 1;
   1413 	end = start + fs->fs_contigsumsize;
   1414 	if (end >= cgp->cg_nclusterblks)
   1415 		end = cgp->cg_nclusterblks;
   1416 	mapp = &freemapp[start / NBBY];
   1417 	map = *mapp++;
   1418 	bit = 1 << (start % NBBY);
   1419 	for (i = start; i < end; i++) {
   1420 		if ((map & bit) == 0)
   1421 			break;
   1422 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1423 			bit <<= 1;
   1424 		} else {
   1425 			map = *mapp++;
   1426 			bit = 1;
   1427 		}
   1428 	}
   1429 	forw = i - start;
   1430 	/*
   1431 	 * Find the size of the cluster going backward.
   1432 	 */
   1433 	start = blkno - 1;
   1434 	end = start - fs->fs_contigsumsize;
   1435 	if (end < 0)
   1436 		end = -1;
   1437 	mapp = &freemapp[start / NBBY];
   1438 	map = *mapp--;
   1439 	bit = 1 << (start % NBBY);
   1440 	for (i = start; i > end; i--) {
   1441 		if ((map & bit) == 0)
   1442 			break;
   1443 		if ((i & (NBBY - 1)) != 0) {
   1444 			bit >>= 1;
   1445 		} else {
   1446 			map = *mapp--;
   1447 			bit = 1 << (NBBY - 1);
   1448 		}
   1449 	}
   1450 	back = start - i;
   1451 	/*
   1452 	 * Account for old cluster and the possibly new forward and
   1453 	 * back clusters.
   1454 	 */
   1455 	i = back + forw + 1;
   1456 	if (i > fs->fs_contigsumsize)
   1457 		i = fs->fs_contigsumsize;
   1458 	sump[i] += cnt;
   1459 	if (back > 0)
   1460 		sump[back] -= cnt;
   1461 	if (forw > 0)
   1462 		sump[forw] -= cnt;
   1463 }
   1464 
   1465 /*
   1466  * Fserr prints the name of a file system with an error diagnostic.
   1467  *
   1468  * The form of the error message is:
   1469  *	fs: error message
   1470  */
   1471 static void
   1472 ffs_fserr(fs, uid, cp)
   1473 	struct fs *fs;
   1474 	u_int uid;
   1475 	char *cp;
   1476 {
   1477 
   1478 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1479 }
   1480