ffs_alloc.c revision 1.109.2.2 1 /* $NetBSD: ffs_alloc.c,v 1.109.2.2 2008/06/12 08:39:22 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109.2.2 2008/06/12 08:39:22 martin Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
91
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
105 #ifdef XXXUBC
106 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
107 #endif
108 static ino_t ffs_dirpref(struct inode *);
109 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
110 static void ffs_fserr(struct fs *, u_int, const char *);
111 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
112 daddr_t (*)(struct inode *, int, daddr_t, int));
113 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
114 static int32_t ffs_mapsearch(struct fs *, struct cg *,
115 daddr_t, int);
116 #if defined(DIAGNOSTIC) || defined(DEBUG)
117 #ifdef XXXUBC
118 static int ffs_checkblk(struct inode *, daddr_t, long size);
119 #endif
120 #endif
121
122 /* if 1, changes in optimalization strategy are logged */
123 int ffs_log_changeopt = 0;
124
125 /* in ffs_tables.c */
126 extern const int inside[], around[];
127 extern const u_char * const fragtbl[];
128
129 /*
130 * Allocate a block in the file system.
131 *
132 * The size of the requested block is given, which must be some
133 * multiple of fs_fsize and <= fs_bsize.
134 * A preference may be optionally specified. If a preference is given
135 * the following hierarchy is used to allocate a block:
136 * 1) allocate the requested block.
137 * 2) allocate a rotationally optimal block in the same cylinder.
138 * 3) allocate a block in the same cylinder group.
139 * 4) quadradically rehash into other cylinder groups, until an
140 * available block is located.
141 * If no block preference is given the following hierarchy is used
142 * to allocate a block:
143 * 1) allocate a block in the cylinder group that contains the
144 * inode for the file.
145 * 2) quadradically rehash into other cylinder groups, until an
146 * available block is located.
147 *
148 * => called with um_lock held
149 * => releases um_lock before returning
150 */
151 int
152 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
153 kauth_cred_t cred, daddr_t *bnp)
154 {
155 struct ufsmount *ump;
156 struct fs *fs;
157 daddr_t bno;
158 int cg;
159 #ifdef QUOTA
160 int error;
161 #endif
162
163 fs = ip->i_fs;
164 ump = ip->i_ump;
165
166 KASSERT(mutex_owned(&ump->um_lock));
167
168 #ifdef UVM_PAGE_TRKOWN
169 if (ITOV(ip)->v_type == VREG &&
170 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
171 struct vm_page *pg;
172 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
173 voff_t off = trunc_page(lblktosize(fs, lbn));
174 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
175
176 mutex_enter(&uobj->vmobjlock);
177 while (off < endoff) {
178 pg = uvm_pagelookup(uobj, off);
179 KASSERT(pg != NULL);
180 KASSERT(pg->owner == curproc->p_pid);
181 off += PAGE_SIZE;
182 }
183 mutex_exit(&uobj->vmobjlock);
184 }
185 #endif
186
187 *bnp = 0;
188 #ifdef DIAGNOSTIC
189 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
190 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
191 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
192 panic("ffs_alloc: bad size");
193 }
194 if (cred == NOCRED)
195 panic("ffs_alloc: missing credential");
196 #endif /* DIAGNOSTIC */
197 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
198 goto nospace;
199 if (freespace(fs, fs->fs_minfree) <= 0 &&
200 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
201 goto nospace;
202 #ifdef QUOTA
203 mutex_exit(&ump->um_lock);
204 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
205 return (error);
206 mutex_enter(&ump->um_lock);
207 #endif
208 if (bpref >= fs->fs_size)
209 bpref = 0;
210 if (bpref == 0)
211 cg = ino_to_cg(fs, ip->i_number);
212 else
213 cg = dtog(fs, bpref);
214 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
215 if (bno > 0) {
216 DIP_ADD(ip, blocks, btodb(size));
217 ip->i_flag |= IN_CHANGE | IN_UPDATE;
218 *bnp = bno;
219 return (0);
220 }
221 #ifdef QUOTA
222 /*
223 * Restore user's disk quota because allocation failed.
224 */
225 (void) chkdq(ip, -btodb(size), cred, FORCE);
226 #endif
227 nospace:
228 mutex_exit(&ump->um_lock);
229 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
230 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
231 return (ENOSPC);
232 }
233
234 /*
235 * Reallocate a fragment to a bigger size
236 *
237 * The number and size of the old block is given, and a preference
238 * and new size is also specified. The allocator attempts to extend
239 * the original block. Failing that, the regular block allocator is
240 * invoked to get an appropriate block.
241 *
242 * => called with um_lock held
243 * => return with um_lock released
244 */
245 int
246 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
247 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
248 {
249 struct ufsmount *ump;
250 struct fs *fs;
251 struct buf *bp;
252 int cg, request, error;
253 daddr_t bprev, bno;
254
255 fs = ip->i_fs;
256 ump = ip->i_ump;
257
258 KASSERT(mutex_owned(&ump->um_lock));
259
260 #ifdef UVM_PAGE_TRKOWN
261 if (ITOV(ip)->v_type == VREG) {
262 struct vm_page *pg;
263 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
264 voff_t off = trunc_page(lblktosize(fs, lbprev));
265 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
266
267 mutex_enter(&uobj->vmobjlock);
268 while (off < endoff) {
269 pg = uvm_pagelookup(uobj, off);
270 KASSERT(pg != NULL);
271 KASSERT(pg->owner == curproc->p_pid);
272 KASSERT((pg->flags & PG_CLEAN) == 0);
273 off += PAGE_SIZE;
274 }
275 mutex_exit(&uobj->vmobjlock);
276 }
277 #endif
278
279 #ifdef DIAGNOSTIC
280 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
281 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
282 printf(
283 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
284 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
285 panic("ffs_realloccg: bad size");
286 }
287 if (cred == NOCRED)
288 panic("ffs_realloccg: missing credential");
289 #endif /* DIAGNOSTIC */
290 if (freespace(fs, fs->fs_minfree) <= 0 &&
291 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
292 mutex_exit(&ump->um_lock);
293 goto nospace;
294 }
295 if (fs->fs_magic == FS_UFS2_MAGIC)
296 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
297 else
298 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
299
300 if (bprev == 0) {
301 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
302 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
303 panic("ffs_realloccg: bad bprev");
304 }
305 mutex_exit(&ump->um_lock);
306
307 /*
308 * Allocate the extra space in the buffer.
309 */
310 if (bpp != NULL &&
311 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
312 brelse(bp, 0);
313 return (error);
314 }
315 #ifdef QUOTA
316 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
317 if (bpp != NULL) {
318 brelse(bp, 0);
319 }
320 return (error);
321 }
322 #endif
323 /*
324 * Check for extension in the existing location.
325 */
326 cg = dtog(fs, bprev);
327 mutex_enter(&ump->um_lock);
328 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
329 DIP_ADD(ip, blocks, btodb(nsize - osize));
330 ip->i_flag |= IN_CHANGE | IN_UPDATE;
331
332 if (bpp != NULL) {
333 if (bp->b_blkno != fsbtodb(fs, bno))
334 panic("bad blockno");
335 allocbuf(bp, nsize, 1);
336 memset((char *)bp->b_data + osize, 0, nsize - osize);
337 mutex_enter(bp->b_objlock);
338 KASSERT(!cv_has_waiters(&bp->b_done));
339 bp->b_oflags |= BO_DONE;
340 mutex_exit(bp->b_objlock);
341 *bpp = bp;
342 }
343 if (blknop != NULL) {
344 *blknop = bno;
345 }
346 return (0);
347 }
348 /*
349 * Allocate a new disk location.
350 */
351 if (bpref >= fs->fs_size)
352 bpref = 0;
353 switch ((int)fs->fs_optim) {
354 case FS_OPTSPACE:
355 /*
356 * Allocate an exact sized fragment. Although this makes
357 * best use of space, we will waste time relocating it if
358 * the file continues to grow. If the fragmentation is
359 * less than half of the minimum free reserve, we choose
360 * to begin optimizing for time.
361 */
362 request = nsize;
363 if (fs->fs_minfree < 5 ||
364 fs->fs_cstotal.cs_nffree >
365 fs->fs_dsize * fs->fs_minfree / (2 * 100))
366 break;
367
368 if (ffs_log_changeopt) {
369 log(LOG_NOTICE,
370 "%s: optimization changed from SPACE to TIME\n",
371 fs->fs_fsmnt);
372 }
373
374 fs->fs_optim = FS_OPTTIME;
375 break;
376 case FS_OPTTIME:
377 /*
378 * At this point we have discovered a file that is trying to
379 * grow a small fragment to a larger fragment. To save time,
380 * we allocate a full sized block, then free the unused portion.
