Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.107
      1 /*	$NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5  * All rights reserved.
      6  *
      7  * This software was developed for the FreeBSD Project by Marshall
      8  * Kirk McKusick and Network Associates Laboratories, the Security
      9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11  * research program
     12  *
     13  * Copyright (c) 1982, 1986, 1989, 1993
     14  *	The Regents of the University of California.  All rights reserved.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $");
     45 
     46 #if defined(_KERNEL_OPT)
     47 #include "opt_ffs.h"
     48 #include "opt_quota.h"
     49 #endif
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/buf.h>
     54 #include <sys/proc.h>
     55 #include <sys/vnode.h>
     56 #include <sys/mount.h>
     57 #include <sys/kernel.h>
     58 #include <sys/syslog.h>
     59 #include <sys/kauth.h>
     60 #include <sys/fstrans.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 #include <ufs/ufs/quota.h>
     64 #include <ufs/ufs/ufsmount.h>
     65 #include <ufs/ufs/inode.h>
     66 #include <ufs/ufs/ufs_extern.h>
     67 #include <ufs/ufs/ufs_bswap.h>
     68 
     69 #include <ufs/ffs/fs.h>
     70 #include <ufs/ffs/ffs_extern.h>
     71 
     72 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     73 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     74 #ifdef XXXUBC
     75 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     76 #endif
     77 static ino_t ffs_dirpref(struct inode *);
     78 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     79 static void ffs_fserr(struct fs *, u_int, const char *);
     80 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     81     daddr_t (*)(struct inode *, int, daddr_t, int));
     82 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     83 static int32_t ffs_mapsearch(struct fs *, struct cg *,
     84 				      daddr_t, int);
     85 #if defined(DIAGNOSTIC) || defined(DEBUG)
     86 #ifdef XXXUBC
     87 static int ffs_checkblk(struct inode *, daddr_t, long size);
     88 #endif
     89 #endif
     90 
     91 /* if 1, changes in optimalization strategy are logged */
     92 int ffs_log_changeopt = 0;
     93 
     94 /* in ffs_tables.c */
     95 extern const int inside[], around[];
     96 extern const u_char * const fragtbl[];
     97 
     98 /*
     99  * Allocate a block in the file system.
    100  *
    101  * The size of the requested block is given, which must be some
    102  * multiple of fs_fsize and <= fs_bsize.
    103  * A preference may be optionally specified. If a preference is given
    104  * the following hierarchy is used to allocate a block:
    105  *   1) allocate the requested block.
    106  *   2) allocate a rotationally optimal block in the same cylinder.
    107  *   3) allocate a block in the same cylinder group.
    108  *   4) quadradically rehash into other cylinder groups, until an
    109  *      available block is located.
    110  * If no block preference is given the following hierarchy is used
    111  * to allocate a block:
    112  *   1) allocate a block in the cylinder group that contains the
    113  *      inode for the file.
    114  *   2) quadradically rehash into other cylinder groups, until an
    115  *      available block is located.
    116  *
    117  * => called with um_lock held
    118  * => releases um_lock before returning
    119  */
    120 int
    121 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    122     kauth_cred_t cred, daddr_t *bnp)
    123 {
    124 	struct ufsmount *ump;
    125 	struct fs *fs;
    126 	daddr_t bno;
    127 	int cg;
    128 #ifdef QUOTA
    129 	int error;
    130 #endif
    131 
    132 	fs = ip->i_fs;
    133 	ump = ip->i_ump;
    134 
    135 	KASSERT(mutex_owned(&ump->um_lock));
    136 
    137 #ifdef UVM_PAGE_TRKOWN
    138 	if (ITOV(ip)->v_type == VREG &&
    139 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    140 		struct vm_page *pg;
    141 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    142 		voff_t off = trunc_page(lblktosize(fs, lbn));
    143 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    144 
    145 		mutex_enter(&uobj->vmobjlock);
    146 		while (off < endoff) {
    147 			pg = uvm_pagelookup(uobj, off);
    148 			KASSERT(pg != NULL);
    149 			KASSERT(pg->owner == curproc->p_pid);
    150 			off += PAGE_SIZE;
    151 		}
    152 		mutex_exit(&uobj->vmobjlock);
    153 	}
    154 #endif
    155 
    156 	*bnp = 0;
    157 #ifdef DIAGNOSTIC
    158 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    159 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    160 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    161 		panic("ffs_alloc: bad size");
    162 	}
    163 	if (cred == NOCRED)
    164 		panic("ffs_alloc: missing credential");
    165 #endif /* DIAGNOSTIC */
    166 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    167 		goto nospace;
    168 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    169 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    170 		goto nospace;
    171 #ifdef QUOTA
    172 	mutex_exit(&ump->um_lock);
    173 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    174 		return (error);
    175 	mutex_enter(&ump->um_lock);
    176 #endif
    177 	if (bpref >= fs->fs_size)
    178 		bpref = 0;
    179 	if (bpref == 0)
    180 		cg = ino_to_cg(fs, ip->i_number);
    181 	else
    182 		cg = dtog(fs, bpref);
    183 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    184 	if (bno > 0) {
    185 		DIP_ADD(ip, blocks, btodb(size));
    186 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    187 		*bnp = bno;
    188 		return (0);
    189 	}
    190 #ifdef QUOTA
    191 	/*
    192 	 * Restore user's disk quota because allocation failed.
    193 	 */
    194 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    195 #endif
    196 nospace:
    197 	mutex_exit(&ump->um_lock);
    198 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    199 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    200 	return (ENOSPC);
    201 }
    202 
    203 /*
    204  * Reallocate a fragment to a bigger size
    205  *
    206  * The number and size of the old block is given, and a preference
    207  * and new size is also specified. The allocator attempts to extend
    208  * the original block. Failing that, the regular block allocator is
    209  * invoked to get an appropriate block.
    210  *
    211  * => called with um_lock held
    212  * => return with um_lock released
    213  */
    214 int
    215 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    216     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    217 {
    218 	struct ufsmount *ump;
    219 	struct fs *fs;
    220 	struct buf *bp;
    221 	int cg, request, error;
    222 	daddr_t bprev, bno;
    223 
    224 	fs = ip->i_fs;
    225 	ump = ip->i_ump;
    226 
    227 	KASSERT(mutex_owned(&ump->um_lock));
    228 
    229 #ifdef UVM_PAGE_TRKOWN
    230 	if (ITOV(ip)->v_type == VREG) {
    231 		struct vm_page *pg;
    232 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    233 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    234 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    235 
    236 		mutex_enter(&uobj->vmobjlock);
    237 		while (off < endoff) {
    238 			pg = uvm_pagelookup(uobj, off);
    239 			KASSERT(pg != NULL);
    240 			KASSERT(pg->owner == curproc->p_pid);
    241 			KASSERT((pg->flags & PG_CLEAN) == 0);
    242 			off += PAGE_SIZE;
    243 		}
    244 		mutex_exit(&uobj->vmobjlock);
    245 	}
    246 #endif
    247 
    248 #ifdef DIAGNOSTIC
    249 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    250 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    251 		printf(
    252 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    253 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    254 		panic("ffs_realloccg: bad size");
    255 	}
    256 	if (cred == NOCRED)
    257 		panic("ffs_realloccg: missing credential");
    258 #endif /* DIAGNOSTIC */
    259 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    260 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    261 		mutex_exit(&ump->um_lock);
    262 		goto nospace;
    263 	}
    264 	if (fs->fs_magic == FS_UFS2_MAGIC)
    265 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    266 	else
    267 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    268 
    269 	if (bprev == 0) {
    270 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    271 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    272 		panic("ffs_realloccg: bad bprev");
    273 	}
    274 	mutex_exit(&ump->um_lock);
    275 
    276 	/*
    277 	 * Allocate the extra space in the buffer.
    278 	 */
    279 	if (bpp != NULL &&
    280 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    281 		brelse(bp, 0);
    282 		return (error);
    283 	}
    284 #ifdef QUOTA
    285 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    286 		if (bpp != NULL) {
    287 			brelse(bp, 0);
    288 		}
    289 		return (error);
    290 	}
    291 #endif
    292 	/*
    293 	 * Check for extension in the existing location.
    294 	 */
    295 	cg = dtog(fs, bprev);
    296 	mutex_enter(&ump->um_lock);
    297 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    298 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    299 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    300 
    301 		if (bpp != NULL) {
    302 			if (bp->b_blkno != fsbtodb(fs, bno))
    303 				panic("bad blockno");
    304 			allocbuf(bp, nsize, 1);
    305 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    306 			mutex_enter(bp->b_objlock);
    307 			bp->b_oflags |= BO_DONE;
    308 			mutex_exit(bp->b_objlock);
    309 			*bpp = bp;
    310 		}
    311 		if (blknop != NULL) {
    312 			*blknop = bno;
    313 		}
    314 		return (0);
    315 	}
    316 	/*
    317 	 * Allocate a new disk location.
