Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.109.2.1
      1 /*	$NetBSD: ffs_alloc.c,v 1.109.2.1 2008/06/10 14:51:23 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 2002 Networks Associates Technology, Inc.
     41  * All rights reserved.
     42  *
     43  * This software was developed for the FreeBSD Project by Marshall
     44  * Kirk McKusick and Network Associates Laboratories, the Security
     45  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     46  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     47  * research program
     48  *
     49  * Copyright (c) 1982, 1986, 1989, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * Redistribution and use in source and binary forms, with or without
     53  * modification, are permitted provided that the following conditions
     54  * are met:
     55  * 1. Redistributions of source code must retain the above copyright
     56  *    notice, this list of conditions and the following disclaimer.
     57  * 2. Redistributions in binary form must reproduce the above copyright
     58  *    notice, this list of conditions and the following disclaimer in the
     59  *    documentation and/or other materials provided with the distribution.
     60  * 3. Neither the name of the University nor the names of its contributors
     61  *    may be used to endorse or promote products derived from this software
     62  *    without specific prior written permission.
     63  *
     64  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     74  * SUCH DAMAGE.
     75  *
     76  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109.2.1 2008/06/10 14:51:23 simonb Exp $");
     81 
     82 #if defined(_KERNEL_OPT)
     83 #include "opt_ffs.h"
     84 #include "opt_quota.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/buf.h>
     90 #include <sys/fstrans.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kernel.h>
     93 #include <sys/mount.h>
     94 #include <sys/proc.h>
     95 #include <sys/syslog.h>
     96 #include <sys/vnode.h>
     97 #include <sys/wapbl.h>
     98 
     99 #include <miscfs/specfs/specdev.h>
    100 #include <ufs/ufs/quota.h>
    101 #include <ufs/ufs/ufsmount.h>
    102 #include <ufs/ufs/inode.h>
    103 #include <ufs/ufs/ufs_extern.h>
    104 #include <ufs/ufs/ufs_bswap.h>
    105 #include <ufs/ufs/ufs_wapbl.h>
    106 
    107 #include <ufs/ffs/fs.h>
    108 #include <ufs/ffs/ffs_extern.h>
    109 
    110 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
    111 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
    112 #ifdef XXXUBC
    113 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
    114 #endif
    115 static ino_t ffs_dirpref(struct inode *);
    116 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    117 static void ffs_fserr(struct fs *, u_int, const char *);
    118 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
    119     daddr_t (*)(struct inode *, int, daddr_t, int));
    120 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
    121 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    122 				      daddr_t, int);
    123 #if defined(DIAGNOSTIC) || defined(DEBUG)
    124 #ifdef XXXUBC
    125 static int ffs_checkblk(struct inode *, daddr_t, long size);
    126 #endif
    127 #endif
    128 
    129 /* if 1, changes in optimalization strategy are logged */
    130 int ffs_log_changeopt = 0;
    131 
    132 /* in ffs_tables.c */
    133 extern const int inside[], around[];
    134 extern const u_char * const fragtbl[];
    135 
    136 /*
    137  * Allocate a block in the file system.
    138  *
    139  * The size of the requested block is given, which must be some
    140  * multiple of fs_fsize and <= fs_bsize.
    141  * A preference may be optionally specified. If a preference is given
    142  * the following hierarchy is used to allocate a block:
    143  *   1) allocate the requested block.
    144  *   2) allocate a rotationally optimal block in the same cylinder.
    145  *   3) allocate a block in the same cylinder group.
    146  *   4) quadradically rehash into other cylinder groups, until an
    147  *      available block is located.
    148  * If no block preference is given the following hierarchy is used
    149  * to allocate a block:
    150  *   1) allocate a block in the cylinder group that contains the
    151  *      inode for the file.
    152  *   2) quadradically rehash into other cylinder groups, until an
    153  *      available block is located.
    154  *
    155  * => called with um_lock held
    156  * => releases um_lock before returning
    157  */
    158 int
    159 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    160     kauth_cred_t cred, daddr_t *bnp)
    161 {
    162 	struct ufsmount *ump;
    163 	struct fs *fs;
    164 	daddr_t bno;
    165 	int cg;
    166 #ifdef QUOTA
    167 	int error;
    168 #endif
    169 
    170 	fs = ip->i_fs;
    171 	ump = ip->i_ump;
    172 
    173 	KASSERT(mutex_owned(&ump->um_lock));
    174 
    175 #ifdef UVM_PAGE_TRKOWN
    176 	if (ITOV(ip)->v_type == VREG &&
    177 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    178 		struct vm_page *pg;
    179 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    180 		voff_t off = trunc_page(lblktosize(fs, lbn));
    181 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    182 
    183 		mutex_enter(&uobj->vmobjlock);
    184 		while (off < endoff) {
    185 			pg = uvm_pagelookup(uobj, off);
    186 			KASSERT(pg != NULL);
    187 			KASSERT(pg->owner == curproc->p_pid);
    188 			off += PAGE_SIZE;
    189 		}
    190 		mutex_exit(&uobj->vmobjlock);
    191 	}
    192 #endif
    193 
    194 	*bnp = 0;
    195 #ifdef DIAGNOSTIC
    196 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    197 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    198 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    199 		panic("ffs_alloc: bad size");
    200 	}
    201 	if (cred == NOCRED)
    202 		panic("ffs_alloc: missing credential");
    203 #endif /* DIAGNOSTIC */
    204 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    205 		goto nospace;
    206 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    207 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    208 		goto nospace;
    209 #ifdef QUOTA
    210 	mutex_exit(&ump->um_lock);
    211 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    212 		return (error);
    213 	mutex_enter(&ump->um_lock);
    214 #endif
    215 	if (bpref >= fs->fs_size)
    216 		bpref = 0;
    217 	if (bpref == 0)
    218 		cg = ino_to_cg(fs, ip->i_number);
    219 	else
    220 		cg = dtog(fs, bpref);
    221 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    222 	if (bno > 0) {
    223 		DIP_ADD(ip, blocks, btodb(size));
    224 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    225 		*bnp = bno;
    226 		return (0);
    227 	}
    228 #ifdef QUOTA
    229 	/*
    230 	 * Restore user's disk quota because allocation failed.
    231 	 */
    232 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    233 #endif
    234 nospace:
    235 	mutex_exit(&ump->um_lock);
    236 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    237 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    238 	return (ENOSPC);
    239 }
    240 
    241 /*
    242  * Reallocate a fragment to a bigger size
    243  *
    244  * The number and size of the old block is given, and a preference
    245  * and new size is also specified. The allocator attempts to extend
    246  * the original block. Failing that, the regular block allocator is
    247  * invoked to get an appropriate block.
    248  *
    249  * => called with um_lock held
    250  * => return with um_lock released
    251  */
    252 int
    253 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    254     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    255 {
    256 	struct ufsmount *ump;
    257 	struct fs *fs;
    258 	struct buf *bp;
    259 	int cg, request, error;
    260 	daddr_t bprev, bno;
    261 
    262 	fs = ip->i_fs;
    263 	ump = ip->i_ump;
    264 
    265 	KASSERT(mutex_owned(&ump->um_lock));
    266 
    267 #ifdef UVM_PAGE_TRKOWN
    268 	if (ITOV(ip)->v_type == VREG) {
    269 		struct vm_page *pg;
    270 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    271 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    272 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    273 
    274 		mutex_enter(&uobj->vmobjlock);
    275 		while (off < endoff) {
    276 			pg = uvm_pagelookup(uobj, off);
    277 			KASSERT(pg != NULL);
    278 			KASSERT(pg->owner == curproc->p_pid);
    279 			KASSERT((pg->flags & PG_CLEAN) == 0);
    280 			off += PAGE_SIZE;
    281 		}
    282 		mutex_exit(&uobj->vmobjlock);
    283 	}
    284 #endif
    285 
    286 #ifdef DIAGNOSTIC
    287 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    288 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    289 		printf(
    290 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    291 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    292 		panic("ffs_realloccg: bad size");
    293 	}
    294 	if (cred == NOCRED)
    295 		panic("ffs_realloccg: missing credential");
    296 #endif /* DIAGNOSTIC */
    297 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    298 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    299 		mutex_exit(&ump->um_lock);
    300 		goto nospace;
    301 	}
    302 	if (fs->fs_magic == FS_UFS2_MAGIC)
    303 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    304 	else
    305 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    306 
    307 	if (bprev == 0) {
    308 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    309 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    310 		panic("ffs_realloccg: bad bprev");
    311 	}
    312 	mutex_exit(&ump->um_lock);
    313 
    314 	/*
    315 	 * Allocate the extra space in the buffer.
    316 	 */
    317 	if (bpp != NULL &&
    318 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    319 		brelse(bp, 0);
    320 		return (error);
    321 	}
    322 #ifdef QUOTA
    323 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    324 		if (bpp != NULL) {
    325 			brelse(bp, 0);
    326 		}
    327 		return (error);
    328 	}
    329 #endif
    330 	/*
    331 	 * Check for extension in the existing location.
    332 	 */
    333 	cg = dtog(fs, bprev);
    334 	mutex_enter(&ump->um_lock);
    335 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    336 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    337 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    338 
    339 		if (bpp != NULL) {
    340 			if (bp->b_blkno != fsbtodb(fs, bno))
    341 				panic("bad blockno");
    342 			allocbuf(bp, nsize, 1);
    343 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    344 			mutex_enter(bp->b_objlock);
    345 			KASSERT(!cv_has_waiters(&bp->b_done));
    346 			bp->b_oflags |= BO_DONE;
    347 			mutex_exit(bp->b_objlock);
    348 			*bpp = bp;
    349 		}
    350 		if (blknop != NULL) {
    351 			*blknop = bno;
    352 		}
    353 		return (0);
    354 	}
    355 	/*
    356 	 * Allocate a new disk location.
