ffs_alloc.c revision 1.106.8.7 1 /* $NetBSD: ffs_alloc.c,v 1.106.8.7 2008/12/30 19:30:31 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.106.8.7 2008/12/30 19:30:31 christos Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
91
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 static ino_t ffs_dirpref(struct inode *);
106 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 static void ffs_fserr(struct fs *, u_int, const char *);
108 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 daddr_t, int);
113 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
114 daddr_t, long, bool);
115 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
116 int, bool);
117
118 /* if 1, changes in optimalization strategy are logged */
119 int ffs_log_changeopt = 0;
120
121 /* in ffs_tables.c */
122 extern const int inside[], around[];
123 extern const u_char * const fragtbl[];
124
125 /* Basic consistency check for block allocations */
126 static int
127 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
128 long size, dev_t dev, ino_t inum)
129 {
130 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
131 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
132 printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
133 "size = %ld, fs = %s\n",
134 (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
135 panic("%s: bad size", func);
136 }
137
138 if (bno >= fs->fs_size) {
139 printf("bad block %" PRId64 ", ino %llu\n", bno,
140 (unsigned long long)inum);
141 ffs_fserr(fs, inum, "bad block");
142 return EINVAL;
143 }
144 return 0;
145 }
146
147 /*
148 * Allocate a block in the file system.
149 *
150 * The size of the requested block is given, which must be some
151 * multiple of fs_fsize and <= fs_bsize.
152 * A preference may be optionally specified. If a preference is given
153 * the following hierarchy is used to allocate a block:
154 * 1) allocate the requested block.
155 * 2) allocate a rotationally optimal block in the same cylinder.
156 * 3) allocate a block in the same cylinder group.
157 * 4) quadradically rehash into other cylinder groups, until an
158 * available block is located.
159 * If no block preference is given the following hierarchy is used
160 * to allocate a block:
161 * 1) allocate a block in the cylinder group that contains the
162 * inode for the file.
163 * 2) quadradically rehash into other cylinder groups, until an
164 * available block is located.
165 *
166 * => called with um_lock held
167 * => releases um_lock before returning
168 */
169 int
170 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
171 kauth_cred_t cred, daddr_t *bnp)
172 {
173 struct ufsmount *ump;
174 struct fs *fs;
175 daddr_t bno;
176 int cg;
177 #ifdef QUOTA
178 int error;
179 #endif
180
181 fs = ip->i_fs;
182 ump = ip->i_ump;
183
184 KASSERT(mutex_owned(&ump->um_lock));
185
186 #ifdef UVM_PAGE_TRKOWN
187 if (ITOV(ip)->v_type == VREG &&
188 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
189 struct vm_page *pg;
190 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
191 voff_t off = trunc_page(lblktosize(fs, lbn));
192 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
193
194 mutex_enter(&uobj->vmobjlock);
195 while (off < endoff) {
196 pg = uvm_pagelookup(uobj, off);
197 KASSERT(pg != NULL);
198 KASSERT(pg->owner == curproc->p_pid);
199 off += PAGE_SIZE;
200 }
201 mutex_exit(&uobj->vmobjlock);
202 }
203 #endif
204
205 *bnp = 0;
206 #ifdef DIAGNOSTIC
207 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
208 printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
209 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
210 panic("ffs_alloc: bad size");
211 }
212 if (cred == NOCRED)
213 panic("ffs_alloc: missing credential");
214 #endif /* DIAGNOSTIC */
215 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
216 goto nospace;
217 if (freespace(fs, fs->fs_minfree) <= 0 &&
218 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
219 goto nospace;
220 #ifdef QUOTA
221 mutex_exit(&ump->um_lock);
222 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
223 return (error);
224 mutex_enter(&ump->um_lock);
225 #endif
226
227 if (bpref >= fs->fs_size)
228 bpref = 0;
229 if (bpref == 0)
230 cg = ino_to_cg(fs, ip->i_number);
231 else
232 cg = dtog(fs, bpref);
233 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
234 if (bno > 0) {
235 DIP_ADD(ip, blocks, btodb(size));
236 ip->i_flag |= IN_CHANGE | IN_UPDATE;
237 *bnp = bno;
238 return (0);
239 }
240 #ifdef QUOTA
241 /*
242 * Restore user's disk quota because allocation failed.
243 */
244 (void) chkdq(ip, -btodb(size), cred, FORCE);
245 #endif
246 if (flags & B_CONTIG) {
247 /*
248 * XXX ump->um_lock handling is "suspect" at best.
249 * For the case where ffs_hashalloc() fails early
250 * in the B_CONTIG case we reach here with um_lock
251 * already unlocked, so we can't release it again
252 * like in the normal error path. See kern/39206.
253 *
254 *
255 * Fail silently - it's up to our caller to report
256 * errors.
257 */
258 return (ENOSPC);
259 }
260 nospace:
261 mutex_exit(&ump->um_lock);
262 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
263 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
264 return (ENOSPC);
265 }
266
267 /*
268 * Reallocate a fragment to a bigger size
269 *
270 * The number and size of the old block is given, and a preference
271 * and new size is also specified. The allocator attempts to extend
272 * the original block. Failing that, the regular block allocator is
273 * invoked to get an appropriate block.
274 *
275 * => called with um_lock held
276 * => return with um_lock released
277 */
278 int
279 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
280 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
281 {
282 struct ufsmount *ump;
283 struct fs *fs;
284 struct buf *bp;
285 int cg, request, error;
286 daddr_t bprev, bno;
287
288 fs = ip->i_fs;
289 ump = ip->i_ump;
290
291 KASSERT(mutex_owned(&ump->um_lock));
292
293 #ifdef UVM_PAGE_TRKOWN
294 if (ITOV(ip)->v_type == VREG) {
295 struct vm_page *pg;
296 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
297 voff_t off = trunc_page(lblktosize(fs, lbprev));
298 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
299
300 mutex_enter(&uobj->vmobjlock);
301 while (off < endoff) {
302 pg = uvm_pagelookup(uobj, off);
303 KASSERT(pg != NULL);
304 KASSERT(pg->owner == curproc->p_pid);
305 KASSERT((pg->flags & PG_CLEAN) == 0);
306 off += PAGE_SIZE;
307 }
308 mutex_exit(&uobj->vmobjlock);
309 }
310 #endif
311
312 #ifdef DIAGNOSTIC
313 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
314 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
315 printf(
316 "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
317 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
318 panic("ffs_realloccg: bad size");
319 }
320 if (cred == NOCRED)
321 panic("ffs_realloccg: missing credential");
322 #endif /* DIAGNOSTIC */
323 if (freespace(fs, fs->fs_minfree) <= 0 &&
324 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
325 mutex_exit(&ump->um_lock);
326 goto nospace;
327 }
328 if (fs->fs_magic == FS_UFS2_MAGIC)
329 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
330 else
331 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
332
333 if (bprev == 0) {
334 printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
335 (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
336 fs->fs_fsmnt);
337 panic("ffs_realloccg: bad bprev");
338 }
339 mutex_exit(&ump->um_lock);
340
341 /*
342 * Allocate the extra space in the buffer.
343 */
344 if (bpp != NULL &&
345 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
346 brelse(bp, 0);
347 return (error);
348 }
349 #ifdef QUOTA
350 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
351 if (bpp != NULL) {
352 brelse(bp, 0);
353 }
354 return (error);
355 }
356 #endif
357 /*
358 * Check for extension in the existing location.