    318 	 */
    319 	if (bpref >= fs->fs_size)
    320 		bpref = 0;
    321 	switch ((int)fs->fs_optim) {
    322 	case FS_OPTSPACE:
    323 		/*
    324 		 * Allocate an exact sized fragment. Although this makes
    325 		 * best use of space, we will waste time relocating it if
    326 		 * the file continues to grow. If the fragmentation is
    327 		 * less than half of the minimum free reserve, we choose
    328 		 * to begin optimizing for time.
    329 		 */
    330 		request = nsize;
    331 		if (fs->fs_minfree < 5 ||
    332 		    fs->fs_cstotal.cs_nffree >
    333 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    334 			break;
    335 
    336 		if (ffs_log_changeopt) {
    337 			log(LOG_NOTICE,
    338 				"%s: optimization changed from SPACE to TIME\n",
    339 				fs->fs_fsmnt);
    340 		}
    341 
    342 		fs->fs_optim = FS_OPTTIME;
    343 		break;
    344 	case FS_OPTTIME:
    345 		/*
    346 		 * At this point we have discovered a file that is trying to
    347 		 * grow a small fragment to a larger fragment. To save time,
    348 		 * we allocate a full sized block, then free the unused portion.
    349 		 * If the file continues to grow, the `ffs_fragextend' call
    350 		 * above will be able to grow it in place without further
    351 		 * copying. If aberrant programs cause disk fragmentation to
    352 		 * grow within 2% of the free reserve, we choose to begin
    353 		 * optimizing for space.
    354 		 */
    355 		request = fs->fs_bsize;
    356 		if (fs->fs_cstotal.cs_nffree <
    357 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    358 			break;
    359 
    360 		if (ffs_log_changeopt) {
    361 			log(LOG_NOTICE,
    362 				"%s: optimization changed from TIME to SPACE\n",
    363 				fs->fs_fsmnt);
    364 		}
    365 
    366 		fs->fs_optim = FS_OPTSPACE;
    367 		break;
    368 	default:
    369 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    370 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    371 		panic("ffs_realloccg: bad optim");
    372 		/* NOTREACHED */
    373 	}
    374 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    375 	if (bno > 0) {
    376 		if (!DOINGSOFTDEP(ITOV(ip)))
    377 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    378 			    ip->i_number);
    379 		if (nsize < request)
    380 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    381 			    (long)(request - nsize), ip->i_number);
    382 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    383 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    384 		if (bpp != NULL) {
    385 			bp->b_blkno = fsbtodb(fs, bno);
    386 			allocbuf(bp, nsize, 1);
    387 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    388 			mutex_enter(bp->b_objlock);
    389 			bp->b_oflags |= BO_DONE;
    390 			mutex_exit(bp->b_objlock);
    391 			*bpp = bp;
    392 		}
    393 		if (blknop != NULL) {
    394 			*blknop = bno;
    395 		}
    396 		return (0);
    397 	}
    398 	mutex_exit(&ump->um_lock);
    399 
    400 #ifdef QUOTA
    401 	/*
    402 	 * Restore user's disk quota because allocation failed.
    403 	 */
    404 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    405 #endif
    406 	if (bpp != NULL) {
    407 		brelse(bp, 0);
    408 	}
    409 
    410 nospace:
    411 	/*
    412 	 * no space available
    413 	 */
    414 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    415 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    416 	return (ENOSPC);
    417 }
    418 
    419 #if 0
    420 /*
    421  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    422  *
    423  * The vnode and an array of buffer pointers for a range of sequential
    424  * logical blocks to be made contiguous is given. The allocator attempts
    425  * to find a range of sequential blocks starting as close as possible
    426  * from the end of the allocation for the logical block immediately
    427  * preceding the current range. If successful, the physical block numbers
    428  * in the buffer pointers and in the inode are changed to reflect the new
    429  * allocation. If unsuccessful, the allocation is left unchanged. The
    430  * success in doing the reallocation is returned. Note that the error
    431  * return is not reflected back to the user. Rather the previous block
    432  * allocation will be used.
    433 
    434  */
    435 #ifdef XXXUBC
    436 #ifdef DEBUG
    437 #include <sys/sysctl.h>
    438 int prtrealloc = 0;
    439 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    440 #endif
    441 #endif
    442 
    443 /*
    444  * NOTE: when re-enabling this, it must be updated for UFS2.
    445  */
    446 
    447 int doasyncfree = 1;
    448 
    449 int
    450 ffs_reallocblks(void *v)
    451 {
    452 #ifdef XXXUBC
    453 	struct vop_reallocblks_args /* {
    454 		struct vnode *a_vp;
    455 		struct cluster_save *a_buflist;
    456 	} */ *ap = v;
    457 	struct fs *fs;
    458 	struct inode *ip;
    459 	struct vnode *vp;
    460 	struct buf *sbp, *ebp;
    461 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    462 	struct cluster_save *buflist;
    463 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    464 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    465 	int i, len, start_lvl, end_lvl, pref, ssize;
    466 	struct ufsmount *ump;
    467 #endif /* XXXUBC */
    468 
    469 	/* XXXUBC don't reallocblks for now */
    470 	return ENOSPC;
    471 
    472 #ifdef XXXUBC
    473 	vp = ap->a_vp;
    474 	ip = VTOI(vp);
    475 	fs = ip->i_fs;
    476 	ump = ip->i_ump;
    477 	if (fs->fs_contigsumsize <= 0)
    478 		return (ENOSPC);
    479 	buflist = ap->a_buflist;
    480 	len = buflist->bs_nchildren;
    481 	start_lbn = buflist->bs_children[0]->b_lblkno;
    482 	end_lbn = start_lbn + len - 1;
    483 #ifdef DIAGNOSTIC
    484 	for (i = 0; i < len; i++)
    485 		if (!ffs_checkblk(ip,
    486 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    487 			panic("ffs_reallocblks: unallocated block 1");
    488 	for (i = 1; i < len; i++)
    489 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    490 			panic("ffs_reallocblks: non-logical cluster");
    491 	blkno = buflist->bs_children[0]->b_blkno;
    492 	ssize = fsbtodb(fs, fs->fs_frag);
    493 	for (i = 1; i < len - 1; i++)
    494 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    495 			panic("ffs_reallocblks: non-physical cluster %d", i);
    496 #endif
    497 	/*
    498 	 * If the latest allocation is in a new cylinder group, assume that
    499 	 * the filesystem has decided to move and do not force it back to
    500 	 * the previous cylinder group.
    501 	 */
    502 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    503 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    504 		return (ENOSPC);
    505 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    506 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    507 		return (ENOSPC);
    508 	/*
    509 	 * Get the starting offset and block map for the first block.
    510 	 */
    511 	if (start_lvl == 0) {
    512 		sbap = &ip->i_ffs1_db[0];
    513 		soff = start_lbn;
    514 	} else {
    515 		idp = &start_ap[start_lvl - 1];
    516 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    517 		    NOCRED, B_MODIFY, &sbp)) {
    518 			brelse(sbp, 0);
    519 			return (ENOSPC);
    520 		}
    521 		sbap = (int32_t *)sbp->b_data;
    522 		soff = idp->in_off;
    523 	}
    524 	/*
    525 	 * Find the preferred location for the cluster.
    526 	 */
    527 	mutex_enter(&ump->um_lock);
    528 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    529 	/*
    530 	 * If the block range spans two block maps, get the second map.
    531 	 */
    532 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    533 		ssize = len;
    534 	} else {
    535 #ifdef DIAGNOSTIC
    536 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    537 			panic("ffs_reallocblk: start == end");
    538 #endif
    539 		ssize = len - (idp->in_off + 1);
    540 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    541 		    NOCRED, B_MODIFY, &ebp))
    542 			goto fail;
    543 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    544 	}
    545 	/*
    546 	 * Search the block map looking for an allocation of the desired size.
    547 	 */
    548 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    549 	    len, ffs_clusteralloc)) == 0) {
    550 		mutex_exit(&ump->um_lock);
    551 		goto fail;
    552 	}
    553 	/*
    554 	 * We have found a new contiguous block.
    555 	 *
    556 	 * First we have to replace the old block pointers with the new
    557 	 * block pointers in the inode and indirect blocks associated
    558 	 * with the file.