381 * If the file continues to grow, the `ffs_fragextend' call
382 * above will be able to grow it in place without further
383 * copying. If aberrant programs cause disk fragmentation to
384 * grow within 2% of the free reserve, we choose to begin
385 * optimizing for space.
386 */
387 request = fs->fs_bsize;
388 if (fs->fs_cstotal.cs_nffree <
389 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
390 break;
391
392 if (ffs_log_changeopt) {
393 log(LOG_NOTICE,
394 "%s: optimization changed from TIME to SPACE\n",
395 fs->fs_fsmnt);
396 }
397
398 fs->fs_optim = FS_OPTSPACE;
399 break;
400 default:
401 printf("dev = 0x%x, optim = %d, fs = %s\n",
402 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
403 panic("ffs_realloccg: bad optim");
404 /* NOTREACHED */
405 }
406 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
407 if (bno > 0) {
408 if (!DOINGSOFTDEP(ITOV(ip))) {
409 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
410 (ITOV(ip)->v_type != VREG)) {
411 UFS_WAPBL_REGISTER_DEALLOCATION(
412 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
413 osize);
414 } else
415 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
416 ip->i_number);
417 }
418 if (nsize < request) {
419 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
420 (ITOV(ip)->v_type != VREG)) {
421 UFS_WAPBL_REGISTER_DEALLOCATION(
422 ip->i_ump->um_mountp,
423 fsbtodb(fs, (bno + numfrags(fs, nsize))),
424 request - nsize);
425 } else
426 ffs_blkfree(fs, ip->i_devvp,
427 bno + numfrags(fs, nsize),
428 (long)(request - nsize), ip->i_number);
429 }
430 DIP_ADD(ip, blocks, btodb(nsize - osize));
431 ip->i_flag |= IN_CHANGE | IN_UPDATE;
432 if (bpp != NULL) {
433 bp->b_blkno = fsbtodb(fs, bno);
434 allocbuf(bp, nsize, 1);
435 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
436 mutex_enter(bp->b_objlock);
437 KASSERT(!cv_has_waiters(&bp->b_done));
438 bp->b_oflags |= BO_DONE;
439 mutex_exit(bp->b_objlock);
440 *bpp = bp;
441 }
442 if (blknop != NULL) {
443 *blknop = bno;
444 }
445 return (0);
446 }
447 mutex_exit(&ump->um_lock);
448
449 #ifdef QUOTA
450 /*
451 * Restore user's disk quota because allocation failed.
452 */
453 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
454 #endif
455 if (bpp != NULL) {
456 brelse(bp, 0);
457 }
458
459 nospace:
460 /*
461 * no space available
462 */
463 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
464 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
465 return (ENOSPC);
466 }
467
468 #if 0
469 /*
470 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
471 *
472 * The vnode and an array of buffer pointers for a range of sequential
473 * logical blocks to be made contiguous is given. The allocator attempts
474 * to find a range of sequential blocks starting as close as possible
475 * from the end of the allocation for the logical block immediately
476 * preceding the current range. If successful, the physical block numbers
477 * in the buffer pointers and in the inode are changed to reflect the new
478 * allocation. If unsuccessful, the allocation is left unchanged. The
479 * success in doing the reallocation is returned. Note that the error
480 * return is not reflected back to the user. Rather the previous block
481 * allocation will be used.
482
483 */
484 #ifdef XXXUBC
485 #ifdef DEBUG
486 #include <sys/sysctl.h>
487 int prtrealloc = 0;
488 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
489 #endif
490 #endif
491
492 /*
493 * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
494 */
495
496 int doasyncfree = 1;
497
498 int
499 ffs_reallocblks(void *v)
500 {
501 #ifdef XXXUBC
502 struct vop_reallocblks_args /* {
503 struct vnode *a_vp;
504 struct cluster_save *a_buflist;
505 } */ *ap = v;
506 struct fs *fs;
507 struct inode *ip;
508 struct vnode *vp;
509 struct buf *sbp, *ebp;
510 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
511 struct cluster_save *buflist;
512 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
513 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
514 int i, len, start_lvl, end_lvl, pref, ssize;
515 struct ufsmount *ump;
516 #endif /* XXXUBC */
517
518 /* XXXUBC don't reallocblks for now */
519 return ENOSPC;
520
521 #ifdef XXXUBC
522 vp = ap->a_vp;
523 ip = VTOI(vp);
524 fs = ip->i_fs;
525 ump = ip->i_ump;
526 if (fs->fs_contigsumsize <= 0)
527 return (ENOSPC);
528 buflist = ap->a_buflist;
529 len = buflist->bs_nchildren;
530 start_lbn = buflist->bs_children[0]->b_lblkno;
531 end_lbn = start_lbn + len - 1;
532 #ifdef DIAGNOSTIC
533 for (i = 0; i < len; i++)
534 if (!ffs_checkblk(ip,
535 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
536 panic("ffs_reallocblks: unallocated block 1");
537 for (i = 1; i < len; i++)
538 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
539 panic("ffs_reallocblks: non-logical cluster");
540 blkno = buflist->bs_children[0]->b_blkno;
541 ssize = fsbtodb(fs, fs->fs_frag);
542 for (i = 1; i < len - 1; i++)
543 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
544 panic("ffs_reallocblks: non-physical cluster %d", i);
545 #endif
546 /*
547 * If the latest allocation is in a new cylinder group, assume that
548 * the filesystem has decided to move and do not force it back to
549 * the previous cylinder group.
550 */
551 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
552 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
553 return (ENOSPC);
554 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
555 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
556 return (ENOSPC);
557 /*
558 * Get the starting offset and block map for the first block.
559 */
560 if (start_lvl == 0) {
561 sbap = &ip->i_ffs1_db[0];
562 soff = start_lbn;
563 } else {
564 idp = &start_ap[start_lvl - 1];
565 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
566 NOCRED, B_MODIFY, &sbp)) {
567 brelse(sbp, 0);
568 return (ENOSPC);
569 }
570 sbap = (int32_t *)sbp->b_data;
571 soff = idp->in_off;
572 }
573 /*
574 * Find the preferred location for the cluster.
575 */
576 mutex_enter(&ump->um_lock);
577 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
578 /*
579 * If the block range spans two block maps, get the second map.
580 */
581 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
582 ssize = len;
583 } else {
584 #ifdef DIAGNOSTIC
585 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
586 panic("ffs_reallocblk: start == end");
587 #endif
588 ssize = len - (idp->in_off + 1);
589 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
590 NOCRED, B_MODIFY, &ebp))
591 goto fail;
592 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
593 }
594 /*
595 * Search the block map looking for an allocation of the desired size.
596 */
597 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
598 len, ffs_clusteralloc)) == 0) {
599 mutex_exit(&ump->um_lock);
600 goto fail;
601 }
602 /*
603 * We have found a new contiguous block.
604 *
605 * First we have to replace the old block pointers with the new
606 * block pointers in the inode and indirect blocks associated
607 * with the file.
608 */
609 #ifdef DEBUG
610 if (prtrealloc)
611 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
612 start_lbn, end_lbn);
613 #endif
614 blkno = newblk;
615 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
616 daddr_t ba;
617
618 if (i == ssize) {
619 bap = ebap;
620 soff = -i;
621 }
622 /* XXX ondisk32 */
623 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
624 #ifdef DIAGNOSTIC
625 if (!ffs_checkblk(ip,
626 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
627 panic("ffs_reallocblks: unallocated block 2");
628 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
629 panic("ffs_reallocblks: alloc mismatch");
630 #endif
631 #ifdef DEBUG
632 if (prtrealloc)
633 printf(" %d,", ba);
634 #endif
635 if (DOINGSOFTDEP(vp)) {
636 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
637 softdep_setup_allocdirect(ip, start_lbn + i,
638 blkno, ba, fs->fs_bsize, fs->fs_bsize,
639 buflist->bs_children[i]);
640 else
641 softdep_setup_allocindir_page(ip, start_lbn + i,
642 i < ssize ? sbp : ebp, soff + i, blkno,
643 ba, buflist->bs_children[i]);
644 }
645 /* XXX ondisk32 */
646 *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
647 }
648 /*
649 * Next we must write out the modified inode and indirect blocks.
650 * For strict correctness, the writes should be synchronous since
651 * the old block values may have been written to disk. In practise
652 * they are almost never written, but if we are concerned about
653 * strict correctness, the `doasyncfree' flag should be set to zero.
654 *
655 * The test on `doasyncfree' should be changed to test a flag
656 * that shows whether the associated buffers and inodes have
657 * been written. The flag should be set when the cluster is
658 * started and cleared whenever the buffer or inode is flushed.
659 * We can then check below to see if it is set, and do the
660 * synchronous write only when it has been cleared.