    357 	 */
    358 	if (bpref >= fs->fs_size)
    359 		bpref = 0;
    360 	switch ((int)fs->fs_optim) {
    361 	case FS_OPTSPACE:
    362 		/*
    363 		 * Allocate an exact sized fragment. Although this makes
    364 		 * best use of space, we will waste time relocating it if
    365 		 * the file continues to grow. If the fragmentation is
    366 		 * less than half of the minimum free reserve, we choose
    367 		 * to begin optimizing for time.
    368 		 */
    369 		request = nsize;
    370 		if (fs->fs_minfree < 5 ||
    371 		    fs->fs_cstotal.cs_nffree >
    372 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    373 			break;
    374 
    375 		if (ffs_log_changeopt) {
    376 			log(LOG_NOTICE,
    377 				"%s: optimization changed from SPACE to TIME\n",
    378 				fs->fs_fsmnt);
    379 		}
    380 
    381 		fs->fs_optim = FS_OPTTIME;
    382 		break;
    383 	case FS_OPTTIME:
    384 		/*
    385 		 * At this point we have discovered a file that is trying to
    386 		 * grow a small fragment to a larger fragment. To save time,
    387 		 * we allocate a full sized block, then free the unused portion.
    388 		 * If the file continues to grow, the `ffs_fragextend' call
    389 		 * above will be able to grow it in place without further
    390 		 * copying. If aberrant programs cause disk fragmentation to
    391 		 * grow within 2% of the free reserve, we choose to begin
    392 		 * optimizing for space.
    393 		 */
    394 		request = fs->fs_bsize;
    395 		if (fs->fs_cstotal.cs_nffree <
    396 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    397 			break;
    398 
    399 		if (ffs_log_changeopt) {
    400 			log(LOG_NOTICE,
    401 				"%s: optimization changed from TIME to SPACE\n",
    402 				fs->fs_fsmnt);
    403 		}
    404 
    405 		fs->fs_optim = FS_OPTSPACE;
    406 		break;
    407 	default:
    408 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    409 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    410 		panic("ffs_realloccg: bad optim");
    411 		/* NOTREACHED */
    412 	}
    413 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    414 	if (bno > 0) {
    415 		if (!DOINGSOFTDEP(ITOV(ip))) {
    416 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    417 			    (ITOV(ip)->v_type != VREG)) {
    418 				UFS_WAPBL_REGISTER_DEALLOCATION(
    419 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    420 				    osize);
    421 			} else
    422 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    423 				    ip->i_number);
    424 		}
    425 		if (nsize < request) {
    426 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    427 			    (ITOV(ip)->v_type != VREG)) {
    428 				UFS_WAPBL_REGISTER_DEALLOCATION(
    429 				    ip->i_ump->um_mountp,
    430 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    431 				    request - nsize);
    432 			} else
    433 				ffs_blkfree(fs, ip->i_devvp,
    434 				    bno + numfrags(fs, nsize),
    435 				    (long)(request - nsize), ip->i_number);
    436 		}
    437 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    438 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    439 		if (bpp != NULL) {
    440 			bp->b_blkno = fsbtodb(fs, bno);
    441 			allocbuf(bp, nsize, 1);
    442 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    443 			mutex_enter(bp->b_objlock);
    444 			KASSERT(!cv_has_waiters(&bp->b_done));
    445 			bp->b_oflags |= BO_DONE;
    446 			mutex_exit(bp->b_objlock);
    447 			*bpp = bp;
    448 		}
    449 		if (blknop != NULL) {
    450 			*blknop = bno;
    451 		}
    452 		return (0);
    453 	}
    454 	mutex_exit(&ump->um_lock);
    455 
    456 #ifdef QUOTA
    457 	/*
    458 	 * Restore user's disk quota because allocation failed.
    459 	 */
    460 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    461 #endif
    462 	if (bpp != NULL) {
    463 		brelse(bp, 0);
    464 	}
    465 
    466 nospace:
    467 	/*
    468 	 * no space available
    469 	 */
    470 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    471 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    472 	return (ENOSPC);
    473 }
    474 
    475 #if 0
    476 /*
    477  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    478  *
    479  * The vnode and an array of buffer pointers for a range of sequential
    480  * logical blocks to be made contiguous is given. The allocator attempts
    481  * to find a range of sequential blocks starting as close as possible
    482  * from the end of the allocation for the logical block immediately
    483  * preceding the current range. If successful, the physical block numbers
    484  * in the buffer pointers and in the inode are changed to reflect the new
    485  * allocation. If unsuccessful, the allocation is left unchanged. The
    486  * success in doing the reallocation is returned. Note that the error
    487  * return is not reflected back to the user. Rather the previous block
    488  * allocation will be used.
    489 
    490  */
    491 #ifdef XXXUBC
    492 #ifdef DEBUG
    493 #include <sys/sysctl.h>
    494 int prtrealloc = 0;
    495 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    496 #endif
    497 #endif
    498 
    499 /*
    500  * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
    501  */
    502 
    503 int doasyncfree = 1;
    504 
    505 int
    506 ffs_reallocblks(void *v)
    507 {
    508 #ifdef XXXUBC
    509 	struct vop_reallocblks_args /* {
    510 		struct vnode *a_vp;
    511 		struct cluster_save *a_buflist;
    512 	} */ *ap = v;
    513 	struct fs *fs;
    514 	struct inode *ip;
    515 	struct vnode *vp;
    516 	struct buf *sbp, *ebp;
    517 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    518 	struct cluster_save *buflist;
    519 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    520 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    521 	int i, len, start_lvl, end_lvl, pref, ssize;
    522 	struct ufsmount *ump;
    523 #endif /* XXXUBC */
    524 
    525 	/* XXXUBC don't reallocblks for now */
    526 	return ENOSPC;
    527 
    528 #ifdef XXXUBC
    529 	vp = ap->a_vp;
    530 	ip = VTOI(vp);
    531 	fs = ip->i_fs;
    532 	ump = ip->i_ump;
    533 	if (fs->fs_contigsumsize <= 0)
    534 		return (ENOSPC);
    535 	buflist = ap->a_buflist;
    536 	len = buflist->bs_nchildren;
    537 	start_lbn = buflist->bs_children[0]->b_lblkno;
    538 	end_lbn = start_lbn + len - 1;
    539 #ifdef DIAGNOSTIC
    540 	for (i = 0; i < len; i++)
    541 		if (!ffs_checkblk(ip,
    542 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    543 			panic("ffs_reallocblks: unallocated block 1");
    544 	for (i = 1; i < len; i++)
    545 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    546 			panic("ffs_reallocblks: non-logical cluster");
    547 	blkno = buflist->bs_children[0]->b_blkno;
    548 	ssize = fsbtodb(fs, fs->fs_frag);
    549 	for (i = 1; i < len - 1; i++)
    550 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    551 			panic("ffs_reallocblks: non-physical cluster %d", i);
    552 #endif
    553 	/*
    554 	 * If the latest allocation is in a new cylinder group, assume that
    555 	 * the filesystem has decided to move and do not force it back to
    556 	 * the previous cylinder group.
    557 	 */
    558 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    559 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    560 		return (ENOSPC);
    561 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    562 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    563 		return (ENOSPC);
    564 	/*
    565 	 * Get the starting offset and block map for the first block.
    566 	 */
    567 	if (start_lvl == 0) {
    568 		sbap = &ip->i_ffs1_db[0];
    569 		soff = start_lbn;
    570 	} else {
    571 		idp = &start_ap[start_lvl - 1];
    572 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    573 		    NOCRED, B_MODIFY, &sbp)) {
    574 			brelse(sbp, 0);
    575 			return (ENOSPC);
    576 		}
    577 		sbap = (int32_t *)sbp->b_data;
    578 		soff = idp->in_off;
    579 	}
    580 	/*
    581 	 * Find the preferred location for the cluster.
    582 	 */
    583 	mutex_enter(&ump->um_lock);
    584 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    585 	/*
    586 	 * If the block range spans two block maps, get the second map.
    587 	 */
    588 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    589 		ssize = len;
    590 	} else {
    591 #ifdef DIAGNOSTIC
    592 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    593 			panic("ffs_reallocblk: start == end");
    594 #endif
    595 		ssize = len - (idp->in_off + 1);
    596 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    597 		    NOCRED, B_MODIFY, &ebp))
    598 			goto fail;
    599 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    600 	}
    601 	/*
    602 	 * Search the block map looking for an allocation of the desired size.
    603 	 */
    604 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    605 	    len, ffs_clusteralloc)) == 0) {
    606 		mutex_exit(&ump->um_lock);
    607 		goto fail;
    608 	}
    609 	/*
    610 	 * We have found a new contiguous block.
    611 	 *
    612 	 * First we have to replace the old block pointers with the new
    613 	 * block pointers in the inode and indirect blocks associated
    614 	 * with the file.
