ffs_alloc.c revision 1.1.1.1 1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/syslog.h>
44
45 #include <vm/vm.h>
46
47 #include <ufs/ufs/quota.h>
48 #include <ufs/ufs/inode.h>
49
50 #include <ufs/ffs/fs.h>
51 #include <ufs/ffs/ffs_extern.h>
52
53 extern u_long nextgennumber;
54
55 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
56 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
57 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
58 static ino_t ffs_dirpref __P((struct fs *));
59 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
60 static void ffs_fserr __P((struct fs *, u_int, char *));
61 static u_long ffs_hashalloc
62 __P((struct inode *, int, long, int, u_long (*)()));
63 static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
64 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
65
66 /*
67 * Allocate a block in the file system.
68 *
69 * The size of the requested block is given, which must be some
70 * multiple of fs_fsize and <= fs_bsize.
71 * A preference may be optionally specified. If a preference is given
72 * the following hierarchy is used to allocate a block:
73 * 1) allocate the requested block.
74 * 2) allocate a rotationally optimal block in the same cylinder.
75 * 3) allocate a block in the same cylinder group.
76 * 4) quadradically rehash into other cylinder groups, until an
77 * available block is located.
78 * If no block preference is given the following heirarchy is used
79 * to allocate a block:
80 * 1) allocate a block in the cylinder group that contains the
81 * inode for the file.
82 * 2) quadradically rehash into other cylinder groups, until an
83 * available block is located.
84 */
85 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
86 register struct inode *ip;
87 daddr_t lbn, bpref;
88 int size;
89 struct ucred *cred;
90 daddr_t *bnp;
91 {
92 register struct fs *fs;
93 daddr_t bno;
94 int cg, error;
95
96 *bnp = 0;
97 fs = ip->i_fs;
98 #ifdef DIAGNOSTIC
99 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
100 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
101 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
102 panic("ffs_alloc: bad size");
103 }
104 if (cred == NOCRED)
105 panic("ffs_alloc: missing credential\n");
106 #endif /* DIAGNOSTIC */
107 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
108 goto nospace;
109 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
110 goto nospace;
111 #ifdef QUOTA
112 if (error = chkdq(ip, (long)btodb(size), cred, 0))
113 return (error);
114 #endif
115 if (bpref >= fs->fs_size)
116 bpref = 0;
117 if (bpref == 0)
118 cg = ino_to_cg(fs, ip->i_number);
119 else
120 cg = dtog(fs, bpref);
121 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
122 (u_long (*)())ffs_alloccg);
123 if (bno > 0) {
124 ip->i_blocks += btodb(size);
125 ip->i_flag |= IN_CHANGE | IN_UPDATE;
126 *bnp = bno;
127 return (0);
128 }
129 #ifdef QUOTA
130 /*
131 * Restore user's disk quota because allocation failed.
132 */
133 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
134 #endif
135 nospace:
136 ffs_fserr(fs, cred->cr_uid, "file system full");
137 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
138 return (ENOSPC);
139 }
140
141 /*
142 * Reallocate a fragment to a bigger size
143 *
144 * The number and size of the old block is given, and a preference
145 * and new size is also specified. The allocator attempts to extend
146 * the original block. Failing that, the regular block allocator is
147 * invoked to get an appropriate block.
148 */
149 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
150 register struct inode *ip;
151 daddr_t lbprev;
152 daddr_t bpref;
153 int osize, nsize;
154 struct ucred *cred;
155 struct buf **bpp;
156 {
157 register struct fs *fs;
158 struct buf *bp;
159 int cg, request, error;
160 daddr_t bprev, bno;
161
162 *bpp = 0;
163 fs = ip->i_fs;
164 #ifdef DIAGNOSTIC
165 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
166 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
167 printf(
168 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
169 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
170 panic("ffs_realloccg: bad size");
171 }
172 if (cred == NOCRED)
173 panic("ffs_realloccg: missing credential\n");
174 #endif /* DIAGNOSTIC */
175 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
176 goto nospace;
177 if ((bprev = ip->i_db[lbprev]) == 0) {
178 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
179 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
180 panic("ffs_realloccg: bad bprev");
181 }
182 /*
183 * Allocate the extra space in the buffer.
184 */
185 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
186 brelse(bp);
187 return (error);
188 }
189 #ifdef QUOTA
190 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
191 brelse(bp);
192 return (error);
193 }
194 #endif
195 /*
196 * Check for extension in the existing location.
197 */
198 cg = dtog(fs, bprev);
199 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
200 if (bp->b_blkno != fsbtodb(fs, bno))
201 panic("bad blockno");
202 ip->i_blocks += btodb(nsize - osize);
203 ip->i_flag |= IN_CHANGE | IN_UPDATE;
204 allocbuf(bp, nsize);
205 bp->b_flags |= B_DONE;
206 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
207 *bpp = bp;
208 return (0);
209 }
210 /*
211 * Allocate a new disk location.
212 */
213 if (bpref >= fs->fs_size)
214 bpref = 0;
215 switch ((int)fs->fs_optim) {
216 case FS_OPTSPACE:
217 /*
218 * Allocate an exact sized fragment. Although this makes
219 * best use of space, we will waste time relocating it if
220 * the file continues to grow. If the fragmentation is
221 * less than half of the minimum free reserve, we choose
222 * to begin optimizing for time.
223 */
224 request = nsize;
225 if (fs->fs_minfree < 5 ||
226 fs->fs_cstotal.cs_nffree >
227 fs->fs_dsize * fs->fs_minfree / (2 * 100))
228 break;
229 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
230 fs->fs_fsmnt);
231 fs->fs_optim = FS_OPTTIME;
232 break;
233 case FS_OPTTIME:
234 /*
235 * At this point we have discovered a file that is trying to
236 * grow a small fragment to a larger fragment. To save time,
237 * we allocate a full sized block, then free the unused portion.