661 */
662 if (sbap != &ip->i_ffs1_db[0]) {
663 if (doasyncfree)
664 bdwrite(sbp);
665 else
666 bwrite(sbp);
667 } else {
668 ip->i_flag |= IN_CHANGE | IN_UPDATE;
669 if (!doasyncfree)
670 ffs_update(vp, NULL, NULL, 1);
671 }
672 if (ssize < len) {
673 if (doasyncfree)
674 bdwrite(ebp);
675 else
676 bwrite(ebp);
677 }
678 /*
679 * Last, free the old blocks and assign the new blocks to the buffers.
680 */
681 #ifdef DEBUG
682 if (prtrealloc)
683 printf("\n\tnew:");
684 #endif
685 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
686 if (!DOINGSOFTDEP(vp))
687 ffs_blkfree(fs, ip->i_devvp,
688 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
689 fs->fs_bsize, ip->i_number);
690 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
691 #ifdef DEBUG
692 if (!ffs_checkblk(ip,
693 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
694 panic("ffs_reallocblks: unallocated block 3");
695 if (prtrealloc)
696 printf(" %d,", blkno);
697 #endif
698 }
699 #ifdef DEBUG
700 if (prtrealloc) {
701 prtrealloc--;
702 printf("\n");
703 }
704 #endif
705 return (0);
706
707 fail:
708 if (ssize < len)
709 brelse(ebp, 0);
710 if (sbap != &ip->i_ffs1_db[0])
711 brelse(sbp, 0);
712 return (ENOSPC);
713 #endif /* XXXUBC */
714 }
715 #endif /* 0 */
716
717 /*
718 * Allocate an inode in the file system.
719 *
720 * If allocating a directory, use ffs_dirpref to select the inode.
721 * If allocating in a directory, the following hierarchy is followed:
722 * 1) allocate the preferred inode.
723 * 2) allocate an inode in the same cylinder group.
724 * 3) quadradically rehash into other cylinder groups, until an
725 * available inode is located.
726 * If no inode preference is given the following hierarchy is used
727 * to allocate an inode:
728 * 1) allocate an inode in cylinder group 0.
729 * 2) quadradically rehash into other cylinder groups, until an
730 * available inode is located.
731 *
732 * => um_lock not held upon entry or return
733 */
734 int
735 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
736 struct vnode **vpp)
737 {
738 struct ufsmount *ump;
739 struct inode *pip;
740 struct fs *fs;
741 struct inode *ip;
742 struct timespec ts;
743 ino_t ino, ipref;
744 int cg, error;
745
746 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
747
748 *vpp = NULL;
749 pip = VTOI(pvp);
750 fs = pip->i_fs;
751 ump = pip->i_ump;
752
753 error = UFS_WAPBL_BEGIN(pvp->v_mount);
754 if (error) {
755 return error;
756 }
757 mutex_enter(&ump->um_lock);
758 if (fs->fs_cstotal.cs_nifree == 0)
759 goto noinodes;
760
761 if ((mode & IFMT) == IFDIR)
762 ipref = ffs_dirpref(pip);
763 else
764 ipref = pip->i_number;
765 if (ipref >= fs->fs_ncg * fs->fs_ipg)
766 ipref = 0;
767 cg = ino_to_cg(fs, ipref);
768 /*
769 * Track number of dirs created one after another
770 * in a same cg without intervening by files.
771 */
772 if ((mode & IFMT) == IFDIR) {
773 if (fs->fs_contigdirs[cg] < 255)
774 fs->fs_contigdirs[cg]++;
775 } else {
776 if (fs->fs_contigdirs[cg] > 0)
777 fs->fs_contigdirs[cg]--;
778 }
779 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
780 if (ino == 0)
781 goto noinodes;
782 UFS_WAPBL_END(pvp->v_mount);
783 error = VFS_VGET(pvp->v_mount, ino, vpp);
784 if (error) {
785 int err;
786 err = UFS_WAPBL_BEGIN(pvp->v_mount);
787 if (err == 0)
788 ffs_vfree(pvp, ino, mode);
789 if (err == 0)
790 UFS_WAPBL_END(pvp->v_mount);
791 return (error);
792 }
793 KASSERT((*vpp)->v_type == VNON);
794 ip = VTOI(*vpp);
795 if (ip->i_mode) {
796 #if 0
797 printf("mode = 0%o, inum = %d, fs = %s\n",
798 ip->i_mode, ip->i_number, fs->fs_fsmnt);
799 #else
800 printf("dmode %x mode %x dgen %x gen %x\n",
801 DIP(ip, mode), ip->i_mode,
802 DIP(ip, gen), ip->i_gen);
803 printf("size %llx blocks %llx\n",
804 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
805 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
806 (unsigned long long)ipref);
807 #if 0
808 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
809 (int)fs->fs_bsize, NOCRED, 0, &bp);
810 #endif
811
812 #endif
813 panic("ffs_valloc: dup alloc");
814 }
815 if (DIP(ip, blocks)) { /* XXX */
816 printf("free inode %s/%llu had %" PRId64 " blocks\n",
817 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
818 DIP_ASSIGN(ip, blocks, 0);
819 }
820 ip->i_flag &= ~IN_SPACECOUNTED;
821 ip->i_flags = 0;
822 DIP_ASSIGN(ip, flags, 0);
823 /*
824 * Set up a new generation number for this inode.
825 */
826 ip->i_gen++;
827 DIP_ASSIGN(ip, gen, ip->i_gen);
828 if (fs->fs_magic == FS_UFS2_MAGIC) {
829 vfs_timestamp(&ts);
830 ip->i_ffs2_birthtime = ts.tv_sec;
831 ip->i_ffs2_birthnsec = ts.tv_nsec;
832 }
833 return (0);
834 noinodes:
835 mutex_exit(&ump->um_lock);
836 UFS_WAPBL_END(pvp->v_mount);
837 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
838 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
839 return (ENOSPC);
840 }
841
842 /*
843 * Find a cylinder group in which to place a directory.
844 *
845 * The policy implemented by this algorithm is to allocate a
846 * directory inode in the same cylinder group as its parent
847 * directory, but also to reserve space for its files inodes
848 * and data. Restrict the number of directories which may be
849 * allocated one after another in the same cylinder group
850 * without intervening allocation of files.
851 *
852 * If we allocate a first level directory then force allocation
853 * in another cylinder group.
854 */
855 static ino_t
856 ffs_dirpref(struct inode *pip)
857 {
858 register struct fs *fs;
859 int cg, prefcg;
860 int64_t dirsize, cgsize, curdsz;
861 int avgifree, avgbfree, avgndir;
862 int minifree, minbfree, maxndir;
863 int mincg, minndir;
864 int maxcontigdirs;
865
866 KASSERT(mutex_owned(&pip->i_ump->um_lock));
867
868 fs = pip->i_fs;
869
870 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
871 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
872 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
873
874 /*
875 * Force allocation in another cg if creating a first level dir.
876 */
877 if (ITOV(pip)->v_vflag & VV_ROOT) {
878 prefcg = random() % fs->fs_ncg;
879 mincg = prefcg;
880 minndir = fs->fs_ipg;
881 for (cg = prefcg; cg < fs->fs_ncg; cg++)
882 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
883 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
884 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
885 mincg = cg;
886 minndir = fs->fs_cs(fs, cg).cs_ndir;
887 }
888 for (cg = 0; cg < prefcg; cg++)
889 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
890 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
891 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
892 mincg = cg;
893 minndir = fs->fs_cs(fs, cg).cs_ndir;
894 }
895 return ((ino_t)(fs->fs_ipg * mincg));
896 }
897
898 /*
899 * Count various limits which used for
900 * optimal allocation of a directory inode.
901 */
902 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
903 minifree = avgifree - fs->fs_ipg / 4;
904 if (minifree < 0)
905 minifree = 0;
906 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
907 if (minbfree < 0)
908 minbfree = 0;
909 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
910 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
911 if (avgndir != 0) {
912 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
913 if (dirsize < curdsz)
914 dirsize = curdsz;
915 }
916 if (cgsize < dirsize * 255)
917 maxcontigdirs = cgsize / dirsize;
918 else
919 maxcontigdirs = 255;
920 if (fs->fs_avgfpdir > 0)
921 maxcontigdirs = min(maxcontigdirs,
922 fs->fs_ipg / fs->fs_avgfpdir);
923 if (maxcontigdirs == 0)
924 maxcontigdirs = 1;
925
926 /*
927 * Limit number of dirs in one cg and reserve space for
928 * regular files, but only if we have no deficit in
929 * inodes or space.
