ffs_alloc.c revision 1.112 1 /* $NetBSD: ffs_alloc.c,v 1.112 2008/07/31 09:35:09 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.112 2008/07/31 09:35:09 hannken Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
91
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 #ifdef XXXUBC
106 static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
107 #endif
108 static ino_t ffs_dirpref(struct inode *);
109 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
110 static void ffs_fserr(struct fs *, u_int, const char *);
111 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
112 daddr_t (*)(struct inode *, int, daddr_t, int, int));
113 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
114 static int32_t ffs_mapsearch(struct fs *, struct cg *,
115 daddr_t, int);
116 #if defined(DIAGNOSTIC) || defined(DEBUG)
117 #ifdef XXXUBC
118 static int ffs_checkblk(struct inode *, daddr_t, long size);
119 #endif
120 #endif
121
122 /* if 1, changes in optimalization strategy are logged */
123 int ffs_log_changeopt = 0;
124
125 /* in ffs_tables.c */
126 extern const int inside[], around[];
127 extern const u_char * const fragtbl[];
128
129 /*
130 * Allocate a block in the file system.
131 *
132 * The size of the requested block is given, which must be some
133 * multiple of fs_fsize and <= fs_bsize.
134 * A preference may be optionally specified. If a preference is given
135 * the following hierarchy is used to allocate a block:
136 * 1) allocate the requested block.
137 * 2) allocate a rotationally optimal block in the same cylinder.
138 * 3) allocate a block in the same cylinder group.
139 * 4) quadradically rehash into other cylinder groups, until an
140 * available block is located.
141 * If no block preference is given the following hierarchy is used
142 * to allocate a block:
143 * 1) allocate a block in the cylinder group that contains the
144 * inode for the file.
145 * 2) quadradically rehash into other cylinder groups, until an
146 * available block is located.
147 *
148 * => called with um_lock held
149 * => releases um_lock before returning
150 */
151 int
152 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
153 kauth_cred_t cred, daddr_t *bnp)
154 {
155 struct ufsmount *ump;
156 struct fs *fs;
157 daddr_t bno;
158 int cg;
159 #ifdef QUOTA
160 int error;
161 #endif
162
163 fs = ip->i_fs;
164 ump = ip->i_ump;
165
166 KASSERT(mutex_owned(&ump->um_lock));
167
168 #ifdef UVM_PAGE_TRKOWN
169 if (ITOV(ip)->v_type == VREG &&
170 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
171 struct vm_page *pg;
172 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
173 voff_t off = trunc_page(lblktosize(fs, lbn));
174 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
175
176 mutex_enter(&uobj->vmobjlock);
177 while (off < endoff) {
178 pg = uvm_pagelookup(uobj, off);
179 KASSERT(pg != NULL);
180 KASSERT(pg->owner == curproc->p_pid);
181 off += PAGE_SIZE;
182 }
183 mutex_exit(&uobj->vmobjlock);
184 }
185 #endif
186
187 *bnp = 0;
188 #ifdef DIAGNOSTIC
189 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
190 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
191 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
192 panic("ffs_alloc: bad size");
193 }
194 if (cred == NOCRED)
195 panic("ffs_alloc: missing credential");
196 #endif /* DIAGNOSTIC */
197 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
198 goto nospace;
199 if (freespace(fs, fs->fs_minfree) <= 0 &&
200 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
201 goto nospace;
202 #ifdef QUOTA
203 mutex_exit(&ump->um_lock);
204 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
205 return (error);
206 mutex_enter(&ump->um_lock);
207 #endif
208
209 if (bpref >= fs->fs_size)
210 bpref = 0;
211 if (bpref == 0)
212 cg = ino_to_cg(fs, ip->i_number);
213 else
214 cg = dtog(fs, bpref);
215 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
216 if (bno > 0) {
217 DIP_ADD(ip, blocks, btodb(size));
218 ip->i_flag |= IN_CHANGE | IN_UPDATE;
219 *bnp = bno;
220 return (0);
221 }
222 #ifdef QUOTA
223 /*
224 * Restore user's disk quota because allocation failed.
225 */
226 (void) chkdq(ip, -btodb(size), cred, FORCE);
227 #endif
228 if (flags & B_CONTIG) {
229 /*
230 * XXX ump->um_lock handling is "suspect" at best.
231 * For the case where ffs_hashalloc() fails early
232 * in the B_CONTIG case we reach here with um_lock
233 * already unlocked, so we can't release it again
234 * like in the normal error path. See kern/39206.
235 *
236 *
237 * Fail silently - it's up to our caller to report
238 * errors.
239 */
240 return (ENOSPC);
241 }
242 nospace:
243 mutex_exit(&ump->um_lock);
244 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
245 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
246 return (ENOSPC);
247 }
248
249 /*
250 * Reallocate a fragment to a bigger size
251 *
252 * The number and size of the old block is given, and a preference
253 * and new size is also specified. The allocator attempts to extend
254 * the original block. Failing that, the regular block allocator is
255 * invoked to get an appropriate block.