238 * If the file continues to grow, the `ffs_fragextend' call
239 * above will be able to grow it in place without further
240 * copying. If aberrant programs cause disk fragmentation to
241 * grow within 2% of the free reserve, we choose to begin
242 * optimizing for space.
243 */
244 request = fs->fs_bsize;
245 if (fs->fs_cstotal.cs_nffree <
246 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
247 break;
248 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
249 fs->fs_fsmnt);
250 fs->fs_optim = FS_OPTSPACE;
251 break;
252 default:
253 printf("dev = 0x%x, optim = %d, fs = %s\n",
254 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
255 panic("ffs_realloccg: bad optim");
256 /* NOTREACHED */
257 }
258 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
259 (u_long (*)())ffs_alloccg);
260 if (bno > 0) {
261 bp->b_blkno = fsbtodb(fs, bno);
262 (void) vnode_pager_uncache(ITOV(ip));
263 ffs_blkfree(ip, bprev, (long)osize);
264 if (nsize < request)
265 ffs_blkfree(ip, bno + numfrags(fs, nsize),
266 (long)(request - nsize));
267 ip->i_blocks += btodb(nsize - osize);
268 ip->i_flag |= IN_CHANGE | IN_UPDATE;
269 allocbuf(bp, nsize);
270 bp->b_flags |= B_DONE;
271 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
272 *bpp = bp;
273 return (0);
274 }
275 #ifdef QUOTA
276 /*
277 * Restore user's disk quota because allocation failed.
278 */
279 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
280 #endif
281 brelse(bp);
282 nospace:
283 /*
284 * no space available
285 */
286 ffs_fserr(fs, cred->cr_uid, "file system full");
287 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
288 return (ENOSPC);
289 }
290
291 /*
292 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
293 *
294 * The vnode and an array of buffer pointers for a range of sequential
295 * logical blocks to be made contiguous is given. The allocator attempts
296 * to find a range of sequential blocks starting as close as possible to
297 * an fs_rotdelay offset from the end of the allocation for the logical
298 * block immediately preceeding the current range. If successful, the
299 * physical block numbers in the buffer pointers and in the inode are
300 * changed to reflect the new allocation. If unsuccessful, the allocation
301 * is left unchanged. The success in doing the reallocation is returned.
302 * Note that the error return is not reflected back to the user. Rather
303 * the previous block allocation will be used.
304 */
305 #include <sys/sysctl.h>
306 int doasyncfree = 1;
307 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
308 int
309 ffs_reallocblks(ap)
310 struct vop_reallocblks_args /* {
311 struct vnode *a_vp;
312 struct cluster_save *a_buflist;
313 } */ *ap;
314 {
315 struct fs *fs;
316 struct inode *ip;
317 struct vnode *vp;
318 struct buf *sbp, *ebp;
319 daddr_t *bap, *sbap, *ebap;
320 struct cluster_save *buflist;
321 daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
322 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
323 int i, len, start_lvl, end_lvl, pref, ssize;
324
325 vp = ap->a_vp;
326 ip = VTOI(vp);
327 fs = ip->i_fs;
328 if (fs->fs_contigsumsize <= 0)
329 return (ENOSPC);
330 buflist = ap->a_buflist;
331 len = buflist->bs_nchildren;
332 start_lbn = buflist->bs_children[0]->b_lblkno;
333 end_lbn = start_lbn + len - 1;
334 #ifdef DIAGNOSTIC
335 for (i = 1; i < len; i++)
336 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
337 panic("ffs_reallocblks: non-cluster");
338 #endif
339 /*
340 * If the latest allocation is in a new cylinder group, assume that
341 * the filesystem has decided to move and do not force it back to
342 * the previous cylinder group.
343 */
344 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
345 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
346 return (ENOSPC);
347 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
348 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
349 return (ENOSPC);
350 /*
351 * Get the starting offset and block map for the first block.
352 */
353 if (start_lvl == 0) {
354 sbap = &ip->i_db[0];
355 soff = start_lbn;
356 } else {
357 idp = &start_ap[start_lvl - 1];
358 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
359 brelse(sbp);
360 return (ENOSPC);
361 }
362 sbap = (daddr_t *)sbp->b_data;
363 soff = idp->in_off;
364 }
365 /*
366 * Find the preferred location for the cluster.
367 */
368 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
369 /*
370 * If the block range spans two block maps, get the second map.
371 */
372 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
373 ssize = len;
374 } else {
375 #ifdef DIAGNOSTIC
376 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
377 panic("ffs_reallocblk: start == end");
378 #endif
379 ssize = len - (idp->in_off + 1);
380 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
381 goto fail;
382 ebap = (daddr_t *)ebp->b_data;
383 }
384 /*
385 * Search the block map looking for an allocation of the desired size.
386 */
387 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
388 len, (u_long (*)())ffs_clusteralloc)) == 0)
389 goto fail;
390 /*
391 * We have found a new contiguous block.
392 *
393 * First we have to replace the old block pointers with the new
394 * block pointers in the inode and indirect blocks associated
395 * with the file.
396 */
397 blkno = newblk;
398 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
399 if (i == ssize)
400 bap = ebap;
401 #ifdef DIAGNOSTIC
402 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
403 panic("ffs_reallocblks: alloc mismatch");
404 #endif
405 *bap++ = blkno;
406 }
407 /*
408 * Next we must write out the modified inode and indirect blocks.
409 * For strict correctness, the writes should be synchronous since
410 * the old block values may have been written to disk. In practise
411 * they are almost never written, but if we are concerned about
412 * strict correctness, the `doasyncfree' flag should be set to zero.
413 *
414 * The test on `doasyncfree' should be changed to test a flag
415 * that shows whether the associated buffers and inodes have
416 * been written. The flag should be set when the cluster is
417 * started and cleared whenever the buffer or inode is flushed.