    615 	 */
    616 #ifdef DEBUG
    617 	if (prtrealloc)
    618 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    619 		    start_lbn, end_lbn);
    620 #endif
    621 	blkno = newblk;
    622 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    623 		daddr_t ba;
    624 
    625 		if (i == ssize) {
    626 			bap = ebap;
    627 			soff = -i;
    628 		}
    629 		/* XXX ondisk32 */
    630 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    631 #ifdef DIAGNOSTIC
    632 		if (!ffs_checkblk(ip,
    633 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    634 			panic("ffs_reallocblks: unallocated block 2");
    635 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    636 			panic("ffs_reallocblks: alloc mismatch");
    637 #endif
    638 #ifdef DEBUG
    639 		if (prtrealloc)
    640 			printf(" %d,", ba);
    641 #endif
    642  		if (DOINGSOFTDEP(vp)) {
    643  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    644  				softdep_setup_allocdirect(ip, start_lbn + i,
    645  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    646  				    buflist->bs_children[i]);
    647  			else
    648  				softdep_setup_allocindir_page(ip, start_lbn + i,
    649  				    i < ssize ? sbp : ebp, soff + i, blkno,
    650  				    ba, buflist->bs_children[i]);
    651  		}
    652 		/* XXX ondisk32 */
    653 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    654 	}
    655 	/*
    656 	 * Next we must write out the modified inode and indirect blocks.
    657 	 * For strict correctness, the writes should be synchronous since
    658 	 * the old block values may have been written to disk. In practise
    659 	 * they are almost never written, but if we are concerned about
    660 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    661 	 *
    662 	 * The test on `doasyncfree' should be changed to test a flag
    663 	 * that shows whether the associated buffers and inodes have
    664 	 * been written. The flag should be set when the cluster is
    665 	 * started and cleared whenever the buffer or inode is flushed.
    666 	 * We can then check below to see if it is set, and do the
    667 	 * synchronous write only when it has been cleared.
    668 	 */
    669 	if (sbap != &ip->i_ffs1_db[0]) {
    670 		if (doasyncfree)
    671 			bdwrite(sbp);
    672 		else
    673 			bwrite(sbp);
    674 	} else {
    675 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    676 		if (!doasyncfree)
    677 			ffs_update(vp, NULL, NULL, 1);
    678 	}
    679 	if (ssize < len) {
    680 		if (doasyncfree)
    681 			bdwrite(ebp);
    682 		else
    683 			bwrite(ebp);
    684 	}
    685 	/*
    686 	 * Last, free the old blocks and assign the new blocks to the buffers.
    687 	 */
    688 #ifdef DEBUG
    689 	if (prtrealloc)
    690 		printf("\n\tnew:");
    691 #endif
    692 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    693 		if (!DOINGSOFTDEP(vp))
    694 			ffs_blkfree(fs, ip->i_devvp,
    695 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    696 			    fs->fs_bsize, ip->i_number);
    697 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    698 #ifdef DEBUG
    699 		if (!ffs_checkblk(ip,
    700 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    701 			panic("ffs_reallocblks: unallocated block 3");
    702 		if (prtrealloc)
    703 			printf(" %d,", blkno);
    704 #endif
    705 	}
    706 #ifdef DEBUG
    707 	if (prtrealloc) {
    708 		prtrealloc--;
    709 		printf("\n");
    710 	}
    711 #endif
    712 	return (0);
    713 
    714 fail:
    715 	if (ssize < len)
    716 		brelse(ebp, 0);
    717 	if (sbap != &ip->i_ffs1_db[0])
    718 		brelse(sbp, 0);
    719 	return (ENOSPC);
    720 #endif /* XXXUBC */
    721 }
    722 #endif /* 0 */
    723 
    724 /*
    725  * Allocate an inode in the file system.
    726  *
    727  * If allocating a directory, use ffs_dirpref to select the inode.
    728  * If allocating in a directory, the following hierarchy is followed:
    729  *   1) allocate the preferred inode.
    730  *   2) allocate an inode in the same cylinder group.
    731  *   3) quadradically rehash into other cylinder groups, until an
    732  *      available inode is located.
    733  * If no inode preference is given the following hierarchy is used
    734  * to allocate an inode:
    735  *   1) allocate an inode in cylinder group 0.
    736  *   2) quadradically rehash into other cylinder groups, until an
    737  *      available inode is located.
    738  *
    739  * => um_lock not held upon entry or return
    740  */
    741 int
    742 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    743     struct vnode **vpp)
    744 {
    745 	struct ufsmount *ump;
    746 	struct inode *pip;
    747 	struct fs *fs;
    748 	struct inode *ip;
    749 	struct timespec ts;
    750 	ino_t ino, ipref;
    751 	int cg, error;
    752 
    753 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    754 
    755 	*vpp = NULL;
    756 	pip = VTOI(pvp);
    757 	fs = pip->i_fs;
    758 	ump = pip->i_ump;
    759 
    760 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    761 	if (error) {
    762 		return error;
    763 	}
    764 	mutex_enter(&ump->um_lock);
    765 	if (fs->fs_cstotal.cs_nifree == 0)
    766 		goto noinodes;
    767 
    768 	if ((mode & IFMT) == IFDIR)
    769 		ipref = ffs_dirpref(pip);
    770 	else
    771 		ipref = pip->i_number;
    772 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    773 		ipref = 0;
    774 	cg = ino_to_cg(fs, ipref);
    775 	/*
    776 	 * Track number of dirs created one after another
    777 	 * in a same cg without intervening by files.
    778 	 */
    779 	if ((mode & IFMT) == IFDIR) {
    780 		if (fs->fs_contigdirs[cg] < 255)
    781 			fs->fs_contigdirs[cg]++;
    782 	} else {
    783 		if (fs->fs_contigdirs[cg] > 0)
    784 			fs->fs_contigdirs[cg]--;
    785 	}
    786 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    787 	if (ino == 0)
    788 		goto noinodes;
    789 	UFS_WAPBL_END(pvp->v_mount);
    790 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    791 	if (error) {
    792 		int err;
    793 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    794 		if (err == 0)
    795 			ffs_vfree(pvp, ino, mode);
    796 		if (err == 0)
    797 			UFS_WAPBL_END(pvp->v_mount);
    798 		return (error);
    799 	}
    800 	KASSERT((*vpp)->v_type == VNON);
    801 	ip = VTOI(*vpp);
    802 	if (ip->i_mode) {
    803 #if 0
    804 		printf("mode = 0%o, inum = %d, fs = %s\n",
    805 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    806 #else
    807 		printf("dmode %x mode %x dgen %x gen %x\n",
    808 		    DIP(ip, mode), ip->i_mode,
    809 		    DIP(ip, gen), ip->i_gen);
    810 		printf("size %llx blocks %llx\n",
    811 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    812 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    813 		    (unsigned long long)ipref);
    814 #if 0
    815 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    816 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    817 #endif
    818 
    819 #endif
    820 		panic("ffs_valloc: dup alloc");
    821 	}
    822 	if (DIP(ip, blocks)) {				/* XXX */
    823 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    824 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    825 		DIP_ASSIGN(ip, blocks, 0);
    826 	}
    827 	ip->i_flag &= ~IN_SPACECOUNTED;
    828 	ip->i_flags = 0;
    829 	DIP_ASSIGN(ip, flags, 0);
    830 	/*
    831 	 * Set up a new generation number for this inode.
    832 	 */
    833 	ip->i_gen++;
    834 	DIP_ASSIGN(ip, gen, ip->i_gen);
    835 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    836 		vfs_timestamp(&ts);
    837 		ip->i_ffs2_birthtime = ts.tv_sec;
    838 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    839 	}
    840 	return (0);
    841 noinodes:
    842 	mutex_exit(&ump->um_lock);
    843 	UFS_WAPBL_END(pvp->v_mount);
    844 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    845 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    846 	return (ENOSPC);
    847 }
    848 
    849 /*
    850  * Find a cylinder group in which to place a directory.
    851  *
    852  * The policy implemented by this algorithm is to allocate a
    853  * directory inode in the same cylinder group as its parent
    854  * directory, but also to reserve space for its files inodes
    855  * and data. Restrict the number of directories which may be
    856  * allocated one after another in the same cylinder group
    857  * without intervening allocation of files.
    858  *
    859  * If we allocate a first level directory then force allocation
    860  * in another cylinder group.
    861  */
    862 static ino_t
    863 ffs_dirpref(struct inode *pip)
    864 {
    865 	register struct fs *fs;
    866 	int cg, prefcg;
    867 	int64_t dirsize, cgsize, curdsz;
    868 	int avgifree, avgbfree, avgndir;
    869 	int minifree, minbfree, maxndir;
    870 	int mincg, minndir;
    871 	int maxcontigdirs;
    872 
    873 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    874 
    875 	fs = pip->i_fs;
    876 
    877 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    878 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    879 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    880 
    881 	/*
    882 	 * Force allocation in another cg if creating a first level dir.
    883 	 */
    884 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    885 		prefcg = random() % fs->fs_ncg;
    886 		mincg = prefcg;
    887 		minndir = fs->fs_ipg;
    888 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    889 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    890 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    891 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    892 				mincg = cg;
    893 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    894 			}
    895 		for (cg = 0; cg < prefcg; cg++)
    896 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    897 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    898 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    899 				mincg = cg;
    900 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    901 			}
    902 		return ((ino_t)(fs->fs_ipg * mincg));
    903 	}
    904 
    905 	/*
    906 	 * Count various limits which used for
    907 	 * optimal allocation of a directory inode.