    559 	 */
    560 #ifdef DEBUG
    561 	if (prtrealloc)
    562 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    563 		    start_lbn, end_lbn);
    564 #endif
    565 	blkno = newblk;
    566 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    567 		daddr_t ba;
    568 
    569 		if (i == ssize) {
    570 			bap = ebap;
    571 			soff = -i;
    572 		}
    573 		/* XXX ondisk32 */
    574 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    575 #ifdef DIAGNOSTIC
    576 		if (!ffs_checkblk(ip,
    577 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    578 			panic("ffs_reallocblks: unallocated block 2");
    579 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    580 			panic("ffs_reallocblks: alloc mismatch");
    581 #endif
    582 #ifdef DEBUG
    583 		if (prtrealloc)
    584 			printf(" %d,", ba);
    585 #endif
    586  		if (DOINGSOFTDEP(vp)) {
    587  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    588  				softdep_setup_allocdirect(ip, start_lbn + i,
    589  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    590  				    buflist->bs_children[i]);
    591  			else
    592  				softdep_setup_allocindir_page(ip, start_lbn + i,
    593  				    i < ssize ? sbp : ebp, soff + i, blkno,
    594  				    ba, buflist->bs_children[i]);
    595  		}
    596 		/* XXX ondisk32 */
    597 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    598 	}
    599 	/*
    600 	 * Next we must write out the modified inode and indirect blocks.
    601 	 * For strict correctness, the writes should be synchronous since
    602 	 * the old block values may have been written to disk. In practise
    603 	 * they are almost never written, but if we are concerned about
    604 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    605 	 *
    606 	 * The test on `doasyncfree' should be changed to test a flag
    607 	 * that shows whether the associated buffers and inodes have
    608 	 * been written. The flag should be set when the cluster is
    609 	 * started and cleared whenever the buffer or inode is flushed.
    610 	 * We can then check below to see if it is set, and do the
    611 	 * synchronous write only when it has been cleared.
    612 	 */
    613 	if (sbap != &ip->i_ffs1_db[0]) {
    614 		if (doasyncfree)
    615 			bdwrite(sbp);
    616 		else
    617 			bwrite(sbp);
    618 	} else {
    619 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    620 		if (!doasyncfree)
    621 			ffs_update(vp, NULL, NULL, 1);
    622 	}
    623 	if (ssize < len) {
    624 		if (doasyncfree)
    625 			bdwrite(ebp);
    626 		else
    627 			bwrite(ebp);
    628 	}
    629 	/*
    630 	 * Last, free the old blocks and assign the new blocks to the buffers.
    631 	 */
    632 #ifdef DEBUG
    633 	if (prtrealloc)
    634 		printf("\n\tnew:");
    635 #endif
    636 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    637 		if (!DOINGSOFTDEP(vp))
    638 			ffs_blkfree(fs, ip->i_devvp,
    639 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    640 			    fs->fs_bsize, ip->i_number);
    641 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    642 #ifdef DEBUG
    643 		if (!ffs_checkblk(ip,
    644 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    645 			panic("ffs_reallocblks: unallocated block 3");
    646 		if (prtrealloc)
    647 			printf(" %d,", blkno);
    648 #endif
    649 	}
    650 #ifdef DEBUG
    651 	if (prtrealloc) {
    652 		prtrealloc--;
    653 		printf("\n");
    654 	}
    655 #endif
    656 	return (0);
    657 
    658 fail:
    659 	if (ssize < len)
    660 		brelse(ebp, 0);
    661 	if (sbap != &ip->i_ffs1_db[0])
    662 		brelse(sbp, 0);
    663 	return (ENOSPC);
    664 #endif /* XXXUBC */
    665 }
    666 #endif /* 0 */
    667 
    668 /*
    669  * Allocate an inode in the file system.
    670  *
    671  * If allocating a directory, use ffs_dirpref to select the inode.
    672  * If allocating in a directory, the following hierarchy is followed:
    673  *   1) allocate the preferred inode.
    674  *   2) allocate an inode in the same cylinder group.
    675  *   3) quadradically rehash into other cylinder groups, until an
    676  *      available inode is located.
    677  * If no inode preference is given the following hierarchy is used
    678  * to allocate an inode:
    679  *   1) allocate an inode in cylinder group 0.
    680  *   2) quadradically rehash into other cylinder groups, until an
    681  *      available inode is located.
    682  *
    683  * => um_lock not held upon entry or return
    684  */
    685 int
    686 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    687     struct vnode **vpp)
    688 {
    689 	struct ufsmount *ump;
    690 	struct inode *pip;
    691 	struct fs *fs;
    692 	struct inode *ip;
    693 	struct timespec ts;
    694 	ino_t ino, ipref;
    695 	int cg, error;
    696 
    697 	*vpp = NULL;
    698 	pip = VTOI(pvp);
    699 	fs = pip->i_fs;
    700 	ump = pip->i_ump;
    701 
    702 	mutex_enter(&ump->um_lock);
    703 	if (fs->fs_cstotal.cs_nifree == 0)
    704 		goto noinodes;
    705 
    706 	if ((mode & IFMT) == IFDIR)
    707 		ipref = ffs_dirpref(pip);
    708 	else
    709 		ipref = pip->i_number;
    710 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    711 		ipref = 0;
    712 	cg = ino_to_cg(fs, ipref);
    713 	/*
    714 	 * Track number of dirs created one after another
    715 	 * in a same cg without intervening by files.
    716 	 */
    717 	if ((mode & IFMT) == IFDIR) {
    718 		if (fs->fs_contigdirs[cg] < 255)
    719 			fs->fs_contigdirs[cg]++;
    720 	} else {
    721 		if (fs->fs_contigdirs[cg] > 0)
    722 			fs->fs_contigdirs[cg]--;
    723 	}
    724 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    725 	if (ino == 0)
    726 		goto noinodes;
    727 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    728 	if (error) {
    729 		ffs_vfree(pvp, ino, mode);
    730 		return (error);
    731 	}
    732 	KASSERT((*vpp)->v_type == VNON);
    733 	ip = VTOI(*vpp);
    734 	if (ip->i_mode) {
    735 #if 0
    736 		printf("mode = 0%o, inum = %d, fs = %s\n",
    737 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    738 #else
    739 		printf("dmode %x mode %x dgen %x gen %x\n",
    740 		    DIP(ip, mode), ip->i_mode,
    741 		    DIP(ip, gen), ip->i_gen);
    742 		printf("size %llx blocks %llx\n",
    743 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    744 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    745 		    (unsigned long long)ipref);
    746 #if 0
    747 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    748 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    749 #endif
    750 
    751 #endif
    752 		panic("ffs_valloc: dup alloc");
    753 	}
    754 	if (DIP(ip, blocks)) {				/* XXX */
    755 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    756 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    757 		DIP_ASSIGN(ip, blocks, 0);
    758 	}
    759 	ip->i_flag &= ~IN_SPACECOUNTED;
    760 	ip->i_flags = 0;
    761 	DIP_ASSIGN(ip, flags, 0);
    762 	/*
    763 	 * Set up a new generation number for this inode.
    764 	 */
    765 	ip->i_gen++;
    766 	DIP_ASSIGN(ip, gen, ip->i_gen);
    767 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    768 		vfs_timestamp(&ts);
    769 		ip->i_ffs2_birthtime = ts.tv_sec;
    770 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    771 	}
    772 	return (0);
    773 noinodes:
    774 	mutex_exit(&ump->um_lock);
    775 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    776 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    777 	return (ENOSPC);
    778 }
    779 
    780 /*
    781  * Find a cylinder group in which to place a directory.
    782  *
    783  * The policy implemented by this algorithm is to allocate a
    784  * directory inode in the same cylinder group as its parent
    785  * directory, but also to reserve space for its files inodes
    786  * and data. Restrict the number of directories which may be
    787  * allocated one after another in the same cylinder group
    788  * without intervening allocation of files.
    789  *
    790  * If we allocate a first level directory then force allocation
    791  * in another cylinder group.
    792  */
    793 static ino_t
    794 ffs_dirpref(struct inode *pip)
    795 {
    796 	register struct fs *fs;
    797 	int cg, prefcg;
    798 	int64_t dirsize, cgsize, curdsz;
    799 	int avgifree, avgbfree, avgndir;
    800 	int minifree, minbfree, maxndir;
    801 	int mincg, minndir;
    802 	int maxcontigdirs;
    803 
    804 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    805 
    806 	fs = pip->i_fs;
    807 
    808 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    809 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    810 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    811 
    812 	/*
    813 	 * Force allocation in another cg if creating a first level dir.