418 * We can then check below to see if it is set, and do the
419 * synchronous write only when it has been cleared.
420 */
421 if (sbap != &ip->i_db[0]) {
422 if (doasyncfree)
423 bdwrite(sbp);
424 else
425 bwrite(sbp);
426 } else {
427 ip->i_flag |= IN_CHANGE | IN_UPDATE;
428 if (!doasyncfree)
429 VOP_UPDATE(vp, &time, &time, MNT_WAIT);
430 }
431 if (ssize < len)
432 if (doasyncfree)
433 bdwrite(ebp);
434 else
435 bwrite(ebp);
436 /*
437 * Last, free the old blocks and assign the new blocks to the buffers.
438 */
439 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
440 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
441 fs->fs_bsize);
442 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
443 }
444 return (0);
445
446 fail:
447 if (ssize < len)
448 brelse(ebp);
449 if (sbap != &ip->i_db[0])
450 brelse(sbp);
451 return (ENOSPC);
452 }
453
454 /*
455 * Allocate an inode in the file system.
456 *
457 * If allocating a directory, use ffs_dirpref to select the inode.
458 * If allocating in a directory, the following hierarchy is followed:
459 * 1) allocate the preferred inode.
460 * 2) allocate an inode in the same cylinder group.
461 * 3) quadradically rehash into other cylinder groups, until an
462 * available inode is located.
463 * If no inode preference is given the following heirarchy is used
464 * to allocate an inode:
465 * 1) allocate an inode in cylinder group 0.
466 * 2) quadradically rehash into other cylinder groups, until an
467 * available inode is located.
468 */
469 ffs_valloc(ap)
470 struct vop_valloc_args /* {
471 struct vnode *a_pvp;
472 int a_mode;
473 struct ucred *a_cred;
474 struct vnode **a_vpp;
475 } */ *ap;
476 {
477 register struct vnode *pvp = ap->a_pvp;
478 register struct inode *pip;
479 register struct fs *fs;
480 register struct inode *ip;
481 mode_t mode = ap->a_mode;
482 ino_t ino, ipref;
483 int cg, error;
484
485 *ap->a_vpp = NULL;
486 pip = VTOI(pvp);
487 fs = pip->i_fs;
488 if (fs->fs_cstotal.cs_nifree == 0)
489 goto noinodes;
490
491 if ((mode & IFMT) == IFDIR)
492 ipref = ffs_dirpref(fs);
493 else
494 ipref = pip->i_number;
495 if (ipref >= fs->fs_ncg * fs->fs_ipg)
496 ipref = 0;
497 cg = ino_to_cg(fs, ipref);
498 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
499 if (ino == 0)
500 goto noinodes;
501 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
502 if (error) {
503 VOP_VFREE(pvp, ino, mode);
504 return (error);
505 }
506 ip = VTOI(*ap->a_vpp);
507 if (ip->i_mode) {
508 printf("mode = 0%o, inum = %d, fs = %s\n",
509 ip->i_mode, ip->i_number, fs->fs_fsmnt);
510 panic("ffs_valloc: dup alloc");
511 }
512 if (ip->i_blocks) { /* XXX */
513 printf("free inode %s/%d had %d blocks\n",
514 fs->fs_fsmnt, ino, ip->i_blocks);
515 ip->i_blocks = 0;
516 }
517 ip->i_flags = 0;
518 /*
519 * Set up a new generation number for this inode.
520 */
521 if (++nextgennumber < (u_long)time.tv_sec)
522 nextgennumber = time.tv_sec;
523 ip->i_gen = nextgennumber;
524 return (0);
525 noinodes:
526 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
527 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
528 return (ENOSPC);
529 }
530
531 /*
532 * Find a cylinder to place a directory.
533 *
534 * The policy implemented by this algorithm is to select from
535 * among those cylinder groups with above the average number of
536 * free inodes, the one with the smallest number of directories.
537 */
538 static ino_t
539 ffs_dirpref(fs)
540 register struct fs *fs;
541 {
542 int cg, minndir, mincg, avgifree;
543
544 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
545 minndir = fs->fs_ipg;
546 mincg = 0;
547 for (cg = 0; cg < fs->fs_ncg; cg++)
548 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
549 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
550 mincg = cg;
551 minndir = fs->fs_cs(fs, cg).cs_ndir;
552 }
553 return ((ino_t)(fs->fs_ipg * mincg));
554 }
555
556 /*
557 * Select the desired position for the next block in a file. The file is
558 * logically divided into sections. The first section is composed of the
559 * direct blocks. Each additional section contains fs_maxbpg blocks.
560 *
561 * If no blocks have been allocated in the first section, the policy is to
562 * request a block in the same cylinder group as the inode that describes
563 * the file. If no blocks have been allocated in any other section, the
564 * policy is to place the section in a cylinder group with a greater than
565 * average number of free blocks. An appropriate cylinder group is found
566 * by using a rotor that sweeps the cylinder groups. When a new group of
567 * blocks is needed, the sweep begins in the cylinder group following the
568 * cylinder group from which the previous allocation was made. The sweep
569 * continues until a cylinder group with greater than the average number
570 * of free blocks is found. If the allocation is for the first block in an
571 * indirect block, the information on the previous allocation is unavailable;
572 * here a best guess is made based upon the logical block number being
573 * allocated.
574 *
575 * If a section is already partially allocated, the policy is to
576 * contiguously allocate fs_maxcontig blocks. The end of one of these
577 * contiguous blocks and the beginning of the next is physically separated
578 * so that the disk head will be in transit between them for at least
579 * fs_rotdelay milliseconds. This is to allow time for the processor to
580 * schedule another I/O transfer.
