ffs_alloc.c revision 1.109 1 /* $NetBSD: ffs_alloc.c,v 1.109 2008/06/04 17:46:21 ad Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1982, 1986, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109 2008/06/04 17:46:21 ad Exp $");
45
46 #if defined(_KERNEL_OPT)
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #endif
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/kauth.h>
60 #include <sys/fstrans.h>
61
62 #include <miscfs/specfs/specdev.h>
63 #include <ufs/ufs/quota.h>
64 #include <ufs/ufs/ufsmount.h>
65 #include <ufs/ufs/inode.h>
66 #include <ufs/ufs/ufs_extern.h>
67 #include <ufs/ufs/ufs_bswap.h>
68
69 #include <ufs/ffs/fs.h>
70 #include <ufs/ffs/ffs_extern.h>
71
72 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
73 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
74 #ifdef XXXUBC
75 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
76 #endif
77 static ino_t ffs_dirpref(struct inode *);
78 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
79 static void ffs_fserr(struct fs *, u_int, const char *);
80 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
81 daddr_t (*)(struct inode *, int, daddr_t, int));
82 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
83 static int32_t ffs_mapsearch(struct fs *, struct cg *,
84 daddr_t, int);
85 #if defined(DIAGNOSTIC) || defined(DEBUG)
86 #ifdef XXXUBC
87 static int ffs_checkblk(struct inode *, daddr_t, long size);
88 #endif
89 #endif
90
91 /* if 1, changes in optimalization strategy are logged */
92 int ffs_log_changeopt = 0;
93
94 /* in ffs_tables.c */
95 extern const int inside[], around[];
96 extern const u_char * const fragtbl[];
97
98 /*
99 * Allocate a block in the file system.
100 *
101 * The size of the requested block is given, which must be some
102 * multiple of fs_fsize and <= fs_bsize.
103 * A preference may be optionally specified. If a preference is given
104 * the following hierarchy is used to allocate a block:
105 * 1) allocate the requested block.
106 * 2) allocate a rotationally optimal block in the same cylinder.
107 * 3) allocate a block in the same cylinder group.
108 * 4) quadradically rehash into other cylinder groups, until an
109 * available block is located.
110 * If no block preference is given the following hierarchy is used
111 * to allocate a block:
112 * 1) allocate a block in the cylinder group that contains the
113 * inode for the file.
114 * 2) quadradically rehash into other cylinder groups, until an
115 * available block is located.
116 *
117 * => called with um_lock held
118 * => releases um_lock before returning
119 */
120 int
121 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
122 kauth_cred_t cred, daddr_t *bnp)
123 {
124 struct ufsmount *ump;
125 struct fs *fs;
126 daddr_t bno;
127 int cg;
128 #ifdef QUOTA
129 int error;
130 #endif
131
132 fs = ip->i_fs;
133 ump = ip->i_ump;
134
135 KASSERT(mutex_owned(&ump->um_lock));
136
137 #ifdef UVM_PAGE_TRKOWN
138 if (ITOV(ip)->v_type == VREG &&
139 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
140 struct vm_page *pg;
141 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
142 voff_t off = trunc_page(lblktosize(fs, lbn));
143 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
144
145 mutex_enter(&uobj->vmobjlock);
146 while (off < endoff) {
147 pg = uvm_pagelookup(uobj, off);
148 KASSERT(pg != NULL);
149 KASSERT(pg->owner == curproc->p_pid);
150 off += PAGE_SIZE;
151 }
152 mutex_exit(&uobj->vmobjlock);
153 }
154 #endif
155
156 *bnp = 0;
157 #ifdef DIAGNOSTIC
158 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
159 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
160 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
161 panic("ffs_alloc: bad size");
162 }
163 if (cred == NOCRED)
164 panic("ffs_alloc: missing credential");
165 #endif /* DIAGNOSTIC */
166 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
167 goto nospace;
168 if (freespace(fs, fs->fs_minfree) <= 0 &&
169 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
170 goto nospace;
171 #ifdef QUOTA
172 mutex_exit(&ump->um_lock);
173 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
174 return (error);
175 mutex_enter(&ump->um_lock);
176 #endif
177 if (bpref >= fs->fs_size)
178 bpref = 0;
179 if (bpref == 0)
180 cg = ino_to_cg(fs, ip->i_number);
181 else
182 cg = dtog(fs, bpref);
183 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
184 if (bno > 0) {
185 DIP_ADD(ip, blocks, btodb(size));
186 ip->i_flag |= IN_CHANGE | IN_UPDATE;
187 *bnp = bno;
188 return (0);
189 }
190 #ifdef QUOTA
191 /*
192 * Restore user's disk quota because allocation failed.
193 */
194 (void) chkdq(ip, -btodb(size), cred, FORCE);
195 #endif
196 nospace:
197 mutex_exit(&ump->um_lock);
198 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
199 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
200 return (ENOSPC);
201 }
202
203 /*
204 * Reallocate a fragment to a bigger size
205 *
206 * The number and size of the old block is given, and a preference
207 * and new size is also specified. The allocator attempts to extend
208 * the original block. Failing that, the regular block allocator is
209 * invoked to get an appropriate block.
210 *
211 * => called with um_lock held
212 * => return with um_lock released
213 */
214 int
215 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
216 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
217 {
218 struct ufsmount *ump;
219 struct fs *fs;
220 struct buf *bp;
221 int cg, request, error;
222 daddr_t bprev, bno;
223
224 fs = ip->i_fs;
225 ump = ip->i_ump;
226
227 KASSERT(mutex_owned(&ump->um_lock));
228
229 #ifdef UVM_PAGE_TRKOWN
230 if (ITOV(ip)->v_type == VREG) {
231 struct vm_page *pg;
232 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
233 voff_t off = trunc_page(lblktosize(fs, lbprev));
234 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
235
236 mutex_enter(&uobj->vmobjlock);
237 while (off < endoff) {
238 pg = uvm_pagelookup(uobj, off);
239 KASSERT(pg != NULL);
240 KASSERT(pg->owner == curproc->p_pid);
241 KASSERT((pg->flags & PG_CLEAN) == 0);
242 off += PAGE_SIZE;
243 }
244 mutex_exit(&uobj->vmobjlock);
245 }
246 #endif
247
248 #ifdef DIAGNOSTIC
249 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
250 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
251 printf(
252 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
253 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
254 panic("ffs_realloccg: bad size");
255 }
256 if (cred == NOCRED)
257 panic("ffs_realloccg: missing credential");
258 #endif /* DIAGNOSTIC */
259 if (freespace(fs, fs->fs_minfree) <= 0 &&
260 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
261 mutex_exit(&ump->um_lock);
262 goto nospace;
263 }
264 if (fs->fs_magic == FS_UFS2_MAGIC)
265 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
266 else
267 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
268
269 if (bprev == 0) {
270 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
271 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
272 panic("ffs_realloccg: bad bprev");
273 }
274 mutex_exit(&ump->um_lock);
275
276 /*
277 * Allocate the extra space in the buffer.
278 */
279 if (bpp != NULL &&
280 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
281 brelse(bp, 0);
282 return (error);
283 }
284 #ifdef QUOTA
285 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
286 if (bpp != NULL) {
287 brelse(bp, 0);
288 }
289 return (error);
290 }
291 #endif
292 /*
293 * Check for extension in the existing location.
294 */
295 cg = dtog(fs, bprev);
296 mutex_enter(&ump->um_lock);
297 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
298 DIP_ADD(ip, blocks, btodb(nsize - osize));
299 ip->i_flag |= IN_CHANGE | IN_UPDATE;
300
301 if (bpp != NULL) {
302 if (bp->b_blkno != fsbtodb(fs, bno))
303 panic("bad blockno");
304 allocbuf(bp, nsize, 1);
305 memset((char *)bp->b_data + osize, 0, nsize - osize);
306 mutex_enter(bp->b_objlock);
307 KASSERT(!cv_has_waiters(&bp->b_done));
308 bp->b_oflags |= BO_DONE;
309 mutex_exit(bp->b_objlock);
310 *bpp = bp;
311 }
312 if (blknop != NULL) {
313 *blknop = bno;
314 }
315 return (0);
316 }
317 /*
318 * Allocate a new disk location.