256 *
257 * => called with um_lock held
258 * => return with um_lock released
259 */
260 int
261 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
262 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
263 {
264 struct ufsmount *ump;
265 struct fs *fs;
266 struct buf *bp;
267 int cg, request, error;
268 daddr_t bprev, bno;
269
270 fs = ip->i_fs;
271 ump = ip->i_ump;
272
273 KASSERT(mutex_owned(&ump->um_lock));
274
275 #ifdef UVM_PAGE_TRKOWN
276 if (ITOV(ip)->v_type == VREG) {
277 struct vm_page *pg;
278 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
279 voff_t off = trunc_page(lblktosize(fs, lbprev));
280 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
281
282 mutex_enter(&uobj->vmobjlock);
283 while (off < endoff) {
284 pg = uvm_pagelookup(uobj, off);
285 KASSERT(pg != NULL);
286 KASSERT(pg->owner == curproc->p_pid);
287 KASSERT((pg->flags & PG_CLEAN) == 0);
288 off += PAGE_SIZE;
289 }
290 mutex_exit(&uobj->vmobjlock);
291 }
292 #endif
293
294 #ifdef DIAGNOSTIC
295 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
296 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
297 printf(
298 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
299 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
300 panic("ffs_realloccg: bad size");
301 }
302 if (cred == NOCRED)
303 panic("ffs_realloccg: missing credential");
304 #endif /* DIAGNOSTIC */
305 if (freespace(fs, fs->fs_minfree) <= 0 &&
306 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
307 mutex_exit(&ump->um_lock);
308 goto nospace;
309 }
310 if (fs->fs_magic == FS_UFS2_MAGIC)
311 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
312 else
313 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
314
315 if (bprev == 0) {
316 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
317 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
318 panic("ffs_realloccg: bad bprev");
319 }
320 mutex_exit(&ump->um_lock);
321
322 /*
323 * Allocate the extra space in the buffer.
324 */
325 if (bpp != NULL &&
326 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
327 brelse(bp, 0);
328 return (error);
329 }
330 #ifdef QUOTA
331 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
332 if (bpp != NULL) {
333 brelse(bp, 0);
334 }
335 return (error);
336 }
337 #endif
338 /*
339 * Check for extension in the existing location.
340 */
341 cg = dtog(fs, bprev);
342 mutex_enter(&ump->um_lock);
343 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
344 DIP_ADD(ip, blocks, btodb(nsize - osize));
345 ip->i_flag |= IN_CHANGE | IN_UPDATE;
346
347 if (bpp != NULL) {
348 if (bp->b_blkno != fsbtodb(fs, bno))
349 panic("bad blockno");
350 allocbuf(bp, nsize, 1);
351 memset((char *)bp->b_data + osize, 0, nsize - osize);
352 mutex_enter(bp->b_objlock);
353 KASSERT(!cv_has_waiters(&bp->b_done));
354 bp->b_oflags |= BO_DONE;
355 mutex_exit(bp->b_objlock);
356 *bpp = bp;
357 }
358 if (blknop != NULL) {
359 *blknop = bno;
360 }
361 return (0);
362 }
363 /*
364 * Allocate a new disk location.
365 */
366 if (bpref >= fs->fs_size)
367 bpref = 0;
368 switch ((int)fs->fs_optim) {
369 case FS_OPTSPACE:
370 /*
371 * Allocate an exact sized fragment. Although this makes
372 * best use of space, we will waste time relocating it if
373 * the file continues to grow. If the fragmentation is
374 * less than half of the minimum free reserve, we choose
375 * to begin optimizing for time.
376 */
377 request = nsize;
378 if (fs->fs_minfree < 5 ||
379 fs->fs_cstotal.cs_nffree >
380 fs->fs_dsize * fs->fs_minfree / (2 * 100))
381 break;
382
383 if (ffs_log_changeopt) {
384 log(LOG_NOTICE,
385 "%s: optimization changed from SPACE to TIME\n",
386 fs->fs_fsmnt);
387 }
388
389 fs->fs_optim = FS_OPTTIME;
390 break;
391 case FS_OPTTIME:
392 /*
393 * At this point we have discovered a file that is trying to
394 * grow a small fragment to a larger fragment. To save time,
395 * we allocate a full sized block, then free the unused portion.
396 * If the file continues to grow, the `ffs_fragextend' call
397 * above will be able to grow it in place without further
398 * copying. If aberrant programs cause disk fragmentation to
399 * grow within 2% of the free reserve, we choose to begin
400 * optimizing for space.