    814 	 */
    815 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    816 		prefcg = random() % fs->fs_ncg;
    817 		mincg = prefcg;
    818 		minndir = fs->fs_ipg;
    819 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    820 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    821 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    822 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    823 				mincg = cg;
    824 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    825 			}
    826 		for (cg = 0; cg < prefcg; cg++)
    827 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    828 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    829 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    830 				mincg = cg;
    831 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    832 			}
    833 		return ((ino_t)(fs->fs_ipg * mincg));
    834 	}
    835 
    836 	/*
    837 	 * Count various limits which used for
    838 	 * optimal allocation of a directory inode.
    839 	 */
    840 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    841 	minifree = avgifree - fs->fs_ipg / 4;
    842 	if (minifree < 0)
    843 		minifree = 0;
    844 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    845 	if (minbfree < 0)
    846 		minbfree = 0;
    847 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    848 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    849 	if (avgndir != 0) {
    850 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    851 		if (dirsize < curdsz)
    852 			dirsize = curdsz;
    853 	}
    854 	if (cgsize < dirsize * 255)
    855 		maxcontigdirs = cgsize / dirsize;
    856 	else
    857 		maxcontigdirs = 255;
    858 	if (fs->fs_avgfpdir > 0)
    859 		maxcontigdirs = min(maxcontigdirs,
    860 				    fs->fs_ipg / fs->fs_avgfpdir);
    861 	if (maxcontigdirs == 0)
    862 		maxcontigdirs = 1;
    863 
    864 	/*
    865 	 * Limit number of dirs in one cg and reserve space for
    866 	 * regular files, but only if we have no deficit in
    867 	 * inodes or space.
    868 	 */
    869 	prefcg = ino_to_cg(fs, pip->i_number);
    870 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    871 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    872 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    873 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    874 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    875 				return ((ino_t)(fs->fs_ipg * cg));
    876 		}
    877 	for (cg = 0; cg < prefcg; cg++)
    878 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    879 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    880 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    881 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    882 				return ((ino_t)(fs->fs_ipg * cg));
    883 		}
    884 	/*
    885 	 * This is a backstop when we are deficient in space.
    886 	 */
    887 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    888 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    889 			return ((ino_t)(fs->fs_ipg * cg));
    890 	for (cg = 0; cg < prefcg; cg++)
    891 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    892 			break;
    893 	return ((ino_t)(fs->fs_ipg * cg));
    894 }
    895 
    896 /*
    897  * Select the desired position for the next block in a file.  The file is
    898  * logically divided into sections. The first section is composed of the
    899  * direct blocks. Each additional section contains fs_maxbpg blocks.
    900  *
    901  * If no blocks have been allocated in the first section, the policy is to
    902  * request a block in the same cylinder group as the inode that describes
    903  * the file. If no blocks have been allocated in any other section, the
    904  * policy is to place the section in a cylinder group with a greater than
    905  * average number of free blocks.  An appropriate cylinder group is found
    906  * by using a rotor that sweeps the cylinder groups. When a new group of
    907  * blocks is needed, the sweep begins in the cylinder group following the
    908  * cylinder group from which the previous allocation was made. The sweep
    909  * continues until a cylinder group with greater than the average number
    910  * of free blocks is found. If the allocation is for the first block in an
    911  * indirect block, the information on the previous allocation is unavailable;
    912  * here a best guess is made based upon the logical block number being
    913  * allocated.
    914  *
    915  * If a section is already partially allocated, the policy is to
    916  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    917  * contiguous blocks and the beginning of the next is laid out
    918  * contigously if possible.
    919  *
    920  * => um_lock held on entry and exit
    921  */
    922 daddr_t
    923 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    924     int32_t *bap /* XXX ondisk32 */)
    925 {
    926 	struct fs *fs;
    927 	int cg;
    928 	int avgbfree, startcg;
    929 
    930 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    931 
    932 	fs = ip->i_fs;
    933 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    934 		if (lbn < NDADDR + NINDIR(fs)) {
    935 			cg = ino_to_cg(fs, ip->i_number);
    936 			return (fs->fs_fpg * cg + fs->fs_frag);
    937 		}
    938 		/*
    939 		 * Find a cylinder with greater than average number of
    940 		 * unused data blocks.
    941 		 */
    942 		if (indx == 0 || bap[indx - 1] == 0)
    943 			startcg =
    944 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    945 		else
    946 			startcg = dtog(fs,
    947 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    948 		startcg %= fs->fs_ncg;
    949 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    950 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    951 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    952 				return (fs->fs_fpg * cg + fs->fs_frag);
    953 			}
    954 		for (cg = 0; cg < startcg; cg++)
    955 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    956 				return (fs->fs_fpg * cg + fs->fs_frag);
    957 			}
    958 		return (0);
    959 	}
    960 	/*
    961 	 * We just always try to lay things out contiguously.
    962 	 */
    963 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    964 }
    965 
    966 daddr_t
    967 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    968 {
    969 	struct fs *fs;
    970 	int cg;
    971 	int avgbfree, startcg;
    972 
    973 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    974 
    975 	fs = ip->i_fs;
    976 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    977 		if (lbn < NDADDR + NINDIR(fs)) {
    978 			cg = ino_to_cg(fs, ip->i_number);
    979 			return (fs->fs_fpg * cg + fs->fs_frag);
    980 		}
    981 		/*
    982 		 * Find a cylinder with greater than average number of
    983 		 * unused data blocks.
    984 		 */
    985 		if (indx == 0 || bap[indx - 1] == 0)
    986 			startcg =
    987 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    988 		else
    989 			startcg = dtog(fs,
    990 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    991 		startcg %= fs->fs_ncg;
    992 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    993 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    994 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    995 				return (fs->fs_fpg * cg + fs->fs_frag);
    996 			}
    997 		for (cg = 0; cg < startcg; cg++)
    998 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    999 				return (fs->fs_fpg * cg + fs->fs_frag);
   1000 			}
   1001 		return (0);
   1002 	}
   1003 	/*
   1004 	 * We just always try to lay things out contiguously.
   1005 	 */
   1006 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1007 }
   1008 
   1009 
   1010 /*
   1011  * Implement the cylinder overflow algorithm.
   1012  *
   1013  * The policy implemented by this algorithm is:
   1014  *   1) allocate the block in its requested cylinder group.
   1015  *   2) quadradically rehash on the cylinder group number.
   1016  *   3) brute force search for a free block.
   1017  *
   1018  * => called with um_lock held
   1019  * => returns with um_lock released on success, held on failure
   1020  *    (*allocator releases lock on success, retains lock on failure)
   1021  */
   1022 /*VARARGS5*/
   1023 static daddr_t
   1024 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1025     int size /* size for data blocks, mode for inodes */,
   1026     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1027 {
   1028 	struct fs *fs;
   1029 	daddr_t result;
   1030 	int i, icg = cg;
   1031 
   1032 	fs = ip->i_fs;
   1033 	/*
   1034 	 * 1: preferred cylinder group
   1035 	 */
   1036 	result = (*allocator)(ip, cg, pref, size);
   1037 	if (result)
   1038 		return (result);
   1039 	/*
   1040 	 * 2: quadratic rehash
   1041 	 */
   1042 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1043 		cg += i;
   1044 		if (cg >= fs->fs_ncg)
   1045 			cg -= fs->fs_ncg;
   1046 		result = (*allocator)(ip, cg, 0, size);
   1047 		if (result)
   1048 			return (result);
   1049 	}
   1050 	/*
   1051 	 * 3: brute force search
   1052 	 * Note that we start at i == 2, since 0 was checked initially,
   1053 	 * and 1 is always checked in the quadratic rehash.
   1054 	 */
   1055 	cg = (icg + 2) % fs->fs_ncg;
   1056 	for (i = 2; i < fs->fs_ncg; i++) {
   1057 		result = (*allocator)(ip, cg, 0, size);
   1058 		if (result)
   1059 			return (result);
   1060 		cg++;
   1061 		if (cg == fs->fs_ncg)
   1062 			cg = 0;
   1063 	}
   1064 	return (0);
   1065 }
   1066 
   1067 /*
   1068  * Determine whether a fragment can be extended.
   1069  *
   1070  * Check to see if the necessary fragments are available, and
   1071  * if they are, allocate them.