930 */
931 prefcg = ino_to_cg(fs, pip->i_number);
932 for (cg = prefcg; cg < fs->fs_ncg; cg++)
933 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
934 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
935 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
936 if (fs->fs_contigdirs[cg] < maxcontigdirs)
937 return ((ino_t)(fs->fs_ipg * cg));
938 }
939 for (cg = 0; cg < prefcg; cg++)
940 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
941 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
942 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
943 if (fs->fs_contigdirs[cg] < maxcontigdirs)
944 return ((ino_t)(fs->fs_ipg * cg));
945 }
946 /*
947 * This is a backstop when we are deficient in space.
948 */
949 for (cg = prefcg; cg < fs->fs_ncg; cg++)
950 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
951 return ((ino_t)(fs->fs_ipg * cg));
952 for (cg = 0; cg < prefcg; cg++)
953 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
954 break;
955 return ((ino_t)(fs->fs_ipg * cg));
956 }
957
958 /*
959 * Select the desired position for the next block in a file. The file is
960 * logically divided into sections. The first section is composed of the
961 * direct blocks. Each additional section contains fs_maxbpg blocks.
962 *
963 * If no blocks have been allocated in the first section, the policy is to
964 * request a block in the same cylinder group as the inode that describes
965 * the file. If no blocks have been allocated in any other section, the
966 * policy is to place the section in a cylinder group with a greater than
967 * average number of free blocks. An appropriate cylinder group is found
968 * by using a rotor that sweeps the cylinder groups. When a new group of
969 * blocks is needed, the sweep begins in the cylinder group following the
970 * cylinder group from which the previous allocation was made. The sweep
971 * continues until a cylinder group with greater than the average number
972 * of free blocks is found. If the allocation is for the first block in an
973 * indirect block, the information on the previous allocation is unavailable;
974 * here a best guess is made based upon the logical block number being
975 * allocated.
976 *
977 * If a section is already partially allocated, the policy is to
978 * contiguously allocate fs_maxcontig blocks. The end of one of these
979 * contiguous blocks and the beginning of the next is laid out
980 * contigously if possible.
981 *
982 * => um_lock held on entry and exit
983 */
984 daddr_t
985 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
986 int32_t *bap /* XXX ondisk32 */)
987 {
988 struct fs *fs;
989 int cg;
990 int avgbfree, startcg;
991
992 KASSERT(mutex_owned(&ip->i_ump->um_lock));
993
994 fs = ip->i_fs;
995 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
996 if (lbn < NDADDR + NINDIR(fs)) {
997 cg = ino_to_cg(fs, ip->i_number);
998 return (fs->fs_fpg * cg + fs->fs_frag);
999 }
1000 /*
1001 * Find a cylinder with greater than average number of
1002 * unused data blocks.
1003 */
1004 if (indx == 0 || bap[indx - 1] == 0)
1005 startcg =
1006 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1007 else
1008 startcg = dtog(fs,
1009 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1010 startcg %= fs->fs_ncg;
1011 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1012 for (cg = startcg; cg < fs->fs_ncg; cg++)
1013 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1014 return (fs->fs_fpg * cg + fs->fs_frag);
1015 }
1016 for (cg = 0; cg < startcg; cg++)
1017 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1018 return (fs->fs_fpg * cg + fs->fs_frag);
1019 }
1020 return (0);
1021 }
1022 /*
1023 * We just always try to lay things out contiguously.
1024 */
1025 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1026 }
1027
1028 daddr_t
1029 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
1030 {
1031 struct fs *fs;
1032 int cg;
1033 int avgbfree, startcg;
1034
1035 KASSERT(mutex_owned(&ip->i_ump->um_lock));
1036
1037 fs = ip->i_fs;
1038 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1039 if (lbn < NDADDR + NINDIR(fs)) {
1040 cg = ino_to_cg(fs, ip->i_number);
1041 return (fs->fs_fpg * cg + fs->fs_frag);
1042 }
1043 /*
1044 * Find a cylinder with greater than average number of
1045 * unused data blocks.
1046 */
1047 if (indx == 0 || bap[indx - 1] == 0)
1048 startcg =
1049 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1050 else
1051 startcg = dtog(fs,
1052 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1053 startcg %= fs->fs_ncg;
1054 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1055 for (cg = startcg; cg < fs->fs_ncg; cg++)
1056 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1057 return (fs->fs_fpg * cg + fs->fs_frag);
1058 }
1059 for (cg = 0; cg < startcg; cg++)
1060 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1061 return (fs->fs_fpg * cg + fs->fs_frag);
1062 }
1063 return (0);
1064 }
1065 /*
1066 * We just always try to lay things out contiguously.
1067 */
1068 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1069 }
1070
1071
1072 /*
1073 * Implement the cylinder overflow algorithm.
1074 *
1075 * The policy implemented by this algorithm is:
1076 * 1) allocate the block in its requested cylinder group.
1077 * 2) quadradically rehash on the cylinder group number.
1078 * 3) brute force search for a free block.
1079 *
1080 * => called with um_lock held
1081 * => returns with um_lock released on success, held on failure
1082 * (*allocator releases lock on success, retains lock on failure)
1083 */
1084 /*VARARGS5*/
1085 static daddr_t
1086 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1087 int size /* size for data blocks, mode for inodes */,
1088 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
1089 {
1090 struct fs *fs;
1091 daddr_t result;
1092 int i, icg = cg;
1093
1094 fs = ip->i_fs;
1095 /*
1096 * 1: preferred cylinder group
1097 */
1098 result = (*allocator)(ip, cg, pref, size);
1099 if (result)
1100 return (result);
1101 /*
1102 * 2: quadratic rehash
1103 */
1104 for (i = 1; i < fs->fs_ncg; i *= 2) {
1105 cg += i;
1106 if (cg >= fs->fs_ncg)
1107 cg -= fs->fs_ncg;
1108 result = (*allocator)(ip, cg, 0, size);
1109 if (result)
1110 return (result);
1111 }
1112 /*
1113 * 3: brute force search
1114 * Note that we start at i == 2, since 0 was checked initially,
1115 * and 1 is always checked in the quadratic rehash.
1116 */
1117 cg = (icg + 2) % fs->fs_ncg;
1118 for (i = 2; i < fs->fs_ncg; i++) {
1119 result = (*allocator)(ip, cg, 0, size);
1120 if (result)
1121 return (result);
1122 cg++;
1123 if (cg == fs->fs_ncg)
1124 cg = 0;
1125 }
1126 return (0);
1127 }
1128
1129 /*
1130 * Determine whether a fragment can be extended.
1131 *
1132 * Check to see if the necessary fragments are available, and
1133 * if they are, allocate them.
1134 *
1135 * => called with um_lock held
1136 * => returns with um_lock released on success, held on failure
1137 */
1138 static daddr_t
1139 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1140 {
1141 struct ufsmount *ump;
1142 struct fs *fs;
1143 struct cg *cgp;
1144 struct buf *bp;
1145 daddr_t bno;
1146 int frags, bbase;
1147 int i, error;
1148 u_int8_t *blksfree;
1149
1150 fs = ip->i_fs;
1151 ump = ip->i_ump;
1152
1153 KASSERT(mutex_owned(&ump->um_lock));
1154
1155 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1156 return (0);
1157 frags = numfrags(fs, nsize);
1158 bbase = fragnum(fs, bprev);
1159 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1160 /* cannot extend across a block boundary */
1161 return (0);
1162 }
1163 mutex_exit(&ump->um_lock);
1164 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1165 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1166 if (error)
1167 goto fail;
1168 cgp = (struct cg *)bp->b_data;
1169 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1170 goto fail;
1171 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1172 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1173 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1174 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1175 bno = dtogd(fs, bprev);
1176 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1177 for (i = numfrags(fs, osize); i < frags; i++)
1178 if (isclr(blksfree, bno + i))
1179 goto fail;
1180 /*
1181 * the current fragment can be extended
1182 * deduct the count on fragment being extended into
1183 * increase the count on the remaining fragment (if any)
1184 * allocate the extended piece
1185 */
1186 for (i = frags; i < fs->fs_frag - bbase; i++)
1187 if (isclr(blksfree, bno + i))
1188 break;
1189 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1190 if (i != frags)
1191 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1192 mutex_enter(&ump->um_lock);
1193 for (i = numfrags(fs, osize); i < frags; i++) {
1194 clrbit(blksfree, bno + i);
1195 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1196 fs->fs_cstotal.cs_nffree--;
1197 fs->fs_cs(fs, cg).cs_nffree--;
1198 }
1199 fs->fs_fmod = 1;
1200 ACTIVECG_CLR(fs, cg);
1201 mutex_exit(&ump->um_lock);
1202 if (DOINGSOFTDEP(ITOV(ip)))
1203 softdep_setup_blkmapdep(bp, fs, bprev);
1204 bdwrite(bp);
1205 return (bprev);
1206
1207 fail:
1208 brelse(bp, 0);
1209 mutex_enter(&ump->um_lock);
1210 return (0);
1211 }
1212
1213 /*
1214 * Determine whether a block can be allocated.