401 */
402 request = fs->fs_bsize;
403 if (fs->fs_cstotal.cs_nffree <
404 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
405 break;
406
407 if (ffs_log_changeopt) {
408 log(LOG_NOTICE,
409 "%s: optimization changed from TIME to SPACE\n",
410 fs->fs_fsmnt);
411 }
412
413 fs->fs_optim = FS_OPTSPACE;
414 break;
415 default:
416 printf("dev = 0x%x, optim = %d, fs = %s\n",
417 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
418 panic("ffs_realloccg: bad optim");
419 /* NOTREACHED */
420 }
421 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
422 if (bno > 0) {
423 if (!DOINGSOFTDEP(ITOV(ip))) {
424 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
425 (ITOV(ip)->v_type != VREG)) {
426 UFS_WAPBL_REGISTER_DEALLOCATION(
427 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
428 osize);
429 } else
430 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
431 ip->i_number);
432 }
433 if (nsize < request) {
434 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
435 (ITOV(ip)->v_type != VREG)) {
436 UFS_WAPBL_REGISTER_DEALLOCATION(
437 ip->i_ump->um_mountp,
438 fsbtodb(fs, (bno + numfrags(fs, nsize))),
439 request - nsize);
440 } else
441 ffs_blkfree(fs, ip->i_devvp,
442 bno + numfrags(fs, nsize),
443 (long)(request - nsize), ip->i_number);
444 }
445 DIP_ADD(ip, blocks, btodb(nsize - osize));
446 ip->i_flag |= IN_CHANGE | IN_UPDATE;
447 if (bpp != NULL) {
448 bp->b_blkno = fsbtodb(fs, bno);
449 allocbuf(bp, nsize, 1);
450 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
451 mutex_enter(bp->b_objlock);
452 KASSERT(!cv_has_waiters(&bp->b_done));
453 bp->b_oflags |= BO_DONE;
454 mutex_exit(bp->b_objlock);
455 *bpp = bp;
456 }
457 if (blknop != NULL) {
458 *blknop = bno;
459 }
460 return (0);
461 }
462 mutex_exit(&ump->um_lock);
463
464 #ifdef QUOTA
465 /*
466 * Restore user's disk quota because allocation failed.
467 */
468 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
469 #endif
470 if (bpp != NULL) {
471 brelse(bp, 0);
472 }
473
474 nospace:
475 /*
476 * no space available
477 */
478 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
479 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
480 return (ENOSPC);
481 }
482
483 #if 0
484 /*
485 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
486 *
487 * The vnode and an array of buffer pointers for a range of sequential
488 * logical blocks to be made contiguous is given. The allocator attempts
489 * to find a range of sequential blocks starting as close as possible
490 * from the end of the allocation for the logical block immediately
491 * preceding the current range. If successful, the physical block numbers
492 * in the buffer pointers and in the inode are changed to reflect the new
493 * allocation. If unsuccessful, the allocation is left unchanged. The
494 * success in doing the reallocation is returned. Note that the error
495 * return is not reflected back to the user. Rather the previous block
496 * allocation will be used.
497
498 */
499 #ifdef XXXUBC
500 #ifdef DEBUG
501 #include <sys/sysctl.h>
502 int prtrealloc = 0;
503 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
504 #endif
505 #endif
506
507 /*
508 * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
509 */
510
511 int doasyncfree = 1;
512
513 int
514 ffs_reallocblks(void *v)
515 {
516 #ifdef XXXUBC
517 struct vop_reallocblks_args /* {
518 struct vnode *a_vp;
519 struct cluster_save *a_buflist;
520 } */ *ap = v;
521 struct fs *fs;
522 struct inode *ip;
523 struct vnode *vp;
524 struct buf *sbp, *ebp;
525 int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
526 struct cluster_save *buflist;
527 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
528 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
529 int i, len, start_lvl, end_lvl, pref, ssize;
530 struct ufsmount *ump;
531 #endif /* XXXUBC */
532
533 /* XXXUBC don't reallocblks for now */
534 return ENOSPC;
535
536 #ifdef XXXUBC
537 vp = ap->a_vp;
538 ip = VTOI(vp);
539 fs = ip->i_fs;
540 ump = ip->i_ump;
541 if (fs->fs_contigsumsize <= 0)
542 return (ENOSPC);
543 buflist = ap->a_buflist;
544 len = buflist->bs_nchildren;
545 start_lbn = buflist->bs_children[0]->b_lblkno;
546 end_lbn = start_lbn + len - 1;
547 #ifdef DIAGNOSTIC
548 for (i = 0; i < len; i++)
549 if (!ffs_checkblk(ip,
550 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
551 panic("ffs_reallocblks: unallocated block 1");
552 for (i = 1; i < len; i++)
553 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
554 panic("ffs_reallocblks: non-logical cluster");
555 blkno = buflist->bs_children[0]->b_blkno;
556 ssize = fsbtodb(fs, fs->fs_frag);
557 for (i = 1; i < len - 1; i++)
558 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
559 panic("ffs_reallocblks: non-physical cluster %d", i);
560 #endif
561 /*
562 * If the latest allocation is in a new cylinder group, assume that
563 * the filesystem has decided to move and do not force it back to
564 * the previous cylinder group.