    908 	 */
    909 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    910 	minifree = avgifree - fs->fs_ipg / 4;
    911 	if (minifree < 0)
    912 		minifree = 0;
    913 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    914 	if (minbfree < 0)
    915 		minbfree = 0;
    916 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    917 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    918 	if (avgndir != 0) {
    919 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    920 		if (dirsize < curdsz)
    921 			dirsize = curdsz;
    922 	}
    923 	if (cgsize < dirsize * 255)
    924 		maxcontigdirs = cgsize / dirsize;
    925 	else
    926 		maxcontigdirs = 255;
    927 	if (fs->fs_avgfpdir > 0)
    928 		maxcontigdirs = min(maxcontigdirs,
    929 				    fs->fs_ipg / fs->fs_avgfpdir);
    930 	if (maxcontigdirs == 0)
    931 		maxcontigdirs = 1;
    932 
    933 	/*
    934 	 * Limit number of dirs in one cg and reserve space for
    935 	 * regular files, but only if we have no deficit in
    936 	 * inodes or space.
    937 	 */
    938 	prefcg = ino_to_cg(fs, pip->i_number);
    939 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    940 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    941 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    942 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    943 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    944 				return ((ino_t)(fs->fs_ipg * cg));
    945 		}
    946 	for (cg = 0; cg < prefcg; cg++)
    947 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    948 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    949 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    950 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    951 				return ((ino_t)(fs->fs_ipg * cg));
    952 		}
    953 	/*
    954 	 * This is a backstop when we are deficient in space.
    955 	 */
    956 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    957 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    958 			return ((ino_t)(fs->fs_ipg * cg));
    959 	for (cg = 0; cg < prefcg; cg++)
    960 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    961 			break;
    962 	return ((ino_t)(fs->fs_ipg * cg));
    963 }
    964 
    965 /*
    966  * Select the desired position for the next block in a file.  The file is
    967  * logically divided into sections. The first section is composed of the
    968  * direct blocks. Each additional section contains fs_maxbpg blocks.
    969  *
    970  * If no blocks have been allocated in the first section, the policy is to
    971  * request a block in the same cylinder group as the inode that describes
    972  * the file. If no blocks have been allocated in any other section, the
    973  * policy is to place the section in a cylinder group with a greater than
    974  * average number of free blocks.  An appropriate cylinder group is found
    975  * by using a rotor that sweeps the cylinder groups. When a new group of
    976  * blocks is needed, the sweep begins in the cylinder group following the
    977  * cylinder group from which the previous allocation was made. The sweep
    978  * continues until a cylinder group with greater than the average number
    979  * of free blocks is found. If the allocation is for the first block in an
    980  * indirect block, the information on the previous allocation is unavailable;
    981  * here a best guess is made based upon the logical block number being
    982  * allocated.
    983  *
    984  * If a section is already partially allocated, the policy is to
    985  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    986  * contiguous blocks and the beginning of the next is laid out
    987  * contigously if possible.
    988  *
    989  * => um_lock held on entry and exit
    990  */
    991 daddr_t
    992 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    993     int32_t *bap /* XXX ondisk32 */)
    994 {
    995 	struct fs *fs;
    996 	int cg;
    997 	int avgbfree, startcg;
    998 
    999 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1000 
   1001 	fs = ip->i_fs;
   1002 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1003 		if (lbn < NDADDR + NINDIR(fs)) {
   1004 			cg = ino_to_cg(fs, ip->i_number);
   1005 			return (fs->fs_fpg * cg + fs->fs_frag);
   1006 		}
   1007 		/*
   1008 		 * Find a cylinder with greater than average number of
   1009 		 * unused data blocks.
   1010 		 */
   1011 		if (indx == 0 || bap[indx - 1] == 0)
   1012 			startcg =
   1013 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1014 		else
   1015 			startcg = dtog(fs,
   1016 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1017 		startcg %= fs->fs_ncg;
   1018 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1019 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1020 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1021 				return (fs->fs_fpg * cg + fs->fs_frag);
   1022 			}
   1023 		for (cg = 0; cg < startcg; cg++)
   1024 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1025 				return (fs->fs_fpg * cg + fs->fs_frag);
   1026 			}
   1027 		return (0);
   1028 	}
   1029 	/*
   1030 	 * We just always try to lay things out contiguously.
   1031 	 */
   1032 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1033 }
   1034 
   1035 daddr_t
   1036 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
   1037 {
   1038 	struct fs *fs;
   1039 	int cg;
   1040 	int avgbfree, startcg;
   1041 
   1042 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1043 
   1044 	fs = ip->i_fs;
   1045 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1046 		if (lbn < NDADDR + NINDIR(fs)) {
   1047 			cg = ino_to_cg(fs, ip->i_number);
   1048 			return (fs->fs_fpg * cg + fs->fs_frag);
   1049 		}
   1050 		/*
   1051 		 * Find a cylinder with greater than average number of
   1052 		 * unused data blocks.
   1053 		 */
   1054 		if (indx == 0 || bap[indx - 1] == 0)
   1055 			startcg =
   1056 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1057 		else
   1058 			startcg = dtog(fs,
   1059 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1060 		startcg %= fs->fs_ncg;
   1061 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1062 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1063 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1064 				return (fs->fs_fpg * cg + fs->fs_frag);
   1065 			}
   1066 		for (cg = 0; cg < startcg; cg++)
   1067 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1068 				return (fs->fs_fpg * cg + fs->fs_frag);
   1069 			}
   1070 		return (0);
   1071 	}
   1072 	/*
   1073 	 * We just always try to lay things out contiguously.
   1074 	 */
   1075 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1076 }
   1077 
   1078 
   1079 /*
   1080  * Implement the cylinder overflow algorithm.
   1081  *
   1082  * The policy implemented by this algorithm is:
   1083  *   1) allocate the block in its requested cylinder group.
   1084  *   2) quadradically rehash on the cylinder group number.
   1085  *   3) brute force search for a free block.
   1086  *
   1087  * => called with um_lock held
   1088  * => returns with um_lock released on success, held on failure
   1089  *    (*allocator releases lock on success, retains lock on failure)
   1090  */
   1091 /*VARARGS5*/
   1092 static daddr_t
   1093 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1094     int size /* size for data blocks, mode for inodes */,
   1095     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1096 {
   1097 	struct fs *fs;
   1098 	daddr_t result;
   1099 	int i, icg = cg;
   1100 
   1101 	fs = ip->i_fs;
   1102 	/*
   1103 	 * 1: preferred cylinder group
   1104 	 */
   1105 	result = (*allocator)(ip, cg, pref, size);
   1106 	if (result)
   1107 		return (result);
   1108 	/*
   1109 	 * 2: quadratic rehash
   1110 	 */
   1111 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1112 		cg += i;
   1113 		if (cg >= fs->fs_ncg)
   1114 			cg -= fs->fs_ncg;
   1115 		result = (*allocator)(ip, cg, 0, size);
   1116 		if (result)
   1117 			return (result);
   1118 	}
   1119 	/*
   1120 	 * 3: brute force search
   1121 	 * Note that we start at i == 2, since 0 was checked initially,
   1122 	 * and 1 is always checked in the quadratic rehash.
   1123 	 */
   1124 	cg = (icg + 2) % fs->fs_ncg;
   1125 	for (i = 2; i < fs->fs_ncg; i++) {
   1126 		result = (*allocator)(ip, cg, 0, size);
   1127 		if (result)
   1128 			return (result);
   1129 		cg++;
   1130 		if (cg == fs->fs_ncg)
   1131 			cg = 0;
   1132 	}
   1133 	return (0);
   1134 }
   1135 
   1136 /*
   1137  * Determine whether a fragment can be extended.
   1138  *
   1139  * Check to see if the necessary fragments are available, and
   1140  * if they are, allocate them.
   1141  *
   1142  * => called with um_lock held
   1143  * => returns with um_lock released on success, held on failure
   1144  */
   1145 static daddr_t
   1146 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1147 {
   1148 	struct ufsmount *ump;
   1149 	struct fs *fs;
   1150 	struct cg *cgp;
   1151 	struct buf *bp;
   1152 	daddr_t bno;
   1153 	int frags, bbase;
   1154 	int i, error;
   1155 	u_int8_t *blksfree;
   1156 
   1157 	fs = ip->i_fs;
   1158 	ump = ip->i_ump;
   1159 
   1160 	KASSERT(mutex_owned(&ump->um_lock));
   1161 
   1162 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1163 		return (0);
   1164 	frags = numfrags(fs, nsize);
   1165 	bbase = fragnum(fs, bprev);
   1166 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1167 		/* cannot extend across a block boundary */
   1168 		return (0);
   1169 	}
   1170 	mutex_exit(&ump->um_lock);
   1171 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1172 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1173 	if (error)
   1174 		goto fail;
   1175 	cgp = (struct cg *)bp->b_data;
   1176 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1177 		goto fail;
   1178 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1179 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1180 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1181 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1182 	bno = dtogd(fs, bprev);
   1183 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1184 	for (i = numfrags(fs, osize); i < frags; i++)
   1185 		if (isclr(blksfree, bno + i))
   1186 			goto fail;
   1187 	/*
   1188 	 * the current fragment can be extended
   1189 	 * deduct the count on fragment being extended into
   1190 	 * increase the count on the remaining fragment (if any)
   1191 	 * allocate the extended piece
   1192 	 */
   1193 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1194 		if (isclr(blksfree, bno + i))
   1195 			break;
   1196 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1197 	if (i != frags)
   1198 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1199 	mutex_enter(&ump->um_lock);
   1200 	for (i = numfrags(fs, osize); i < frags; i++) {
   1201 		clrbit(blksfree, bno + i);
   1202 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1203 		fs->fs_cstotal.cs_nffree--;
   1204 		fs->fs_cs(fs, cg).cs_nffree--;
   1205 	}
   1206 	fs->fs_fmod = 1;
   1207 	ACTIVECG_CLR(fs, cg);
   1208 	mutex_exit(&ump->um_lock);
   1209 	if (DOINGSOFTDEP(ITOV(ip)))
   1210 		softdep_setup_blkmapdep(bp, fs, bprev);
   1211 	bdwrite(bp);
   1212 	return (bprev);
   1213 
   1214  fail:
   1215  	brelse(bp, 0);
   1216  	mutex_enter(&ump->um_lock);
   1217  	return (0);
   1218 }
   1219 
   1220 /*
   1221  * Determine whether a block can be allocated.