581 */
582 daddr_t
583 ffs_blkpref(ip, lbn, indx, bap)
584 struct inode *ip;
585 daddr_t lbn;
586 int indx;
587 daddr_t *bap;
588 {
589 register struct fs *fs;
590 register int cg;
591 int avgbfree, startcg;
592 daddr_t nextblk;
593
594 fs = ip->i_fs;
595 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
596 if (lbn < NDADDR) {
597 cg = ino_to_cg(fs, ip->i_number);
598 return (fs->fs_fpg * cg + fs->fs_frag);
599 }
600 /*
601 * Find a cylinder with greater than average number of
602 * unused data blocks.
603 */
604 if (indx == 0 || bap[indx - 1] == 0)
605 startcg =
606 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
607 else
608 startcg = dtog(fs, bap[indx - 1]) + 1;
609 startcg %= fs->fs_ncg;
610 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
611 for (cg = startcg; cg < fs->fs_ncg; cg++)
612 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
613 fs->fs_cgrotor = cg;
614 return (fs->fs_fpg * cg + fs->fs_frag);
615 }
616 for (cg = 0; cg <= startcg; cg++)
617 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
618 fs->fs_cgrotor = cg;
619 return (fs->fs_fpg * cg + fs->fs_frag);
620 }
621 return (NULL);
622 }
623 /*
624 * One or more previous blocks have been laid out. If less
625 * than fs_maxcontig previous blocks are contiguous, the
626 * next block is requested contiguously, otherwise it is
627 * requested rotationally delayed by fs_rotdelay milliseconds.
628 */
629 nextblk = bap[indx - 1] + fs->fs_frag;
630 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
631 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
632 return (nextblk);
633 if (fs->fs_rotdelay != 0)
634 /*
635 * Here we convert ms of delay to frags as:
636 * (frags) = (ms) * (rev/sec) * (sect/rev) /
637 * ((sect/frag) * (ms/sec))
638 * then round up to the next block.
639 */
640 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
641 (NSPF(fs) * 1000), fs->fs_frag);
642 return (nextblk);
643 }
644
645 /*
646 * Implement the cylinder overflow algorithm.
647 *
648 * The policy implemented by this algorithm is:
649 * 1) allocate the block in its requested cylinder group.
650 * 2) quadradically rehash on the cylinder group number.
651 * 3) brute force search for a free block.
652 */
653 /*VARARGS5*/
654 static u_long
655 ffs_hashalloc(ip, cg, pref, size, allocator)
656 struct inode *ip;
657 int cg;
658 long pref;
659 int size; /* size for data blocks, mode for inodes */
660 u_long (*allocator)();
661 {
662 register struct fs *fs;
663 long result;
664 int i, icg = cg;
665
666 fs = ip->i_fs;
667 /*
668 * 1: preferred cylinder group
669 */
670 result = (*allocator)(ip, cg, pref, size);
671 if (result)
672 return (result);
673 /*
674 * 2: quadratic rehash
675 */
676 for (i = 1; i < fs->fs_ncg; i *= 2) {
677 cg += i;
678 if (cg >= fs->fs_ncg)
679 cg -= fs->fs_ncg;
680 result = (*allocator)(ip, cg, 0, size);
681 if (result)
682 return (result);
683 }
684 /*
685 * 3: brute force search
686 * Note that we start at i == 2, since 0 was checked initially,
687 * and 1 is always checked in the quadratic rehash.
688 */
689 cg = (icg + 2) % fs->fs_ncg;
690 for (i = 2; i < fs->fs_ncg; i++) {
691 result = (*allocator)(ip, cg, 0, size);
692 if (result)
693 return (result);
694 cg++;
695 if (cg == fs->fs_ncg)
696 cg = 0;
697 }
698 return (NULL);
699 }
700
701 /*
702 * Determine whether a fragment can be extended.
703 *
704 * Check to see if the necessary fragments are available, and
705 * if they are, allocate them.
706 */
707 static daddr_t
708 ffs_fragextend(ip, cg, bprev, osize, nsize)
709 struct inode *ip;
710 int cg;
711 long bprev;
712 int osize, nsize;
713 {
714 register struct fs *fs;
715 register struct cg *cgp;
716 struct buf *bp;
717 long bno;
718 int frags, bbase;
719 int i, error;
720
721 fs = ip->i_fs;
722 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
723 return (NULL);
724 frags = numfrags(fs, nsize);
725 bbase = fragnum(fs, bprev);
726 if (bbase > fragnum(fs, (bprev + frags - 1))) {
727 /* cannot extend across a block boundary */
728 return (NULL);
729 }
730 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
731 (int)fs->fs_cgsize, NOCRED, &bp);
732 if (error) {
733 brelse(bp);
734 return (NULL);
735 }
736 cgp = (struct cg *)bp->b_data;
737 if (!cg_chkmagic(cgp)) {
738 brelse(bp);
739 return (NULL);
740 }
741 cgp->cg_time = time.tv_sec;
742 bno = dtogd(fs, bprev);
743 for (i = numfrags(fs, osize); i < frags; i++)
744 if (isclr(cg_blksfree(cgp), bno + i)) {
745 brelse(bp);
746 return (NULL);
747 }
748 /*
749 * the current fragment can be extended
750 * deduct the count on fragment being extended into
751 * increase the count on the remaining fragment (if any)
752 * allocate the extended piece
753 */
754 for (i = frags; i < fs->fs_frag - bbase; i++)
755 if (isclr(cg_blksfree(cgp), bno + i))
756 break;
757 cgp->cg_frsum[i - numfrags(fs, osize)]--;
758 if (i != frags)
759 cgp->cg_frsum[i - frags]++;
760 for (i = numfrags(fs, osize); i < frags; i++) {
761 clrbit(cg_blksfree(cgp), bno + i);
762 cgp->cg_cs.cs_nffree--;
763 fs->fs_cstotal.cs_nffree--;
764 fs->fs_cs(fs, cg).cs_nffree--;
765 }
766 fs->fs_fmod = 1;
767 bdwrite(bp);
768 return (bprev);
769 }
770
771 /*
772 * Determine whether a block can be allocated.