565 */
566 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
567 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
568 return (ENOSPC);
569 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
570 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
571 return (ENOSPC);
572 /*
573 * Get the starting offset and block map for the first block.
574 */
575 if (start_lvl == 0) {
576 sbap = &ip->i_ffs1_db[0];
577 soff = start_lbn;
578 } else {
579 idp = &start_ap[start_lvl - 1];
580 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
581 NOCRED, B_MODIFY, &sbp)) {
582 brelse(sbp, 0);
583 return (ENOSPC);
584 }
585 sbap = (int32_t *)sbp->b_data;
586 soff = idp->in_off;
587 }
588 /*
589 * Find the preferred location for the cluster.
590 */
591 mutex_enter(&ump->um_lock);
592 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
593 /*
594 * If the block range spans two block maps, get the second map.
595 */
596 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
597 ssize = len;
598 } else {
599 #ifdef DIAGNOSTIC
600 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
601 panic("ffs_reallocblk: start == end");
602 #endif
603 ssize = len - (idp->in_off + 1);
604 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
605 NOCRED, B_MODIFY, &ebp))
606 goto fail;
607 ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
608 }
609 /*
610 * Search the block map looking for an allocation of the desired size.
611 */
612 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
613 len, flags, ffs_clusteralloc)) == 0) {
614 mutex_exit(&ump->um_lock);
615 goto fail;
616 }
617 /*
618 * We have found a new contiguous block.
619 *
620 * First we have to replace the old block pointers with the new
621 * block pointers in the inode and indirect blocks associated
622 * with the file.
623 */
624 #ifdef DEBUG
625 if (prtrealloc)
626 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
627 start_lbn, end_lbn);
628 #endif
629 blkno = newblk;
630 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
631 daddr_t ba;
632
633 if (i == ssize) {
634 bap = ebap;
635 soff = -i;
636 }
637 /* XXX ondisk32 */
638 ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
639 #ifdef DIAGNOSTIC
640 if (!ffs_checkblk(ip,
641 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
642 panic("ffs_reallocblks: unallocated block 2");
643 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
644 panic("ffs_reallocblks: alloc mismatch");
645 #endif
646 #ifdef DEBUG
647 if (prtrealloc)
648 printf(" %d,", ba);
649 #endif
650 if (DOINGSOFTDEP(vp)) {
651 if (sbap == &ip->i_ffs1_db[0] && i < ssize)
652 softdep_setup_allocdirect(ip, start_lbn + i,
653 blkno, ba, fs->fs_bsize, fs->fs_bsize,
654 buflist->bs_children[i]);
655 else
656 softdep_setup_allocindir_page(ip, start_lbn + i,
657 i < ssize ? sbp : ebp, soff + i, blkno,
658 ba, buflist->bs_children[i]);
659 }
660 /* XXX ondisk32 */
661 *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
662 }
663 /*
664 * Next we must write out the modified inode and indirect blocks.
665 * For strict correctness, the writes should be synchronous since
666 * the old block values may have been written to disk. In practise
667 * they are almost never written, but if we are concerned about
668 * strict correctness, the `doasyncfree' flag should be set to zero.
669 *
670 * The test on `doasyncfree' should be changed to test a flag
671 * that shows whether the associated buffers and inodes have
672 * been written. The flag should be set when the cluster is
673 * started and cleared whenever the buffer or inode is flushed.
674 * We can then check below to see if it is set, and do the
675 * synchronous write only when it has been cleared.
676 */
677 if (sbap != &ip->i_ffs1_db[0]) {
678 if (doasyncfree)
679 bdwrite(sbp);
680 else
681 bwrite(sbp);
682 } else {
683 ip->i_flag |= IN_CHANGE | IN_UPDATE;
684 if (!doasyncfree)
685 ffs_update(vp, NULL, NULL, 1);
686 }
687 if (ssize < len) {
688 if (doasyncfree)
689 bdwrite(ebp);
690 else
691 bwrite(ebp);
692 }
693 /*
694 * Last, free the old blocks and assign the new blocks to the buffers.
695 */
696 #ifdef DEBUG
697 if (prtrealloc)
698 printf("\n\tnew:");
699 #endif
700 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
701 if (!DOINGSOFTDEP(vp))
702 ffs_blkfree(fs, ip->i_devvp,
703 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
704 fs->fs_bsize, ip->i_number);
705 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
706 #ifdef DEBUG
707 if (!ffs_checkblk(ip,
708 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
709 panic("ffs_reallocblks: unallocated block 3");
710 if (prtrealloc)
711 printf(" %d,", blkno);
712 #endif
713 }
714 #ifdef DEBUG
715 if (prtrealloc) {
716 prtrealloc--;
717 printf("\n");
718 }
719 #endif
720 return (0);
721
722 fail:
723 if (ssize < len)
724 brelse(ebp, 0);
725 if (sbap != &ip->i_ffs1_db[0])
726 brelse(sbp, 0);
727 return (ENOSPC);
728 #endif /* XXXUBC */
729 }
730 #endif /* 0 */
731
732 /*
733 * Allocate an inode in the file system.