   1222  *
   1223  * Check to see if a block of the appropriate size is available,
   1224  * and if it is, allocate it.
   1225  */
   1226 static daddr_t
   1227 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1228 {
   1229 	struct ufsmount *ump;
   1230 	struct fs *fs = ip->i_fs;
   1231 	struct cg *cgp;
   1232 	struct buf *bp;
   1233 	int32_t bno;
   1234 	daddr_t blkno;
   1235 	int error, frags, allocsiz, i;
   1236 	u_int8_t *blksfree;
   1237 #ifdef FFS_EI
   1238 	const int needswap = UFS_FSNEEDSWAP(fs);
   1239 #endif
   1240 
   1241 	ump = ip->i_ump;
   1242 
   1243 	KASSERT(mutex_owned(&ump->um_lock));
   1244 
   1245 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1246 		return (0);
   1247 	mutex_exit(&ump->um_lock);
   1248 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1249 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1250 	if (error)
   1251 		goto fail;
   1252 	cgp = (struct cg *)bp->b_data;
   1253 	if (!cg_chkmagic(cgp, needswap) ||
   1254 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1255 		goto fail;
   1256 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1257 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1258 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1259 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1260 	if (size == fs->fs_bsize) {
   1261 		mutex_enter(&ump->um_lock);
   1262 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1263 		ACTIVECG_CLR(fs, cg);
   1264 		mutex_exit(&ump->um_lock);
   1265 		bdwrite(bp);
   1266 		return (blkno);
   1267 	}
   1268 	/*
   1269 	 * check to see if any fragments are already available
   1270 	 * allocsiz is the size which will be allocated, hacking
   1271 	 * it down to a smaller size if necessary
   1272 	 */
   1273 	blksfree = cg_blksfree(cgp, needswap);
   1274 	frags = numfrags(fs, size);
   1275 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1276 		if (cgp->cg_frsum[allocsiz] != 0)
   1277 			break;
   1278 	if (allocsiz == fs->fs_frag) {
   1279 		/*
   1280 		 * no fragments were available, so a block will be
   1281 		 * allocated, and hacked up
   1282 		 */
   1283 		if (cgp->cg_cs.cs_nbfree == 0)
   1284 			goto fail;
   1285 		mutex_enter(&ump->um_lock);
   1286 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1287 		bno = dtogd(fs, blkno);
   1288 		for (i = frags; i < fs->fs_frag; i++)
   1289 			setbit(blksfree, bno + i);
   1290 		i = fs->fs_frag - frags;
   1291 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1292 		fs->fs_cstotal.cs_nffree += i;
   1293 		fs->fs_cs(fs, cg).cs_nffree += i;
   1294 		fs->fs_fmod = 1;
   1295 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1296 		ACTIVECG_CLR(fs, cg);
   1297 		mutex_exit(&ump->um_lock);
   1298 		bdwrite(bp);
   1299 		return (blkno);
   1300 	}
   1301 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1302 #if 0
   1303 	/*
   1304 	 * XXX fvdl mapsearch will panic, and never return -1
   1305 	 *          also: returning NULL as daddr_t ?
   1306 	 */
   1307 	if (bno < 0)
   1308 		goto fail;
   1309 #endif
   1310 	for (i = 0; i < frags; i++)
   1311 		clrbit(blksfree, bno + i);
   1312 	mutex_enter(&ump->um_lock);
   1313 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1314 	fs->fs_cstotal.cs_nffree -= frags;
   1315 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1316 	fs->fs_fmod = 1;
   1317 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1318 	if (frags != allocsiz)
   1319 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1320 	blkno = cg * fs->fs_fpg + bno;
   1321 	ACTIVECG_CLR(fs, cg);
   1322 	mutex_exit(&ump->um_lock);
   1323 	if (DOINGSOFTDEP(ITOV(ip)))
   1324 		softdep_setup_blkmapdep(bp, fs, blkno);
   1325 	bdwrite(bp);
   1326 	return blkno;
   1327 
   1328  fail:
   1329  	brelse(bp, 0);
   1330  	mutex_enter(&ump->um_lock);
   1331  	return (0);
   1332 }
   1333 
   1334 /*
   1335  * Allocate a block in a cylinder group.
   1336  *
   1337  * This algorithm implements the following policy:
   1338  *   1) allocate the requested block.
   1339  *   2) allocate a rotationally optimal block in the same cylinder.
   1340  *   3) allocate the next available block on the block rotor for the
   1341  *      specified cylinder group.
   1342  * Note that this routine only allocates fs_bsize blocks; these
   1343  * blocks may be fragmented by the routine that allocates them.
   1344  */
   1345 static daddr_t
   1346 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1347 {
   1348 	struct ufsmount *ump;
   1349 	struct fs *fs = ip->i_fs;
   1350 	struct cg *cgp;
   1351 	daddr_t blkno;
   1352 	int32_t bno;
   1353 	u_int8_t *blksfree;
   1354 #ifdef FFS_EI
   1355 	const int needswap = UFS_FSNEEDSWAP(fs);
   1356 #endif
   1357 
   1358 	ump = ip->i_ump;
   1359 
   1360 	KASSERT(mutex_owned(&ump->um_lock));
   1361 
   1362 	cgp = (struct cg *)bp->b_data;
   1363 	blksfree = cg_blksfree(cgp, needswap);
   1364 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1365 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1366 	} else {
   1367 		bpref = blknum(fs, bpref);
   1368 		bno = dtogd(fs, bpref);
   1369 		/*
   1370 		 * if the requested block is available, use it
   1371 		 */
   1372 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1373 			goto gotit;
   1374 	}
   1375 	/*
   1376 	 * Take the next available block in this cylinder group.
   1377 	 */
   1378 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1379 	if (bno < 0)
   1380 		return (0);
   1381 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1382 gotit:
   1383 	blkno = fragstoblks(fs, bno);
   1384 	ffs_clrblock(fs, blksfree, blkno);
   1385 	ffs_clusteracct(fs, cgp, blkno, -1);
   1386 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1387 	fs->fs_cstotal.cs_nbfree--;
   1388 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1389 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1390 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1391 		int cylno;
   1392 		cylno = old_cbtocylno(fs, bno);
   1393 		KASSERT(cylno >= 0);
   1394 		KASSERT(cylno < fs->fs_old_ncyl);
   1395 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1396 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1397 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1398 		    needswap);
   1399 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1400 	}
   1401 	fs->fs_fmod = 1;
   1402 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1403 	if (DOINGSOFTDEP(ITOV(ip))) {
   1404 		mutex_exit(&ump->um_lock);
   1405 		softdep_setup_blkmapdep(bp, fs, blkno);
   1406 		mutex_enter(&ump->um_lock);
   1407 	}
   1408 	return (blkno);
   1409 }
   1410 
   1411 #ifdef XXXUBC
   1412 /*
   1413  * Determine whether a cluster can be allocated.
   1414  *
   1415  * We do not currently check for optimal rotational layout if there
   1416  * are multiple choices in the same cylinder group. Instead we just
   1417  * take the first one that we find following bpref.
   1418  */
   1419 
   1420 /*
   1421  * This function must be fixed for UFS2 if re-enabled.
   1422  */
   1423 static daddr_t
   1424 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1425 {
   1426 	struct ufsmount *ump;
   1427 	struct fs *fs;
   1428 	struct cg *cgp;
   1429 	struct buf *bp;
   1430 	int i, got, run, bno, bit, map;
   1431 	u_char *mapp;
   1432 	int32_t *lp;
   1433 
   1434 	fs = ip->i_fs;
   1435 	ump = ip->i_ump;
   1436 
   1437 	KASSERT(mutex_owned(&ump->um_lock));
   1438 	if (fs->fs_maxcluster[cg] < len)
   1439 		return (0);
   1440 	mutex_exit(&ump->um_lock);
   1441 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1442 	    NOCRED, 0, &bp))
   1443 		goto fail;
   1444 	cgp = (struct cg *)bp->b_data;
   1445 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1446 		goto fail;
   1447 	/*
   1448 	 * Check to see if a cluster of the needed size (or bigger) is
   1449 	 * available in this cylinder group.
   1450 	 */
   1451 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1452 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1453 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1454 			break;
   1455 	if (i > fs->fs_contigsumsize) {
   1456 		/*
   1457 		 * This is the first time looking for a cluster in this
   1458 		 * cylinder group. Update the cluster summary information
   1459 		 * to reflect the true maximum sized cluster so that
   1460 		 * future cluster allocation requests can avoid reading
   1461 		 * the cylinder group map only to find no clusters.