773 *
774 * Check to see if a block of the appropriate size is available,
775 * and if it is, allocate it.
776 */
777 static daddr_t
778 ffs_alloccg(ip, cg, bpref, size)
779 struct inode *ip;
780 int cg;
781 daddr_t bpref;
782 int size;
783 {
784 register struct fs *fs;
785 register struct cg *cgp;
786 struct buf *bp;
787 register int i;
788 int error, bno, frags, allocsiz;
789
790 fs = ip->i_fs;
791 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
792 return (NULL);
793 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
794 (int)fs->fs_cgsize, NOCRED, &bp);
795 if (error) {
796 brelse(bp);
797 return (NULL);
798 }
799 cgp = (struct cg *)bp->b_data;
800 if (!cg_chkmagic(cgp) ||
801 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
802 brelse(bp);
803 return (NULL);
804 }
805 cgp->cg_time = time.tv_sec;
806 if (size == fs->fs_bsize) {
807 bno = ffs_alloccgblk(fs, cgp, bpref);
808 bdwrite(bp);
809 return (bno);
810 }
811 /*
812 * check to see if any fragments are already available
813 * allocsiz is the size which will be allocated, hacking
814 * it down to a smaller size if necessary
815 */
816 frags = numfrags(fs, size);
817 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
818 if (cgp->cg_frsum[allocsiz] != 0)
819 break;
820 if (allocsiz == fs->fs_frag) {
821 /*
822 * no fragments were available, so a block will be
823 * allocated, and hacked up
824 */
825 if (cgp->cg_cs.cs_nbfree == 0) {
826 brelse(bp);
827 return (NULL);
828 }
829 bno = ffs_alloccgblk(fs, cgp, bpref);
830 bpref = dtogd(fs, bno);
831 for (i = frags; i < fs->fs_frag; i++)
832 setbit(cg_blksfree(cgp), bpref + i);
833 i = fs->fs_frag - frags;
834 cgp->cg_cs.cs_nffree += i;
835 fs->fs_cstotal.cs_nffree += i;
836 fs->fs_cs(fs, cg).cs_nffree += i;
837 fs->fs_fmod = 1;
838 cgp->cg_frsum[i]++;
839 bdwrite(bp);
840 return (bno);
841 }
842 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
843 if (bno < 0) {
844 brelse(bp);
845 return (NULL);
846 }
847 for (i = 0; i < frags; i++)
848 clrbit(cg_blksfree(cgp), bno + i);
849 cgp->cg_cs.cs_nffree -= frags;
850 fs->fs_cstotal.cs_nffree -= frags;
851 fs->fs_cs(fs, cg).cs_nffree -= frags;
852 fs->fs_fmod = 1;
853 cgp->cg_frsum[allocsiz]--;
854 if (frags != allocsiz)
855 cgp->cg_frsum[allocsiz - frags]++;
856 bdwrite(bp);
857 return (cg * fs->fs_fpg + bno);
858 }
859
860 /*
861 * Allocate a block in a cylinder group.
862 *
863 * This algorithm implements the following policy:
864 * 1) allocate the requested block.
865 * 2) allocate a rotationally optimal block in the same cylinder.
866 * 3) allocate the next available block on the block rotor for the
867 * specified cylinder group.
868 * Note that this routine only allocates fs_bsize blocks; these
869 * blocks may be fragmented by the routine that allocates them.
870 */
871 static daddr_t
872 ffs_alloccgblk(fs, cgp, bpref)
873 register struct fs *fs;
874 register struct cg *cgp;
875 daddr_t bpref;
876 {
877 daddr_t bno, blkno;
878 int cylno, pos, delta;
879 short *cylbp;
880 register int i;
881
882 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
883 bpref = cgp->cg_rotor;
884 goto norot;
885 }
886 bpref = blknum(fs, bpref);
887 bpref = dtogd(fs, bpref);
888 /*
889 * if the requested block is available, use it
890 */
891 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
892 bno = bpref;
893 goto gotit;
894 }
895 /*
896 * check for a block available on the same cylinder
897 */
898 cylno = cbtocylno(fs, bpref);
899 if (cg_blktot(cgp)[cylno] == 0)
900 goto norot;
901 if (fs->fs_cpc == 0) {
902 /*
903 * Block layout information is not available.
904 * Leaving bpref unchanged means we take the
905 * next available free block following the one
906 * we just allocated. Hopefully this will at
907 * least hit a track cache on drives of unknown
908 * geometry (e.g. SCSI).
909 */
910 goto norot;
911 }
912 /*
913 * check the summary information to see if a block is
914 * available in the requested cylinder starting at the
915 * requested rotational position and proceeding around.
916 */
917 cylbp = cg_blks(fs, cgp, cylno);
918 pos = cbtorpos(fs, bpref);
919 for (i = pos; i < fs->fs_nrpos; i++)
920 if (cylbp[i] > 0)
921 break;
922 if (i == fs->fs_nrpos)
923 for (i = 0; i < pos; i++)
924 if (cylbp[i] > 0)
925 break;
926 if (cylbp[i] > 0) {
927 /*
928 * found a rotational position, now find the actual
929 * block. A panic if none is actually there.
930 */
931 pos = cylno % fs->fs_cpc;
932 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
933 if (fs_postbl(fs, pos)[i] == -1) {
934 printf("pos = %d, i = %d, fs = %s\n",
935 pos, i, fs->fs_fsmnt);
936 panic("ffs_alloccgblk: cyl groups corrupted");
937 }
938 for (i = fs_postbl(fs, pos)[i];; ) {
939 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
940 bno = blkstofrags(fs, (bno + i));
941 goto gotit;
942 }
943 delta = fs_rotbl(fs)[i];
944 if (delta <= 0 ||
945 delta + i > fragstoblks(fs, fs->fs_fpg))
946 break;
947 i += delta;
948 }
949 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
950 panic("ffs_alloccgblk: can't find blk in cyl");
951 }
952 norot:
953 /*
954 * no blocks in the requested cylinder, so take next
955 * available one in this cylinder group.