734 *
735 * If allocating a directory, use ffs_dirpref to select the inode.
736 * If allocating in a directory, the following hierarchy is followed:
737 * 1) allocate the preferred inode.
738 * 2) allocate an inode in the same cylinder group.
739 * 3) quadradically rehash into other cylinder groups, until an
740 * available inode is located.
741 * If no inode preference is given the following hierarchy is used
742 * to allocate an inode:
743 * 1) allocate an inode in cylinder group 0.
744 * 2) quadradically rehash into other cylinder groups, until an
745 * available inode is located.
746 *
747 * => um_lock not held upon entry or return
748 */
749 int
750 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
751 struct vnode **vpp)
752 {
753 struct ufsmount *ump;
754 struct inode *pip;
755 struct fs *fs;
756 struct inode *ip;
757 struct timespec ts;
758 ino_t ino, ipref;
759 int cg, error;
760
761 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
762
763 *vpp = NULL;
764 pip = VTOI(pvp);
765 fs = pip->i_fs;
766 ump = pip->i_ump;
767
768 error = UFS_WAPBL_BEGIN(pvp->v_mount);
769 if (error) {
770 return error;
771 }
772 mutex_enter(&ump->um_lock);
773 if (fs->fs_cstotal.cs_nifree == 0)
774 goto noinodes;
775
776 if ((mode & IFMT) == IFDIR)
777 ipref = ffs_dirpref(pip);
778 else
779 ipref = pip->i_number;
780 if (ipref >= fs->fs_ncg * fs->fs_ipg)
781 ipref = 0;
782 cg = ino_to_cg(fs, ipref);
783 /*
784 * Track number of dirs created one after another
785 * in a same cg without intervening by files.
786 */
787 if ((mode & IFMT) == IFDIR) {
788 if (fs->fs_contigdirs[cg] < 255)
789 fs->fs_contigdirs[cg]++;
790 } else {
791 if (fs->fs_contigdirs[cg] > 0)
792 fs->fs_contigdirs[cg]--;
793 }
794 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
795 if (ino == 0)
796 goto noinodes;
797 UFS_WAPBL_END(pvp->v_mount);
798 error = VFS_VGET(pvp->v_mount, ino, vpp);
799 if (error) {
800 int err;
801 err = UFS_WAPBL_BEGIN(pvp->v_mount);
802 if (err == 0)
803 ffs_vfree(pvp, ino, mode);
804 if (err == 0)
805 UFS_WAPBL_END(pvp->v_mount);
806 return (error);
807 }
808 KASSERT((*vpp)->v_type == VNON);
809 ip = VTOI(*vpp);
810 if (ip->i_mode) {
811 #if 0
812 printf("mode = 0%o, inum = %d, fs = %s\n",
813 ip->i_mode, ip->i_number, fs->fs_fsmnt);
814 #else
815 printf("dmode %x mode %x dgen %x gen %x\n",
816 DIP(ip, mode), ip->i_mode,
817 DIP(ip, gen), ip->i_gen);
818 printf("size %llx blocks %llx\n",
819 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
820 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
821 (unsigned long long)ipref);
822 #if 0
823 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
824 (int)fs->fs_bsize, NOCRED, 0, &bp);
825 #endif
826
827 #endif
828 panic("ffs_valloc: dup alloc");
829 }
830 if (DIP(ip, blocks)) { /* XXX */
831 printf("free inode %s/%llu had %" PRId64 " blocks\n",
832 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
833 DIP_ASSIGN(ip, blocks, 0);
834 }
835 ip->i_flag &= ~IN_SPACECOUNTED;
836 ip->i_flags = 0;
837 DIP_ASSIGN(ip, flags, 0);
838 /*
839 * Set up a new generation number for this inode.
840 */
841 ip->i_gen++;
842 DIP_ASSIGN(ip, gen, ip->i_gen);
843 if (fs->fs_magic == FS_UFS2_MAGIC) {
844 vfs_timestamp(&ts);
845 ip->i_ffs2_birthtime = ts.tv_sec;
846 ip->i_ffs2_birthnsec = ts.tv_nsec;
847 }
848 return (0);
849 noinodes:
850 mutex_exit(&ump->um_lock);
851 UFS_WAPBL_END(pvp->v_mount);
852 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
853 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
854 return (ENOSPC);
855 }
856
857 /*
858 * Find a cylinder group in which to place a directory.