   1462 		 */
   1463 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1464 		for (i = len - 1; i > 0; i--)
   1465 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1466 				break;
   1467 		mutex_enter(&ump->um_lock);
   1468 		fs->fs_maxcluster[cg] = i;
   1469 		mutex_exit(&ump->um_lock);
   1470 		goto fail;
   1471 	}
   1472 	/*
   1473 	 * Search the cluster map to find a big enough cluster.
   1474 	 * We take the first one that we find, even if it is larger
   1475 	 * than we need as we prefer to get one close to the previous
   1476 	 * block allocation. We do not search before the current
   1477 	 * preference point as we do not want to allocate a block
   1478 	 * that is allocated before the previous one (as we will
   1479 	 * then have to wait for another pass of the elevator
   1480 	 * algorithm before it will be read). We prefer to fail and
   1481 	 * be recalled to try an allocation in the next cylinder group.
   1482 	 */
   1483 	if (dtog(fs, bpref) != cg)
   1484 		bpref = 0;
   1485 	else
   1486 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1487 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1488 	map = *mapp++;
   1489 	bit = 1 << (bpref % NBBY);
   1490 	for (run = 0, got = bpref;
   1491 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1492 		if ((map & bit) == 0) {
   1493 			run = 0;
   1494 		} else {
   1495 			run++;
   1496 			if (run == len)
   1497 				break;
   1498 		}
   1499 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1500 			bit <<= 1;
   1501 		} else {
   1502 			map = *mapp++;
   1503 			bit = 1;
   1504 		}
   1505 	}
   1506 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1507 		goto fail;
   1508 	/*
   1509 	 * Allocate the cluster that we have found.
   1510 	 */
   1511 #ifdef DIAGNOSTIC
   1512 	for (i = 1; i <= len; i++)
   1513 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1514 		    got - run + i))
   1515 			panic("ffs_clusteralloc: map mismatch");
   1516 #endif
   1517 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1518 	if (dtog(fs, bno) != cg)
   1519 		panic("ffs_clusteralloc: allocated out of group");
   1520 	len = blkstofrags(fs, len);
   1521 	mutex_enter(&ump->um_lock);
   1522 	for (i = 0; i < len; i += fs->fs_frag)
   1523 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1524 			panic("ffs_clusteralloc: lost block");
   1525 	ACTIVECG_CLR(fs, cg);
   1526 	mutex_exit(&ump->um_lock);
   1527 	bdwrite(bp);
   1528 	return (bno);
   1529 
   1530 fail:
   1531 	brelse(bp, 0);
   1532 	mutex_enter(&ump->um_lock);
   1533 	return (0);
   1534 }
   1535 #endif /* XXXUBC */
   1536 
   1537 /*
   1538  * Determine whether an inode can be allocated.
   1539  *
   1540  * Check to see if an inode is available, and if it is,
   1541  * allocate it using the following policy:
   1542  *   1) allocate the requested inode.
   1543  *   2) allocate the next available inode after the requested
   1544  *      inode in the specified cylinder group.
   1545  */
   1546 static daddr_t
   1547 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1548 {
   1549 	struct ufsmount *ump = ip->i_ump;
   1550 	struct fs *fs = ip->i_fs;
   1551 	struct cg *cgp;
   1552 	struct buf *bp, *ibp;
   1553 	u_int8_t *inosused;
   1554 	int error, start, len, loc, map, i;
   1555 	int32_t initediblk;
   1556 	struct ufs2_dinode *dp2;
   1557 #ifdef FFS_EI
   1558 	const int needswap = UFS_FSNEEDSWAP(fs);
   1559 #endif
   1560 
   1561 	KASSERT(mutex_owned(&ump->um_lock));
   1562 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1563 
   1564 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1565 		return (0);
   1566 	mutex_exit(&ump->um_lock);
   1567 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1568 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1569 	if (error)
   1570 		goto fail;
   1571 	cgp = (struct cg *)bp->b_data;
   1572 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1573 		goto fail;
   1574 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1575 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1576 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1577 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1578 	inosused = cg_inosused(cgp, needswap);
   1579 	if (ipref) {
   1580 		ipref %= fs->fs_ipg;
   1581 		if (isclr(inosused, ipref))
   1582 			goto gotit;
   1583 	}
   1584 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1585 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1586 		NBBY);
   1587 	loc = skpc(0xff, len, &inosused[start]);
   1588 	if (loc == 0) {
   1589 		len = start + 1;
   1590 		start = 0;
   1591 		loc = skpc(0xff, len, &inosused[0]);
   1592 		if (loc == 0) {
   1593 			printf("cg = %d, irotor = %d, fs = %s\n",
   1594 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1595 				fs->fs_fsmnt);
   1596 			panic("ffs_nodealloccg: map corrupted");
   1597 			/* NOTREACHED */
   1598 		}
   1599 	}
   1600 	i = start + len - loc;
   1601 	map = inosused[i];
   1602 	ipref = i * NBBY;
   1603 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1604 		if ((map & i) == 0) {
   1605 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1606 			goto gotit;
   1607 		}
   1608 	}
   1609 	printf("fs = %s\n", fs->fs_fsmnt);
   1610 	panic("ffs_nodealloccg: block not in map");
   1611 	/* NOTREACHED */
   1612 gotit:
   1613 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1614 	    mode);
   1615 	/*
   1616 	 * Check to see if we need to initialize more inodes.
   1617 	 */
   1618 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1619 	ibp = NULL;
   1620 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1621 	    ipref + INOPB(fs) > initediblk &&
   1622 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1623 		if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1624 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1625 		    FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
   1626 			goto fail;
   1627 		memset(ibp->b_data, 0, fs->fs_bsize);
   1628 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1629 		for (i = 0; i < INOPB(fs); i++) {
   1630 			/*
   1631 			 * Don't bother to swap, it's supposed to be
   1632 			 * random, after all.
   1633 			 */
   1634 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1635 			dp2++;
   1636 		}
   1637 		initediblk += INOPB(fs);
   1638 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1639 	}
   1640 
   1641 	mutex_enter(&ump->um_lock);
   1642 	ACTIVECG_CLR(fs, cg);
   1643 	setbit(inosused, ipref);
   1644 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1645 	fs->fs_cstotal.cs_nifree--;
   1646 	fs->fs_cs(fs, cg).cs_nifree--;
   1647 	fs->fs_fmod = 1;
   1648 	if ((mode & IFMT) == IFDIR) {
   1649 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1650 		fs->fs_cstotal.cs_ndir++;
   1651 		fs->fs_cs(fs, cg).cs_ndir++;
   1652 	}
   1653 	mutex_exit(&ump->um_lock);
   1654 	if (DOINGSOFTDEP(ITOV(ip)))
   1655 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1656 	bdwrite(bp);
   1657 	if (ibp != NULL)
   1658 		bawrite(ibp);
   1659 	return (cg * fs->fs_ipg + ipref);
   1660  fail:
   1661 	brelse(bp, 0);
   1662 	mutex_enter(&ump->um_lock);
   1663 	return (0);
   1664 }
   1665 
   1666 /*
   1667  * Allocate a block or fragment.
   1668  *
   1669  * The specified block or fragment is removed from the
   1670  * free map, possibly fragmenting a block in the process.
   1671  *
   1672  * This implementation should mirror fs_blkfree
   1673  *
   1674  * => um_lock not held on entry or exit
   1675  */
   1676 int
   1677 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1678 {
   1679 	struct ufsmount *ump = ip->i_ump;
   1680 	struct fs *fs = ip->i_fs;
   1681 	struct cg *cgp;
   1682 	struct buf *bp;
   1683 	int32_t fragno, cgbno;
   1684 	int i, error, cg, blk, frags, bbase;
   1685 	u_int8_t *blksfree;
   1686 	const int needswap = UFS_FSNEEDSWAP(fs);
   1687 
   1688 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1689 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1690 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1691 		       "size = %ld, fs = %s\n",
   1692 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1693 		panic("blkalloc: bad size");
   1694 	}
   1695 	cg = dtog(fs, bno);
   1696 	if (bno >= fs->fs_size) {
   1697 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1698 		    ip->i_number);
   1699 		ffs_fserr(fs, ip->i_uid, "bad block");
   1700 		return EINVAL;
   1701 	}
   1702 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1703 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1704 	if (error) {
   1705 		brelse(bp, 0);
   1706 		return error;
   1707 	}
   1708 	cgp = (struct cg *)bp->b_data;
   1709 	if (!cg_chkmagic(cgp, needswap)) {
   1710 		brelse(bp, 0);
   1711 		return EIO;
   1712 	}
   1713 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1714 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1715 	cgbno = dtogd(fs, bno);
   1716 	blksfree = cg_blksfree(cgp, needswap);
   1717 
   1718 	mutex_enter(&ump->um_lock);
   1719 	if (size == fs->fs_bsize) {
   1720 		fragno = fragstoblks(fs, cgbno);
   1721 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1722 			mutex_exit(&ump->um_lock);
   1723 			brelse(bp, 0);
   1724 			return EBUSY;
   1725 		}
   1726 		ffs_clrblock(fs, blksfree, fragno);
   1727 		ffs_clusteracct(fs, cgp, fragno, -1);
   1728 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1729 		fs->fs_cstotal.cs_nbfree--;
   1730 		fs->fs_cs(fs, cg).cs_nbfree--;
   1731 	} else {
   1732 		bbase = cgbno - fragnum(fs, cgbno);
   1733 
   1734 		frags = numfrags(fs, size);
   1735 		for (i = 0; i < frags; i++) {
   1736 			if (isclr(blksfree, cgbno + i)) {
   1737 				mutex_exit(&ump->um_lock);
   1738 				brelse(bp, 0);
   1739 				return EBUSY;
   1740 			}
   1741 		}
   1742 		/*
   1743 		 * if a complete block is being split, account for it
   1744 		 */
   1745 		fragno = fragstoblks(fs, bbase);
   1746 		if (ffs_isblock(fs, blksfree, fragno)) {
   1747 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1748 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1749 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1750 			ffs_clusteracct(fs, cgp, fragno, -1);
   1751 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1752 			fs->fs_cstotal.cs_nbfree--;
   1753 			fs->fs_cs(fs, cg).cs_nbfree--;
   1754 		}
   1755 		/*
   1756 		 * decrement the counts associated with the old frags
   1757 		 */
   1758 		blk = blkmap(fs, blksfree, bbase);
   1759 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1760 		/*
   1761 		 * allocate the fragment
   1762 		 */
   1763 		for (i = 0; i < frags; i++) {
   1764 			clrbit(blksfree, cgbno + i);
   1765 		}
   1766 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1767 		fs->fs_cstotal.cs_nffree -= i;
   1768 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1769 		/*
   1770 		 * add back in counts associated with the new frags
   1771 		 */
   1772 		blk = blkmap(fs, blksfree, bbase);
   1773 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1774 	}
   1775 	fs->fs_fmod = 1;
   1776 	ACTIVECG_CLR(fs, cg);
   1777 	mutex_exit(&ump->um_lock);
   1778 	bdwrite(bp);
   1779 	return 0;
   1780 }
   1781 
   1782 /*
   1783  * Free a block or fragment.