359 */
360 cg = dtog(fs, bprev);
361 mutex_enter(&ump->um_lock);
362 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
363 DIP_ADD(ip, blocks, btodb(nsize - osize));
364 ip->i_flag |= IN_CHANGE | IN_UPDATE;
365
366 if (bpp != NULL) {
367 if (bp->b_blkno != fsbtodb(fs, bno))
368 panic("bad blockno");
369 allocbuf(bp, nsize, 1);
370 memset((char *)bp->b_data + osize, 0, nsize - osize);
371 mutex_enter(bp->b_objlock);
372 KASSERT(!cv_has_waiters(&bp->b_done));
373 bp->b_oflags |= BO_DONE;
374 mutex_exit(bp->b_objlock);
375 *bpp = bp;
376 }
377 if (blknop != NULL) {
378 *blknop = bno;
379 }
380 return (0);
381 }
382 /*
383 * Allocate a new disk location.
384 */
385 if (bpref >= fs->fs_size)
386 bpref = 0;
387 switch ((int)fs->fs_optim) {
388 case FS_OPTSPACE:
389 /*
390 * Allocate an exact sized fragment. Although this makes
391 * best use of space, we will waste time relocating it if
392 * the file continues to grow. If the fragmentation is
393 * less than half of the minimum free reserve, we choose
394 * to begin optimizing for time.
395 */
396 request = nsize;
397 if (fs->fs_minfree < 5 ||
398 fs->fs_cstotal.cs_nffree >
399 fs->fs_dsize * fs->fs_minfree / (2 * 100))
400 break;
401
402 if (ffs_log_changeopt) {
403 log(LOG_NOTICE,
404 "%s: optimization changed from SPACE to TIME\n",
405 fs->fs_fsmnt);
406 }
407
408 fs->fs_optim = FS_OPTTIME;
409 break;
410 case FS_OPTTIME:
411 /*
412 * At this point we have discovered a file that is trying to
413 * grow a small fragment to a larger fragment. To save time,
414 * we allocate a full sized block, then free the unused portion.
415 * If the file continues to grow, the `ffs_fragextend' call
416 * above will be able to grow it in place without further
417 * copying. If aberrant programs cause disk fragmentation to
418 * grow within 2% of the free reserve, we choose to begin
419 * optimizing for space.
420 */
421 request = fs->fs_bsize;
422 if (fs->fs_cstotal.cs_nffree <
423 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
424 break;
425
426 if (ffs_log_changeopt) {
427 log(LOG_NOTICE,
428 "%s: optimization changed from TIME to SPACE\n",
429 fs->fs_fsmnt);
430 }
431
432 fs->fs_optim = FS_OPTSPACE;
433 break;
434 default:
435 printf("dev = 0x%llx, optim = %d, fs = %s\n",
436 (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
437 panic("ffs_realloccg: bad optim");
438 /* NOTREACHED */
439 }
440 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
441 if (bno > 0) {
442 if (!DOINGSOFTDEP(ITOV(ip))) {
443 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
444 (ITOV(ip)->v_type != VREG)) {
445 UFS_WAPBL_REGISTER_DEALLOCATION(
446 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
447 osize);
448 } else
449 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
450 ip->i_number);
451 }
452 if (nsize < request) {
453 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
454 (ITOV(ip)->v_type != VREG)) {
455 UFS_WAPBL_REGISTER_DEALLOCATION(
456 ip->i_ump->um_mountp,
457 fsbtodb(fs, (bno + numfrags(fs, nsize))),
458 request - nsize);
459 } else
460 ffs_blkfree(fs, ip->i_devvp,
461 bno + numfrags(fs, nsize),
462 (long)(request - nsize), ip->i_number);
463 }
464 DIP_ADD(ip, blocks, btodb(nsize - osize));
465 ip->i_flag |= IN_CHANGE | IN_UPDATE;
466 if (bpp != NULL) {
467 bp->b_blkno = fsbtodb(fs, bno);
468 allocbuf(bp, nsize, 1);
469 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
470 mutex_enter(bp->b_objlock);
471 KASSERT(!cv_has_waiters(&bp->b_done));
472 bp->b_oflags |= BO_DONE;
473 mutex_exit(bp->b_objlock);
474 *bpp = bp;
475 }
476 if (blknop != NULL) {
477 *blknop = bno;
478 }
479 return (0);
480 }
481 mutex_exit(&ump->um_lock);
482
483 #ifdef QUOTA
484 /*
485 * Restore user's disk quota because allocation failed.
486 */
487 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
488 #endif
489 if (bpp != NULL) {
490 brelse(bp, 0);
491 }
492
493 nospace:
494 /*
495 * no space available
496 */
497 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
498 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
499 return (ENOSPC);
500 }
501
502 /*
503 * Allocate an inode in the file system.
504 *
505 * If allocating a directory, use ffs_dirpref to select the inode.
506 * If allocating in a directory, the following hierarchy is followed:
507 * 1) allocate the preferred inode.
508 * 2) allocate an inode in the same cylinder group.
509 * 3) quadradically rehash into other cylinder groups, until an
510 * available inode is located.
511 * If no inode preference is given the following hierarchy is used
512 * to allocate an inode:
513 * 1) allocate an inode in cylinder group 0.
514 * 2) quadradically rehash into other cylinder groups, until an
515 * available inode is located.
516 *
517 * => um_lock not held upon entry or return
518 */
519 int
520 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
521 struct vnode **vpp)
522 {
523 struct ufsmount *ump;
524 struct inode *pip;
525 struct fs *fs;
526 struct inode *ip;
527 struct timespec ts;
528 ino_t ino, ipref;
529 int cg, error;
530
531 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
532
533 *vpp = NULL;
534 pip = VTOI(pvp);
535 fs = pip->i_fs;
536 ump = pip->i_ump;
537
538 error = UFS_WAPBL_BEGIN(pvp->v_mount);
539 if (error) {
540 return error;
541 }
542 mutex_enter(&ump->um_lock);
543 if (fs->fs_cstotal.cs_nifree == 0)
544 goto noinodes;
545
546 if ((mode & IFMT) == IFDIR)
547 ipref = ffs_dirpref(pip);
548 else
549 ipref = pip->i_number;
550 if (ipref >= fs->fs_ncg * fs->fs_ipg)
551 ipref = 0;
552 cg = ino_to_cg(fs, ipref);
553 /*
554 * Track number of dirs created one after another
555 * in a same cg without intervening by files.
556 */
557 if ((mode & IFMT) == IFDIR) {
558 if (fs->fs_contigdirs[cg] < 255)
559 fs->fs_contigdirs[cg]++;
560 } else {
561 if (fs->fs_contigdirs[cg] > 0)
562 fs->fs_contigdirs[cg]--;
563 }
564 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
565 if (ino == 0)
566 goto noinodes;
567 UFS_WAPBL_END(pvp->v_mount);
568 error = VFS_VGET(pvp->v_mount, ino, vpp);
569 if (error) {
570 int err;
571 err = UFS_WAPBL_BEGIN(pvp->v_mount);
572 if (err == 0)
573 ffs_vfree(pvp, ino, mode);
574 if (err == 0)
575 UFS_WAPBL_END(pvp->v_mount);
576 return (error);
577 }
578 KASSERT((*vpp)->v_type == VNON);
579 ip = VTOI(*vpp);
580 if (ip->i_mode) {
581 #if 0
582 printf("mode = 0%o, inum = %d, fs = %s\n",
583 ip->i_mode, ip->i_number, fs->fs_fsmnt);
584 #else
585 printf("dmode %x mode %x dgen %x gen %x\n",
586 DIP(ip, mode), ip->i_mode,
587 DIP(ip, gen), ip->i_gen);
588 printf("size %llx blocks %llx\n",
589 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
590 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
591 (unsigned long long)ipref);
592 #if 0
593 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
594 (int)fs->fs_bsize, NOCRED, 0, &bp);
595 #endif
596
597 #endif
598 panic("ffs_valloc: dup alloc");
599 }
600 if (DIP(ip, blocks)) { /* XXX */
601 printf("free inode %s/%llu had %" PRId64 " blocks\n",
602 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
603 DIP_ASSIGN(ip, blocks, 0);
604 }
605 ip->i_flag &= ~IN_SPACECOUNTED;
606 ip->i_flags = 0;
607 DIP_ASSIGN(ip, flags, 0);
608 /*
609 * Set up a new generation number for this inode.