   1072  *
   1073  * => called with um_lock held
   1074  * => returns with um_lock released on success, held on failure
   1075  */
   1076 static daddr_t
   1077 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1078 {
   1079 	struct ufsmount *ump;
   1080 	struct fs *fs;
   1081 	struct cg *cgp;
   1082 	struct buf *bp;
   1083 	daddr_t bno;
   1084 	int frags, bbase;
   1085 	int i, error;
   1086 	u_int8_t *blksfree;
   1087 
   1088 	fs = ip->i_fs;
   1089 	ump = ip->i_ump;
   1090 
   1091 	KASSERT(mutex_owned(&ump->um_lock));
   1092 
   1093 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1094 		return (0);
   1095 	frags = numfrags(fs, nsize);
   1096 	bbase = fragnum(fs, bprev);
   1097 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1098 		/* cannot extend across a block boundary */
   1099 		return (0);
   1100 	}
   1101 	mutex_exit(&ump->um_lock);
   1102 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1103 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1104 	if (error)
   1105 		goto fail;
   1106 	cgp = (struct cg *)bp->b_data;
   1107 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1108 		goto fail;
   1109 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1110 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1111 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1112 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1113 	bno = dtogd(fs, bprev);
   1114 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1115 	for (i = numfrags(fs, osize); i < frags; i++)
   1116 		if (isclr(blksfree, bno + i))
   1117 			goto fail;
   1118 	/*
   1119 	 * the current fragment can be extended
   1120 	 * deduct the count on fragment being extended into
   1121 	 * increase the count on the remaining fragment (if any)
   1122 	 * allocate the extended piece
   1123 	 */
   1124 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1125 		if (isclr(blksfree, bno + i))
   1126 			break;
   1127 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1128 	if (i != frags)
   1129 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1130 	mutex_enter(&ump->um_lock);
   1131 	for (i = numfrags(fs, osize); i < frags; i++) {
   1132 		clrbit(blksfree, bno + i);
   1133 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1134 		fs->fs_cstotal.cs_nffree--;
   1135 		fs->fs_cs(fs, cg).cs_nffree--;
   1136 	}
   1137 	fs->fs_fmod = 1;
   1138 	ACTIVECG_CLR(fs, cg);
   1139 	mutex_exit(&ump->um_lock);
   1140 	if (DOINGSOFTDEP(ITOV(ip)))
   1141 		softdep_setup_blkmapdep(bp, fs, bprev);
   1142 	bdwrite(bp);
   1143 	return (bprev);
   1144 
   1145  fail:
   1146  	brelse(bp, 0);
   1147  	mutex_enter(&ump->um_lock);
   1148  	return (0);
   1149 }
   1150 
   1151 /*
   1152  * Determine whether a block can be allocated.
   1153  *
   1154  * Check to see if a block of the appropriate size is available,
   1155  * and if it is, allocate it.
   1156  */
   1157 static daddr_t
   1158 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1159 {
   1160 	struct ufsmount *ump;
   1161 	struct fs *fs = ip->i_fs;
   1162 	struct cg *cgp;
   1163 	struct buf *bp;
   1164 	int32_t bno;
   1165 	daddr_t blkno;
   1166 	int error, frags, allocsiz, i;
   1167 	u_int8_t *blksfree;
   1168 #ifdef FFS_EI
   1169 	const int needswap = UFS_FSNEEDSWAP(fs);
   1170 #endif
   1171 
   1172 	ump = ip->i_ump;
   1173 
   1174 	KASSERT(mutex_owned(&ump->um_lock));
   1175 
   1176 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1177 		return (0);
   1178 	mutex_exit(&ump->um_lock);
   1179 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1180 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1181 	if (error)
   1182 		goto fail;
   1183 	cgp = (struct cg *)bp->b_data;
   1184 	if (!cg_chkmagic(cgp, needswap) ||
   1185 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1186 		goto fail;
   1187 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1188 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1189 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1190 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1191 	if (size == fs->fs_bsize) {
   1192 		mutex_enter(&ump->um_lock);
   1193 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1194 		ACTIVECG_CLR(fs, cg);
   1195 		mutex_exit(&ump->um_lock);
   1196 		bdwrite(bp);
   1197 		return (blkno);
   1198 	}
   1199 	/*
   1200 	 * check to see if any fragments are already available
   1201 	 * allocsiz is the size which will be allocated, hacking
   1202 	 * it down to a smaller size if necessary
   1203 	 */
   1204 	blksfree = cg_blksfree(cgp, needswap);
   1205 	frags = numfrags(fs, size);
   1206 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1207 		if (cgp->cg_frsum[allocsiz] != 0)
   1208 			break;
   1209 	if (allocsiz == fs->fs_frag) {
   1210 		/*
   1211 		 * no fragments were available, so a block will be
   1212 		 * allocated, and hacked up
   1213 		 */
   1214 		if (cgp->cg_cs.cs_nbfree == 0)
   1215 			goto fail;
   1216 		mutex_enter(&ump->um_lock);
   1217 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1218 		bno = dtogd(fs, blkno);
   1219 		for (i = frags; i < fs->fs_frag; i++)
   1220 			setbit(blksfree, bno + i);
   1221 		i = fs->fs_frag - frags;
   1222 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1223 		fs->fs_cstotal.cs_nffree += i;
   1224 		fs->fs_cs(fs, cg).cs_nffree += i;
   1225 		fs->fs_fmod = 1;
   1226 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1227 		ACTIVECG_CLR(fs, cg);
   1228 		mutex_exit(&ump->um_lock);
   1229 		bdwrite(bp);
   1230 		return (blkno);
   1231 	}
   1232 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1233 #if 0
   1234 	/*
   1235 	 * XXX fvdl mapsearch will panic, and never return -1
   1236 	 *          also: returning NULL as daddr_t ?
   1237 	 */
   1238 	if (bno < 0)
   1239 		goto fail;
   1240 #endif
   1241 	for (i = 0; i < frags; i++)
   1242 		clrbit(blksfree, bno + i);
   1243 	mutex_enter(&ump->um_lock);
   1244 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1245 	fs->fs_cstotal.cs_nffree -= frags;
   1246 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1247 	fs->fs_fmod = 1;
   1248 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1249 	if (frags != allocsiz)
   1250 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1251 	blkno = cg * fs->fs_fpg + bno;
   1252 	ACTIVECG_CLR(fs, cg);
   1253 	mutex_exit(&ump->um_lock);
   1254 	if (DOINGSOFTDEP(ITOV(ip)))
   1255 		softdep_setup_blkmapdep(bp, fs, blkno);
   1256 	bdwrite(bp);
   1257 	return blkno;
   1258 
   1259  fail:
   1260  	brelse(bp, 0);
   1261  	mutex_enter(&ump->um_lock);
   1262  	return (0);
   1263 }
   1264 
   1265 /*
   1266  * Allocate a block in a cylinder group.
   1267  *
   1268  * This algorithm implements the following policy:
   1269  *   1) allocate the requested block.
   1270  *   2) allocate a rotationally optimal block in the same cylinder.
   1271  *   3) allocate the next available block on the block rotor for the
   1272  *      specified cylinder group.
   1273  * Note that this routine only allocates fs_bsize blocks; these
   1274  * blocks may be fragmented by the routine that allocates them.
   1275  */
   1276 static daddr_t
   1277 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1278 {
   1279 	struct ufsmount *ump;
   1280 	struct fs *fs = ip->i_fs;
   1281 	struct cg *cgp;
   1282 	daddr_t blkno;
   1283 	int32_t bno;
   1284 	u_int8_t *blksfree;
   1285 #ifdef FFS_EI
   1286 	const int needswap = UFS_FSNEEDSWAP(fs);
   1287 #endif
   1288 
   1289 	ump = ip->i_ump;
   1290 
   1291 	KASSERT(mutex_owned(&ump->um_lock));
   1292 
   1293 	cgp = (struct cg *)bp->b_data;
   1294 	blksfree = cg_blksfree(cgp, needswap);
   1295 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1296 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1297 	} else {
   1298 		bpref = blknum(fs, bpref);
   1299 		bno = dtogd(fs, bpref);
   1300 		/*
   1301 		 * if the requested block is available, use it
   1302 		 */
   1303 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1304 			goto gotit;
   1305 	}
   1306 	/*
   1307 	 * Take the next available block in this cylinder group.
   1308 	 */
   1309 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1310 	if (bno < 0)
   1311 		return (0);
   1312 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1313 gotit:
   1314 	blkno = fragstoblks(fs, bno);
   1315 	ffs_clrblock(fs, blksfree, blkno);
   1316 	ffs_clusteracct(fs, cgp, blkno, -1);
   1317 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1318 	fs->fs_cstotal.cs_nbfree--;
   1319 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1320 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1321 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1322 		int cylno;
   1323 		cylno = old_cbtocylno(fs, bno);
   1324 		KASSERT(cylno >= 0);
   1325 		KASSERT(cylno < fs->fs_old_ncyl);
   1326 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1327 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1328 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1329 		    needswap);
   1330 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1331 	}
   1332 	fs->fs_fmod = 1;
   1333 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1334 	if (DOINGSOFTDEP(ITOV(ip))) {
   1335 		mutex_exit(&ump->um_lock);
   1336 		softdep_setup_blkmapdep(bp, fs, blkno);
   1337 		mutex_enter(&ump->um_lock);
   1338 	}
   1339 	return (blkno);
   1340 }
   1341 
   1342 #ifdef XXXUBC
   1343 /*
   1344  * Determine whether a cluster can be allocated.