   1784  *
   1785  * The specified block or fragment is placed back in the
   1786  * free map. If a fragment is deallocated, a possible
   1787  * block reassembly is checked.
   1788  *
   1789  * => um_lock not held on entry or exit
   1790  */
   1791 void
   1792 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1793     ino_t inum)
   1794 {
   1795 	struct cg *cgp;
   1796 	struct buf *bp;
   1797 	struct ufsmount *ump;
   1798 	int32_t fragno, cgbno;
   1799 	daddr_t cgblkno;
   1800 	int i, error, cg, blk, frags, bbase;
   1801 	u_int8_t *blksfree;
   1802 	dev_t dev;
   1803 	const int needswap = UFS_FSNEEDSWAP(fs);
   1804 
   1805 	cg = dtog(fs, bno);
   1806 	if (devvp->v_type != VBLK) {
   1807 		/* devvp is a snapshot */
   1808 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1809 		ump = VFSTOUFS(devvp->v_mount);
   1810 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1811 	} else {
   1812 		dev = devvp->v_rdev;
   1813 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1814 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1815 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1816 			return;
   1817 	}
   1818 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1819 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1820 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1821 		       "size = %ld, fs = %s\n",
   1822 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1823 		panic("blkfree: bad size");
   1824 	}
   1825 
   1826 	if (bno >= fs->fs_size) {
   1827 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1828 		    (unsigned long long)inum);
   1829 		ffs_fserr(fs, inum, "bad block");
   1830 		return;
   1831 	}
   1832 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1833 	    NOCRED, B_MODIFY, &bp);
   1834 	if (error) {
   1835 		brelse(bp, 0);
   1836 		return;
   1837 	}
   1838 	cgp = (struct cg *)bp->b_data;
   1839 	if (!cg_chkmagic(cgp, needswap)) {
   1840 		brelse(bp, 0);
   1841 		return;
   1842 	}
   1843 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1844 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1845 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1846 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1847 	cgbno = dtogd(fs, bno);
   1848 	blksfree = cg_blksfree(cgp, needswap);
   1849 	mutex_enter(&ump->um_lock);
   1850 	if (size == fs->fs_bsize) {
   1851 		fragno = fragstoblks(fs, cgbno);
   1852 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1853 			if (devvp->v_type != VBLK) {
   1854 				/* devvp is a snapshot */
   1855 				mutex_exit(&ump->um_lock);
   1856 				brelse(bp, 0);
   1857 				return;
   1858 			}
   1859 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1860 			    dev, bno, fs->fs_fsmnt);
   1861 			panic("blkfree: freeing free block");
   1862 		}
   1863 		ffs_setblock(fs, blksfree, fragno);
   1864 		ffs_clusteracct(fs, cgp, fragno, 1);
   1865 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1866 		fs->fs_cstotal.cs_nbfree++;
   1867 		fs->fs_cs(fs, cg).cs_nbfree++;
   1868 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1869 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1870 			i = old_cbtocylno(fs, cgbno);
   1871 			KASSERT(i >= 0);
   1872 			KASSERT(i < fs->fs_old_ncyl);
   1873 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1874 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1875 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1876 			    needswap);
   1877 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1878 		}
   1879 	} else {
   1880 		bbase = cgbno - fragnum(fs, cgbno);
   1881 		/*
   1882 		 * decrement the counts associated with the old frags
   1883 		 */
   1884 		blk = blkmap(fs, blksfree, bbase);
   1885 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1886 		/*
   1887 		 * deallocate the fragment
   1888 		 */
   1889 		frags = numfrags(fs, size);
   1890 		for (i = 0; i < frags; i++) {
   1891 			if (isset(blksfree, cgbno + i)) {
   1892 				printf("dev = 0x%x, block = %" PRId64
   1893 				       ", fs = %s\n",
   1894 				    dev, bno + i, fs->fs_fsmnt);
   1895 				panic("blkfree: freeing free frag");
   1896 			}
   1897 			setbit(blksfree, cgbno + i);
   1898 		}
   1899 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1900 		fs->fs_cstotal.cs_nffree += i;
   1901 		fs->fs_cs(fs, cg).cs_nffree += i;
   1902 		/*
   1903 		 * add back in counts associated with the new frags
   1904 		 */
   1905 		blk = blkmap(fs, blksfree, bbase);
   1906 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1907 		/*
   1908 		 * if a complete block has been reassembled, account for it
   1909 		 */
   1910 		fragno = fragstoblks(fs, bbase);
   1911 		if (ffs_isblock(fs, blksfree, fragno)) {
   1912 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1913 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1914 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1915 			ffs_clusteracct(fs, cgp, fragno, 1);
   1916 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1917 			fs->fs_cstotal.cs_nbfree++;
   1918 			fs->fs_cs(fs, cg).cs_nbfree++;
   1919 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1920 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1921 				i = old_cbtocylno(fs, bbase);
   1922 				KASSERT(i >= 0);
   1923 				KASSERT(i < fs->fs_old_ncyl);
   1924 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1925 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1926 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1927 				    bbase)], 1, needswap);
   1928 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1929 			}
   1930 		}
   1931 	}
   1932 	fs->fs_fmod = 1;
   1933 	ACTIVECG_CLR(fs, cg);
   1934 	mutex_exit(&ump->um_lock);
   1935 	bdwrite(bp);
   1936 }
   1937 
   1938 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1939 #ifdef XXXUBC
   1940 /*
   1941  * Verify allocation of a block or fragment. Returns true if block or
   1942  * fragment is allocated, false if it is free.
   1943  */
   1944 static int
   1945 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1946 {
   1947 	struct fs *fs;
   1948 	struct cg *cgp;
   1949 	struct buf *bp;
   1950 	int i, error, frags, free;
   1951 
   1952 	fs = ip->i_fs;
   1953 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1954 		printf("bsize = %d, size = %ld, fs = %s\n",
   1955 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1956 		panic("checkblk: bad size");
   1957 	}
   1958 	if (bno >= fs->fs_size)
   1959 		panic("checkblk: bad block %d", bno);
   1960 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1961 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   1962 	if (error) {
   1963 		brelse(bp, 0);
   1964 		return 0;
   1965 	}
   1966 	cgp = (struct cg *)bp->b_data;
   1967 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1968 		brelse(bp, 0);
   1969 		return 0;
   1970 	}
   1971 	bno = dtogd(fs, bno);
   1972 	if (size == fs->fs_bsize) {
   1973 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1974 			fragstoblks(fs, bno));
   1975 	} else {
   1976 		frags = numfrags(fs, size);
   1977 		for (free = 0, i = 0; i < frags; i++)
   1978 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1979 				free++;
   1980 		if (free != 0 && free != frags)
   1981 			panic("checkblk: partially free fragment");
   1982 	}
   1983 	brelse(bp, 0);
   1984 	return (!free);
   1985 }
   1986 #endif /* XXXUBC */
   1987 #endif /* DIAGNOSTIC */
   1988 
   1989 /*
   1990  * Free an inode.
   1991  */
   1992 int
   1993 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1994 {
   1995 
   1996 	if (DOINGSOFTDEP(vp)) {
   1997 		softdep_freefile(vp, ino, mode);
   1998 		return (0);
   1999 	}
   2000 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   2001 }
   2002 
   2003 /*
   2004  * Do the actual free operation.
   2005  * The specified inode is placed back in the free map.