956 */
957 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
958 if (bno < 0)
959 return (NULL);
960 cgp->cg_rotor = bno;
961 gotit:
962 blkno = fragstoblks(fs, bno);
963 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
964 ffs_clusteracct(fs, cgp, blkno, -1);
965 cgp->cg_cs.cs_nbfree--;
966 fs->fs_cstotal.cs_nbfree--;
967 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
968 cylno = cbtocylno(fs, bno);
969 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
970 cg_blktot(cgp)[cylno]--;
971 fs->fs_fmod = 1;
972 return (cgp->cg_cgx * fs->fs_fpg + bno);
973 }
974
975 /*
976 * Determine whether a cluster can be allocated.
977 *
978 * We do not currently check for optimal rotational layout if there
979 * are multiple choices in the same cylinder group. Instead we just
980 * take the first one that we find following bpref.
981 */
982 static daddr_t
983 ffs_clusteralloc(ip, cg, bpref, len)
984 struct inode *ip;
985 int cg;
986 daddr_t bpref;
987 int len;
988 {
989 register struct fs *fs;
990 register struct cg *cgp;
991 struct buf *bp;
992 int i, run, bno, bit, map;
993 u_char *mapp;
994
995 fs = ip->i_fs;
996 if (fs->fs_cs(fs, cg).cs_nbfree < len)
997 return (NULL);
998 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
999 NOCRED, &bp))
1000 goto fail;
1001 cgp = (struct cg *)bp->b_data;
1002 if (!cg_chkmagic(cgp))
1003 goto fail;
1004 /*
1005 * Check to see if a cluster of the needed size (or bigger) is
1006 * available in this cylinder group.
1007 */
1008 for (i = len; i <= fs->fs_contigsumsize; i++)
1009 if (cg_clustersum(cgp)[i] > 0)
1010 break;
1011 if (i > fs->fs_contigsumsize)
1012 goto fail;
1013 /*
1014 * Search the cluster map to find a big enough cluster.
1015 * We take the first one that we find, even if it is larger
1016 * than we need as we prefer to get one close to the previous
1017 * block allocation. We do not search before the current
1018 * preference point as we do not want to allocate a block
1019 * that is allocated before the previous one (as we will
1020 * then have to wait for another pass of the elevator
1021 * algorithm before it will be read). We prefer to fail and
1022 * be recalled to try an allocation in the next cylinder group.
1023 */
1024 if (dtog(fs, bpref) != cg)
1025 bpref = 0;
1026 else
1027 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1028 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1029 map = *mapp++;
1030 bit = 1 << (bpref % NBBY);
1031 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1032 if ((map & bit) == 0) {
1033 run = 0;
1034 } else {
1035 run++;
1036 if (run == len)
1037 break;
1038 }
1039 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1040 bit <<= 1;
1041 } else {
1042 map = *mapp++;
1043 bit = 1;
1044 }
1045 }
1046 if (i == cgp->cg_nclusterblks)
1047 goto fail;
1048 /*
1049 * Allocate the cluster that we have found.
1050 */
1051 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1052 len = blkstofrags(fs, len);
1053 for (i = 0; i < len; i += fs->fs_frag)
1054 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1055 panic("ffs_clusteralloc: lost block");
1056 brelse(bp);
1057 return (bno);
1058
1059 fail:
1060 brelse(bp);
1061 return (0);
1062 }
1063
1064 /*
1065 * Determine whether an inode can be allocated.
1066 *
1067 * Check to see if an inode is available, and if it is,
1068 * allocate it using the following policy:
1069 * 1) allocate the requested inode.
1070 * 2) allocate the next available inode after the requested
1071 * inode in the specified cylinder group.
1072 */
1073 static ino_t
1074 ffs_nodealloccg(ip, cg, ipref, mode)
1075 struct inode *ip;
1076 int cg;
1077 daddr_t ipref;
1078 int mode;
1079 {
1080 register struct fs *fs;
1081 register struct cg *cgp;
1082 struct buf *bp;
1083 int error, start, len, loc, map, i;
1084
1085 fs = ip->i_fs;
1086 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1087 return (NULL);
1088 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1089 (int)fs->fs_cgsize, NOCRED, &bp);
1090 if (error) {
1091 brelse(bp);
1092 return (NULL);
1093 }
1094 cgp = (struct cg *)bp->b_data;
1095 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1096 brelse(bp);
1097 return (NULL);
1098 }
1099 cgp->cg_time = time.tv_sec;
1100 if (ipref) {
1101 ipref %= fs->fs_ipg;
1102 if (isclr(cg_inosused(cgp), ipref))
1103 goto gotit;
1104 }
1105 start = cgp->cg_irotor / NBBY;
1106 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1107 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1108 if (loc == 0) {
1109 len = start + 1;
1110 start = 0;
1111 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1112 if (loc == 0) {
1113 printf("cg = %d, irotor = %d, fs = %s\n",
1114 cg, cgp->cg_irotor, fs->fs_fsmnt);
1115 panic("ffs_nodealloccg: map corrupted");
1116 /* NOTREACHED */
1117 }
1118 }
1119 i = start + len - loc;
1120 map = cg_inosused(cgp)[i];
1121 ipref = i * NBBY;
1122 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1123 if ((map & i) == 0) {
1124 cgp->cg_irotor = ipref;
1125 goto gotit;
1126 }
1127 }
1128 printf("fs = %s\n", fs->fs_fsmnt);
1129 panic("ffs_nodealloccg: block not in map");
1130 /* NOTREACHED */
1131 gotit:
1132 setbit(cg_inosused(cgp), ipref);
1133 cgp->cg_cs.cs_nifree--;
1134 fs->fs_cstotal.cs_nifree--;
1135 fs->fs_cs(fs, cg).cs_nifree--;
1136 fs->fs_fmod = 1;
1137 if ((mode & IFMT) == IFDIR) {
1138 cgp->cg_cs.cs_ndir++;
1139 fs->fs_cstotal.cs_ndir++;
1140 fs->fs_cs(fs, cg).cs_ndir++;
1141 }
1142 bdwrite(bp);
1143 return (cg * fs->fs_ipg + ipref);
1144 }
1145
1146 /*
1147 * Free a block or fragment.