319 */
320 if (bpref >= fs->fs_size)
321 bpref = 0;
322 switch ((int)fs->fs_optim) {
323 case FS_OPTSPACE:
324 /*
325 * Allocate an exact sized fragment. Although this makes
326 * best use of space, we will waste time relocating it if
327 * the file continues to grow. If the fragmentation is
328 * less than half of the minimum free reserve, we choose
329 * to begin optimizing for time.
330 */
331 request = nsize;
332 if (fs->fs_minfree < 5 ||
333 fs->fs_cstotal.cs_nffree >
334 fs->fs_dsize * fs->fs_minfree / (2 * 100))
335 break;
336
337 if (ffs_log_changeopt) {
338 log(LOG_NOTICE,
339 "%s: optimization changed from SPACE to TIME\n",
340 fs->fs_fsmnt);
341 }
342
343 fs->fs_optim = FS_OPTTIME;
344 break;
345 case FS_OPTTIME:
346 /*
347 * At this point we have discovered a file that is trying to
348 * grow a small fragment to a larger fragment. To save time,
349 * we allocate a full sized block, then free the unused portion.
350 * If the file continues to grow, the `ffs_fragextend' call
351 * above will be able to grow it in place without further
352 * copying. If aberrant programs cause disk fragmentation to
353 * grow within 2% of the free reserve, we choose to begin
354 * optimizing for space.
355 */
356 request = fs->fs_bsize;
357 if (fs->fs_cstotal.cs_nffree <
358 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
359 break;
360
361 if (ffs_log_changeopt) {
362 log(LOG_NOTICE,
363 "%s: optimization changed from TIME to SPACE\n",
364 fs->fs_fsmnt);
365 }
366
367 fs->fs_optim = FS_OPTSPACE;
368 break;
369 default:
370 printf("dev = 0x%x, optim = %d, fs = %s\n",
371 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
372 panic("ffs_realloccg: bad optim");
373 /* NOTREACHED */
374 }
375 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
376 if (bno > 0) {
377 if (!DOINGSOFTDEP(ITOV(ip)))
378 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
379 ip->i_number);
380 if (nsize < request)
381 ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
382 (long)(request - nsize), ip->i_number);
383 DIP_ADD(ip, blocks, btodb(nsize - osize));
384 ip->i_flag |= IN_CHANGE | IN_UPDATE;
385 if (bpp != NULL) {
386 bp->b_blkno = fsbtodb(fs, bno);
387 allocbuf(bp, nsize, 1);
388 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
389 mutex_enter(bp->b_objlock);
390 KASSERT(!cv_has_waiters(&bp->b_done));
391 bp->b_oflags |= BO_DONE;
392 mutex_exit(bp->b_objlock);
393 *bpp = bp;
394 }
395 if (blknop != NULL) {
396 *blknop = bno;
397 }
398 return (0);
399 }
400 mutex_exit(&ump->um_lock);
401
402 #ifdef QUOTA
403 /*
404 * Restore user's disk quota because allocation failed.
405 */
406 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
407 #endif
408 if (bpp != NULL) {
409 brelse(bp, 0);
410 }
411
412 nospace:
413 /*
414 * no space available
415 */
416 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
417 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
418 return (ENOSPC);
419 }
420
421 #if 0
422 /*
423 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
424 *
425 * The vnode and an array of buffer pointers for a range of sequential
426 * logical blocks to be made contiguous is given. The allocator attempts
427 * to find a range of sequential blocks starting as close as possible
428 * from the end of the allocation for the logical block immediately
429 * preceding the current range. If successful, the physical block numbers
430 * in the buffer pointers and in the inode are changed to reflect the new
431 * allocation. If unsuccessful, the allocation is left unchanged. The
432 * success in doing the reallocation is returned. Note that the error
433 * return is not reflected back to the user. Rather the previous block
434 * allocation will be used.
435
436 */
437 #ifdef XXXUBC
438 #ifdef DEBUG
439 #include <sys/sysctl.h>
440 int prtrealloc = 0;
441 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
442 #endif
443 #endif
444
445 /*
446 * NOTE: when re-enabling this, it must be updated for UFS2.
447 */
448
449 int doasyncfree = 1;
450
451 int
452 ffs_reallocblks(void *v)
453 {
454 #ifdef XXXUBC
455 struct vop_reallocblks_args /* {
456 struct vnode *a_vp;
457 struct cluster_save *a_buflist;
458 } */ *ap = v;
459 struct fs *fs;
460 struct inode *ip;
461 struct vnode *vp;
462 struct buf *sbp, *ebp;
463 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
464 struct cluster_save *buflist;
465 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
466 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
467 int i, len, start_lvl, end_lvl, pref, ssize;
468 struct ufsmount *ump;
469 #endif /* XXXUBC */
470
471 /* XXXUBC don't reallocblks for now */
472 return ENOSPC;
473
474 #ifdef XXXUBC
475 vp = ap->a_vp;
476 ip = VTOI(vp);
477 fs = ip->i_fs;
478 ump = ip->i_ump;
479 if (fs->fs_contigsumsize <= 0)
480 return (ENOSPC);
481 buflist = ap->a_buflist;
482 len = buflist->bs_nchildren;
483 start_lbn = buflist->bs_children[0]->b_lblkno;
484 end_lbn = start_lbn + len - 1;
485 #ifdef DIAGNOSTIC
486 for (i = 0; i < len; i++)
487 if (!ffs_checkblk(ip,
488 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
489 panic("ffs_reallocblks: unallocated block 1");
490 for (i = 1; i < len; i++)
491 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
492 panic("ffs_reallocblks: non-logical cluster");
493 blkno = buflist->bs_children[0]->b_blkno;
494 ssize = fsbtodb(fs, fs->fs_frag);
495 for (i = 1; i < len - 1; i++)
496 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
497 panic("ffs_reallocblks: non-physical cluster %d", i);
498 #endif
499 /*
500 * If the latest allocation is in a new cylinder group, assume that
501 * the filesystem has decided to move and do not force it back to
502 * the previous cylinder group.
503 */
504 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
505 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
506 return (ENOSPC);
507 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
508 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
509 return (ENOSPC);
510 /*
511 * Get the starting offset and block map for the first block.
512 */
513 if (start_lvl == 0) {
514 sbap = &ip->i_ffs1_db[0];
515 soff = start_lbn;
516 } else {
517 idp = &start_ap[start_lvl - 1];
518 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
519 NOCRED, B_MODIFY, &sbp)) {
520 brelse(sbp, 0);
521 return (ENOSPC);
522 }
523 sbap = (int32_t *)sbp->b_data;
524 soff = idp->in_off;
525 }
526 /*
527 * Find the preferred location for the cluster.
528 */
529 mutex_enter(&ump->um_lock);
530 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
531 /*
532 * If the block range spans two block maps, get the second map.
533 */
534 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
535 ssize = len;
536 } else {
537 #ifdef DIAGNOSTIC
538 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
539 panic("ffs_reallocblk: start == end");
540 #endif
541 ssize = len - (idp->in_off + 1);
542 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
543 NOCRED, B_MODIFY, &ebp))
544 goto fail;
545 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
546 }
547 /*
548 * Search the block map looking for an allocation of the desired size.
549 */
550 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
551 len, ffs_clusteralloc)) == 0) {
552 mutex_exit(&ump->um_lock);
553 goto fail;
554 }
555 /*
556 * We have found a new contiguous block.
557 *
558 * First we have to replace the old block pointers with the new
559 * block pointers in the inode and indirect blocks associated
560 * with the file.