   2006  *
   2007  * => um_lock not held on entry or exit
   2008  */
   2009 int
   2010 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2011 {
   2012 	struct ufsmount *ump;
   2013 	struct cg *cgp;
   2014 	struct buf *bp;
   2015 	int error, cg;
   2016 	daddr_t cgbno;
   2017 	u_int8_t *inosused;
   2018 	dev_t dev;
   2019 #ifdef FFS_EI
   2020 	const int needswap = UFS_FSNEEDSWAP(fs);
   2021 #endif
   2022 
   2023 	UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   2024 
   2025 	cg = ino_to_cg(fs, ino);
   2026 	if (devvp->v_type != VBLK) {
   2027 		/* devvp is a snapshot */
   2028 		dev = VTOI(devvp)->i_devvp->v_rdev;
   2029 		ump = VFSTOUFS(devvp->v_mount);
   2030 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2031 	} else {
   2032 		dev = devvp->v_rdev;
   2033 		ump = VFSTOUFS(devvp->v_specmountpoint);
   2034 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2035 	}
   2036 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2037 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   2038 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   2039 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2040 	    NOCRED, B_MODIFY, &bp);
   2041 	if (error) {
   2042 		brelse(bp, 0);
   2043 		return (error);
   2044 	}
   2045 	cgp = (struct cg *)bp->b_data;
   2046 	if (!cg_chkmagic(cgp, needswap)) {
   2047 		brelse(bp, 0);
   2048 		return (0);
   2049 	}
   2050 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2051 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2052 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2053 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2054 	inosused = cg_inosused(cgp, needswap);
   2055 	ino %= fs->fs_ipg;
   2056 	if (isclr(inosused, ino)) {
   2057 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   2058 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   2059 		    fs->fs_fsmnt);
   2060 		if (fs->fs_ronly == 0)
   2061 			panic("ifree: freeing free inode");
   2062 	}
   2063 	clrbit(inosused, ino);
   2064 	UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   2065 	    ino + cg * fs->fs_ipg, mode);
   2066 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2067 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2068 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2069 	mutex_enter(&ump->um_lock);
   2070 	fs->fs_cstotal.cs_nifree++;
   2071 	fs->fs_cs(fs, cg).cs_nifree++;
   2072 	if ((mode & IFMT) == IFDIR) {
   2073 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2074 		fs->fs_cstotal.cs_ndir--;
   2075 		fs->fs_cs(fs, cg).cs_ndir--;
   2076 	}
   2077 	fs->fs_fmod = 1;
   2078 	ACTIVECG_CLR(fs, cg);
   2079 	mutex_exit(&ump->um_lock);
   2080 	bdwrite(bp);
   2081 	return (0);
   2082 }
   2083 
   2084 /*
   2085  * Check to see if a file is free.
   2086  */
   2087 int
   2088 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2089 {
   2090 	struct cg *cgp;
   2091 	struct buf *bp;
   2092 	daddr_t cgbno;
   2093 	int ret, cg;
   2094 	u_int8_t *inosused;
   2095 
   2096 	cg = ino_to_cg(fs, ino);
   2097 	if (devvp->v_type != VBLK) {
   2098 		/* devvp is a snapshot */
   2099 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2100 	} else
   2101 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2102 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2103 		return 1;
   2104 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2105 		brelse(bp, 0);
   2106 		return 1;
   2107 	}
   2108 	cgp = (struct cg *)bp->b_data;
   2109 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2110 		brelse(bp, 0);
   2111 		return 1;
   2112 	}
   2113 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2114 	ino %= fs->fs_ipg;
   2115 	ret = isclr(inosused, ino);
   2116 	brelse(bp, 0);
   2117 	return ret;
   2118 }
   2119 
   2120 /*
   2121  * Find a block of the specified size in the specified cylinder group.
   2122  *
   2123  * It is a panic if a request is made to find a block if none are
   2124  * available.
   2125  */
   2126 static int32_t
   2127 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2128 {
   2129 	int32_t bno;
   2130 	int start, len, loc, i;
   2131 	int blk, field, subfield, pos;
   2132 	int ostart, olen;
   2133 	u_int8_t *blksfree;
   2134 #ifdef FFS_EI
   2135 	const int needswap = UFS_FSNEEDSWAP(fs);
   2136 #endif
   2137 
   2138 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2139 
   2140 	/*
   2141 	 * find the fragment by searching through the free block
   2142 	 * map for an appropriate bit pattern
   2143 	 */
   2144 	if (bpref)
   2145 		start = dtogd(fs, bpref) / NBBY;
   2146 	else
   2147 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2148 	blksfree = cg_blksfree(cgp, needswap);
   2149 	len = howmany(fs->fs_fpg, NBBY) - start;
   2150 	ostart = start;
   2151 	olen = len;
   2152 	loc = scanc((u_int)len,
   2153 		(const u_char *)&blksfree[start],
   2154 		(const u_char *)fragtbl[fs->fs_frag],
   2155 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2156 	if (loc == 0) {
   2157 		len = start + 1;
   2158 		start = 0;
   2159 		loc = scanc((u_int)len,
   2160 			(const u_char *)&blksfree[0],
   2161 			(const u_char *)fragtbl[fs->fs_frag],
   2162 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2163 		if (loc == 0) {
   2164 			printf("start = %d, len = %d, fs = %s\n",
   2165 			    ostart, olen, fs->fs_fsmnt);
   2166 			printf("offset=%d %ld\n",
   2167 				ufs_rw32(cgp->cg_freeoff, needswap),
   2168 				(long)blksfree - (long)cgp);
   2169 			printf("cg %d\n", cgp->cg_cgx);
   2170 			panic("ffs_alloccg: map corrupted");
   2171 			/* NOTREACHED */
   2172 		}
   2173 	}
   2174 	bno = (start + len - loc) * NBBY;
   2175 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2176 	/*
   2177 	 * found the byte in the map
   2178 	 * sift through the bits to find the selected frag
   2179 	 */
   2180 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2181 		blk = blkmap(fs, blksfree, bno);
   2182 		blk <<= 1;
   2183 		field = around[allocsiz];
   2184 		subfield = inside[allocsiz];
   2185 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2186 			if ((blk & field) == subfield)
   2187 				return (bno + pos);
   2188 			field <<= 1;
   2189 			subfield <<= 1;
   2190 		}
   2191 	}
   2192 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2193 	panic("ffs_alloccg: block not in map");
   2194 	/* return (-1); */
   2195 }
   2196 
   2197 /*
   2198  * Update the cluster map because of an allocation or free.
   2199  *
   2200  * Cnt == 1 means free; cnt == -1 means allocating.
   2201  */
   2202 void
   2203 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2204 {
   2205 	int32_t *sump;
   2206 	int32_t *lp;
   2207 	u_char *freemapp, *mapp;
   2208 	int i, start, end, forw, back, map, bit;
   2209 #ifdef FFS_EI
   2210 	const int needswap = UFS_FSNEEDSWAP(fs);
   2211 #endif
   2212 
   2213 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2214 
   2215 	if (fs->fs_contigsumsize <= 0)
   2216 		return;
   2217 	freemapp = cg_clustersfree(cgp, needswap);
   2218 	sump = cg_clustersum(cgp, needswap);
   2219 	/*
   2220 	 * Allocate or clear the actual block.
   2221 	 */
   2222 	if (cnt > 0)
   2223 		setbit(freemapp, blkno);
   2224 	else
   2225 		clrbit(freemapp, blkno);
   2226 	/*
   2227 	 * Find the size of the cluster going forward.
   2228 	 */
   2229 	start = blkno + 1;
   2230 	end = start + fs->fs_contigsumsize;
   2231 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2232 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2233 	mapp = &freemapp[start / NBBY];
   2234 	map = *mapp++;
   2235 	bit = 1 << (start % NBBY);
   2236 	for (i = start; i < end; i++) {
   2237 		if ((map & bit) == 0)
   2238 			break;
   2239 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2240 			bit <<= 1;
   2241 		} else {
   2242 			map = *mapp++;
   2243 			bit = 1;
   2244 		}
   2245 	}
   2246 	forw = i - start;
   2247 	/*
   2248 	 * Find the size of the cluster going backward.
   2249 	 */
   2250 	start = blkno - 1;
   2251 	end = start - fs->fs_contigsumsize;
   2252 	if (end < 0)
   2253 		end = -1;
   2254 	mapp = &freemapp[start / NBBY];
   2255 	map = *mapp--;
   2256 	bit = 1 << (start % NBBY);
   2257 	for (i = start; i > end; i--) {
   2258 		if ((map & bit) == 0)
   2259 			break;
   2260 		if ((i & (NBBY - 1)) != 0) {
   2261 			bit >>= 1;
   2262 		} else {
   2263 			map = *mapp--;
   2264 			bit = 1 << (NBBY - 1);
   2265 		}
   2266 	}
   2267 	back = start - i;
   2268 	/*
   2269 	 * Account for old cluster and the possibly new forward and
   2270 	 * back clusters.
   2271 	 */
   2272 	i = back + forw + 1;
   2273 	if (i > fs->fs_contigsumsize)
   2274 		i = fs->fs_contigsumsize;
   2275 	ufs_add32(sump[i], cnt, needswap);
   2276 	if (back > 0)
   2277 		ufs_add32(sump[back], -cnt, needswap);
   2278 	if (forw > 0)
   2279 		ufs_add32(sump[forw], -cnt, needswap);
   2280 
   2281 	/*
   2282 	 * Update cluster summary information.
   2283 	 */
   2284 	lp = &sump[fs->fs_contigsumsize];
   2285 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2286 		if (ufs_rw32(*lp--, needswap) > 0)
   2287 			break;
   2288 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2289 }
   2290 
   2291 /*
   2292  * Fserr prints the name of a file system with an error diagnostic.
   2293  *
   2294  * The form of the error message is:
   2295  *	fs: error message
   2296  */
   2297 static void
   2298 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2299 {
   2300 
   2301 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2302 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2303 }
   2304