1148 *
1149 * The specified block or fragment is placed back in the
1150 * free map. If a fragment is deallocated, a possible
1151 * block reassembly is checked.
1152 */
1153 ffs_blkfree(ip, bno, size)
1154 register struct inode *ip;
1155 daddr_t bno;
1156 long size;
1157 {
1158 register struct fs *fs;
1159 register struct cg *cgp;
1160 struct buf *bp;
1161 daddr_t blkno;
1162 int i, error, cg, blk, frags, bbase;
1163
1164 fs = ip->i_fs;
1165 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1166 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1167 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1168 panic("blkfree: bad size");
1169 }
1170 cg = dtog(fs, bno);
1171 if ((u_int)bno >= fs->fs_size) {
1172 printf("bad block %d, ino %d\n", bno, ip->i_number);
1173 ffs_fserr(fs, ip->i_uid, "bad block");
1174 return;
1175 }
1176 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1177 (int)fs->fs_cgsize, NOCRED, &bp);
1178 if (error) {
1179 brelse(bp);
1180 return;
1181 }
1182 cgp = (struct cg *)bp->b_data;
1183 if (!cg_chkmagic(cgp)) {
1184 brelse(bp);
1185 return;
1186 }
1187 cgp->cg_time = time.tv_sec;
1188 bno = dtogd(fs, bno);
1189 if (size == fs->fs_bsize) {
1190 blkno = fragstoblks(fs, bno);
1191 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1192 printf("dev = 0x%x, block = %d, fs = %s\n",
1193 ip->i_dev, bno, fs->fs_fsmnt);
1194 panic("blkfree: freeing free block");
1195 }
1196 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1197 ffs_clusteracct(fs, cgp, blkno, 1);
1198 cgp->cg_cs.cs_nbfree++;
1199 fs->fs_cstotal.cs_nbfree++;
1200 fs->fs_cs(fs, cg).cs_nbfree++;
1201 i = cbtocylno(fs, bno);
1202 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1203 cg_blktot(cgp)[i]++;
1204 } else {
1205 bbase = bno - fragnum(fs, bno);
1206 /*
1207 * decrement the counts associated with the old frags
1208 */
1209 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1210 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1211 /*
1212 * deallocate the fragment
1213 */
1214 frags = numfrags(fs, size);
1215 for (i = 0; i < frags; i++) {
1216 if (isset(cg_blksfree(cgp), bno + i)) {
1217 printf("dev = 0x%x, block = %d, fs = %s\n",
1218 ip->i_dev, bno + i, fs->fs_fsmnt);
1219 panic("blkfree: freeing free frag");
1220 }
1221 setbit(cg_blksfree(cgp), bno + i);
1222 }
1223 cgp->cg_cs.cs_nffree += i;
1224 fs->fs_cstotal.cs_nffree += i;
1225 fs->fs_cs(fs, cg).cs_nffree += i;
1226 /*
1227 * add back in counts associated with the new frags
1228 */
1229 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1230 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1231 /*
1232 * if a complete block has been reassembled, account for it
1233 */
1234 blkno = fragstoblks(fs, bbase);
1235 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1236 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1237 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1238 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1239 ffs_clusteracct(fs, cgp, blkno, 1);
1240 cgp->cg_cs.cs_nbfree++;
1241 fs->fs_cstotal.cs_nbfree++;
1242 fs->fs_cs(fs, cg).cs_nbfree++;
1243 i = cbtocylno(fs, bbase);
1244 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1245 cg_blktot(cgp)[i]++;
1246 }
1247 }
1248 fs->fs_fmod = 1;
1249 bdwrite(bp);
1250 }
1251
1252 /*
1253 * Free an inode.
1254 *
1255 * The specified inode is placed back in the free map.
1256 */
1257 int
1258 ffs_vfree(ap)
1259 struct vop_vfree_args /* {
1260 struct vnode *a_pvp;
1261 ino_t a_ino;
1262 int a_mode;
1263 } */ *ap;
1264 {
1265 register struct fs *fs;
1266 register struct cg *cgp;
1267 register struct inode *pip;
1268 ino_t ino = ap->a_ino;
1269 struct buf *bp;
1270 int error, cg;
1271
1272 pip = VTOI(ap->a_pvp);
1273 fs = pip->i_fs;
1274 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1275 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1276 pip->i_dev, ino, fs->fs_fsmnt);
1277 cg = ino_to_cg(fs, ino);
1278 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1279 (int)fs->fs_cgsize, NOCRED, &bp);
1280 if (error) {
1281 brelse(bp);
1282 return (0);
1283 }
1284 cgp = (struct cg *)bp->b_data;
1285 if (!cg_chkmagic(cgp)) {
1286 brelse(bp);
1287 return (0);
1288 }
1289 cgp->cg_time = time.tv_sec;
1290 ino %= fs->fs_ipg;
1291 if (isclr(cg_inosused(cgp), ino)) {
1292 printf("dev = 0x%x, ino = %d, fs = %s\n",
1293 pip->i_dev, ino, fs->fs_fsmnt);
1294 if (fs->fs_ronly == 0)
1295 panic("ifree: freeing free inode");
1296 }
1297 clrbit(cg_inosused(cgp), ino);
1298 if (ino < cgp->cg_irotor)
1299 cgp->cg_irotor = ino;
1300 cgp->cg_cs.cs_nifree++;
1301 fs->fs_cstotal.cs_nifree++;
1302 fs->fs_cs(fs, cg).cs_nifree++;
1303 if ((ap->a_mode & IFMT) == IFDIR) {
1304 cgp->cg_cs.cs_ndir--;
1305 fs->fs_cstotal.cs_ndir--;
1306 fs->fs_cs(fs, cg).cs_ndir--;
1307 }
1308 fs->fs_fmod = 1;
1309 bdwrite(bp);
1310 return (0);
1311 }
1312
1313 /*
1314 * Find a block of the specified size in the specified cylinder group.