561 */
562 #ifdef DEBUG
563 if (prtrealloc)
564 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
565 start_lbn, end_lbn);
566 #endif
567 blkno = newblk;
568 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
569 daddr_t ba;
570
571 if (i == ssize) {
572 bap = ebap;
573 soff = -i;
574 }
575 /* XXX ondisk32 */
576 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
577 #ifdef DIAGNOSTIC
578 if (!ffs_checkblk(ip,
579 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
580 panic("ffs_reallocblks: unallocated block 2");
581 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
582 panic("ffs_reallocblks: alloc mismatch");
583 #endif
584 #ifdef DEBUG
585 if (prtrealloc)
586 printf(" %d,", ba);
587 #endif
588 if (DOINGSOFTDEP(vp)) {
589 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
590 softdep_setup_allocdirect(ip, start_lbn + i,
591 blkno, ba, fs->fs_bsize, fs->fs_bsize,
592 buflist->bs_children[i]);
593 else
594 softdep_setup_allocindir_page(ip, start_lbn + i,
595 i < ssize ? sbp : ebp, soff + i, blkno,
596 ba, buflist->bs_children[i]);
597 }
598 /* XXX ondisk32 */
599 *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
600 }
601 /*
602 * Next we must write out the modified inode and indirect blocks.
603 * For strict correctness, the writes should be synchronous since
604 * the old block values may have been written to disk. In practise
605 * they are almost never written, but if we are concerned about
606 * strict correctness, the `doasyncfree' flag should be set to zero.
607 *
608 * The test on `doasyncfree' should be changed to test a flag
609 * that shows whether the associated buffers and inodes have
610 * been written. The flag should be set when the cluster is
611 * started and cleared whenever the buffer or inode is flushed.
612 * We can then check below to see if it is set, and do the
613 * synchronous write only when it has been cleared.
614 */
615 if (sbap != &ip->i_ffs1_db[0]) {
616 if (doasyncfree)
617 bdwrite(sbp);
618 else
619 bwrite(sbp);
620 } else {
621 ip->i_flag |= IN_CHANGE | IN_UPDATE;
622 if (!doasyncfree)
623 ffs_update(vp, NULL, NULL, 1);
624 }
625 if (ssize < len) {
626 if (doasyncfree)
627 bdwrite(ebp);
628 else
629 bwrite(ebp);
630 }
631 /*
632 * Last, free the old blocks and assign the new blocks to the buffers.
633 */
634 #ifdef DEBUG
635 if (prtrealloc)
636 printf("\n\tnew:");
637 #endif
638 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
639 if (!DOINGSOFTDEP(vp))
640 ffs_blkfree(fs, ip->i_devvp,
641 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
642 fs->fs_bsize, ip->i_number);
643 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
644 #ifdef DEBUG
645 if (!ffs_checkblk(ip,
646 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
647 panic("ffs_reallocblks: unallocated block 3");
648 if (prtrealloc)
649 printf(" %d,", blkno);
650 #endif
651 }
652 #ifdef DEBUG
653 if (prtrealloc) {
654 prtrealloc--;
655 printf("\n");
656 }
657 #endif
658 return (0);
659
660 fail:
661 if (ssize < len)
662 brelse(ebp, 0);
663 if (sbap != &ip->i_ffs1_db[0])
664 brelse(sbp, 0);
665 return (ENOSPC);
666 #endif /* XXXUBC */
667 }
668 #endif /* 0 */
669
670 /*
671 * Allocate an inode in the file system.
672 *
673 * If allocating a directory, use ffs_dirpref to select the inode.
674 * If allocating in a directory, the following hierarchy is followed:
675 * 1) allocate the preferred inode.
676 * 2) allocate an inode in the same cylinder group.
677 * 3) quadradically rehash into other cylinder groups, until an
678 * available inode is located.
679 * If no inode preference is given the following hierarchy is used
680 * to allocate an inode:
681 * 1) allocate an inode in cylinder group 0.
682 * 2) quadradically rehash into other cylinder groups, until an
683 * available inode is located.
684 *
685 * => um_lock not held upon entry or return
686 */
687 int
688 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
689 struct vnode **vpp)
690 {
691 struct ufsmount *ump;
692 struct inode *pip;
693 struct fs *fs;
694 struct inode *ip;
695 struct timespec ts;
696 ino_t ino, ipref;
697 int cg, error;
698
699 *vpp = NULL;
700 pip = VTOI(pvp);
701 fs = pip->i_fs;
702 ump = pip->i_ump;
703
704 mutex_enter(&ump->um_lock);
705 if (fs->fs_cstotal.cs_nifree == 0)
706 goto noinodes;
707
708 if ((mode & IFMT) == IFDIR)
709 ipref = ffs_dirpref(pip);
710 else
711 ipref = pip->i_number;
712 if (ipref >= fs->fs_ncg * fs->fs_ipg)
713 ipref = 0;
714 cg = ino_to_cg(fs, ipref);
715 /*
716 * Track number of dirs created one after another
717 * in a same cg without intervening by files.
718 */
719 if ((mode & IFMT) == IFDIR) {
720 if (fs->fs_contigdirs[cg] < 255)
721 fs->fs_contigdirs[cg]++;
722 } else {
723 if (fs->fs_contigdirs[cg] > 0)
724 fs->fs_contigdirs[cg]--;
725 }
726 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
727 if (ino == 0)
728 goto noinodes;
729 error = VFS_VGET(pvp->v_mount, ino, vpp);
730 if (error) {
731 ffs_vfree(pvp, ino, mode);
732 return (error);
733 }
734 KASSERT((*vpp)->v_type == VNON);
735 ip = VTOI(*vpp);
736 if (ip->i_mode) {
737 #if 0
738 printf("mode = 0%o, inum = %d, fs = %s\n",
739 ip->i_mode, ip->i_number, fs->fs_fsmnt);
740 #else
741 printf("dmode %x mode %x dgen %x gen %x\n",
742 DIP(ip, mode), ip->i_mode,
743 DIP(ip, gen), ip->i_gen);
744 printf("size %llx blocks %llx\n",
745 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
746 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
747 (unsigned long long)ipref);
748 #if 0
749 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
750 (int)fs->fs_bsize, NOCRED, 0, &bp);
751 #endif
752
753 #endif
754 panic("ffs_valloc: dup alloc");
755 }
756 if (DIP(ip, blocks)) { /* XXX */
757 printf("free inode %s/%llu had %" PRId64 " blocks\n",
758 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
759 DIP_ASSIGN(ip, blocks, 0);
760 }
761 ip->i_flag &= ~IN_SPACECOUNTED;
762 ip->i_flags = 0;
763 DIP_ASSIGN(ip, flags, 0);
764 /*
765 * Set up a new generation number for this inode.
766 */
767 ip->i_gen++;
768 DIP_ASSIGN(ip, gen, ip->i_gen);
769 if (fs->fs_magic == FS_UFS2_MAGIC) {
770 vfs_timestamp(&ts);
771 ip->i_ffs2_birthtime = ts.tv_sec;
772 ip->i_ffs2_birthnsec = ts.tv_nsec;
773 }
774 return (0);
775 noinodes:
776 mutex_exit(&ump->um_lock);
777 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
778 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
779 return (ENOSPC);
780 }
781
782 /*
783 * Find a cylinder group in which to place a directory.
784 *
785 * The policy implemented by this algorithm is to allocate a
786 * directory inode in the same cylinder group as its parent
787 * directory, but also to reserve space for its files inodes
788 * and data. Restrict the number of directories which may be
789 * allocated one after another in the same cylinder group
790 * without intervening allocation of files.
791 *
792 * If we allocate a first level directory then force allocation
793 * in another cylinder group.
794 */
795 static ino_t
796 ffs_dirpref(struct inode *pip)
797 {
798 register struct fs *fs;
799 int cg, prefcg;
800 int64_t dirsize, cgsize, curdsz;
801 int avgifree, avgbfree, avgndir;
802 int minifree, minbfree, maxndir;
803 int mincg, minndir;
804 int maxcontigdirs;
805
806 KASSERT(mutex_owned(&pip->i_ump->um_lock));
807
808 fs = pip->i_fs;
809
810 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
811 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
812 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
813
814 /*
815 * Force allocation in another cg if creating a first level dir.
816 */
817 if (ITOV(pip)->v_vflag & VV_ROOT) {
818 prefcg = random() % fs->fs_ncg;
819 mincg = prefcg;
820 minndir = fs->fs_ipg;
821 for (cg = prefcg; cg < fs->fs_ncg; cg++)
822 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
823 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
824 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
825 mincg = cg;
826 minndir = fs->fs_cs(fs, cg).cs_ndir;
827 }
828 for (cg = 0; cg < prefcg; cg++)
829 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
830 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
831 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
832 mincg = cg;
833 minndir = fs->fs_cs(fs, cg).cs_ndir;
834 }
835 return ((ino_t)(fs->fs_ipg * mincg));
836 }
837
838 /*
839 * Count various limits which used for
840 * optimal allocation of a directory inode.