610 */
611 ip->i_gen++;
612 DIP_ASSIGN(ip, gen, ip->i_gen);
613 if (fs->fs_magic == FS_UFS2_MAGIC) {
614 vfs_timestamp(&ts);
615 ip->i_ffs2_birthtime = ts.tv_sec;
616 ip->i_ffs2_birthnsec = ts.tv_nsec;
617 }
618 return (0);
619 noinodes:
620 mutex_exit(&ump->um_lock);
621 UFS_WAPBL_END(pvp->v_mount);
622 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
623 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
624 return (ENOSPC);
625 }
626
627 /*
628 * Find a cylinder group in which to place a directory.
629 *
630 * The policy implemented by this algorithm is to allocate a
631 * directory inode in the same cylinder group as its parent
632 * directory, but also to reserve space for its files inodes
633 * and data. Restrict the number of directories which may be
634 * allocated one after another in the same cylinder group
635 * without intervening allocation of files.
636 *
637 * If we allocate a first level directory then force allocation
638 * in another cylinder group.
639 */
640 static ino_t
641 ffs_dirpref(struct inode *pip)
642 {
643 register struct fs *fs;
644 int cg, prefcg;
645 int64_t dirsize, cgsize, curdsz;
646 int avgifree, avgbfree, avgndir;
647 int minifree, minbfree, maxndir;
648 int mincg, minndir;
649 int maxcontigdirs;
650
651 KASSERT(mutex_owned(&pip->i_ump->um_lock));
652
653 fs = pip->i_fs;
654
655 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
656 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
657 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
658
659 /*
660 * Force allocation in another cg if creating a first level dir.
661 */
662 if (ITOV(pip)->v_vflag & VV_ROOT) {
663 prefcg = random() % fs->fs_ncg;
664 mincg = prefcg;
665 minndir = fs->fs_ipg;
666 for (cg = prefcg; cg < fs->fs_ncg; cg++)
667 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
668 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
669 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
670 mincg = cg;
671 minndir = fs->fs_cs(fs, cg).cs_ndir;
672 }
673 for (cg = 0; cg < prefcg; cg++)
674 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
675 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
676 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
677 mincg = cg;
678 minndir = fs->fs_cs(fs, cg).cs_ndir;
679 }
680 return ((ino_t)(fs->fs_ipg * mincg));
681 }
682
683 /*
684 * Count various limits which used for
685 * optimal allocation of a directory inode.
686 */
687 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
688 minifree = avgifree - fs->fs_ipg / 4;
689 if (minifree < 0)
690 minifree = 0;
691 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
692 if (minbfree < 0)
693 minbfree = 0;
694 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
695 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
696 if (avgndir != 0) {
697 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
698 if (dirsize < curdsz)
699 dirsize = curdsz;
700 }
701 if (cgsize < dirsize * 255)
702 maxcontigdirs = cgsize / dirsize;
703 else
704 maxcontigdirs = 255;
705 if (fs->fs_avgfpdir > 0)
706 maxcontigdirs = min(maxcontigdirs,
707 fs->fs_ipg / fs->fs_avgfpdir);
708 if (maxcontigdirs == 0)
709 maxcontigdirs = 1;
710
711 /*
712 * Limit number of dirs in one cg and reserve space for
713 * regular files, but only if we have no deficit in
714 * inodes or space.
715 */
716 prefcg = ino_to_cg(fs, pip->i_number);
717 for (cg = prefcg; cg < fs->fs_ncg; cg++)
718 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
719 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
720 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
721 if (fs->fs_contigdirs[cg] < maxcontigdirs)
722 return ((ino_t)(fs->fs_ipg * cg));
723 }
724 for (cg = 0; cg < prefcg; cg++)
725 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
726 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
727 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
728 if (fs->fs_contigdirs[cg] < maxcontigdirs)
729 return ((ino_t)(fs->fs_ipg * cg));
730 }
731 /*
732 * This is a backstop when we are deficient in space.
733 */
734 for (cg = prefcg; cg < fs->fs_ncg; cg++)
735 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
736 return ((ino_t)(fs->fs_ipg * cg));
737 for (cg = 0; cg < prefcg; cg++)
738 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
739 break;
740 return ((ino_t)(fs->fs_ipg * cg));
741 }
742
743 /*
744 * Select the desired position for the next block in a file. The file is
745 * logically divided into sections. The first section is composed of the
746 * direct blocks. Each additional section contains fs_maxbpg blocks.
747 *
748 * If no blocks have been allocated in the first section, the policy is to
749 * request a block in the same cylinder group as the inode that describes
750 * the file. If no blocks have been allocated in any other section, the
751 * policy is to place the section in a cylinder group with a greater than
752 * average number of free blocks. An appropriate cylinder group is found
753 * by using a rotor that sweeps the cylinder groups. When a new group of
754 * blocks is needed, the sweep begins in the cylinder group following the
755 * cylinder group from which the previous allocation was made. The sweep
756 * continues until a cylinder group with greater than the average number
757 * of free blocks is found. If the allocation is for the first block in an
758 * indirect block, the information on the previous allocation is unavailable;
759 * here a best guess is made based upon the logical block number being
760 * allocated.
761 *
762 * If a section is already partially allocated, the policy is to
763 * contiguously allocate fs_maxcontig blocks. The end of one of these
764 * contiguous blocks and the beginning of the next is laid out
765 * contigously if possible.
766 *
767 * => um_lock held on entry and exit
768 */
769 daddr_t
770 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
771 int32_t *bap /* XXX ondisk32 */)
772 {
773 struct fs *fs;
774 int cg;
775 int avgbfree, startcg;
776
777 KASSERT(mutex_owned(&ip->i_ump->um_lock));
778
779 fs = ip->i_fs;
780
781 /*
782 * If allocating a contiguous file with B_CONTIG, use the hints
783 * in the inode extentions to return the desired block.
784 *
785 * For metadata (indirect blocks) return the address of where
786 * the first indirect block resides - we'll scan for the next
787 * available slot if we need to allocate more than one indirect
788 * block. For data, return the address of the actual block
789 * relative to the address of the first data block.
790 */
791 if (flags & B_CONTIG) {
792 KASSERT(ip->i_ffs_first_data_blk != 0);
793 KASSERT(ip->i_ffs_first_indir_blk != 0);
794 if (flags & B_METAONLY)
795 return ip->i_ffs_first_indir_blk;
796 else
797 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
798 }
799
800 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
801 if (lbn < NDADDR + NINDIR(fs)) {
802 cg = ino_to_cg(fs, ip->i_number);
803 return (cgbase(fs, cg) + fs->fs_frag);
804 }
805 /*
806 * Find a cylinder with greater than average number of
807 * unused data blocks.
808 */
809 if (indx == 0 || bap[indx - 1] == 0)
810 startcg =
811 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
812 else
813 startcg = dtog(fs,
814 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
815 startcg %= fs->fs_ncg;
816 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
817 for (cg = startcg; cg < fs->fs_ncg; cg++)
818 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
819 return (cgbase(fs, cg) + fs->fs_frag);
820 }
821 for (cg = 0; cg < startcg; cg++)
822 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
823 return (cgbase(fs, cg) + fs->fs_frag);
824 }
825 return (0);
826 }
827 /*
828 * We just always try to lay things out contiguously.
829 */
830 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
831 }
832
833 daddr_t
834 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
835 int64_t *bap)
836 {
837 struct fs *fs;
838 int cg;
839 int avgbfree, startcg;
840
841 KASSERT(mutex_owned(&ip->i_ump->um_lock));
842
843 fs = ip->i_fs;
844
845 /*
846 * If allocating a contiguous file with B_CONTIG, use the hints
847 * in the inode extentions to return the desired block.