1315 *
1316 * It is a panic if a request is made to find a block if none are
1317 * available.
1318 */
1319 static daddr_t
1320 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1321 register struct fs *fs;
1322 register struct cg *cgp;
1323 daddr_t bpref;
1324 int allocsiz;
1325 {
1326 daddr_t bno;
1327 int start, len, loc, i;
1328 int blk, field, subfield, pos;
1329
1330 /*
1331 * find the fragment by searching through the free block
1332 * map for an appropriate bit pattern
1333 */
1334 if (bpref)
1335 start = dtogd(fs, bpref) / NBBY;
1336 else
1337 start = cgp->cg_frotor / NBBY;
1338 len = howmany(fs->fs_fpg, NBBY) - start;
1339 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1340 (u_char *)fragtbl[fs->fs_frag],
1341 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1342 if (loc == 0) {
1343 len = start + 1;
1344 start = 0;
1345 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1346 (u_char *)fragtbl[fs->fs_frag],
1347 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1348 if (loc == 0) {
1349 printf("start = %d, len = %d, fs = %s\n",
1350 start, len, fs->fs_fsmnt);
1351 panic("ffs_alloccg: map corrupted");
1352 /* NOTREACHED */
1353 }
1354 }
1355 bno = (start + len - loc) * NBBY;
1356 cgp->cg_frotor = bno;
1357 /*
1358 * found the byte in the map
1359 * sift through the bits to find the selected frag
1360 */
1361 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1362 blk = blkmap(fs, cg_blksfree(cgp), bno);
1363 blk <<= 1;
1364 field = around[allocsiz];
1365 subfield = inside[allocsiz];
1366 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1367 if ((blk & field) == subfield)
1368 return (bno + pos);
1369 field <<= 1;
1370 subfield <<= 1;
1371 }
1372 }
1373 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1374 panic("ffs_alloccg: block not in map");
1375 return (-1);
1376 }
1377
1378 /*
1379 * Update the cluster map because of an allocation or free.
1380 *
1381 * Cnt == 1 means free; cnt == -1 means allocating.
1382 */
1383 ffs_clusteracct(fs, cgp, blkno, cnt)
1384 struct fs *fs;
1385 struct cg *cgp;
1386 daddr_t blkno;
1387 int cnt;
1388 {
1389 long *sump;
1390 u_char *freemapp, *mapp;
1391 int i, start, end, forw, back, map, bit;
1392
1393 if (fs->fs_contigsumsize <= 0)
1394 return;
1395 freemapp = cg_clustersfree(cgp);
1396 sump = cg_clustersum(cgp);
1397 /*
1398 * Allocate or clear the actual block.
1399 */
1400 if (cnt > 0)
1401 setbit(freemapp, blkno);
1402 else
1403 clrbit(freemapp, blkno);
1404 /*
1405 * Find the size of the cluster going forward.
1406 */
1407 start = blkno + 1;
1408 end = start + fs->fs_contigsumsize;
1409 if (end >= cgp->cg_nclusterblks)
1410 end = cgp->cg_nclusterblks;
1411 mapp = &freemapp[start / NBBY];
1412 map = *mapp++;
1413 bit = 1 << (start % NBBY);
1414 for (i = start; i < end; i++) {
1415 if ((map & bit) == 0)
1416 break;
1417 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1418 bit <<= 1;
1419 } else {
1420 map = *mapp++;
1421 bit = 1;
1422 }
1423 }
1424 forw = i - start;
1425 /*
1426 * Find the size of the cluster going backward.
1427 */
1428 start = blkno - 1;
1429 end = start - fs->fs_contigsumsize;
1430 if (end < 0)
1431 end = -1;
1432 mapp = &freemapp[start / NBBY];
1433 map = *mapp--;
1434 bit = 1 << (start % NBBY);
1435 for (i = start; i > end; i--) {
1436 if ((map & bit) == 0)
1437 break;
1438 if ((i & (NBBY - 1)) != 0) {
1439 bit >>= 1;
1440 } else {
1441 map = *mapp--;
1442 bit = 1 << (NBBY - 1);
1443 }
1444 }
1445 back = start - i;
1446 /*
1447 * Account for old cluster and the possibly new forward and
1448 * back clusters.
1449 */
1450 i = back + forw + 1;
1451 if (i > fs->fs_contigsumsize)
1452 i = fs->fs_contigsumsize;
1453 sump[i] += cnt;
1454 if (back > 0)
1455 sump[back] -= cnt;
1456 if (forw > 0)
1457 sump[forw] -= cnt;
1458 }
1459
1460 /*
1461 * Fserr prints the name of a file system with an error diagnostic.
1462 *
1463 * The form of the error message is:
1464 * fs: error message
1465 */
1466 static void
1467 ffs_fserr(fs, uid, cp)
1468 struct fs *fs;
1469 u_int uid;
1470 char *cp;
1471 {
1472
1473 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1474 }
1475