1215 *
1216 * Check to see if a block of the appropriate size is available,
1217 * and if it is, allocate it.
1218 */
1219 static daddr_t
1220 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1221 {
1222 struct ufsmount *ump;
1223 struct fs *fs = ip->i_fs;
1224 struct cg *cgp;
1225 struct buf *bp;
1226 int32_t bno;
1227 daddr_t blkno;
1228 int error, frags, allocsiz, i;
1229 u_int8_t *blksfree;
1230 #ifdef FFS_EI
1231 const int needswap = UFS_FSNEEDSWAP(fs);
1232 #endif
1233
1234 ump = ip->i_ump;
1235
1236 KASSERT(mutex_owned(&ump->um_lock));
1237
1238 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1239 return (0);
1240 mutex_exit(&ump->um_lock);
1241 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1242 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1243 if (error)
1244 goto fail;
1245 cgp = (struct cg *)bp->b_data;
1246 if (!cg_chkmagic(cgp, needswap) ||
1247 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1248 goto fail;
1249 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1250 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1251 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1252 cgp->cg_time = ufs_rw64(time_second, needswap);
1253 if (size == fs->fs_bsize) {
1254 mutex_enter(&ump->um_lock);
1255 blkno = ffs_alloccgblk(ip, bp, bpref);
1256 ACTIVECG_CLR(fs, cg);
1257 mutex_exit(&ump->um_lock);
1258 bdwrite(bp);
1259 return (blkno);
1260 }
1261 /*
1262 * check to see if any fragments are already available
1263 * allocsiz is the size which will be allocated, hacking
1264 * it down to a smaller size if necessary
1265 */
1266 blksfree = cg_blksfree(cgp, needswap);
1267 frags = numfrags(fs, size);
1268 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1269 if (cgp->cg_frsum[allocsiz] != 0)
1270 break;
1271 if (allocsiz == fs->fs_frag) {
1272 /*
1273 * no fragments were available, so a block will be
1274 * allocated, and hacked up
1275 */
1276 if (cgp->cg_cs.cs_nbfree == 0)
1277 goto fail;
1278 mutex_enter(&ump->um_lock);
1279 blkno = ffs_alloccgblk(ip, bp, bpref);
1280 bno = dtogd(fs, blkno);
1281 for (i = frags; i < fs->fs_frag; i++)
1282 setbit(blksfree, bno + i);
1283 i = fs->fs_frag - frags;
1284 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1285 fs->fs_cstotal.cs_nffree += i;
1286 fs->fs_cs(fs, cg).cs_nffree += i;
1287 fs->fs_fmod = 1;
1288 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1289 ACTIVECG_CLR(fs, cg);
1290 mutex_exit(&ump->um_lock);
1291 bdwrite(bp);
1292 return (blkno);
1293 }
1294 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1295 #if 0
1296 /*
1297 * XXX fvdl mapsearch will panic, and never return -1
1298 * also: returning NULL as daddr_t ?
1299 */
1300 if (bno < 0)
1301 goto fail;
1302 #endif
1303 for (i = 0; i < frags; i++)
1304 clrbit(blksfree, bno + i);
1305 mutex_enter(&ump->um_lock);
1306 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1307 fs->fs_cstotal.cs_nffree -= frags;
1308 fs->fs_cs(fs, cg).cs_nffree -= frags;
1309 fs->fs_fmod = 1;
1310 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1311 if (frags != allocsiz)
1312 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1313 blkno = cg * fs->fs_fpg + bno;
1314 ACTIVECG_CLR(fs, cg);
1315 mutex_exit(&ump->um_lock);
1316 if (DOINGSOFTDEP(ITOV(ip)))
1317 softdep_setup_blkmapdep(bp, fs, blkno);
1318 bdwrite(bp);
1319 return blkno;
1320
1321 fail:
1322 brelse(bp, 0);
1323 mutex_enter(&ump->um_lock);
1324 return (0);
1325 }
1326
1327 /*
1328 * Allocate a block in a cylinder group.
1329 *
1330 * This algorithm implements the following policy:
1331 * 1) allocate the requested block.
1332 * 2) allocate a rotationally optimal block in the same cylinder.
1333 * 3) allocate the next available block on the block rotor for the
1334 * specified cylinder group.
1335 * Note that this routine only allocates fs_bsize blocks; these
1336 * blocks may be fragmented by the routine that allocates them.
1337 */
1338 static daddr_t
1339 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1340 {
1341 struct ufsmount *ump;
1342 struct fs *fs = ip->i_fs;
1343 struct cg *cgp;
1344 daddr_t blkno;
1345 int32_t bno;
1346 u_int8_t *blksfree;
1347 #ifdef FFS_EI
1348 const int needswap = UFS_FSNEEDSWAP(fs);
1349 #endif
1350
1351 ump = ip->i_ump;
1352
1353 KASSERT(mutex_owned(&ump->um_lock));
1354
1355 cgp = (struct cg *)bp->b_data;
1356 blksfree = cg_blksfree(cgp, needswap);
1357 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1358 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1359 } else {
1360 bpref = blknum(fs, bpref);
1361 bno = dtogd(fs, bpref);
1362 /*
1363 * if the requested block is available, use it
1364 */
1365 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1366 goto gotit;
1367 }
1368 /*
1369 * Take the next available block in this cylinder group.
1370 */
1371 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1372 if (bno < 0)
1373 return (0);
1374 cgp->cg_rotor = ufs_rw32(bno, needswap);
1375 gotit:
1376 blkno = fragstoblks(fs, bno);
1377 ffs_clrblock(fs, blksfree, blkno);
1378 ffs_clusteracct(fs, cgp, blkno, -1);
1379 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1380 fs->fs_cstotal.cs_nbfree--;
1381 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1382 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1383 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1384 int cylno;
1385 cylno = old_cbtocylno(fs, bno);
1386 KASSERT(cylno >= 0);
1387 KASSERT(cylno < fs->fs_old_ncyl);
1388 KASSERT(old_cbtorpos(fs, bno) >= 0);
1389 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1390 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1391 needswap);
1392 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1393 }
1394 fs->fs_fmod = 1;
1395 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1396 if (DOINGSOFTDEP(ITOV(ip))) {
1397 mutex_exit(&ump->um_lock);
1398 softdep_setup_blkmapdep(bp, fs, blkno);
1399 mutex_enter(&ump->um_lock);
1400 }
1401 return (blkno);
1402 }
1403
1404 #ifdef XXXUBC
1405 /*
1406 * Determine whether a cluster can be allocated.
1407 *
1408 * We do not currently check for optimal rotational layout if there
1409 * are multiple choices in the same cylinder group. Instead we just
1410 * take the first one that we find following bpref.
1411 */
1412
1413 /*
1414 * This function must be fixed for UFS2 if re-enabled.
1415 */
1416 static daddr_t
1417 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1418 {
1419 struct ufsmount *ump;
1420 struct fs *fs;
1421 struct cg *cgp;
1422 struct buf *bp;
1423 int i, got, run, bno, bit, map;
1424 u_char *mapp;
1425 int32_t *lp;
1426
1427 fs = ip->i_fs;
1428 ump = ip->i_ump;
1429
1430 KASSERT(mutex_owned(&ump->um_lock));
1431 if (fs->fs_maxcluster[cg] < len)
1432 return (0);
1433 mutex_exit(&ump->um_lock);
1434 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1435 NOCRED, 0, &bp))
1436 goto fail;
1437 cgp = (struct cg *)bp->b_data;
1438 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1439 goto fail;
1440 /*
1441 * Check to see if a cluster of the needed size (or bigger) is
1442 * available in this cylinder group.
1443 */
1444 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1445 for (i = len; i <= fs->fs_contigsumsize; i++)
1446 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1447 break;
1448 if (i > fs->fs_contigsumsize) {
1449 /*
1450 * This is the first time looking for a cluster in this
1451 * cylinder group. Update the cluster summary information
1452 * to reflect the true maximum sized cluster so that
1453 * future cluster allocation requests can avoid reading
1454 * the cylinder group map only to find no clusters.
1455 */
1456 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1457 for (i = len - 1; i > 0; i--)
1458 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1459 break;
1460 mutex_enter(&ump->um_lock);
1461 fs->fs_maxcluster[cg] = i;
1462 mutex_exit(&ump->um_lock);
1463 goto fail;
1464 }
1465 /*
1466 * Search the cluster map to find a big enough cluster.
1467 * We take the first one that we find, even if it is larger
1468 * than we need as we prefer to get one close to the previous
1469 * block allocation. We do not search before the current
1470 * preference point as we do not want to allocate a block
1471 * that is allocated before the previous one (as we will
1472 * then have to wait for another pass of the elevator
1473 * algorithm before it will be read). We prefer to fail and
1474 * be recalled to try an allocation in the next cylinder group.