848 *
849 * For metadata (indirect blocks) return the address of where
850 * the first indirect block resides - we'll scan for the next
851 * available slot if we need to allocate more than one indirect
852 * block. For data, return the address of the actual block
853 * relative to the address of the first data block.
854 */
855 if (flags & B_CONTIG) {
856 KASSERT(ip->i_ffs_first_data_blk != 0);
857 KASSERT(ip->i_ffs_first_indir_blk != 0);
858 if (flags & B_METAONLY)
859 return ip->i_ffs_first_indir_blk;
860 else
861 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
862 }
863
864 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
865 if (lbn < NDADDR + NINDIR(fs)) {
866 cg = ino_to_cg(fs, ip->i_number);
867 return (cgbase(fs, cg) + fs->fs_frag);
868 }
869 /*
870 * Find a cylinder with greater than average number of
871 * unused data blocks.
872 */
873 if (indx == 0 || bap[indx - 1] == 0)
874 startcg =
875 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
876 else
877 startcg = dtog(fs,
878 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
879 startcg %= fs->fs_ncg;
880 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
881 for (cg = startcg; cg < fs->fs_ncg; cg++)
882 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
883 return (cgbase(fs, cg) + fs->fs_frag);
884 }
885 for (cg = 0; cg < startcg; cg++)
886 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
887 return (cgbase(fs, cg) + fs->fs_frag);
888 }
889 return (0);
890 }
891 /*
892 * We just always try to lay things out contiguously.
893 */
894 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
895 }
896
897
898 /*
899 * Implement the cylinder overflow algorithm.
900 *
901 * The policy implemented by this algorithm is:
902 * 1) allocate the block in its requested cylinder group.
903 * 2) quadradically rehash on the cylinder group number.
904 * 3) brute force search for a free block.
905 *
906 * => called with um_lock held
907 * => returns with um_lock released on success, held on failure
908 * (*allocator releases lock on success, retains lock on failure)
909 */
910 /*VARARGS5*/
911 static daddr_t
912 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
913 int size /* size for data blocks, mode for inodes */,
914 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
915 {
916 struct fs *fs;
917 daddr_t result;
918 int i, icg = cg;
919
920 fs = ip->i_fs;
921 /*
922 * 1: preferred cylinder group
923 */
924 result = (*allocator)(ip, cg, pref, size, flags);
925 if (result)
926 return (result);
927
928 if (flags & B_CONTIG)
929 return (result);
930 /*
931 * 2: quadratic rehash
932 */
933 for (i = 1; i < fs->fs_ncg; i *= 2) {
934 cg += i;
935 if (cg >= fs->fs_ncg)
936 cg -= fs->fs_ncg;
937 result = (*allocator)(ip, cg, 0, size, flags);
938 if (result)
939 return (result);
940 }
941 /*
942 * 3: brute force search
943 * Note that we start at i == 2, since 0 was checked initially,
944 * and 1 is always checked in the quadratic rehash.
945 */
946 cg = (icg + 2) % fs->fs_ncg;
947 for (i = 2; i < fs->fs_ncg; i++) {
948 result = (*allocator)(ip, cg, 0, size, flags);
949 if (result)
950 return (result);
951 cg++;
952 if (cg == fs->fs_ncg)
953 cg = 0;
954 }
955 return (0);
956 }
957
958 /*
959 * Determine whether a fragment can be extended.
960 *
961 * Check to see if the necessary fragments are available, and
962 * if they are, allocate them.
963 *
964 * => called with um_lock held
965 * => returns with um_lock released on success, held on failure
966 */
967 static daddr_t
968 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
969 {
970 struct ufsmount *ump;
971 struct fs *fs;
972 struct cg *cgp;
973 struct buf *bp;
974 daddr_t bno;
975 int frags, bbase;
976 int i, error;
977 u_int8_t *blksfree;
978
979 fs = ip->i_fs;
980 ump = ip->i_ump;
981
982 KASSERT(mutex_owned(&ump->um_lock));
983
984 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
985 return (0);
986 frags = numfrags(fs, nsize);
987 bbase = fragnum(fs, bprev);
988 if (bbase > fragnum(fs, (bprev + frags - 1))) {
989 /* cannot extend across a block boundary */
990 return (0);
991 }
992 mutex_exit(&ump->um_lock);
993 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
994 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
995 if (error)
996 goto fail;
997 cgp = (struct cg *)bp->b_data;
998 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
999 goto fail;
1000 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1001 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1002 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1003 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1004 bno = dtogd(fs, bprev);
1005 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1006 for (i = numfrags(fs, osize); i < frags; i++)
1007 if (isclr(blksfree, bno + i))
1008 goto fail;
1009 /*
1010 * the current fragment can be extended
1011 * deduct the count on fragment being extended into
1012 * increase the count on the remaining fragment (if any)
1013 * allocate the extended piece
1014 */
1015 for (i = frags; i < fs->fs_frag - bbase; i++)
1016 if (isclr(blksfree, bno + i))
1017 break;
1018 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1019 if (i != frags)
1020 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1021 mutex_enter(&ump->um_lock);
1022 for (i = numfrags(fs, osize); i < frags; i++) {
1023 clrbit(blksfree, bno + i);
1024 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1025 fs->fs_cstotal.cs_nffree--;
1026 fs->fs_cs(fs, cg).cs_nffree--;
1027 }
1028 fs->fs_fmod = 1;
1029 ACTIVECG_CLR(fs, cg);
1030 mutex_exit(&ump->um_lock);
1031 if (DOINGSOFTDEP(ITOV(ip)))
1032 softdep_setup_blkmapdep(bp, fs, bprev);
1033 bdwrite(bp);
1034 return (bprev);
1035
1036 fail:
1037 brelse(bp, 0);
1038 mutex_enter(&ump->um_lock);
1039 return (0);
1040 }
1041
1042 /*
1043 * Determine whether a block can be allocated.
1044 *
1045 * Check to see if a block of the appropriate size is available,
1046 * and if it is, allocate it.
1047 */
1048 static daddr_t
1049 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1050 {
1051 struct ufsmount *ump;
1052 struct fs *fs = ip->i_fs;
1053 struct cg *cgp;
1054 struct buf *bp;
1055 int32_t bno;
1056 daddr_t blkno;
1057 int error, frags, allocsiz, i;
1058 u_int8_t *blksfree;
1059 #ifdef FFS_EI
1060 const int needswap = UFS_FSNEEDSWAP(fs);
1061 #endif
1062
1063 ump = ip->i_ump;
1064
1065 KASSERT(mutex_owned(&ump->um_lock));
1066
1067 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1068 return (0);
1069 mutex_exit(&ump->um_lock);
1070 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1071 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1072 if (error)
1073 goto fail;
1074 cgp = (struct cg *)bp->b_data;
1075 if (!cg_chkmagic(cgp, needswap) ||
1076 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1077 goto fail;
1078 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1079 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1080 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1081 cgp->cg_time = ufs_rw64(time_second, needswap);
1082 if (size == fs->fs_bsize) {
1083 mutex_enter(&ump->um_lock);
1084 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1085 ACTIVECG_CLR(fs, cg);
1086 mutex_exit(&ump->um_lock);
1087 bdwrite(bp);
1088 return (blkno);
1089 }
1090 /*
1091 * check to see if any fragments are already available
1092 * allocsiz is the size which will be allocated, hacking
1093 * it down to a smaller size if necessary
1094 */
1095 blksfree = cg_blksfree(cgp, needswap);
1096 frags = numfrags(fs, size);
1097 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1098 if (cgp->cg_frsum[allocsiz] != 0)
1099 break;
1100 if (allocsiz == fs->fs_frag) {
1101 /*
1102 * no fragments were available, so a block will be
1103 * allocated, and hacked up
1104 */
1105 if (cgp->cg_cs.cs_nbfree == 0)
1106 goto fail;
1107 mutex_enter(&ump->um_lock);
1108 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1109 bno = dtogd(fs, blkno);
1110 for (i = frags; i < fs->fs_frag; i++)
1111 setbit(blksfree, bno + i);
1112 i = fs->fs_frag - frags;
1113 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1114 fs->fs_cstotal.cs_nffree += i;
1115 fs->fs_cs(fs, cg).cs_nffree += i;
1116 fs->fs_fmod = 1;
1117 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1118 ACTIVECG_CLR(fs, cg);
1119 mutex_exit(&ump->um_lock);
1120 bdwrite(bp);
1121 return (blkno);
1122 }
1123 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1124 #if 0
1125 /*
1126 * XXX fvdl mapsearch will panic, and never return -1
1127 * also: returning NULL as daddr_t ?