841 */
842 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
843 minifree = avgifree - fs->fs_ipg / 4;
844 if (minifree < 0)
845 minifree = 0;
846 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
847 if (minbfree < 0)
848 minbfree = 0;
849 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
850 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
851 if (avgndir != 0) {
852 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
853 if (dirsize < curdsz)
854 dirsize = curdsz;
855 }
856 if (cgsize < dirsize * 255)
857 maxcontigdirs = cgsize / dirsize;
858 else
859 maxcontigdirs = 255;
860 if (fs->fs_avgfpdir > 0)
861 maxcontigdirs = min(maxcontigdirs,
862 fs->fs_ipg / fs->fs_avgfpdir);
863 if (maxcontigdirs == 0)
864 maxcontigdirs = 1;
865
866 /*
867 * Limit number of dirs in one cg and reserve space for
868 * regular files, but only if we have no deficit in
869 * inodes or space.
870 */
871 prefcg = ino_to_cg(fs, pip->i_number);
872 for (cg = prefcg; cg < fs->fs_ncg; cg++)
873 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
874 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
875 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
876 if (fs->fs_contigdirs[cg] < maxcontigdirs)
877 return ((ino_t)(fs->fs_ipg * cg));
878 }
879 for (cg = 0; cg < prefcg; cg++)
880 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
881 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
882 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
883 if (fs->fs_contigdirs[cg] < maxcontigdirs)
884 return ((ino_t)(fs->fs_ipg * cg));
885 }
886 /*
887 * This is a backstop when we are deficient in space.
888 */
889 for (cg = prefcg; cg < fs->fs_ncg; cg++)
890 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
891 return ((ino_t)(fs->fs_ipg * cg));
892 for (cg = 0; cg < prefcg; cg++)
893 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
894 break;
895 return ((ino_t)(fs->fs_ipg * cg));
896 }
897
898 /*
899 * Select the desired position for the next block in a file. The file is
900 * logically divided into sections. The first section is composed of the
901 * direct blocks. Each additional section contains fs_maxbpg blocks.
902 *
903 * If no blocks have been allocated in the first section, the policy is to
904 * request a block in the same cylinder group as the inode that describes
905 * the file. If no blocks have been allocated in any other section, the
906 * policy is to place the section in a cylinder group with a greater than
907 * average number of free blocks. An appropriate cylinder group is found
908 * by using a rotor that sweeps the cylinder groups. When a new group of
909 * blocks is needed, the sweep begins in the cylinder group following the
910 * cylinder group from which the previous allocation was made. The sweep
911 * continues until a cylinder group with greater than the average number
912 * of free blocks is found. If the allocation is for the first block in an
913 * indirect block, the information on the previous allocation is unavailable;
914 * here a best guess is made based upon the logical block number being
915 * allocated.
916 *
917 * If a section is already partially allocated, the policy is to
918 * contiguously allocate fs_maxcontig blocks. The end of one of these
919 * contiguous blocks and the beginning of the next is laid out
920 * contigously if possible.
921 *
922 * => um_lock held on entry and exit
923 */
924 daddr_t
925 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
926 int32_t *bap /* XXX ondisk32 */)
927 {
928 struct fs *fs;
929 int cg;
930 int avgbfree, startcg;
931
932 KASSERT(mutex_owned(&ip->i_ump->um_lock));
933
934 fs = ip->i_fs;
935 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
936 if (lbn < NDADDR + NINDIR(fs)) {
937 cg = ino_to_cg(fs, ip->i_number);
938 return (fs->fs_fpg * cg + fs->fs_frag);
939 }
940 /*
941 * Find a cylinder with greater than average number of
942 * unused data blocks.
943 */
944 if (indx == 0 || bap[indx - 1] == 0)
945 startcg =
946 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
947 else
948 startcg = dtog(fs,
949 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
950 startcg %= fs->fs_ncg;
951 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
952 for (cg = startcg; cg < fs->fs_ncg; cg++)
953 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
954 return (fs->fs_fpg * cg + fs->fs_frag);
955 }
956 for (cg = 0; cg < startcg; cg++)
957 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
958 return (fs->fs_fpg * cg + fs->fs_frag);
959 }
960 return (0);
961 }
962 /*
963 * We just always try to lay things out contiguously.
964 */
965 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
966 }
967
968 daddr_t
969 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
970 {
971 struct fs *fs;
972 int cg;
973 int avgbfree, startcg;
974
975 KASSERT(mutex_owned(&ip->i_ump->um_lock));
976
977 fs = ip->i_fs;
978 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
979 if (lbn < NDADDR + NINDIR(fs)) {
980 cg = ino_to_cg(fs, ip->i_number);
981 return (fs->fs_fpg * cg + fs->fs_frag);
982 }
983 /*
984 * Find a cylinder with greater than average number of
985 * unused data blocks.
986 */
987 if (indx == 0 || bap[indx - 1] == 0)
988 startcg =
989 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
990 else
991 startcg = dtog(fs,
992 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
993 startcg %= fs->fs_ncg;
994 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
995 for (cg = startcg; cg < fs->fs_ncg; cg++)
996 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
997 return (fs->fs_fpg * cg + fs->fs_frag);
998 }
999 for (cg = 0; cg < startcg; cg++)
1000 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1001 return (fs->fs_fpg * cg + fs->fs_frag);
1002 }
1003 return (0);
1004 }
1005 /*
1006 * We just always try to lay things out contiguously.
1007 */
1008 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1009 }
1010
1011
1012 /*
1013 * Implement the cylinder overflow algorithm.
1014 *
1015 * The policy implemented by this algorithm is:
1016 * 1) allocate the block in its requested cylinder group.
1017 * 2) quadradically rehash on the cylinder group number.
1018 * 3) brute force search for a free block.
1019 *
1020 * => called with um_lock held
1021 * => returns with um_lock released on success, held on failure
1022 * (*allocator releases lock on success, retains lock on failure)
1023 */
1024 /*VARARGS5*/
1025 static daddr_t
1026 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1027 int size /* size for data blocks, mode for inodes */,
1028 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
1029 {
1030 struct fs *fs;
1031 daddr_t result;
1032 int i, icg = cg;
1033
1034 fs = ip->i_fs;
1035 /*
1036 * 1: preferred cylinder group
1037 */
1038 result = (*allocator)(ip, cg, pref, size);
1039 if (result)
1040 return (result);
1041 /*
1042 * 2: quadratic rehash
1043 */
1044 for (i = 1; i < fs->fs_ncg; i *= 2) {
1045 cg += i;
1046 if (cg >= fs->fs_ncg)
1047 cg -= fs->fs_ncg;
1048 result = (*allocator)(ip, cg, 0, size);
1049 if (result)
1050 return (result);
1051 }
1052 /*
1053 * 3: brute force search
1054 * Note that we start at i == 2, since 0 was checked initially,
1055 * and 1 is always checked in the quadratic rehash.
1056 */
1057 cg = (icg + 2) % fs->fs_ncg;
1058 for (i = 2; i < fs->fs_ncg; i++) {
1059 result = (*allocator)(ip, cg, 0, size);
1060 if (result)
1061 return (result);
1062 cg++;
1063 if (cg == fs->fs_ncg)
1064 cg = 0;
1065 }
1066 return (0);
1067 }
1068
1069 /*
1070 * Determine whether a fragment can be extended.
1071 *
1072 * Check to see if the necessary fragments are available, and
1073 * if they are, allocate them.