859 *
860 * The policy implemented by this algorithm is to allocate a
861 * directory inode in the same cylinder group as its parent
862 * directory, but also to reserve space for its files inodes
863 * and data. Restrict the number of directories which may be
864 * allocated one after another in the same cylinder group
865 * without intervening allocation of files.
866 *
867 * If we allocate a first level directory then force allocation
868 * in another cylinder group.
869 */
870 static ino_t
871 ffs_dirpref(struct inode *pip)
872 {
873 register struct fs *fs;
874 int cg, prefcg;
875 int64_t dirsize, cgsize, curdsz;
876 int avgifree, avgbfree, avgndir;
877 int minifree, minbfree, maxndir;
878 int mincg, minndir;
879 int maxcontigdirs;
880
881 KASSERT(mutex_owned(&pip->i_ump->um_lock));
882
883 fs = pip->i_fs;
884
885 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
886 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
887 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
888
889 /*
890 * Force allocation in another cg if creating a first level dir.
891 */
892 if (ITOV(pip)->v_vflag & VV_ROOT) {
893 prefcg = random() % fs->fs_ncg;
894 mincg = prefcg;
895 minndir = fs->fs_ipg;
896 for (cg = prefcg; cg < fs->fs_ncg; cg++)
897 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
898 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
899 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
900 mincg = cg;
901 minndir = fs->fs_cs(fs, cg).cs_ndir;
902 }
903 for (cg = 0; cg < prefcg; cg++)
904 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
905 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
906 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
907 mincg = cg;
908 minndir = fs->fs_cs(fs, cg).cs_ndir;
909 }
910 return ((ino_t)(fs->fs_ipg * mincg));
911 }
912
913 /*
914 * Count various limits which used for
915 * optimal allocation of a directory inode.
916 */
917 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
918 minifree = avgifree - fs->fs_ipg / 4;
919 if (minifree < 0)
920 minifree = 0;
921 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
922 if (minbfree < 0)
923 minbfree = 0;
924 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
925 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
926 if (avgndir != 0) {
927 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
928 if (dirsize < curdsz)
929 dirsize = curdsz;
930 }
931 if (cgsize < dirsize * 255)
932 maxcontigdirs = cgsize / dirsize;
933 else
934 maxcontigdirs = 255;
935 if (fs->fs_avgfpdir > 0)
936 maxcontigdirs = min(maxcontigdirs,
937 fs->fs_ipg / fs->fs_avgfpdir);
938 if (maxcontigdirs == 0)
939 maxcontigdirs = 1;
940
941 /*
942 * Limit number of dirs in one cg and reserve space for
943 * regular files, but only if we have no deficit in
944 * inodes or space.
945 */
946 prefcg = ino_to_cg(fs, pip->i_number);
947 for (cg = prefcg; cg < fs->fs_ncg; cg++)
948 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
949 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
950 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
951 if (fs->fs_contigdirs[cg] < maxcontigdirs)
952 return ((ino_t)(fs->fs_ipg * cg));
953 }
954 for (cg = 0; cg < prefcg; cg++)
955 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
956 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
957 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
958 if (fs->fs_contigdirs[cg] < maxcontigdirs)
959 return ((ino_t)(fs->fs_ipg * cg));
960 }
961 /*
962 * This is a backstop when we are deficient in space.
963 */
964 for (cg = prefcg; cg < fs->fs_ncg; cg++)
965 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
966 return ((ino_t)(fs->fs_ipg * cg));
967 for (cg = 0; cg < prefcg; cg++)
968 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
969 break;
970 return ((ino_t)(fs->fs_ipg * cg));
971 }
972
973 /*
974 * Select the desired position for the next block in a file. The file is
975 * logically divided into sections. The first section is composed of the
976 * direct blocks. Each additional section contains fs_maxbpg blocks.
977 *
978 * If no blocks have been allocated in the first section, the policy is to
979 * request a block in the same cylinder group as the inode that describes
980 * the file. If no blocks have been allocated in any other section, the
981 * policy is to place the section in a cylinder group with a greater than
982 * average number of free blocks. An appropriate cylinder group is found
983 * by using a rotor that sweeps the cylinder groups. When a new group of
984 * blocks is needed, the sweep begins in the cylinder group following the
985 * cylinder group from which the previous allocation was made. The sweep
986 * continues until a cylinder group with greater than the average number
987 * of free blocks is found. If the allocation is for the first block in an
988 * indirect block, the information on the previous allocation is unavailable;
989 * here a best guess is made based upon the logical block number being
990 * allocated.
991 *
992 * If a section is already partially allocated, the policy is to
993 * contiguously allocate fs_maxcontig blocks. The end of one of these
994 * contiguous blocks and the beginning of the next is laid out
995 * contigously if possible.