   1345  *
   1346  * We do not currently check for optimal rotational layout if there
   1347  * are multiple choices in the same cylinder group. Instead we just
   1348  * take the first one that we find following bpref.
   1349  */
   1350 
   1351 /*
   1352  * This function must be fixed for UFS2 if re-enabled.
   1353  */
   1354 static daddr_t
   1355 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1356 {
   1357 	struct ufsmount *ump;
   1358 	struct fs *fs;
   1359 	struct cg *cgp;
   1360 	struct buf *bp;
   1361 	int i, got, run, bno, bit, map;
   1362 	u_char *mapp;
   1363 	int32_t *lp;
   1364 
   1365 	fs = ip->i_fs;
   1366 	ump = ip->i_ump;
   1367 
   1368 	KASSERT(mutex_owned(&ump->um_lock));
   1369 	if (fs->fs_maxcluster[cg] < len)
   1370 		return (0);
   1371 	mutex_exit(&ump->um_lock);
   1372 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1373 	    NOCRED, 0, &bp))
   1374 		goto fail;
   1375 	cgp = (struct cg *)bp->b_data;
   1376 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1377 		goto fail;
   1378 	/*
   1379 	 * Check to see if a cluster of the needed size (or bigger) is
   1380 	 * available in this cylinder group.
   1381 	 */
   1382 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1383 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1384 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1385 			break;
   1386 	if (i > fs->fs_contigsumsize) {
   1387 		/*
   1388 		 * This is the first time looking for a cluster in this
   1389 		 * cylinder group. Update the cluster summary information
   1390 		 * to reflect the true maximum sized cluster so that
   1391 		 * future cluster allocation requests can avoid reading
   1392 		 * the cylinder group map only to find no clusters.
   1393 		 */
   1394 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1395 		for (i = len - 1; i > 0; i--)
   1396 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1397 				break;
   1398 		mutex_enter(&ump->um_lock);
   1399 		fs->fs_maxcluster[cg] = i;
   1400 		mutex_exit(&ump->um_lock);
   1401 		goto fail;
   1402 	}
   1403 	/*
   1404 	 * Search the cluster map to find a big enough cluster.
   1405 	 * We take the first one that we find, even if it is larger
   1406 	 * than we need as we prefer to get one close to the previous
   1407 	 * block allocation. We do not search before the current
   1408 	 * preference point as we do not want to allocate a block
   1409 	 * that is allocated before the previous one (as we will
   1410 	 * then have to wait for another pass of the elevator
   1411 	 * algorithm before it will be read). We prefer to fail and
   1412 	 * be recalled to try an allocation in the next cylinder group.
   1413 	 */
   1414 	if (dtog(fs, bpref) != cg)
   1415 		bpref = 0;
   1416 	else
   1417 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1418 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1419 	map = *mapp++;
   1420 	bit = 1 << (bpref % NBBY);
   1421 	for (run = 0, got = bpref;
   1422 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1423 		if ((map & bit) == 0) {
   1424 			run = 0;
   1425 		} else {
   1426 			run++;
   1427 			if (run == len)
   1428 				break;
   1429 		}
   1430 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1431 			bit <<= 1;
   1432 		} else {
   1433 			map = *mapp++;
   1434 			bit = 1;
   1435 		}
   1436 	}
   1437 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1438 		goto fail;
   1439 	/*
   1440 	 * Allocate the cluster that we have found.
   1441 	 */
   1442 #ifdef DIAGNOSTIC
   1443 	for (i = 1; i <= len; i++)
   1444 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1445 		    got - run + i))
   1446 			panic("ffs_clusteralloc: map mismatch");
   1447 #endif
   1448 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1449 	if (dtog(fs, bno) != cg)
   1450 		panic("ffs_clusteralloc: allocated out of group");
   1451 	len = blkstofrags(fs, len);
   1452 	mutex_enter(&ump->um_lock);
   1453 	for (i = 0; i < len; i += fs->fs_frag)
   1454 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1455 			panic("ffs_clusteralloc: lost block");
   1456 	ACTIVECG_CLR(fs, cg);
   1457 	mutex_exit(&ump->um_lock);
   1458 	bdwrite(bp);
   1459 	return (bno);
   1460 
   1461 fail:
   1462 	brelse(bp, 0);
   1463 	mutex_enter(&ump->um_lock);
   1464 	return (0);
   1465 }
   1466 #endif /* XXXUBC */
   1467 
   1468 /*
   1469  * Determine whether an inode can be allocated.
   1470  *
   1471  * Check to see if an inode is available, and if it is,
   1472  * allocate it using the following policy:
   1473  *   1) allocate the requested inode.
   1474  *   2) allocate the next available inode after the requested
   1475  *      inode in the specified cylinder group.
   1476  */
   1477 static daddr_t
   1478 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1479 {
   1480 	struct ufsmount *ump = ip->i_ump;
   1481 	struct fs *fs = ip->i_fs;
   1482 	struct cg *cgp;
   1483 	struct buf *bp, *ibp;
   1484 	u_int8_t *inosused;
   1485 	int error, start, len, loc, map, i;
   1486 	int32_t initediblk;
   1487 	struct ufs2_dinode *dp2;
   1488 #ifdef FFS_EI
   1489 	const int needswap = UFS_FSNEEDSWAP(fs);
   1490 #endif
   1491 
   1492 	KASSERT(mutex_owned(&ump->um_lock));
   1493 
   1494 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1495 		return (0);
   1496 	mutex_exit(&ump->um_lock);
   1497 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1498 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1499 	if (error)
   1500 		goto fail;
   1501 	cgp = (struct cg *)bp->b_data;
   1502 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1503 		goto fail;
   1504 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1505 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1506 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1507 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1508 	inosused = cg_inosused(cgp, needswap);
   1509 	if (ipref) {
   1510 		ipref %= fs->fs_ipg;
   1511 		if (isclr(inosused, ipref))
   1512 			goto gotit;
   1513 	}
   1514 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1515 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1516 		NBBY);
   1517 	loc = skpc(0xff, len, &inosused[start]);
   1518 	if (loc == 0) {
   1519 		len = start + 1;
   1520 		start = 0;
   1521 		loc = skpc(0xff, len, &inosused[0]);
   1522 		if (loc == 0) {
   1523 			printf("cg = %d, irotor = %d, fs = %s\n",
   1524 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1525 				fs->fs_fsmnt);
   1526 			panic("ffs_nodealloccg: map corrupted");
   1527 			/* NOTREACHED */
   1528 		}
   1529 	}
   1530 	i = start + len - loc;
   1531 	map = inosused[i];
   1532 	ipref = i * NBBY;
   1533 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1534 		if ((map & i) == 0) {
   1535 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1536 			goto gotit;
   1537 		}
   1538 	}
   1539 	printf("fs = %s\n", fs->fs_fsmnt);
   1540 	panic("ffs_nodealloccg: block not in map");
   1541 	/* NOTREACHED */
   1542 gotit:
   1543 	/*
   1544 	 * Check to see if we need to initialize more inodes.
   1545 	 */
   1546 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1547 	ibp = NULL;
   1548 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1549 	    ipref + INOPB(fs) > initediblk &&
   1550 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1551 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1552 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1553 		    (int)fs->fs_bsize, 0, 0);
   1554 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1555 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1556 		    for (i = 0; i < INOPB(fs); i++) {
   1557 			/*
   1558 			 * Don't bother to swap, it's supposed to be
   1559 			 * random, after all.
   1560 			 */
   1561 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1562 			dp2++;
   1563 		}
   1564 		initediblk += INOPB(fs);
   1565 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1566 	}
   1567 
   1568 	mutex_enter(&ump->um_lock);
   1569 	ACTIVECG_CLR(fs, cg);
   1570 	setbit(inosused, ipref);
   1571 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1572 	fs->fs_cstotal.cs_nifree--;
   1573 	fs->fs_cs(fs, cg).cs_nifree--;
   1574 	fs->fs_fmod = 1;
   1575 	if ((mode & IFMT) == IFDIR) {
   1576 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1577 		fs->fs_cstotal.cs_ndir++;
   1578 		fs->fs_cs(fs, cg).cs_ndir++;
   1579 	}
   1580 	mutex_exit(&ump->um_lock);
   1581 	if (DOINGSOFTDEP(ITOV(ip)))
   1582 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1583 	bdwrite(bp);
   1584 	if (ibp != NULL)
   1585 		bawrite(ibp);
   1586 	return (cg * fs->fs_ipg + ipref);
   1587  fail:
   1588 	brelse(bp, 0);
   1589 	mutex_enter(&ump->um_lock);
   1590 	return (0);
   1591 }
   1592 
   1593 /*
   1594  * Free a block or fragment.