1074 *
1075 * => called with um_lock held
1076 * => returns with um_lock released on success, held on failure
1077 */
1078 static daddr_t
1079 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1080 {
1081 struct ufsmount *ump;
1082 struct fs *fs;
1083 struct cg *cgp;
1084 struct buf *bp;
1085 daddr_t bno;
1086 int frags, bbase;
1087 int i, error;
1088 u_int8_t *blksfree;
1089
1090 fs = ip->i_fs;
1091 ump = ip->i_ump;
1092
1093 KASSERT(mutex_owned(&ump->um_lock));
1094
1095 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1096 return (0);
1097 frags = numfrags(fs, nsize);
1098 bbase = fragnum(fs, bprev);
1099 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1100 /* cannot extend across a block boundary */
1101 return (0);
1102 }
1103 mutex_exit(&ump->um_lock);
1104 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1105 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1106 if (error)
1107 goto fail;
1108 cgp = (struct cg *)bp->b_data;
1109 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1110 goto fail;
1111 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1112 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1113 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1114 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1115 bno = dtogd(fs, bprev);
1116 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1117 for (i = numfrags(fs, osize); i < frags; i++)
1118 if (isclr(blksfree, bno + i))
1119 goto fail;
1120 /*
1121 * the current fragment can be extended
1122 * deduct the count on fragment being extended into
1123 * increase the count on the remaining fragment (if any)
1124 * allocate the extended piece
1125 */
1126 for (i = frags; i < fs->fs_frag - bbase; i++)
1127 if (isclr(blksfree, bno + i))
1128 break;
1129 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1130 if (i != frags)
1131 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1132 mutex_enter(&ump->um_lock);
1133 for (i = numfrags(fs, osize); i < frags; i++) {
1134 clrbit(blksfree, bno + i);
1135 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1136 fs->fs_cstotal.cs_nffree--;
1137 fs->fs_cs(fs, cg).cs_nffree--;
1138 }
1139 fs->fs_fmod = 1;
1140 ACTIVECG_CLR(fs, cg);
1141 mutex_exit(&ump->um_lock);
1142 if (DOINGSOFTDEP(ITOV(ip)))
1143 softdep_setup_blkmapdep(bp, fs, bprev);
1144 bdwrite(bp);
1145 return (bprev);
1146
1147 fail:
1148 brelse(bp, 0);
1149 mutex_enter(&ump->um_lock);
1150 return (0);
1151 }
1152
1153 /*
1154 * Determine whether a block can be allocated.
1155 *
1156 * Check to see if a block of the appropriate size is available,
1157 * and if it is, allocate it.
1158 */
1159 static daddr_t
1160 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1161 {
1162 struct ufsmount *ump;
1163 struct fs *fs = ip->i_fs;
1164 struct cg *cgp;
1165 struct buf *bp;
1166 int32_t bno;
1167 daddr_t blkno;
1168 int error, frags, allocsiz, i;
1169 u_int8_t *blksfree;
1170 #ifdef FFS_EI
1171 const int needswap = UFS_FSNEEDSWAP(fs);
1172 #endif
1173
1174 ump = ip->i_ump;
1175
1176 KASSERT(mutex_owned(&ump->um_lock));
1177
1178 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1179 return (0);
1180 mutex_exit(&ump->um_lock);
1181 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1182 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1183 if (error)
1184 goto fail;
1185 cgp = (struct cg *)bp->b_data;
1186 if (!cg_chkmagic(cgp, needswap) ||
1187 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1188 goto fail;
1189 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1190 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1191 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1192 cgp->cg_time = ufs_rw64(time_second, needswap);
1193 if (size == fs->fs_bsize) {
1194 mutex_enter(&ump->um_lock);
1195 blkno = ffs_alloccgblk(ip, bp, bpref);
1196 ACTIVECG_CLR(fs, cg);
1197 mutex_exit(&ump->um_lock);
1198 bdwrite(bp);
1199 return (blkno);
1200 }
1201 /*
1202 * check to see if any fragments are already available
1203 * allocsiz is the size which will be allocated, hacking
1204 * it down to a smaller size if necessary
1205 */
1206 blksfree = cg_blksfree(cgp, needswap);
1207 frags = numfrags(fs, size);
1208 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1209 if (cgp->cg_frsum[allocsiz] != 0)
1210 break;
1211 if (allocsiz == fs->fs_frag) {
1212 /*
1213 * no fragments were available, so a block will be
1214 * allocated, and hacked up
1215 */
1216 if (cgp->cg_cs.cs_nbfree == 0)
1217 goto fail;
1218 mutex_enter(&ump->um_lock);
1219 blkno = ffs_alloccgblk(ip, bp, bpref);
1220 bno = dtogd(fs, blkno);
1221 for (i = frags; i < fs->fs_frag; i++)
1222 setbit(blksfree, bno + i);
1223 i = fs->fs_frag - frags;
1224 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1225 fs->fs_cstotal.cs_nffree += i;
1226 fs->fs_cs(fs, cg).cs_nffree += i;
1227 fs->fs_fmod = 1;
1228 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1229 ACTIVECG_CLR(fs, cg);
1230 mutex_exit(&ump->um_lock);
1231 bdwrite(bp);
1232 return (blkno);
1233 }
1234 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1235 #if 0
1236 /*
1237 * XXX fvdl mapsearch will panic, and never return -1
1238 * also: returning NULL as daddr_t ?
1239 */
1240 if (bno < 0)
1241 goto fail;
1242 #endif
1243 for (i = 0; i < frags; i++)
1244 clrbit(blksfree, bno + i);
1245 mutex_enter(&ump->um_lock);
1246 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1247 fs->fs_cstotal.cs_nffree -= frags;
1248 fs->fs_cs(fs, cg).cs_nffree -= frags;
1249 fs->fs_fmod = 1;
1250 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1251 if (frags != allocsiz)
1252 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1253 blkno = cg * fs->fs_fpg + bno;
1254 ACTIVECG_CLR(fs, cg);
1255 mutex_exit(&ump->um_lock);
1256 if (DOINGSOFTDEP(ITOV(ip)))
1257 softdep_setup_blkmapdep(bp, fs, blkno);
1258 bdwrite(bp);
1259 return blkno;
1260
1261 fail:
1262 brelse(bp, 0);
1263 mutex_enter(&ump->um_lock);
1264 return (0);
1265 }
1266
1267 /*
1268 * Allocate a block in a cylinder group.
1269 *
1270 * This algorithm implements the following policy:
1271 * 1) allocate the requested block.
1272 * 2) allocate a rotationally optimal block in the same cylinder.
1273 * 3) allocate the next available block on the block rotor for the
1274 * specified cylinder group.
1275 * Note that this routine only allocates fs_bsize blocks; these
1276 * blocks may be fragmented by the routine that allocates them.
1277 */
1278 static daddr_t
1279 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1280 {
1281 struct ufsmount *ump;
1282 struct fs *fs = ip->i_fs;
1283 struct cg *cgp;
1284 daddr_t blkno;
1285 int32_t bno;
1286 u_int8_t *blksfree;
1287 #ifdef FFS_EI
1288 const int needswap = UFS_FSNEEDSWAP(fs);
1289 #endif
1290
1291 ump = ip->i_ump;
1292
1293 KASSERT(mutex_owned(&ump->um_lock));
1294
1295 cgp = (struct cg *)bp->b_data;
1296 blksfree = cg_blksfree(cgp, needswap);
1297 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1298 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1299 } else {
1300 bpref = blknum(fs, bpref);
1301 bno = dtogd(fs, bpref);
1302 /*
1303 * if the requested block is available, use it
1304 */
1305 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1306 goto gotit;
1307 }
1308 /*
1309 * Take the next available block in this cylinder group.
1310 */
1311 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1312 if (bno < 0)
1313 return (0);
1314 cgp->cg_rotor = ufs_rw32(bno, needswap);
1315 gotit:
1316 blkno = fragstoblks(fs, bno);
1317 ffs_clrblock(fs, blksfree, blkno);
1318 ffs_clusteracct(fs, cgp, blkno, -1);
1319 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1320 fs->fs_cstotal.cs_nbfree--;
1321 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1322 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1323 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1324 int cylno;
1325 cylno = old_cbtocylno(fs, bno);
1326 KASSERT(cylno >= 0);
1327 KASSERT(cylno < fs->fs_old_ncyl);
1328 KASSERT(old_cbtorpos(fs, bno) >= 0);
1329 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1330 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1331 needswap);
1332 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1333 }
1334 fs->fs_fmod = 1;
1335 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1336 if (DOINGSOFTDEP(ITOV(ip))) {
1337 mutex_exit(&ump->um_lock);
1338 softdep_setup_blkmapdep(bp, fs, blkno);
1339 mutex_enter(&ump->um_lock);
1340 }
1341 return (blkno);
1342 }
1343
1344 #ifdef XXXUBC
1345 /*
1346 * Determine whether a cluster can be allocated.