1128 */
1129 if (bno < 0)
1130 goto fail;
1131 #endif
1132 for (i = 0; i < frags; i++)
1133 clrbit(blksfree, bno + i);
1134 mutex_enter(&ump->um_lock);
1135 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1136 fs->fs_cstotal.cs_nffree -= frags;
1137 fs->fs_cs(fs, cg).cs_nffree -= frags;
1138 fs->fs_fmod = 1;
1139 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1140 if (frags != allocsiz)
1141 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1142 blkno = cg * fs->fs_fpg + bno;
1143 ACTIVECG_CLR(fs, cg);
1144 mutex_exit(&ump->um_lock);
1145 if (DOINGSOFTDEP(ITOV(ip)))
1146 softdep_setup_blkmapdep(bp, fs, blkno);
1147 bdwrite(bp);
1148 return blkno;
1149
1150 fail:
1151 brelse(bp, 0);
1152 mutex_enter(&ump->um_lock);
1153 return (0);
1154 }
1155
1156 /*
1157 * Allocate a block in a cylinder group.
1158 *
1159 * This algorithm implements the following policy:
1160 * 1) allocate the requested block.
1161 * 2) allocate a rotationally optimal block in the same cylinder.
1162 * 3) allocate the next available block on the block rotor for the
1163 * specified cylinder group.
1164 * Note that this routine only allocates fs_bsize blocks; these
1165 * blocks may be fragmented by the routine that allocates them.
1166 */
1167 static daddr_t
1168 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1169 {
1170 struct ufsmount *ump;
1171 struct fs *fs = ip->i_fs;
1172 struct cg *cgp;
1173 daddr_t blkno;
1174 int32_t bno;
1175 u_int8_t *blksfree;
1176 #ifdef FFS_EI
1177 const int needswap = UFS_FSNEEDSWAP(fs);
1178 #endif
1179
1180 ump = ip->i_ump;
1181
1182 KASSERT(mutex_owned(&ump->um_lock));
1183
1184 cgp = (struct cg *)bp->b_data;
1185 blksfree = cg_blksfree(cgp, needswap);
1186 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1187 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1188 } else {
1189 bpref = blknum(fs, bpref);
1190 bno = dtogd(fs, bpref);
1191 /*
1192 * if the requested block is available, use it
1193 */
1194 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1195 goto gotit;
1196 /*
1197 * if the requested data block isn't available and we are
1198 * trying to allocate a contiguous file, return an error.
1199 */
1200 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1201 return (0);
1202 }
1203
1204 /*
1205 * Take the next available block in this cylinder group.
1206 */
1207 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1208 if (bno < 0)
1209 return (0);
1210 cgp->cg_rotor = ufs_rw32(bno, needswap);
1211 gotit:
1212 blkno = fragstoblks(fs, bno);
1213 ffs_clrblock(fs, blksfree, blkno);
1214 ffs_clusteracct(fs, cgp, blkno, -1);
1215 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1216 fs->fs_cstotal.cs_nbfree--;
1217 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1218 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1219 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1220 int cylno;
1221 cylno = old_cbtocylno(fs, bno);
1222 KASSERT(cylno >= 0);
1223 KASSERT(cylno < fs->fs_old_ncyl);
1224 KASSERT(old_cbtorpos(fs, bno) >= 0);
1225 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1226 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1227 needswap);
1228 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1229 }
1230 fs->fs_fmod = 1;
1231 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1232 if (DOINGSOFTDEP(ITOV(ip))) {
1233 mutex_exit(&ump->um_lock);
1234 softdep_setup_blkmapdep(bp, fs, blkno);
1235 mutex_enter(&ump->um_lock);
1236 }
1237 return (blkno);
1238 }
1239
1240 /*
1241 * Determine whether an inode can be allocated.
1242 *
1243 * Check to see if an inode is available, and if it is,
1244 * allocate it using the following policy:
1245 * 1) allocate the requested inode.
1246 * 2) allocate the next available inode after the requested
1247 * inode in the specified cylinder group.
1248 */
1249 static daddr_t
1250 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1251 {
1252 struct ufsmount *ump = ip->i_ump;
1253 struct fs *fs = ip->i_fs;
1254 struct cg *cgp;
1255 struct buf *bp, *ibp;
1256 u_int8_t *inosused;
1257 int error, start, len, loc, map, i;
1258 int32_t initediblk;
1259 daddr_t nalloc;
1260 struct ufs2_dinode *dp2;
1261 #ifdef FFS_EI
1262 const int needswap = UFS_FSNEEDSWAP(fs);
1263 #endif
1264
1265 KASSERT(mutex_owned(&ump->um_lock));
1266 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1267
1268 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1269 return (0);
1270 mutex_exit(&ump->um_lock);
1271 ibp = NULL;
1272 initediblk = -1;
1273 retry:
1274 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1275 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1276 if (error)
1277 goto fail;
1278 cgp = (struct cg *)bp->b_data;
1279 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1280 goto fail;
1281
1282 if (ibp != NULL &&
1283 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1284 /* Another thread allocated more inodes so we retry the test. */
1285 brelse(ibp, BC_INVAL);
1286 ibp = NULL;
1287 }
1288 /*
1289 * Check to see if we need to initialize more inodes.
1290 */
1291 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1292 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1293 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1294 if (nalloc + INOPB(fs) > initediblk &&
1295 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1296 /*
1297 * We have to release the cg buffer here to prevent
1298 * a deadlock when reading the inode block will
1299 * run a copy-on-write that might use this cg.
1300 */
1301 brelse(bp, 0);
1302 bp = NULL;
1303 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1304 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1305 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1306 if (error)
1307 goto fail;
1308 goto retry;
1309 }
1310 }
1311
1312 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1313 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1314 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1315 cgp->cg_time = ufs_rw64(time_second, needswap);
1316 inosused = cg_inosused(cgp, needswap);
1317 if (ipref) {
1318 ipref %= fs->fs_ipg;
1319 if (isclr(inosused, ipref))
1320 goto gotit;
1321 }
1322 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1323 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1324 NBBY);
1325 loc = skpc(0xff, len, &inosused[start]);
1326 if (loc == 0) {
1327 len = start + 1;
1328 start = 0;
1329 loc = skpc(0xff, len, &inosused[0]);
1330 if (loc == 0) {
1331 printf("cg = %d, irotor = %d, fs = %s\n",
1332 cg, ufs_rw32(cgp->cg_irotor, needswap),
1333 fs->fs_fsmnt);
1334 panic("ffs_nodealloccg: map corrupted");
1335 /* NOTREACHED */
1336 }
1337 }
1338 i = start + len - loc;
1339 map = inosused[i];
1340 ipref = i * NBBY;
1341 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1342 if ((map & i) == 0) {
1343 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1344 goto gotit;
1345 }
1346 }
1347 printf("fs = %s\n", fs->fs_fsmnt);
1348 panic("ffs_nodealloccg: block not in map");
1349 /* NOTREACHED */
1350 gotit:
1351 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1352 mode);
1353 /*
1354 * Check to see if we need to initialize more inodes.