1475 */
1476 if (dtog(fs, bpref) != cg)
1477 bpref = 0;
1478 else
1479 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1480 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1481 map = *mapp++;
1482 bit = 1 << (bpref % NBBY);
1483 for (run = 0, got = bpref;
1484 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1485 if ((map & bit) == 0) {
1486 run = 0;
1487 } else {
1488 run++;
1489 if (run == len)
1490 break;
1491 }
1492 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1493 bit <<= 1;
1494 } else {
1495 map = *mapp++;
1496 bit = 1;
1497 }
1498 }
1499 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1500 goto fail;
1501 /*
1502 * Allocate the cluster that we have found.
1503 */
1504 #ifdef DIAGNOSTIC
1505 for (i = 1; i <= len; i++)
1506 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1507 got - run + i))
1508 panic("ffs_clusteralloc: map mismatch");
1509 #endif
1510 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1511 if (dtog(fs, bno) != cg)
1512 panic("ffs_clusteralloc: allocated out of group");
1513 len = blkstofrags(fs, len);
1514 mutex_enter(&ump->um_lock);
1515 for (i = 0; i < len; i += fs->fs_frag)
1516 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1517 panic("ffs_clusteralloc: lost block");
1518 ACTIVECG_CLR(fs, cg);
1519 mutex_exit(&ump->um_lock);
1520 bdwrite(bp);
1521 return (bno);
1522
1523 fail:
1524 brelse(bp, 0);
1525 mutex_enter(&ump->um_lock);
1526 return (0);
1527 }
1528 #endif /* XXXUBC */
1529
1530 /*
1531 * Determine whether an inode can be allocated.
1532 *
1533 * Check to see if an inode is available, and if it is,
1534 * allocate it using the following policy:
1535 * 1) allocate the requested inode.
1536 * 2) allocate the next available inode after the requested
1537 * inode in the specified cylinder group.
1538 */
1539 static daddr_t
1540 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1541 {
1542 struct ufsmount *ump = ip->i_ump;
1543 struct fs *fs = ip->i_fs;
1544 struct cg *cgp;
1545 struct buf *bp, *ibp;
1546 u_int8_t *inosused;
1547 int error, start, len, loc, map, i;
1548 int32_t initediblk;
1549 struct ufs2_dinode *dp2;
1550 #ifdef FFS_EI
1551 const int needswap = UFS_FSNEEDSWAP(fs);
1552 #endif
1553
1554 KASSERT(mutex_owned(&ump->um_lock));
1555 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1556
1557 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1558 return (0);
1559 mutex_exit(&ump->um_lock);
1560 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1561 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1562 if (error)
1563 goto fail;
1564 cgp = (struct cg *)bp->b_data;
1565 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1566 goto fail;
1567 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1568 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1569 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1570 cgp->cg_time = ufs_rw64(time_second, needswap);
1571 inosused = cg_inosused(cgp, needswap);
1572 if (ipref) {
1573 ipref %= fs->fs_ipg;
1574 if (isclr(inosused, ipref))
1575 goto gotit;
1576 }
1577 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1578 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1579 NBBY);
1580 loc = skpc(0xff, len, &inosused[start]);
1581 if (loc == 0) {
1582 len = start + 1;
1583 start = 0;
1584 loc = skpc(0xff, len, &inosused[0]);
1585 if (loc == 0) {
1586 printf("cg = %d, irotor = %d, fs = %s\n",
1587 cg, ufs_rw32(cgp->cg_irotor, needswap),
1588 fs->fs_fsmnt);
1589 panic("ffs_nodealloccg: map corrupted");
1590 /* NOTREACHED */
1591 }
1592 }
1593 i = start + len - loc;
1594 map = inosused[i];
1595 ipref = i * NBBY;
1596 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1597 if ((map & i) == 0) {
1598 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1599 goto gotit;
1600 }
1601 }
1602 printf("fs = %s\n", fs->fs_fsmnt);
1603 panic("ffs_nodealloccg: block not in map");
1604 /* NOTREACHED */
1605 gotit:
1606 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1607 mode);
1608 /*
1609 * Check to see if we need to initialize more inodes.
1610 */
1611 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1612 ibp = NULL;
1613 if (fs->fs_magic == FS_UFS2_MAGIC &&
1614 ipref + INOPB(fs) > initediblk &&
1615 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1616 if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
1617 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1618 FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
1619 goto fail;
1620 memset(ibp->b_data, 0, fs->fs_bsize);
1621 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1622 for (i = 0; i < INOPB(fs); i++) {
1623 /*
1624 * Don't bother to swap, it's supposed to be
1625 * random, after all.
1626 */
1627 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1628 dp2++;
1629 }
1630 initediblk += INOPB(fs);
1631 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1632 }
1633
1634 mutex_enter(&ump->um_lock);
1635 ACTIVECG_CLR(fs, cg);
1636 setbit(inosused, ipref);
1637 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1638 fs->fs_cstotal.cs_nifree--;
1639 fs->fs_cs(fs, cg).cs_nifree--;
1640 fs->fs_fmod = 1;
1641 if ((mode & IFMT) == IFDIR) {
1642 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1643 fs->fs_cstotal.cs_ndir++;
1644 fs->fs_cs(fs, cg).cs_ndir++;
1645 }
1646 mutex_exit(&ump->um_lock);
1647 if (DOINGSOFTDEP(ITOV(ip)))
1648 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1649 bdwrite(bp);
1650 if (ibp != NULL)
1651 bawrite(ibp);
1652 return (cg * fs->fs_ipg + ipref);
1653 fail:
1654 brelse(bp, 0);
1655 mutex_enter(&ump->um_lock);
1656 return (0);
1657 }
1658
1659 /*
1660 * Allocate a block or fragment.
1661 *
1662 * The specified block or fragment is removed from the
1663 * free map, possibly fragmenting a block in the process.
1664 *
1665 * This implementation should mirror fs_blkfree
1666 *
1667 * => um_lock not held on entry or exit
1668 */
1669 int
1670 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1671 {
1672 struct ufsmount *ump = ip->i_ump;
1673 struct fs *fs = ip->i_fs;
1674 struct cg *cgp;
1675 struct buf *bp;
1676 int32_t fragno, cgbno;
1677 int i, error, cg, blk, frags, bbase;
1678 u_int8_t *blksfree;
1679 const int needswap = UFS_FSNEEDSWAP(fs);
1680
1681 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1682 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1683 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1684 "size = %ld, fs = %s\n",
1685 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1686 panic("blkalloc: bad size");
1687 }
1688 cg = dtog(fs, bno);
1689 if (bno >= fs->fs_size) {
1690 printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1691 ip->i_number);
1692 ffs_fserr(fs, ip->i_uid, "bad block");
1693 return EINVAL;
1694 }
1695 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1696 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1697 if (error) {
1698 brelse(bp, 0);
1699 return error;
1700 }
1701 cgp = (struct cg *)bp->b_data;
1702 if (!cg_chkmagic(cgp, needswap)) {
1703 brelse(bp, 0);
1704 return EIO;
1705 }
1706 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1707 cgp->cg_time = ufs_rw64(time_second, needswap);
1708 cgbno = dtogd(fs, bno);
1709 blksfree = cg_blksfree(cgp, needswap);
1710
1711 mutex_enter(&ump->um_lock);
1712 if (size == fs->fs_bsize) {
1713 fragno = fragstoblks(fs, cgbno);
1714 if (!ffs_isblock(fs, blksfree, fragno)) {
1715 mutex_exit(&ump->um_lock);
1716 brelse(bp, 0);
1717 return EBUSY;
1718 }
1719 ffs_clrblock(fs, blksfree, fragno);
1720 ffs_clusteracct(fs, cgp, fragno, -1);
1721 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1722 fs->fs_cstotal.cs_nbfree--;
1723 fs->fs_cs(fs, cg).cs_nbfree--;
1724 } else {
1725 bbase = cgbno - fragnum(fs, cgbno);
1726
1727 frags = numfrags(fs, size);
1728 for (i = 0; i < frags; i++) {
1729 if (isclr(blksfree, cgbno + i)) {
1730 mutex_exit(&ump->um_lock);
1731 brelse(bp, 0);
1732 return EBUSY;
1733 }
1734 }
1735 /*
1736 * if a complete block is being split, account for it
1737 */
1738 fragno = fragstoblks(fs, bbase);
1739 if (ffs_isblock(fs, blksfree, fragno)) {
1740 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1741 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1742 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1743 ffs_clusteracct(fs, cgp, fragno, -1);
1744 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1745 fs->fs_cstotal.cs_nbfree--;
1746 fs->fs_cs(fs, cg).cs_nbfree--;
1747 }
1748 /*
1749 * decrement the counts associated with the old frags
1750 */
1751 blk = blkmap(fs, blksfree, bbase);
1752 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1753 /*
1754 * allocate the fragment
1755 */
1756 for (i = 0; i < frags; i++) {
1757 clrbit(blksfree, cgbno + i);
1758 }
1759 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1760 fs->fs_cstotal.cs_nffree -= i;
1761 fs->fs_cs(fs, cg).cs_nffree -= i;
1762 /*
1763 * add back in counts associated with the new frags
1764 */
1765 blk = blkmap(fs, blksfree, bbase);
1766 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1767 }
1768 fs->fs_fmod = 1;
1769 ACTIVECG_CLR(fs, cg);
1770 mutex_exit(&ump->um_lock);
1771 bdwrite(bp);
1772 return 0;
1773 }
1774
1775 /*
1776 * Free a block or fragment.