1347 *
1348 * We do not currently check for optimal rotational layout if there
1349 * are multiple choices in the same cylinder group. Instead we just
1350 * take the first one that we find following bpref.
1351 */
1352
1353 /*
1354 * This function must be fixed for UFS2 if re-enabled.
1355 */
1356 static daddr_t
1357 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1358 {
1359 struct ufsmount *ump;
1360 struct fs *fs;
1361 struct cg *cgp;
1362 struct buf *bp;
1363 int i, got, run, bno, bit, map;
1364 u_char *mapp;
1365 int32_t *lp;
1366
1367 fs = ip->i_fs;
1368 ump = ip->i_ump;
1369
1370 KASSERT(mutex_owned(&ump->um_lock));
1371 if (fs->fs_maxcluster[cg] < len)
1372 return (0);
1373 mutex_exit(&ump->um_lock);
1374 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1375 NOCRED, 0, &bp))
1376 goto fail;
1377 cgp = (struct cg *)bp->b_data;
1378 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1379 goto fail;
1380 /*
1381 * Check to see if a cluster of the needed size (or bigger) is
1382 * available in this cylinder group.
1383 */
1384 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1385 for (i = len; i <= fs->fs_contigsumsize; i++)
1386 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1387 break;
1388 if (i > fs->fs_contigsumsize) {
1389 /*
1390 * This is the first time looking for a cluster in this
1391 * cylinder group. Update the cluster summary information
1392 * to reflect the true maximum sized cluster so that
1393 * future cluster allocation requests can avoid reading
1394 * the cylinder group map only to find no clusters.
1395 */
1396 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1397 for (i = len - 1; i > 0; i--)
1398 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1399 break;
1400 mutex_enter(&ump->um_lock);
1401 fs->fs_maxcluster[cg] = i;
1402 mutex_exit(&ump->um_lock);
1403 goto fail;
1404 }
1405 /*
1406 * Search the cluster map to find a big enough cluster.
1407 * We take the first one that we find, even if it is larger
1408 * than we need as we prefer to get one close to the previous
1409 * block allocation. We do not search before the current
1410 * preference point as we do not want to allocate a block
1411 * that is allocated before the previous one (as we will
1412 * then have to wait for another pass of the elevator
1413 * algorithm before it will be read). We prefer to fail and
1414 * be recalled to try an allocation in the next cylinder group.
1415 */
1416 if (dtog(fs, bpref) != cg)
1417 bpref = 0;
1418 else
1419 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1420 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1421 map = *mapp++;
1422 bit = 1 << (bpref % NBBY);
1423 for (run = 0, got = bpref;
1424 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1425 if ((map & bit) == 0) {
1426 run = 0;
1427 } else {
1428 run++;
1429 if (run == len)
1430 break;
1431 }
1432 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1433 bit <<= 1;
1434 } else {
1435 map = *mapp++;
1436 bit = 1;
1437 }
1438 }
1439 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1440 goto fail;
1441 /*
1442 * Allocate the cluster that we have found.
1443 */
1444 #ifdef DIAGNOSTIC
1445 for (i = 1; i <= len; i++)
1446 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1447 got - run + i))
1448 panic("ffs_clusteralloc: map mismatch");
1449 #endif
1450 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1451 if (dtog(fs, bno) != cg)
1452 panic("ffs_clusteralloc: allocated out of group");
1453 len = blkstofrags(fs, len);
1454 mutex_enter(&ump->um_lock);
1455 for (i = 0; i < len; i += fs->fs_frag)
1456 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1457 panic("ffs_clusteralloc: lost block");
1458 ACTIVECG_CLR(fs, cg);
1459 mutex_exit(&ump->um_lock);
1460 bdwrite(bp);
1461 return (bno);
1462
1463 fail:
1464 brelse(bp, 0);
1465 mutex_enter(&ump->um_lock);
1466 return (0);
1467 }
1468 #endif /* XXXUBC */
1469
1470 /*
1471 * Determine whether an inode can be allocated.
1472 *
1473 * Check to see if an inode is available, and if it is,
1474 * allocate it using the following policy:
1475 * 1) allocate the requested inode.
1476 * 2) allocate the next available inode after the requested
1477 * inode in the specified cylinder group.
1478 */
1479 static daddr_t
1480 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1481 {
1482 struct ufsmount *ump = ip->i_ump;
1483 struct fs *fs = ip->i_fs;
1484 struct cg *cgp;
1485 struct buf *bp, *ibp;
1486 u_int8_t *inosused;
1487 int error, start, len, loc, map, i;
1488 int32_t initediblk;
1489 struct ufs2_dinode *dp2;
1490 #ifdef FFS_EI
1491 const int needswap = UFS_FSNEEDSWAP(fs);
1492 #endif
1493
1494 KASSERT(mutex_owned(&ump->um_lock));
1495
1496 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1497 return (0);
1498 mutex_exit(&ump->um_lock);
1499 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1500 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1501 if (error)
1502 goto fail;
1503 cgp = (struct cg *)bp->b_data;
1504 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1505 goto fail;
1506 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1507 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1508 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1509 cgp->cg_time = ufs_rw64(time_second, needswap);
1510 inosused = cg_inosused(cgp, needswap);
1511 if (ipref) {
1512 ipref %= fs->fs_ipg;
1513 if (isclr(inosused, ipref))
1514 goto gotit;
1515 }
1516 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1517 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1518 NBBY);
1519 loc = skpc(0xff, len, &inosused[start]);
1520 if (loc == 0) {
1521 len = start + 1;
1522 start = 0;
1523 loc = skpc(0xff, len, &inosused[0]);
1524 if (loc == 0) {
1525 printf("cg = %d, irotor = %d, fs = %s\n",
1526 cg, ufs_rw32(cgp->cg_irotor, needswap),
1527 fs->fs_fsmnt);
1528 panic("ffs_nodealloccg: map corrupted");
1529 /* NOTREACHED */
1530 }
1531 }
1532 i = start + len - loc;
1533 map = inosused[i];
1534 ipref = i * NBBY;
1535 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1536 if ((map & i) == 0) {
1537 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1538 goto gotit;
1539 }
1540 }
1541 printf("fs = %s\n", fs->fs_fsmnt);
1542 panic("ffs_nodealloccg: block not in map");
1543 /* NOTREACHED */
1544 gotit:
1545 /*
1546 * Check to see if we need to initialize more inodes.
1547 */
1548 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1549 ibp = NULL;
1550 if (fs->fs_magic == FS_UFS2_MAGIC &&
1551 ipref + INOPB(fs) > initediblk &&
1552 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1553 if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
1554 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1555 FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
1556 goto fail;
1557 memset(ibp->b_data, 0, fs->fs_bsize);
1558 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1559 for (i = 0; i < INOPB(fs); i++) {
1560 /*
1561 * Don't bother to swap, it's supposed to be
1562 * random, after all.
1563 */
1564 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1565 dp2++;
1566 }
1567 initediblk += INOPB(fs);
1568 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1569 }
1570
1571 mutex_enter(&ump->um_lock);
1572 ACTIVECG_CLR(fs, cg);
1573 setbit(inosused, ipref);
1574 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1575 fs->fs_cstotal.cs_nifree--;
1576 fs->fs_cs(fs, cg).cs_nifree--;
1577 fs->fs_fmod = 1;
1578 if ((mode & IFMT) == IFDIR) {
1579 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1580 fs->fs_cstotal.cs_ndir++;
1581 fs->fs_cs(fs, cg).cs_ndir++;
1582 }
1583 mutex_exit(&ump->um_lock);
1584 if (DOINGSOFTDEP(ITOV(ip)))
1585 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1586 bdwrite(bp);
1587 if (ibp != NULL)
1588 bawrite(ibp);
1589 return (cg * fs->fs_ipg + ipref);
1590 fail:
1591 brelse(bp, 0);
1592 mutex_enter(&ump->um_lock);
1593 return (0);
1594 }
1595
1596 /*
1597 * Free a block or fragment.