996 *
997 * => um_lock held on entry and exit
998 */
999 daddr_t
1000 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
1001 int32_t *bap /* XXX ondisk32 */)
1002 {
1003 struct fs *fs;
1004 int cg;
1005 int avgbfree, startcg;
1006
1007 KASSERT(mutex_owned(&ip->i_ump->um_lock));
1008
1009 fs = ip->i_fs;
1010
1011 /*
1012 * If allocating a contiguous file with B_CONTIG, use the hints
1013 * in the inode extentions to return the desired block.
1014 *
1015 * For metadata (indirect blocks) return the address of where
1016 * the first indirect block resides - we'll scan for the next
1017 * available slot if we need to allocate more than one indirect
1018 * block. For data, return the address of the actual block
1019 * relative to the address of the first data block.
1020 */
1021 if (flags & B_CONTIG) {
1022 KASSERT(ip->i_ffs_first_data_blk != 0);
1023 KASSERT(ip->i_ffs_first_indir_blk != 0);
1024 if (flags & B_METAONLY)
1025 return ip->i_ffs_first_indir_blk;
1026 else
1027 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
1028 }
1029
1030 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1031 if (lbn < NDADDR + NINDIR(fs)) {
1032 cg = ino_to_cg(fs, ip->i_number);
1033 return (cgbase(fs, cg) + fs->fs_frag);
1034 }
1035 /*
1036 * Find a cylinder with greater than average number of
1037 * unused data blocks.
1038 */
1039 if (indx == 0 || bap[indx - 1] == 0)
1040 startcg =
1041 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1042 else
1043 startcg = dtog(fs,
1044 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1045 startcg %= fs->fs_ncg;
1046 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1047 for (cg = startcg; cg < fs->fs_ncg; cg++)
1048 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1049 return (cgbase(fs, cg) + fs->fs_frag);
1050 }
1051 for (cg = 0; cg < startcg; cg++)
1052 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1053 return (cgbase(fs, cg) + fs->fs_frag);
1054 }
1055 return (0);
1056 }
1057 /*
1058 * We just always try to lay things out contiguously.
1059 */
1060 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1061 }
1062
1063 daddr_t
1064 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
1065 int64_t *bap)
1066 {
1067 struct fs *fs;
1068 int cg;
1069 int avgbfree, startcg;
1070
1071 KASSERT(mutex_owned(&ip->i_ump->um_lock));
1072
1073 fs = ip->i_fs;
1074
1075 /*
1076 * If allocating a contiguous file with B_CONTIG, use the hints
1077 * in the inode extentions to return the desired block.
1078 *
1079 * For metadata (indirect blocks) return the address of where
1080 * the first indirect block resides - we'll scan for the next
1081 * available slot if we need to allocate more than one indirect
1082 * block. For data, return the address of the actual block
1083 * relative to the address of the first data block.
1084 */
1085 if (flags & B_CONTIG) {
1086 KASSERT(ip->i_ffs_first_data_blk != 0);
1087 KASSERT(ip->i_ffs_first_indir_blk != 0);
1088 if (flags & B_METAONLY)
1089 return ip->i_ffs_first_indir_blk;
1090 else
1091 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
1092 }
1093
1094 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1095 if (lbn < NDADDR + NINDIR(fs)) {
1096 cg = ino_to_cg(fs, ip->i_number);
1097 return (cgbase(fs, cg) + fs->fs_frag);
1098 }
1099 /*
1100 * Find a cylinder with greater than average number of
1101 * unused data blocks.
1102 */
1103 if (indx == 0 || bap[indx - 1] == 0)
1104 startcg =
1105 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1106 else
1107 startcg = dtog(fs,
1108 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1109 startcg %= fs->fs_ncg;
1110 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1111 for (cg = startcg; cg < fs->fs_ncg; cg++)
1112 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1113 return (cgbase(fs, cg) + fs->fs_frag);
1114 }
1115 for (cg = 0; cg < startcg; cg++)
1116 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1117 return (cgbase(fs, cg) + fs->fs_frag);
1118 }
1119 return (0);
1120 }
1121 /*
1122 * We just always try to lay things out contiguously.
1123 */
1124 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1125 }
1126
1127
1128 /*
1129 * Implement the cylinder overflow algorithm.
1130 *
1131 * The policy implemented by this algorithm is:
1132 * 1) allocate the block in its requested cylinder group.
1133 * 2) quadradically rehash on the cylinder group number.
1134 * 3) brute force search for a free block.