1777 *
1778 * The specified block or fragment is placed back in the
1779 * free map. If a fragment is deallocated, a possible
1780 * block reassembly is checked.
1781 *
1782 * => um_lock not held on entry or exit
1783 */
1784 void
1785 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1786 ino_t inum)
1787 {
1788 struct cg *cgp;
1789 struct buf *bp;
1790 struct ufsmount *ump;
1791 int32_t fragno, cgbno;
1792 daddr_t cgblkno;
1793 int i, error, cg, blk, frags, bbase;
1794 u_int8_t *blksfree;
1795 dev_t dev;
1796 const int needswap = UFS_FSNEEDSWAP(fs);
1797
1798 cg = dtog(fs, bno);
1799 if (devvp->v_type != VBLK) {
1800 /* devvp is a snapshot */
1801 dev = VTOI(devvp)->i_devvp->v_rdev;
1802 ump = VFSTOUFS(devvp->v_mount);
1803 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1804 } else {
1805 dev = devvp->v_rdev;
1806 ump = VFSTOUFS(devvp->v_specmountpoint);
1807 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1808 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1809 return;
1810 }
1811 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1812 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1813 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1814 "size = %ld, fs = %s\n",
1815 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1816 panic("blkfree: bad size");
1817 }
1818
1819 if (bno >= fs->fs_size) {
1820 printf("bad block %" PRId64 ", ino %llu\n", bno,
1821 (unsigned long long)inum);
1822 ffs_fserr(fs, inum, "bad block");
1823 return;
1824 }
1825 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1826 NOCRED, B_MODIFY, &bp);
1827 if (error) {
1828 brelse(bp, 0);
1829 return;
1830 }
1831 cgp = (struct cg *)bp->b_data;
1832 if (!cg_chkmagic(cgp, needswap)) {
1833 brelse(bp, 0);
1834 return;
1835 }
1836 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1837 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1838 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1839 cgp->cg_time = ufs_rw64(time_second, needswap);
1840 cgbno = dtogd(fs, bno);
1841 blksfree = cg_blksfree(cgp, needswap);
1842 mutex_enter(&ump->um_lock);
1843 if (size == fs->fs_bsize) {
1844 fragno = fragstoblks(fs, cgbno);
1845 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1846 if (devvp->v_type != VBLK) {
1847 /* devvp is a snapshot */
1848 mutex_exit(&ump->um_lock);
1849 brelse(bp, 0);
1850 return;
1851 }
1852 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1853 dev, bno, fs->fs_fsmnt);
1854 panic("blkfree: freeing free block");
1855 }
1856 ffs_setblock(fs, blksfree, fragno);
1857 ffs_clusteracct(fs, cgp, fragno, 1);
1858 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1859 fs->fs_cstotal.cs_nbfree++;
1860 fs->fs_cs(fs, cg).cs_nbfree++;
1861 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1862 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1863 i = old_cbtocylno(fs, cgbno);
1864 KASSERT(i >= 0);
1865 KASSERT(i < fs->fs_old_ncyl);
1866 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1867 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1868 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1869 needswap);
1870 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1871 }
1872 } else {
1873 bbase = cgbno - fragnum(fs, cgbno);
1874 /*
1875 * decrement the counts associated with the old frags
1876 */
1877 blk = blkmap(fs, blksfree, bbase);
1878 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1879 /*
1880 * deallocate the fragment
1881 */
1882 frags = numfrags(fs, size);
1883 for (i = 0; i < frags; i++) {
1884 if (isset(blksfree, cgbno + i)) {
1885 printf("dev = 0x%x, block = %" PRId64
1886 ", fs = %s\n",
1887 dev, bno + i, fs->fs_fsmnt);
1888 panic("blkfree: freeing free frag");
1889 }
1890 setbit(blksfree, cgbno + i);
1891 }
1892 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1893 fs->fs_cstotal.cs_nffree += i;
1894 fs->fs_cs(fs, cg).cs_nffree += i;
1895 /*
1896 * add back in counts associated with the new frags
1897 */
1898 blk = blkmap(fs, blksfree, bbase);
1899 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1900 /*
1901 * if a complete block has been reassembled, account for it
1902 */
1903 fragno = fragstoblks(fs, bbase);
1904 if (ffs_isblock(fs, blksfree, fragno)) {
1905 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1906 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1907 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1908 ffs_clusteracct(fs, cgp, fragno, 1);
1909 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1910 fs->fs_cstotal.cs_nbfree++;
1911 fs->fs_cs(fs, cg).cs_nbfree++;
1912 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1913 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1914 i = old_cbtocylno(fs, bbase);
1915 KASSERT(i >= 0);
1916 KASSERT(i < fs->fs_old_ncyl);
1917 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1918 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1919 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1920 bbase)], 1, needswap);
1921 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1922 }
1923 }
1924 }
1925 fs->fs_fmod = 1;
1926 ACTIVECG_CLR(fs, cg);
1927 mutex_exit(&ump->um_lock);
1928 bdwrite(bp);
1929 }
1930
1931 #if defined(DIAGNOSTIC) || defined(DEBUG)
1932 #ifdef XXXUBC
1933 /*
1934 * Verify allocation of a block or fragment. Returns true if block or
1935 * fragment is allocated, false if it is free.
1936 */
1937 static int
1938 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1939 {
1940 struct fs *fs;
1941 struct cg *cgp;
1942 struct buf *bp;
1943 int i, error, frags, free;
1944
1945 fs = ip->i_fs;
1946 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1947 printf("bsize = %d, size = %ld, fs = %s\n",
1948 fs->fs_bsize, size, fs->fs_fsmnt);
1949 panic("checkblk: bad size");
1950 }
1951 if (bno >= fs->fs_size)
1952 panic("checkblk: bad block %d", bno);
1953 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1954 (int)fs->fs_cgsize, NOCRED, 0, &bp);
1955 if (error) {
1956 brelse(bp, 0);
1957 return 0;
1958 }
1959 cgp = (struct cg *)bp->b_data;
1960 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1961 brelse(bp, 0);
1962 return 0;
1963 }
1964 bno = dtogd(fs, bno);
1965 if (size == fs->fs_bsize) {
1966 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1967 fragstoblks(fs, bno));
1968 } else {
1969 frags = numfrags(fs, size);
1970 for (free = 0, i = 0; i < frags; i++)
1971 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1972 free++;
1973 if (free != 0 && free != frags)
1974 panic("checkblk: partially free fragment");
1975 }
1976 brelse(bp, 0);
1977 return (!free);
1978 }
1979 #endif /* XXXUBC */
1980 #endif /* DIAGNOSTIC */
1981
1982 /*
1983 * Free an inode.
1984 */
1985 int
1986 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1987 {
1988
1989 if (DOINGSOFTDEP(vp)) {
1990 softdep_freefile(vp, ino, mode);
1991 return (0);
1992 }
1993 return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1994 }
1995
1996 /*
1997 * Do the actual free operation.
1998 * The specified inode is placed back in the free map.