1598 *
1599 * The specified block or fragment is placed back in the
1600 * free map. If a fragment is deallocated, a possible
1601 * block reassembly is checked.
1602 *
1603 * => um_lock not held on entry or exit
1604 */
1605 void
1606 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1607 ino_t inum)
1608 {
1609 struct cg *cgp;
1610 struct buf *bp;
1611 struct ufsmount *ump;
1612 int32_t fragno, cgbno;
1613 daddr_t cgblkno;
1614 int i, error, cg, blk, frags, bbase;
1615 u_int8_t *blksfree;
1616 dev_t dev;
1617 const int needswap = UFS_FSNEEDSWAP(fs);
1618
1619 cg = dtog(fs, bno);
1620 if (devvp->v_type != VBLK) {
1621 /* devvp is a snapshot */
1622 dev = VTOI(devvp)->i_devvp->v_rdev;
1623 ump = VFSTOUFS(devvp->v_mount);
1624 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1625 } else {
1626 dev = devvp->v_rdev;
1627 ump = VFSTOUFS(devvp->v_specmountpoint);
1628 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1629 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1630 return;
1631 }
1632 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1633 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1634 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1635 "size = %ld, fs = %s\n",
1636 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1637 panic("blkfree: bad size");
1638 }
1639
1640 if (bno >= fs->fs_size) {
1641 printf("bad block %" PRId64 ", ino %llu\n", bno,
1642 (unsigned long long)inum);
1643 ffs_fserr(fs, inum, "bad block");
1644 return;
1645 }
1646 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1647 NOCRED, B_MODIFY, &bp);
1648 if (error) {
1649 brelse(bp, 0);
1650 return;
1651 }
1652 cgp = (struct cg *)bp->b_data;
1653 if (!cg_chkmagic(cgp, needswap)) {
1654 brelse(bp, 0);
1655 return;
1656 }
1657 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1658 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1659 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1660 cgp->cg_time = ufs_rw64(time_second, needswap);
1661 cgbno = dtogd(fs, bno);
1662 blksfree = cg_blksfree(cgp, needswap);
1663 mutex_enter(&ump->um_lock);
1664 if (size == fs->fs_bsize) {
1665 fragno = fragstoblks(fs, cgbno);
1666 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1667 if (devvp->v_type != VBLK) {
1668 /* devvp is a snapshot */
1669 mutex_exit(&ump->um_lock);
1670 brelse(bp, 0);
1671 return;
1672 }
1673 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1674 dev, bno, fs->fs_fsmnt);
1675 panic("blkfree: freeing free block");
1676 }
1677 ffs_setblock(fs, blksfree, fragno);
1678 ffs_clusteracct(fs, cgp, fragno, 1);
1679 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1680 fs->fs_cstotal.cs_nbfree++;
1681 fs->fs_cs(fs, cg).cs_nbfree++;
1682 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1683 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1684 i = old_cbtocylno(fs, cgbno);
1685 KASSERT(i >= 0);
1686 KASSERT(i < fs->fs_old_ncyl);
1687 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1688 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1689 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1690 needswap);
1691 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1692 }
1693 } else {
1694 bbase = cgbno - fragnum(fs, cgbno);
1695 /*
1696 * decrement the counts associated with the old frags
1697 */
1698 blk = blkmap(fs, blksfree, bbase);
1699 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1700 /*
1701 * deallocate the fragment
1702 */
1703 frags = numfrags(fs, size);
1704 for (i = 0; i < frags; i++) {
1705 if (isset(blksfree, cgbno + i)) {
1706 printf("dev = 0x%x, block = %" PRId64
1707 ", fs = %s\n",
1708 dev, bno + i, fs->fs_fsmnt);
1709 panic("blkfree: freeing free frag");
1710 }
1711 setbit(blksfree, cgbno + i);
1712 }
1713 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1714 fs->fs_cstotal.cs_nffree += i;
1715 fs->fs_cs(fs, cg).cs_nffree += i;
1716 /*
1717 * add back in counts associated with the new frags
1718 */
1719 blk = blkmap(fs, blksfree, bbase);
1720 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1721 /*
1722 * if a complete block has been reassembled, account for it
1723 */
1724 fragno = fragstoblks(fs, bbase);
1725 if (ffs_isblock(fs, blksfree, fragno)) {
1726 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1727 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1728 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1729 ffs_clusteracct(fs, cgp, fragno, 1);
1730 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1731 fs->fs_cstotal.cs_nbfree++;
1732 fs->fs_cs(fs, cg).cs_nbfree++;
1733 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1734 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1735 i = old_cbtocylno(fs, bbase);
1736 KASSERT(i >= 0);
1737 KASSERT(i < fs->fs_old_ncyl);
1738 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1739 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1740 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1741 bbase)], 1, needswap);
1742 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1743 }
1744 }
1745 }
1746 fs->fs_fmod = 1;
1747 ACTIVECG_CLR(fs, cg);
1748 mutex_exit(&ump->um_lock);
1749 bdwrite(bp);
1750 }
1751
1752 #if defined(DIAGNOSTIC) || defined(DEBUG)
1753 #ifdef XXXUBC
1754 /*
1755 * Verify allocation of a block or fragment. Returns true if block or
1756 * fragment is allocated, false if it is free.
1757 */
1758 static int
1759 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1760 {
1761 struct fs *fs;
1762 struct cg *cgp;
1763 struct buf *bp;
1764 int i, error, frags, free;
1765
1766 fs = ip->i_fs;
1767 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1768 printf("bsize = %d, size = %ld, fs = %s\n",
1769 fs->fs_bsize, size, fs->fs_fsmnt);
1770 panic("checkblk: bad size");
1771 }
1772 if (bno >= fs->fs_size)
1773 panic("checkblk: bad block %d", bno);
1774 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1775 (int)fs->fs_cgsize, NOCRED, 0, &bp);
1776 if (error) {
1777 brelse(bp, 0);
1778 return 0;
1779 }
1780 cgp = (struct cg *)bp->b_data;
1781 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1782 brelse(bp, 0);
1783 return 0;
1784 }
1785 bno = dtogd(fs, bno);
1786 if (size == fs->fs_bsize) {
1787 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1788 fragstoblks(fs, bno));
1789 } else {
1790 frags = numfrags(fs, size);
1791 for (free = 0, i = 0; i < frags; i++)
1792 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1793 free++;
1794 if (free != 0 && free != frags)
1795 panic("checkblk: partially free fragment");
1796 }
1797 brelse(bp, 0);
1798 return (!free);
1799 }
1800 #endif /* XXXUBC */
1801 #endif /* DIAGNOSTIC */
1802
1803 /*
1804 * Free an inode.
1805 */
1806 int
1807 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1808 {
1809
1810 if (DOINGSOFTDEP(vp)) {
1811 softdep_freefile(vp, ino, mode);
1812 return (0);
1813 }
1814 return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1815 }
1816
1817 /*
1818 * Do the actual free operation.
1819 * The specified inode is placed back in the free map.