1355 */
1356 if (ibp != NULL) {
1357 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1358 memset(ibp->b_data, 0, fs->fs_bsize);
1359 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1360 for (i = 0; i < INOPB(fs); i++) {
1361 /*
1362 * Don't bother to swap, it's supposed to be
1363 * random, after all.
1364 */
1365 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1366 dp2++;
1367 }
1368 initediblk += INOPB(fs);
1369 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1370 }
1371
1372 mutex_enter(&ump->um_lock);
1373 ACTIVECG_CLR(fs, cg);
1374 setbit(inosused, ipref);
1375 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1376 fs->fs_cstotal.cs_nifree--;
1377 fs->fs_cs(fs, cg).cs_nifree--;
1378 fs->fs_fmod = 1;
1379 if ((mode & IFMT) == IFDIR) {
1380 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1381 fs->fs_cstotal.cs_ndir++;
1382 fs->fs_cs(fs, cg).cs_ndir++;
1383 }
1384 mutex_exit(&ump->um_lock);
1385 if (DOINGSOFTDEP(ITOV(ip)))
1386 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1387 if (ibp != NULL) {
1388 bwrite(bp);
1389 bawrite(ibp);
1390 } else
1391 bdwrite(bp);
1392 return (cg * fs->fs_ipg + ipref);
1393 fail:
1394 if (bp != NULL)
1395 brelse(bp, 0);
1396 if (ibp != NULL)
1397 brelse(ibp, BC_INVAL);
1398 mutex_enter(&ump->um_lock);
1399 return (0);
1400 }
1401
1402 /*
1403 * Allocate a block or fragment.
1404 *
1405 * The specified block or fragment is removed from the
1406 * free map, possibly fragmenting a block in the process.
1407 *
1408 * This implementation should mirror fs_blkfree
1409 *
1410 * => um_lock not held on entry or exit
1411 */
1412 int
1413 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1414 {
1415 int error;
1416
1417 error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1418 ip->i_dev, ip->i_uid);
1419 if (error)
1420 return error;
1421
1422 return ffs_blkalloc_ump(ip->i_ump, bno, size);
1423 }
1424
1425 int
1426 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1427 {
1428 struct fs *fs = ump->um_fs;
1429 struct cg *cgp;
1430 struct buf *bp;
1431 int32_t fragno, cgbno;
1432 int i, error, cg, blk, frags, bbase;
1433 u_int8_t *blksfree;
1434 const int needswap = UFS_FSNEEDSWAP(fs);
1435
1436 KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1437 fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1438 KASSERT(bno < fs->fs_size);
1439
1440 cg = dtog(fs, bno);
1441 error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1442 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1443 if (error) {
1444 brelse(bp, 0);
1445 return error;
1446 }
1447 cgp = (struct cg *)bp->b_data;
1448 if (!cg_chkmagic(cgp, needswap)) {
1449 brelse(bp, 0);
1450 return EIO;
1451 }
1452 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1453 cgp->cg_time = ufs_rw64(time_second, needswap);
1454 cgbno = dtogd(fs, bno);
1455 blksfree = cg_blksfree(cgp, needswap);
1456
1457 mutex_enter(&ump->um_lock);
1458 if (size == fs->fs_bsize) {
1459 fragno = fragstoblks(fs, cgbno);
1460 if (!ffs_isblock(fs, blksfree, fragno)) {
1461 mutex_exit(&ump->um_lock);
1462 brelse(bp, 0);
1463 return EBUSY;
1464 }
1465 ffs_clrblock(fs, blksfree, fragno);
1466 ffs_clusteracct(fs, cgp, fragno, -1);
1467 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1468 fs->fs_cstotal.cs_nbfree--;
1469 fs->fs_cs(fs, cg).cs_nbfree--;
1470 } else {
1471 bbase = cgbno - fragnum(fs, cgbno);
1472
1473 frags = numfrags(fs, size);
1474 for (i = 0; i < frags; i++) {
1475 if (isclr(blksfree, cgbno + i)) {
1476 mutex_exit(&ump->um_lock);
1477 brelse(bp, 0);
1478 return EBUSY;
1479 }
1480 }
1481 /*
1482 * if a complete block is being split, account for it
1483 */
1484 fragno = fragstoblks(fs, bbase);
1485 if (ffs_isblock(fs, blksfree, fragno)) {
1486 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1487 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1488 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1489 ffs_clusteracct(fs, cgp, fragno, -1);
1490 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1491 fs->fs_cstotal.cs_nbfree--;
1492 fs->fs_cs(fs, cg).cs_nbfree--;
1493 }
1494 /*
1495 * decrement the counts associated with the old frags
1496 */
1497 blk = blkmap(fs, blksfree, bbase);
1498 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1499 /*
1500 * allocate the fragment
1501 */
1502 for (i = 0; i < frags; i++) {
1503 clrbit(blksfree, cgbno + i);
1504 }
1505 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1506 fs->fs_cstotal.cs_nffree -= i;
1507 fs->fs_cs(fs, cg).cs_nffree -= i;
1508 /*
1509 * add back in counts associated with the new frags
1510 */
1511 blk = blkmap(fs, blksfree, bbase);
1512 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1513 }
1514 fs->fs_fmod = 1;
1515 ACTIVECG_CLR(fs, cg);
1516 mutex_exit(&ump->um_lock);
1517 bdwrite(bp);
1518 return 0;
1519 }
1520
1521 /*
1522 * Free a block or fragment.
1523 *
1524 * The specified block or fragment is placed back in the
1525 * free map. If a fragment is deallocated, a possible
1526 * block reassembly is checked.
1527 *
1528 * => um_lock not held on entry or exit
1529 */
1530 void
1531 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1532 ino_t inum)
1533 {
1534 struct cg *cgp;
1535 struct buf *bp;
1536 struct ufsmount *ump;
1537 daddr_t cgblkno;
1538 int error, cg;
1539 dev_t dev;
1540 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1541 #ifdef FFS_EI
1542 const int needswap = UFS_FSNEEDSWAP(fs);
1543 #endif
1544
1545 KASSERT(!devvp_is_snapshot);
1546
1547 cg = dtog(fs, bno);
1548 dev = devvp->v_rdev;
1549 ump = VFSTOUFS(devvp->v_specmountpoint);
1550 KASSERT(fs == ump->um_fs);
1551 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1552 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1553 return;
1554
1555 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1556 if (error)
1557 return;
1558
1559 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1560 NOCRED, B_MODIFY, &bp);
1561 if (error) {
1562 brelse(bp, 0);
1563 return;
1564 }
1565 cgp = (struct cg *)bp->b_data;
1566 if (!cg_chkmagic(cgp, needswap)) {
1567 brelse(bp, 0);
1568 return;
1569 }
1570
1571 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1572
1573 bdwrite(bp);
1574 }
1575
1576 /*
1577 * Free a block or fragment from a snapshot cg copy.
1578 *
1579 * The specified block or fragment is placed back in the
1580 * free map. If a fragment is deallocated, a possible
1581 * block reassembly is checked.