1999 *
2000 * => um_lock not held on entry or exit
2001 */
2002 int
2003 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
2004 {
2005 struct ufsmount *ump;
2006 struct cg *cgp;
2007 struct buf *bp;
2008 int error, cg;
2009 daddr_t cgbno;
2010 u_int8_t *inosused;
2011 dev_t dev;
2012 #ifdef FFS_EI
2013 const int needswap = UFS_FSNEEDSWAP(fs);
2014 #endif
2015
2016 UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
2017
2018 cg = ino_to_cg(fs, ino);
2019 if (devvp->v_type != VBLK) {
2020 /* devvp is a snapshot */
2021 dev = VTOI(devvp)->i_devvp->v_rdev;
2022 ump = VFSTOUFS(devvp->v_mount);
2023 cgbno = fragstoblks(fs, cgtod(fs, cg));
2024 } else {
2025 dev = devvp->v_rdev;
2026 ump = VFSTOUFS(devvp->v_specmountpoint);
2027 cgbno = fsbtodb(fs, cgtod(fs, cg));
2028 }
2029 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2030 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
2031 dev, (unsigned long long)ino, fs->fs_fsmnt);
2032 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2033 NOCRED, B_MODIFY, &bp);
2034 if (error) {
2035 brelse(bp, 0);
2036 return (error);
2037 }
2038 cgp = (struct cg *)bp->b_data;
2039 if (!cg_chkmagic(cgp, needswap)) {
2040 brelse(bp, 0);
2041 return (0);
2042 }
2043 cgp->cg_old_time = ufs_rw32(time_second, needswap);
2044 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2045 (fs->fs_old_flags & FS_FLAGS_UPDATED))
2046 cgp->cg_time = ufs_rw64(time_second, needswap);
2047 inosused = cg_inosused(cgp, needswap);
2048 ino %= fs->fs_ipg;
2049 if (isclr(inosused, ino)) {
2050 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
2051 dev, (unsigned long long)ino + cg * fs->fs_ipg,
2052 fs->fs_fsmnt);
2053 if (fs->fs_ronly == 0)
2054 panic("ifree: freeing free inode");
2055 }
2056 clrbit(inosused, ino);
2057 UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
2058 ino + cg * fs->fs_ipg, mode);
2059 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2060 cgp->cg_irotor = ufs_rw32(ino, needswap);
2061 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2062 mutex_enter(&ump->um_lock);
2063 fs->fs_cstotal.cs_nifree++;
2064 fs->fs_cs(fs, cg).cs_nifree++;
2065 if ((mode & IFMT) == IFDIR) {
2066 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2067 fs->fs_cstotal.cs_ndir--;
2068 fs->fs_cs(fs, cg).cs_ndir--;
2069 }
2070 fs->fs_fmod = 1;
2071 ACTIVECG_CLR(fs, cg);
2072 mutex_exit(&ump->um_lock);
2073 bdwrite(bp);
2074 return (0);
2075 }
2076
2077 /*
2078 * Check to see if a file is free.
2079 */
2080 int
2081 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2082 {
2083 struct cg *cgp;
2084 struct buf *bp;
2085 daddr_t cgbno;
2086 int ret, cg;
2087 u_int8_t *inosused;
2088
2089 cg = ino_to_cg(fs, ino);
2090 if (devvp->v_type != VBLK) {
2091 /* devvp is a snapshot */
2092 cgbno = fragstoblks(fs, cgtod(fs, cg));
2093 } else
2094 cgbno = fsbtodb(fs, cgtod(fs, cg));
2095 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2096 return 1;
2097 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2098 brelse(bp, 0);
2099 return 1;
2100 }
2101 cgp = (struct cg *)bp->b_data;
2102 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2103 brelse(bp, 0);
2104 return 1;
2105 }
2106 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2107 ino %= fs->fs_ipg;
2108 ret = isclr(inosused, ino);
2109 brelse(bp, 0);
2110 return ret;
2111 }
2112
2113 /*
2114 * Find a block of the specified size in the specified cylinder group.
2115 *
2116 * It is a panic if a request is made to find a block if none are
2117 * available.
2118 */
2119 static int32_t
2120 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2121 {
2122 int32_t bno;
2123 int start, len, loc, i;
2124 int blk, field, subfield, pos;
2125 int ostart, olen;
2126 u_int8_t *blksfree;
2127 #ifdef FFS_EI
2128 const int needswap = UFS_FSNEEDSWAP(fs);
2129 #endif
2130
2131 /* KASSERT(mutex_owned(&ump->um_lock)); */
2132
2133 /*
2134 * find the fragment by searching through the free block
2135 * map for an appropriate bit pattern
2136 */
2137 if (bpref)
2138 start = dtogd(fs, bpref) / NBBY;
2139 else
2140 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2141 blksfree = cg_blksfree(cgp, needswap);
2142 len = howmany(fs->fs_fpg, NBBY) - start;
2143 ostart = start;
2144 olen = len;
2145 loc = scanc((u_int)len,
2146 (const u_char *)&blksfree[start],
2147 (const u_char *)fragtbl[fs->fs_frag],
2148 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2149 if (loc == 0) {
2150 len = start + 1;
2151 start = 0;
2152 loc = scanc((u_int)len,
2153 (const u_char *)&blksfree[0],
2154 (const u_char *)fragtbl[fs->fs_frag],
2155 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2156 if (loc == 0) {
2157 printf("start = %d, len = %d, fs = %s\n",
2158 ostart, olen, fs->fs_fsmnt);
2159 printf("offset=%d %ld\n",
2160 ufs_rw32(cgp->cg_freeoff, needswap),
2161 (long)blksfree - (long)cgp);
2162 printf("cg %d\n", cgp->cg_cgx);
2163 panic("ffs_alloccg: map corrupted");
2164 /* NOTREACHED */
2165 }
2166 }
2167 bno = (start + len - loc) * NBBY;
2168 cgp->cg_frotor = ufs_rw32(bno, needswap);
2169 /*
2170 * found the byte in the map
2171 * sift through the bits to find the selected frag
2172 */
2173 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2174 blk = blkmap(fs, blksfree, bno);
2175 blk <<= 1;
2176 field = around[allocsiz];
2177 subfield = inside[allocsiz];
2178 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2179 if ((blk & field) == subfield)
2180 return (bno + pos);
2181 field <<= 1;
2182 subfield <<= 1;
2183 }
2184 }
2185 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2186 panic("ffs_alloccg: block not in map");
2187 /* return (-1); */
2188 }
2189
2190 /*
2191 * Update the cluster map because of an allocation or free.
2192 *
2193 * Cnt == 1 means free; cnt == -1 means allocating.
2194 */
2195 void
2196 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2197 {
2198 int32_t *sump;
2199 int32_t *lp;
2200 u_char *freemapp, *mapp;
2201 int i, start, end, forw, back, map, bit;
2202 #ifdef FFS_EI
2203 const int needswap = UFS_FSNEEDSWAP(fs);
2204 #endif
2205
2206 /* KASSERT(mutex_owned(&ump->um_lock)); */
2207
2208 if (fs->fs_contigsumsize <= 0)
2209 return;
2210 freemapp = cg_clustersfree(cgp, needswap);
2211 sump = cg_clustersum(cgp, needswap);
2212 /*
2213 * Allocate or clear the actual block.
2214 */
2215 if (cnt > 0)
2216 setbit(freemapp, blkno);
2217 else
2218 clrbit(freemapp, blkno);
2219 /*
2220 * Find the size of the cluster going forward.
2221 */
2222 start = blkno + 1;
2223 end = start + fs->fs_contigsumsize;
2224 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2225 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2226 mapp = &freemapp[start / NBBY];
2227 map = *mapp++;
2228 bit = 1 << (start % NBBY);
2229 for (i = start; i < end; i++) {
2230 if ((map & bit) == 0)
2231 break;
2232 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2233 bit <<= 1;
2234 } else {
2235 map = *mapp++;
2236 bit = 1;
2237 }
2238 }
2239 forw = i - start;
2240 /*
2241 * Find the size of the cluster going backward.
2242 */
2243 start = blkno - 1;
2244 end = start - fs->fs_contigsumsize;
2245 if (end < 0)
2246 end = -1;
2247 mapp = &freemapp[start / NBBY];
2248 map = *mapp--;
2249 bit = 1 << (start % NBBY);
2250 for (i = start; i > end; i--) {
2251 if ((map & bit) == 0)
2252 break;
2253 if ((i & (NBBY - 1)) != 0) {
2254 bit >>= 1;
2255 } else {
2256 map = *mapp--;
2257 bit = 1 << (NBBY - 1);
2258 }
2259 }
2260 back = start - i;
2261 /*
2262 * Account for old cluster and the possibly new forward and
2263 * back clusters.
2264 */
2265 i = back + forw + 1;
2266 if (i > fs->fs_contigsumsize)
2267 i = fs->fs_contigsumsize;
2268 ufs_add32(sump[i], cnt, needswap);
2269 if (back > 0)
2270 ufs_add32(sump[back], -cnt, needswap);
2271 if (forw > 0)
2272 ufs_add32(sump[forw], -cnt, needswap);
2273
2274 /*
2275 * Update cluster summary information.
2276 */
2277 lp = &sump[fs->fs_contigsumsize];
2278 for (i = fs->fs_contigsumsize; i > 0; i--)
2279 if (ufs_rw32(*lp--, needswap) > 0)
2280 break;
2281 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2282 }
2283
2284 /*
2285 * Fserr prints the name of a file system with an error diagnostic.
2286 *
2287 * The form of the error message is:
2288 * fs: error message
2289 */
2290 static void
2291 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2292 {
2293
2294 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2295 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2296 }
2297