1820 */
1821 int
1822 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1823 {
1824 struct ufsmount *ump;
1825 struct cg *cgp;
1826 struct buf *bp;
1827 int error, cg;
1828 daddr_t cgbno;
1829 u_int8_t *inosused;
1830 dev_t dev;
1831 #ifdef FFS_EI
1832 const int needswap = UFS_FSNEEDSWAP(fs);
1833 #endif
1834
1835 cg = ino_to_cg(fs, ino);
1836 if (devvp->v_type != VBLK) {
1837 /* devvp is a snapshot */
1838 dev = VTOI(devvp)->i_devvp->v_rdev;
1839 ump = VFSTOUFS(devvp->v_mount);
1840 cgbno = fragstoblks(fs, cgtod(fs, cg));
1841 } else {
1842 dev = devvp->v_rdev;
1843 ump = VFSTOUFS(devvp->v_specmountpoint);
1844 cgbno = fsbtodb(fs, cgtod(fs, cg));
1845 }
1846 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1847 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1848 dev, (unsigned long long)ino, fs->fs_fsmnt);
1849 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1850 NOCRED, B_MODIFY, &bp);
1851 if (error) {
1852 brelse(bp, 0);
1853 return (error);
1854 }
1855 cgp = (struct cg *)bp->b_data;
1856 if (!cg_chkmagic(cgp, needswap)) {
1857 brelse(bp, 0);
1858 return (0);
1859 }
1860 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1861 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1862 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1863 cgp->cg_time = ufs_rw64(time_second, needswap);
1864 inosused = cg_inosused(cgp, needswap);
1865 ino %= fs->fs_ipg;
1866 if (isclr(inosused, ino)) {
1867 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1868 dev, (unsigned long long)ino + cg * fs->fs_ipg,
1869 fs->fs_fsmnt);
1870 if (fs->fs_ronly == 0)
1871 panic("ifree: freeing free inode");
1872 }
1873 clrbit(inosused, ino);
1874 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1875 cgp->cg_irotor = ufs_rw32(ino, needswap);
1876 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1877 mutex_enter(&ump->um_lock);
1878 fs->fs_cstotal.cs_nifree++;
1879 fs->fs_cs(fs, cg).cs_nifree++;
1880 if ((mode & IFMT) == IFDIR) {
1881 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1882 fs->fs_cstotal.cs_ndir--;
1883 fs->fs_cs(fs, cg).cs_ndir--;
1884 }
1885 fs->fs_fmod = 1;
1886 ACTIVECG_CLR(fs, cg);
1887 mutex_exit(&ump->um_lock);
1888 bdwrite(bp);
1889 return (0);
1890 }
1891
1892 /*
1893 * Check to see if a file is free.
1894 */
1895 int
1896 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1897 {
1898 struct cg *cgp;
1899 struct buf *bp;
1900 daddr_t cgbno;
1901 int ret, cg;
1902 u_int8_t *inosused;
1903
1904 cg = ino_to_cg(fs, ino);
1905 if (devvp->v_type != VBLK) {
1906 /* devvp is a snapshot */
1907 cgbno = fragstoblks(fs, cgtod(fs, cg));
1908 } else
1909 cgbno = fsbtodb(fs, cgtod(fs, cg));
1910 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1911 return 1;
1912 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1913 brelse(bp, 0);
1914 return 1;
1915 }
1916 cgp = (struct cg *)bp->b_data;
1917 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1918 brelse(bp, 0);
1919 return 1;
1920 }
1921 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1922 ino %= fs->fs_ipg;
1923 ret = isclr(inosused, ino);
1924 brelse(bp, 0);
1925 return ret;
1926 }
1927
1928 /*
1929 * Find a block of the specified size in the specified cylinder group.
1930 *
1931 * It is a panic if a request is made to find a block if none are
1932 * available.
1933 */
1934 static int32_t
1935 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1936 {
1937 int32_t bno;
1938 int start, len, loc, i;
1939 int blk, field, subfield, pos;
1940 int ostart, olen;
1941 u_int8_t *blksfree;
1942 #ifdef FFS_EI
1943 const int needswap = UFS_FSNEEDSWAP(fs);
1944 #endif
1945
1946 /* KASSERT(mutex_owned(&ump->um_lock)); */
1947
1948 /*
1949 * find the fragment by searching through the free block
1950 * map for an appropriate bit pattern
1951 */
1952 if (bpref)
1953 start = dtogd(fs, bpref) / NBBY;
1954 else
1955 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1956 blksfree = cg_blksfree(cgp, needswap);
1957 len = howmany(fs->fs_fpg, NBBY) - start;
1958 ostart = start;
1959 olen = len;
1960 loc = scanc((u_int)len,
1961 (const u_char *)&blksfree[start],
1962 (const u_char *)fragtbl[fs->fs_frag],
1963 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1964 if (loc == 0) {
1965 len = start + 1;
1966 start = 0;
1967 loc = scanc((u_int)len,
1968 (const u_char *)&blksfree[0],
1969 (const u_char *)fragtbl[fs->fs_frag],
1970 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1971 if (loc == 0) {
1972 printf("start = %d, len = %d, fs = %s\n",
1973 ostart, olen, fs->fs_fsmnt);
1974 printf("offset=%d %ld\n",
1975 ufs_rw32(cgp->cg_freeoff, needswap),
1976 (long)blksfree - (long)cgp);
1977 printf("cg %d\n", cgp->cg_cgx);
1978 panic("ffs_alloccg: map corrupted");
1979 /* NOTREACHED */
1980 }
1981 }
1982 bno = (start + len - loc) * NBBY;
1983 cgp->cg_frotor = ufs_rw32(bno, needswap);
1984 /*
1985 * found the byte in the map
1986 * sift through the bits to find the selected frag
1987 */
1988 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1989 blk = blkmap(fs, blksfree, bno);
1990 blk <<= 1;
1991 field = around[allocsiz];
1992 subfield = inside[allocsiz];
1993 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1994 if ((blk & field) == subfield)
1995 return (bno + pos);
1996 field <<= 1;
1997 subfield <<= 1;
1998 }
1999 }
2000 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2001 panic("ffs_alloccg: block not in map");
2002 /* return (-1); */
2003 }
2004
2005 /*
2006 * Update the cluster map because of an allocation or free.
2007 *
2008 * Cnt == 1 means free; cnt == -1 means allocating.
2009 */
2010 void
2011 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2012 {
2013 int32_t *sump;
2014 int32_t *lp;
2015 u_char *freemapp, *mapp;
2016 int i, start, end, forw, back, map, bit;
2017 #ifdef FFS_EI
2018 const int needswap = UFS_FSNEEDSWAP(fs);
2019 #endif
2020
2021 /* KASSERT(mutex_owned(&ump->um_lock)); */
2022
2023 if (fs->fs_contigsumsize <= 0)
2024 return;
2025 freemapp = cg_clustersfree(cgp, needswap);
2026 sump = cg_clustersum(cgp, needswap);
2027 /*
2028 * Allocate or clear the actual block.
2029 */
2030 if (cnt > 0)
2031 setbit(freemapp, blkno);
2032 else
2033 clrbit(freemapp, blkno);
2034 /*
2035 * Find the size of the cluster going forward.
2036 */
2037 start = blkno + 1;
2038 end = start + fs->fs_contigsumsize;
2039 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2040 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2041 mapp = &freemapp[start / NBBY];
2042 map = *mapp++;
2043 bit = 1 << (start % NBBY);
2044 for (i = start; i < end; i++) {
2045 if ((map & bit) == 0)
2046 break;
2047 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2048 bit <<= 1;
2049 } else {
2050 map = *mapp++;
2051 bit = 1;
2052 }
2053 }
2054 forw = i - start;
2055 /*
2056 * Find the size of the cluster going backward.
2057 */
2058 start = blkno - 1;
2059 end = start - fs->fs_contigsumsize;
2060 if (end < 0)
2061 end = -1;
2062 mapp = &freemapp[start / NBBY];
2063 map = *mapp--;
2064 bit = 1 << (start % NBBY);
2065 for (i = start; i > end; i--) {
2066 if ((map & bit) == 0)
2067 break;
2068 if ((i & (NBBY - 1)) != 0) {
2069 bit >>= 1;
2070 } else {
2071 map = *mapp--;
2072 bit = 1 << (NBBY - 1);
2073 }
2074 }
2075 back = start - i;
2076 /*
2077 * Account for old cluster and the possibly new forward and
2078 * back clusters.
2079 */
2080 i = back + forw + 1;
2081 if (i > fs->fs_contigsumsize)
2082 i = fs->fs_contigsumsize;
2083 ufs_add32(sump[i], cnt, needswap);
2084 if (back > 0)
2085 ufs_add32(sump[back], -cnt, needswap);
2086 if (forw > 0)
2087 ufs_add32(sump[forw], -cnt, needswap);
2088
2089 /*
2090 * Update cluster summary information.
2091 */
2092 lp = &sump[fs->fs_contigsumsize];
2093 for (i = fs->fs_contigsumsize; i > 0; i--)
2094 if (ufs_rw32(*lp--, needswap) > 0)
2095 break;
2096 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2097 }
2098
2099 /*
2100 * Fserr prints the name of a file system with an error diagnostic.
2101 *
2102 * The form of the error message is:
2103 * fs: error message
2104 */
2105 static void
2106 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2107 {
2108
2109 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2110 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2111 }
2112