   1595  *
   1596  * The specified block or fragment is placed back in the
   1597  * free map. If a fragment is deallocated, a possible
   1598  * block reassembly is checked.
   1599  *
   1600  * => um_lock not held on entry or exit
   1601  */
   1602 void
   1603 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1604     ino_t inum)
   1605 {
   1606 	struct cg *cgp;
   1607 	struct buf *bp;
   1608 	struct ufsmount *ump;
   1609 	int32_t fragno, cgbno;
   1610 	daddr_t cgblkno;
   1611 	int i, error, cg, blk, frags, bbase;
   1612 	u_int8_t *blksfree;
   1613 	dev_t dev;
   1614 	const int needswap = UFS_FSNEEDSWAP(fs);
   1615 
   1616 	cg = dtog(fs, bno);
   1617 	if (devvp->v_type != VBLK) {
   1618 		/* devvp is a snapshot */
   1619 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1620 		ump = VFSTOUFS(devvp->v_mount);
   1621 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1622 	} else {
   1623 		dev = devvp->v_rdev;
   1624 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1625 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1626 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1627 			return;
   1628 	}
   1629 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1630 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1631 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1632 		       "size = %ld, fs = %s\n",
   1633 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1634 		panic("blkfree: bad size");
   1635 	}
   1636 
   1637 	if (bno >= fs->fs_size) {
   1638 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1639 		    (unsigned long long)inum);
   1640 		ffs_fserr(fs, inum, "bad block");
   1641 		return;
   1642 	}
   1643 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1644 	    NOCRED, B_MODIFY, &bp);
   1645 	if (error) {
   1646 		brelse(bp, 0);
   1647 		return;
   1648 	}
   1649 	cgp = (struct cg *)bp->b_data;
   1650 	if (!cg_chkmagic(cgp, needswap)) {
   1651 		brelse(bp, 0);
   1652 		return;
   1653 	}
   1654 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1655 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1656 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1657 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1658 	cgbno = dtogd(fs, bno);
   1659 	blksfree = cg_blksfree(cgp, needswap);
   1660 	mutex_enter(&ump->um_lock);
   1661 	if (size == fs->fs_bsize) {
   1662 		fragno = fragstoblks(fs, cgbno);
   1663 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1664 			if (devvp->v_type != VBLK) {
   1665 				/* devvp is a snapshot */
   1666 				mutex_exit(&ump->um_lock);
   1667 				brelse(bp, 0);
   1668 				return;
   1669 			}
   1670 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1671 			    dev, bno, fs->fs_fsmnt);
   1672 			panic("blkfree: freeing free block");
   1673 		}
   1674 		ffs_setblock(fs, blksfree, fragno);
   1675 		ffs_clusteracct(fs, cgp, fragno, 1);
   1676 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1677 		fs->fs_cstotal.cs_nbfree++;
   1678 		fs->fs_cs(fs, cg).cs_nbfree++;
   1679 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1680 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1681 			i = old_cbtocylno(fs, cgbno);
   1682 			KASSERT(i >= 0);
   1683 			KASSERT(i < fs->fs_old_ncyl);
   1684 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1685 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1686 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1687 			    needswap);
   1688 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1689 		}
   1690 	} else {
   1691 		bbase = cgbno - fragnum(fs, cgbno);
   1692 		/*
   1693 		 * decrement the counts associated with the old frags
   1694 		 */
   1695 		blk = blkmap(fs, blksfree, bbase);
   1696 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1697 		/*
   1698 		 * deallocate the fragment
   1699 		 */
   1700 		frags = numfrags(fs, size);
   1701 		for (i = 0; i < frags; i++) {
   1702 			if (isset(blksfree, cgbno + i)) {
   1703 				printf("dev = 0x%x, block = %" PRId64
   1704 				       ", fs = %s\n",
   1705 				    dev, bno + i, fs->fs_fsmnt);
   1706 				panic("blkfree: freeing free frag");
   1707 			}
   1708 			setbit(blksfree, cgbno + i);
   1709 		}
   1710 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1711 		fs->fs_cstotal.cs_nffree += i;
   1712 		fs->fs_cs(fs, cg).cs_nffree += i;
   1713 		/*
   1714 		 * add back in counts associated with the new frags
   1715 		 */
   1716 		blk = blkmap(fs, blksfree, bbase);
   1717 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1718 		/*
   1719 		 * if a complete block has been reassembled, account for it
   1720 		 */
   1721 		fragno = fragstoblks(fs, bbase);
   1722 		if (ffs_isblock(fs, blksfree, fragno)) {
   1723 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1724 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1725 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1726 			ffs_clusteracct(fs, cgp, fragno, 1);
   1727 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1728 			fs->fs_cstotal.cs_nbfree++;
   1729 			fs->fs_cs(fs, cg).cs_nbfree++;
   1730 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1731 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1732 				i = old_cbtocylno(fs, bbase);
   1733 				KASSERT(i >= 0);
   1734 				KASSERT(i < fs->fs_old_ncyl);
   1735 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1736 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1737 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1738 				    bbase)], 1, needswap);
   1739 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1740 			}
   1741 		}
   1742 	}
   1743 	fs->fs_fmod = 1;
   1744 	ACTIVECG_CLR(fs, cg);
   1745 	mutex_exit(&ump->um_lock);
   1746 	bdwrite(bp);
   1747 }
   1748 
   1749 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1750 #ifdef XXXUBC
   1751 /*
   1752  * Verify allocation of a block or fragment. Returns true if block or
   1753  * fragment is allocated, false if it is free.
   1754  */
   1755 static int
   1756 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1757 {
   1758 	struct fs *fs;
   1759 	struct cg *cgp;
   1760 	struct buf *bp;
   1761 	int i, error, frags, free;
   1762 
   1763 	fs = ip->i_fs;
   1764 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1765 		printf("bsize = %d, size = %ld, fs = %s\n",
   1766 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1767 		panic("checkblk: bad size");
   1768 	}
   1769 	if (bno >= fs->fs_size)
   1770 		panic("checkblk: bad block %d", bno);
   1771 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1772 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   1773 	if (error) {
   1774 		brelse(bp, 0);
   1775 		return 0;
   1776 	}
   1777 	cgp = (struct cg *)bp->b_data;
   1778 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1779 		brelse(bp, 0);
   1780 		return 0;
   1781 	}
   1782 	bno = dtogd(fs, bno);
   1783 	if (size == fs->fs_bsize) {
   1784 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1785 			fragstoblks(fs, bno));
   1786 	} else {
   1787 		frags = numfrags(fs, size);
   1788 		for (free = 0, i = 0; i < frags; i++)
   1789 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1790 				free++;
   1791 		if (free != 0 && free != frags)
   1792 			panic("checkblk: partially free fragment");
   1793 	}
   1794 	brelse(bp, 0);
   1795 	return (!free);
   1796 }
   1797 #endif /* XXXUBC */
   1798 #endif /* DIAGNOSTIC */
   1799 
   1800 /*
   1801  * Free an inode.
   1802  */
   1803 int
   1804 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1805 {
   1806 
   1807 	if (DOINGSOFTDEP(vp)) {
   1808 		softdep_freefile(vp, ino, mode);
   1809 		return (0);
   1810 	}
   1811 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1812 }
   1813 
   1814 /*
   1815  * Do the actual free operation.
   1816  * The specified inode is placed back in the free map.