1582 *
1583 * => um_lock not held on entry or exit
1584 */
1585 void
1586 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1587 ino_t inum)
1588 {
1589 struct cg *cgp;
1590 struct buf *bp;
1591 struct ufsmount *ump;
1592 daddr_t cgblkno;
1593 int error, cg;
1594 dev_t dev;
1595 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1596 #ifdef FFS_EI
1597 const int needswap = UFS_FSNEEDSWAP(fs);
1598 #endif
1599
1600 KASSERT(devvp_is_snapshot);
1601
1602 cg = dtog(fs, bno);
1603 dev = VTOI(devvp)->i_devvp->v_rdev;
1604 ump = VFSTOUFS(devvp->v_mount);
1605 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1606
1607 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1608 if (error)
1609 return;
1610
1611 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1612 NOCRED, B_MODIFY, &bp);
1613 if (error) {
1614 brelse(bp, 0);
1615 return;
1616 }
1617 cgp = (struct cg *)bp->b_data;
1618 if (!cg_chkmagic(cgp, needswap)) {
1619 brelse(bp, 0);
1620 return;
1621 }
1622
1623 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1624
1625 bdwrite(bp);
1626 }
1627
1628 static void
1629 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1630 struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1631 {
1632 struct cg *cgp;
1633 int32_t fragno, cgbno;
1634 int i, cg, blk, frags, bbase;
1635 u_int8_t *blksfree;
1636 const int needswap = UFS_FSNEEDSWAP(fs);
1637
1638 cg = dtog(fs, bno);
1639 cgp = (struct cg *)bp->b_data;
1640 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1641 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1642 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1643 cgp->cg_time = ufs_rw64(time_second, needswap);
1644 cgbno = dtogd(fs, bno);
1645 blksfree = cg_blksfree(cgp, needswap);
1646 mutex_enter(&ump->um_lock);
1647 if (size == fs->fs_bsize) {
1648 fragno = fragstoblks(fs, cgbno);
1649 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1650 if (devvp_is_snapshot) {
1651 mutex_exit(&ump->um_lock);
1652 return;
1653 }
1654 printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1655 (unsigned long long)dev, bno, fs->fs_fsmnt);
1656 panic("blkfree: freeing free block");
1657 }
1658 ffs_setblock(fs, blksfree, fragno);
1659 ffs_clusteracct(fs, cgp, fragno, 1);
1660 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1661 fs->fs_cstotal.cs_nbfree++;
1662 fs->fs_cs(fs, cg).cs_nbfree++;
1663 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1664 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1665 i = old_cbtocylno(fs, cgbno);
1666 KASSERT(i >= 0);
1667 KASSERT(i < fs->fs_old_ncyl);
1668 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1669 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1670 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1671 needswap);
1672 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1673 }
1674 } else {
1675 bbase = cgbno - fragnum(fs, cgbno);
1676 /*
1677 * decrement the counts associated with the old frags
1678 */
1679 blk = blkmap(fs, blksfree, bbase);
1680 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1681 /*
1682 * deallocate the fragment
1683 */
1684 frags = numfrags(fs, size);
1685 for (i = 0; i < frags; i++) {
1686 if (isset(blksfree, cgbno + i)) {
1687 printf("dev = 0x%llx, block = %" PRId64
1688 ", fs = %s\n",
1689 (unsigned long long)dev, bno + i,
1690 fs->fs_fsmnt);
1691 panic("blkfree: freeing free frag");
1692 }
1693 setbit(blksfree, cgbno + i);
1694 }
1695 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1696 fs->fs_cstotal.cs_nffree += i;
1697 fs->fs_cs(fs, cg).cs_nffree += i;
1698 /*
1699 * add back in counts associated with the new frags
1700 */
1701 blk = blkmap(fs, blksfree, bbase);
1702 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1703 /*
1704 * if a complete block has been reassembled, account for it
1705 */
1706 fragno = fragstoblks(fs, bbase);
1707 if (ffs_isblock(fs, blksfree, fragno)) {
1708 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1709 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1710 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1711 ffs_clusteracct(fs, cgp, fragno, 1);
1712 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1713 fs->fs_cstotal.cs_nbfree++;
1714 fs->fs_cs(fs, cg).cs_nbfree++;
1715 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1716 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1717 i = old_cbtocylno(fs, bbase);
1718 KASSERT(i >= 0);
1719 KASSERT(i < fs->fs_old_ncyl);
1720 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1721 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1722 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1723 bbase)], 1, needswap);
1724 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1725 }
1726 }
1727 }
1728 fs->fs_fmod = 1;
1729 ACTIVECG_CLR(fs, cg);
1730 mutex_exit(&ump->um_lock);
1731 }
1732
1733 /*
1734 * Free an inode.
1735 */
1736 int
1737 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1738 {
1739
1740 if (DOINGSOFTDEP(vp)) {
1741 softdep_freefile(vp, ino, mode);
1742 return (0);
1743 }
1744 return ffs_freefile(vp->v_mount, ino, mode);
1745 }
1746
1747 /*
1748 * Do the actual free operation.
1749 * The specified inode is placed back in the free map.
1750 *
1751 * => um_lock not held on entry or exit
1752 */
1753 int
1754 ffs_freefile(struct mount *mp, ino_t ino, int mode)
1755 {
1756 struct ufsmount *ump = VFSTOUFS(mp);
1757 struct fs *fs = ump->um_fs;
1758 struct vnode *devvp;
1759 struct cg *cgp;
1760 struct buf *bp;
1761 int error, cg;
1762 daddr_t cgbno;
1763 dev_t dev;
1764 #ifdef FFS_EI
1765 const int needswap = UFS_FSNEEDSWAP(fs);
1766 #endif
1767
1768 cg = ino_to_cg(fs, ino);
1769 devvp = ump->um_devvp;
1770 dev = devvp->v_rdev;
1771 cgbno = fsbtodb(fs, cgtod(fs, cg));
1772
1773 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1774 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1775 (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1776 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1777 NOCRED, B_MODIFY, &bp);
1778 if (error) {
1779 brelse(bp, 0);
1780 return (error);
1781 }
1782 cgp = (struct cg *)bp->b_data;
1783 if (!cg_chkmagic(cgp, needswap)) {
1784 brelse(bp, 0);
1785 return (0);
1786 }
1787
1788 ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1789
1790 bdwrite(bp);
1791
1792 return 0;
1793 }
1794
1795 int
1796 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1797 {
1798 struct ufsmount *ump;
1799 struct cg *cgp;
1800 struct buf *bp;
1801 int error, cg;
1802 daddr_t cgbno;
1803 dev_t dev;
1804 #ifdef FFS_EI
1805 const int needswap = UFS_FSNEEDSWAP(fs);
1806 #endif
1807
1808 KASSERT(devvp->v_type != VBLK);
1809
1810 cg = ino_to_cg(fs, ino);
1811 dev = VTOI(devvp)->i_devvp->v_rdev;
1812 ump = VFSTOUFS(devvp->v_mount);
1813 cgbno = fragstoblks(fs, cgtod(fs, cg));
1814 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1815 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1816 (unsigned long long)dev, (unsigned long long)ino,
1817 fs->fs_fsmnt);
1818 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1819 NOCRED, B_MODIFY, &bp);
1820 if (error) {
1821 brelse(bp, 0);
1822 return (error);
1823 }
1824 cgp = (struct cg *)bp->b_data;
1825 if (!cg_chkmagic(cgp, needswap)) {
1826 brelse(bp, 0);
1827 return (0);
1828 }
1829 ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1830
1831 bdwrite(bp);
1832
1833 return 0;
1834 }
1835
1836 static void
1837 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1838 struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1839 {
1840 int cg;
1841 struct cg *cgp;
1842 u_int8_t *inosused;
1843 #ifdef FFS_EI
1844 const int needswap = UFS_FSNEEDSWAP(fs);
1845 #endif
1846
1847 cg = ino_to_cg(fs, ino);
1848 cgp = (struct cg *)bp->b_data;
1849 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1850 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1851 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1852 cgp->cg_time = ufs_rw64(time_second, needswap);
1853 inosused = cg_inosused(cgp, needswap);
1854 ino %= fs->fs_ipg;
1855 if (isclr(inosused, ino)) {
1856 printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
1857 (unsigned long long)dev, (unsigned long long)ino +
1858 cg * fs->fs_ipg, fs->fs_fsmnt);
1859 if (fs->fs_ronly == 0)
1860 panic("ifree: freeing free inode");
1861 }
1862 clrbit(inosused, ino);
1863 if (!devvp_is_snapshot)
1864 UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1865 ino + cg * fs->fs_ipg, mode);
1866 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1867 cgp->cg_irotor = ufs_rw32(ino, needswap);
1868 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1869 mutex_enter(&ump->um_lock);
1870 fs->fs_cstotal.cs_nifree++;
1871 fs->fs_cs(fs, cg).cs_nifree++;
1872 if ((mode & IFMT) == IFDIR) {
1873 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1874 fs->fs_cstotal.cs_ndir--;
1875 fs->fs_cs(fs, cg).cs_ndir--;
1876 }
1877 fs->fs_fmod = 1;
1878 ACTIVECG_CLR(fs, cg);
1879 mutex_exit(&ump->um_lock);
1880 }
1881
1882 /*
1883 * Check to see if a file is free.
1884 */
1885 int
1886 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1887 {
1888 struct cg *cgp;
1889 struct buf *bp;
1890 daddr_t cgbno;
1891 int ret, cg;
1892 u_int8_t *inosused;
1893 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1894
1895 KASSERT(devvp_is_snapshot);
1896
1897 cg = ino_to_cg(fs, ino);
1898 if (devvp_is_snapshot)
1899 cgbno = fragstoblks(fs, cgtod(fs, cg));
1900 else
1901 cgbno = fsbtodb(fs, cgtod(fs, cg));
1902 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1903 return 1;
1904 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1905 brelse(bp, 0);
1906 return 1;
1907 }
1908 cgp = (struct cg *)bp->b_data;
1909 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1910 brelse(bp, 0);
1911 return 1;
1912 }
1913 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1914 ino %= fs->fs_ipg;
1915 ret = isclr(inosused, ino);
1916 brelse(bp, 0);
1917 return ret;
1918 }
1919
1920 /*
1921 * Find a block of the specified size in the specified cylinder group.
1922 *
1923 * It is a panic if a request is made to find a block if none are
1924 * available.
1925 */
1926 static int32_t
1927 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1928 {
1929 int32_t bno;
1930 int start, len, loc, i;
1931 int blk, field, subfield, pos;
1932 int ostart, olen;
1933 u_int8_t *blksfree;
1934 #ifdef FFS_EI
1935 const int needswap = UFS_FSNEEDSWAP(fs);
1936 #endif
1937
1938 /* KASSERT(mutex_owned(&ump->um_lock)); */
1939
1940 /*
1941 * find the fragment by searching through the free block
1942 * map for an appropriate bit pattern
1943 */
1944 if (bpref)
1945 start = dtogd(fs, bpref) / NBBY;
1946 else
1947 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1948 blksfree = cg_blksfree(cgp, needswap);
1949 len = howmany(fs->fs_fpg, NBBY) - start;
1950 ostart = start;
1951 olen = len;
1952 loc = scanc((u_int)len,
1953 (const u_char *)&blksfree[start],
1954 (const u_char *)fragtbl[fs->fs_frag],
1955 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1956 if (loc == 0) {
1957 len = start + 1;
1958 start = 0;
1959 loc = scanc((u_int)len,
1960 (const u_char *)&blksfree[0],
1961 (const u_char *)fragtbl[fs->fs_frag],
1962 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1963 if (loc == 0) {
1964 printf("start = %d, len = %d, fs = %s\n",
1965 ostart, olen, fs->fs_fsmnt);
1966 printf("offset=%d %ld\n",
1967 ufs_rw32(cgp->cg_freeoff, needswap),
1968 (long)blksfree - (long)cgp);
1969 printf("cg %d\n", cgp->cg_cgx);
1970 panic("ffs_alloccg: map corrupted");
1971 /* NOTREACHED */
1972 }
1973 }
1974 bno = (start + len - loc) * NBBY;
1975 cgp->cg_frotor = ufs_rw32(bno, needswap);
1976 /*
1977 * found the byte in the map
1978 * sift through the bits to find the selected frag
1979 */
1980 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1981 blk = blkmap(fs, blksfree, bno);
1982 blk <<= 1;
1983 field = around[allocsiz];
1984 subfield = inside[allocsiz];
1985 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1986 if ((blk & field) == subfield)
1987 return (bno + pos);
1988 field <<= 1;
1989 subfield <<= 1;
1990 }
1991 }
1992 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1993 panic("ffs_alloccg: block not in map");
1994 /* return (-1); */
1995 }
1996
1997 /*
1998 * Update the cluster map because of an allocation or free.
1999 *
2000 * Cnt == 1 means free; cnt == -1 means allocating.
2001 */
2002 void
2003 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2004 {
2005 int32_t *sump;
2006 int32_t *lp;
2007 u_char *freemapp, *mapp;
2008 int i, start, end, forw, back, map, bit;
2009 #ifdef FFS_EI
2010 const int needswap = UFS_FSNEEDSWAP(fs);
2011 #endif
2012
2013 /* KASSERT(mutex_owned(&ump->um_lock)); */
2014
2015 if (fs->fs_contigsumsize <= 0)
2016 return;
2017 freemapp = cg_clustersfree(cgp, needswap);
2018 sump = cg_clustersum(cgp, needswap);
2019 /*
2020 * Allocate or clear the actual block.
2021 */
2022 if (cnt > 0)
2023 setbit(freemapp, blkno);
2024 else
2025 clrbit(freemapp, blkno);
2026 /*
2027 * Find the size of the cluster going forward.
2028 */
2029 start = blkno + 1;
2030 end = start + fs->fs_contigsumsize;
2031 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2032 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2033 mapp = &freemapp[start / NBBY];
2034 map = *mapp++;
2035 bit = 1 << (start % NBBY);
2036 for (i = start; i < end; i++) {
2037 if ((map & bit) == 0)
2038 break;
2039 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2040 bit <<= 1;
2041 } else {
2042 map = *mapp++;
2043 bit = 1;
2044 }
2045 }
2046 forw = i - start;
2047 /*
2048 * Find the size of the cluster going backward.
2049 */
2050 start = blkno - 1;
2051 end = start - fs->fs_contigsumsize;
2052 if (end < 0)
2053 end = -1;
2054 mapp = &freemapp[start / NBBY];
2055 map = *mapp--;
2056 bit = 1 << (start % NBBY);
2057 for (i = start; i > end; i--) {
2058 if ((map & bit) == 0)
2059 break;
2060 if ((i & (NBBY - 1)) != 0) {
2061 bit >>= 1;
2062 } else {
2063 map = *mapp--;
2064 bit = 1 << (NBBY - 1);
2065 }
2066 }
2067 back = start - i;
2068 /*
2069 * Account for old cluster and the possibly new forward and
2070 * back clusters.
2071 */
2072 i = back + forw + 1;
2073 if (i > fs->fs_contigsumsize)
2074 i = fs->fs_contigsumsize;
2075 ufs_add32(sump[i], cnt, needswap);
2076 if (back > 0)
2077 ufs_add32(sump[back], -cnt, needswap);
2078 if (forw > 0)
2079 ufs_add32(sump[forw], -cnt, needswap);
2080
2081 /*
2082 * Update cluster summary information.
2083 */
2084 lp = &sump[fs->fs_contigsumsize];
2085 for (i = fs->fs_contigsumsize; i > 0; i--)
2086 if (ufs_rw32(*lp--, needswap) > 0)
2087 break;
2088 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2089 }
2090
2091 /*
2092 * Fserr prints the name of a file system with an error diagnostic.
2093 *
2094 * The form of the error message is:
2095 * fs: error message
2096 */
2097 static void
2098 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2099 {
2100
2101 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2102 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2103 }
2104