   1817  */
   1818 int
   1819 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1820 {
   1821 	struct ufsmount *ump;
   1822 	struct cg *cgp;
   1823 	struct buf *bp;
   1824 	int error, cg;
   1825 	daddr_t cgbno;
   1826 	u_int8_t *inosused;
   1827 	dev_t dev;
   1828 #ifdef FFS_EI
   1829 	const int needswap = UFS_FSNEEDSWAP(fs);
   1830 #endif
   1831 
   1832 	cg = ino_to_cg(fs, ino);
   1833 	if (devvp->v_type != VBLK) {
   1834 		/* devvp is a snapshot */
   1835 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1836 		ump = VFSTOUFS(devvp->v_mount);
   1837 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1838 	} else {
   1839 		dev = devvp->v_rdev;
   1840 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1841 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1842 	}
   1843 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1844 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1845 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1846 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1847 	    NOCRED, B_MODIFY, &bp);
   1848 	if (error) {
   1849 		brelse(bp, 0);
   1850 		return (error);
   1851 	}
   1852 	cgp = (struct cg *)bp->b_data;
   1853 	if (!cg_chkmagic(cgp, needswap)) {
   1854 		brelse(bp, 0);
   1855 		return (0);
   1856 	}
   1857 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1858 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1859 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1860 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1861 	inosused = cg_inosused(cgp, needswap);
   1862 	ino %= fs->fs_ipg;
   1863 	if (isclr(inosused, ino)) {
   1864 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1865 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1866 		    fs->fs_fsmnt);
   1867 		if (fs->fs_ronly == 0)
   1868 			panic("ifree: freeing free inode");
   1869 	}
   1870 	clrbit(inosused, ino);
   1871 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1872 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1873 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1874 	mutex_enter(&ump->um_lock);
   1875 	fs->fs_cstotal.cs_nifree++;
   1876 	fs->fs_cs(fs, cg).cs_nifree++;
   1877 	if ((mode & IFMT) == IFDIR) {
   1878 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1879 		fs->fs_cstotal.cs_ndir--;
   1880 		fs->fs_cs(fs, cg).cs_ndir--;
   1881 	}
   1882 	fs->fs_fmod = 1;
   1883 	ACTIVECG_CLR(fs, cg);
   1884 	mutex_exit(&ump->um_lock);
   1885 	bdwrite(bp);
   1886 	return (0);
   1887 }
   1888 
   1889 /*
   1890  * Check to see if a file is free.
   1891  */
   1892 int
   1893 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1894 {
   1895 	struct cg *cgp;
   1896 	struct buf *bp;
   1897 	daddr_t cgbno;
   1898 	int ret, cg;
   1899 	u_int8_t *inosused;
   1900 
   1901 	cg = ino_to_cg(fs, ino);
   1902 	if (devvp->v_type != VBLK) {
   1903 		/* devvp is a snapshot */
   1904 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1905 	} else
   1906 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1907 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1908 		return 1;
   1909 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1910 		brelse(bp, 0);
   1911 		return 1;
   1912 	}
   1913 	cgp = (struct cg *)bp->b_data;
   1914 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1915 		brelse(bp, 0);
   1916 		return 1;
   1917 	}
   1918 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1919 	ino %= fs->fs_ipg;
   1920 	ret = isclr(inosused, ino);
   1921 	brelse(bp, 0);
   1922 	return ret;
   1923 }
   1924 
   1925 /*
   1926  * Find a block of the specified size in the specified cylinder group.
   1927  *
   1928  * It is a panic if a request is made to find a block if none are
   1929  * available.
   1930  */
   1931 static int32_t
   1932 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1933 {
   1934 	int32_t bno;
   1935 	int start, len, loc, i;
   1936 	int blk, field, subfield, pos;
   1937 	int ostart, olen;
   1938 	u_int8_t *blksfree;
   1939 #ifdef FFS_EI
   1940 	const int needswap = UFS_FSNEEDSWAP(fs);
   1941 #endif
   1942 
   1943 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1944 
   1945 	/*
   1946 	 * find the fragment by searching through the free block
   1947 	 * map for an appropriate bit pattern
   1948 	 */
   1949 	if (bpref)
   1950 		start = dtogd(fs, bpref) / NBBY;
   1951 	else
   1952 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1953 	blksfree = cg_blksfree(cgp, needswap);
   1954 	len = howmany(fs->fs_fpg, NBBY) - start;
   1955 	ostart = start;
   1956 	olen = len;
   1957 	loc = scanc((u_int)len,
   1958 		(const u_char *)&blksfree[start],
   1959 		(const u_char *)fragtbl[fs->fs_frag],
   1960 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1961 	if (loc == 0) {
   1962 		len = start + 1;
   1963 		start = 0;
   1964 		loc = scanc((u_int)len,
   1965 			(const u_char *)&blksfree[0],
   1966 			(const u_char *)fragtbl[fs->fs_frag],
   1967 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1968 		if (loc == 0) {
   1969 			printf("start = %d, len = %d, fs = %s\n",
   1970 			    ostart, olen, fs->fs_fsmnt);
   1971 			printf("offset=%d %ld\n",
   1972 				ufs_rw32(cgp->cg_freeoff, needswap),
   1973 				(long)blksfree - (long)cgp);
   1974 			printf("cg %d\n", cgp->cg_cgx);
   1975 			panic("ffs_alloccg: map corrupted");
   1976 			/* NOTREACHED */
   1977 		}
   1978 	}
   1979 	bno = (start + len - loc) * NBBY;
   1980 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1981 	/*
   1982 	 * found the byte in the map
   1983 	 * sift through the bits to find the selected frag
   1984 	 */
   1985 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1986 		blk = blkmap(fs, blksfree, bno);
   1987 		blk <<= 1;
   1988 		field = around[allocsiz];
   1989 		subfield = inside[allocsiz];
   1990 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1991 			if ((blk & field) == subfield)
   1992 				return (bno + pos);
   1993 			field <<= 1;
   1994 			subfield <<= 1;
   1995 		}
   1996 	}
   1997 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1998 	panic("ffs_alloccg: block not in map");
   1999 	/* return (-1); */
   2000 }
   2001 
   2002 /*
   2003  * Update the cluster map because of an allocation or free.
   2004  *
   2005  * Cnt == 1 means free; cnt == -1 means allocating.
   2006  */
   2007 void
   2008 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2009 {
   2010 	int32_t *sump;
   2011 	int32_t *lp;
   2012 	u_char *freemapp, *mapp;
   2013 	int i, start, end, forw, back, map, bit;
   2014 #ifdef FFS_EI
   2015 	const int needswap = UFS_FSNEEDSWAP(fs);
   2016 #endif
   2017 
   2018 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2019 
   2020 	if (fs->fs_contigsumsize <= 0)
   2021 		return;
   2022 	freemapp = cg_clustersfree(cgp, needswap);
   2023 	sump = cg_clustersum(cgp, needswap);
   2024 	/*
   2025 	 * Allocate or clear the actual block.
   2026 	 */
   2027 	if (cnt > 0)
   2028 		setbit(freemapp, blkno);
   2029 	else
   2030 		clrbit(freemapp, blkno);
   2031 	/*
   2032 	 * Find the size of the cluster going forward.
   2033 	 */
   2034 	start = blkno + 1;
   2035 	end = start + fs->fs_contigsumsize;
   2036 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2037 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2038 	mapp = &freemapp[start / NBBY];
   2039 	map = *mapp++;
   2040 	bit = 1 << (start % NBBY);
   2041 	for (i = start; i < end; i++) {
   2042 		if ((map & bit) == 0)
   2043 			break;
   2044 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2045 			bit <<= 1;
   2046 		} else {
   2047 			map = *mapp++;
   2048 			bit = 1;
   2049 		}
   2050 	}
   2051 	forw = i - start;
   2052 	/*
   2053 	 * Find the size of the cluster going backward.
   2054 	 */
   2055 	start = blkno - 1;
   2056 	end = start - fs->fs_contigsumsize;
   2057 	if (end < 0)
   2058 		end = -1;
   2059 	mapp = &freemapp[start / NBBY];
   2060 	map = *mapp--;
   2061 	bit = 1 << (start % NBBY);
   2062 	for (i = start; i > end; i--) {
   2063 		if ((map & bit) == 0)
   2064 			break;
   2065 		if ((i & (NBBY - 1)) != 0) {
   2066 			bit >>= 1;
   2067 		} else {
   2068 			map = *mapp--;
   2069 			bit = 1 << (NBBY - 1);
   2070 		}
   2071 	}
   2072 	back = start - i;
   2073 	/*
   2074 	 * Account for old cluster and the possibly new forward and
   2075 	 * back clusters.
   2076 	 */
   2077 	i = back + forw + 1;
   2078 	if (i > fs->fs_contigsumsize)
   2079 		i = fs->fs_contigsumsize;
   2080 	ufs_add32(sump[i], cnt, needswap);
   2081 	if (back > 0)
   2082 		ufs_add32(sump[back], -cnt, needswap);
   2083 	if (forw > 0)
   2084 		ufs_add32(sump[forw], -cnt, needswap);
   2085 
   2086 	/*
   2087 	 * Update cluster summary information.
   2088 	 */
   2089 	lp = &sump[fs->fs_contigsumsize];
   2090 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2091 		if (ufs_rw32(*lp--, needswap) > 0)
   2092 			break;
   2093 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2094 }
   2095 
   2096 /*
   2097  * Fserr prints the name of a file system with an error diagnostic.
   2098  *
   2099  * The form of the error message is:
   2100  *	fs: error message
   2101  */
   2102 static void
   2103 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2104 {
   2105 
   2106 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2107 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2108 }
   2109