1135 *
1136 * => called with um_lock held
1137 * => returns with um_lock released on success, held on failure
1138 * (*allocator releases lock on success, retains lock on failure)
1139 */
1140 /*VARARGS5*/
1141 static daddr_t
1142 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1143 int size /* size for data blocks, mode for inodes */,
1144 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
1145 {
1146 struct fs *fs;
1147 daddr_t result;
1148 int i, icg = cg;
1149
1150 fs = ip->i_fs;
1151 /*
1152 * 1: preferred cylinder group
1153 */
1154 result = (*allocator)(ip, cg, pref, size, flags);
1155 if (result)
1156 return (result);
1157
1158 if (flags & B_CONTIG)
1159 return (result);
1160 /*
1161 * 2: quadratic rehash
1162 */
1163 for (i = 1; i < fs->fs_ncg; i *= 2) {
1164 cg += i;
1165 if (cg >= fs->fs_ncg)
1166 cg -= fs->fs_ncg;
1167 result = (*allocator)(ip, cg, 0, size, flags);
1168 if (result)
1169 return (result);
1170 }
1171 /*
1172 * 3: brute force search
1173 * Note that we start at i == 2, since 0 was checked initially,
1174 * and 1 is always checked in the quadratic rehash.
1175 */
1176 cg = (icg + 2) % fs->fs_ncg;
1177 for (i = 2; i < fs->fs_ncg; i++) {
1178 result = (*allocator)(ip, cg, 0, size, flags);
1179 if (result)
1180 return (result);
1181 cg++;
1182 if (cg == fs->fs_ncg)
1183 cg = 0;
1184 }
1185 return (0);
1186 }
1187
1188 /*
1189 * Determine whether a fragment can be extended.
1190 *
1191 * Check to see if the necessary fragments are available, and
1192 * if they are, allocate them.
1193 *
1194 * => called with um_lock held
1195 * => returns with um_lock released on success, held on failure
1196 */
1197 static daddr_t
1198 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1199 {
1200 struct ufsmount *ump;
1201 struct fs *fs;
1202 struct cg *cgp;
1203 struct buf *bp;
1204 daddr_t bno;
1205 int frags, bbase;
1206 int i, error;
1207 u_int8_t *blksfree;
1208
1209 fs = ip->i_fs;
1210 ump = ip->i_ump;
1211
1212 KASSERT(mutex_owned(&ump->um_lock));
1213
1214 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1215 return (0);
1216 frags = numfrags(fs, nsize);
1217 bbase = fragnum(fs, bprev);
1218 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1219 /* cannot extend across a block boundary */
1220 return (0);
1221 }
1222 mutex_exit(&ump->um_lock);
1223 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1224 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1225 if (error)
1226 goto fail;
1227 cgp = (struct cg *)bp->b_data;
1228 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1229 goto fail;
1230 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1231 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1232 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1233 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1234 bno = dtogd(fs, bprev);
1235 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1236 for (i = numfrags(fs, osize); i < frags; i++)
1237 if (isclr(blksfree, bno + i))
1238 goto fail;
1239 /*
1240 * the current fragment can be extended
1241 * deduct the count on fragment being extended into
1242 * increase the count on the remaining fragment (if any)
1243 * allocate the extended piece
1244 */
1245 for (i = frags; i < fs->fs_frag - bbase; i++)
1246 if (isclr(blksfree, bno + i))
1247 break;
1248 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1249 if (i != frags)
1250 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1251 mutex_enter(&ump->um_lock);
1252 for (i = numfrags(fs, osize); i < frags; i++) {
1253 clrbit(blksfree, bno + i);
1254 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1255 fs->fs_cstotal.cs_nffree--;
1256 fs->fs_cs(fs, cg).cs_nffree--;
1257 }
1258 fs->fs_fmod = 1;
1259 ACTIVECG_CLR(fs, cg);
1260 mutex_exit(&ump->um_lock);
1261 if (DOINGSOFTDEP(ITOV(ip)))
1262 softdep_setup_blkmapdep(bp, fs, bprev);
1263 bdwrite(bp);
1264 return (bprev);
1265
1266 fail:
1267 brelse(bp, 0);
1268 mutex_enter(&ump->um_lock);
1269 return (0);
1270 }
1271
1272 /*
1273 * Determine whether a block can be allocated.
1274 *
1275 * Check to see if a block of the appropriate size is available,
1276 * and if it is, allocate it.
1277 */
1278 static daddr_t
1279 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1280 {
1281 struct ufsmount *ump;
1282 struct fs *fs = ip->i_fs;
1283 struct cg *cgp;
1284 struct buf *bp;
1285 int32_t bno;
1286 daddr_t blkno;
1287 int error, frags, allocsiz, i;
1288 u_int8_t *blksfree;
1289 #ifdef FFS_EI
1290 const int needswap = UFS_FSNEEDSWAP(fs);
1291 #endif
1292
1293 ump = ip->i_ump;
1294
1295 KASSERT(mutex_owned(&ump->um_lock));
1296
1297 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1298 return (0);
1299 mutex_exit(&ump->um_lock);
1300 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1301 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1302 if (error)
1303 goto fail;
1304 cgp = (struct cg *)bp->b_data;
1305 if (!cg_chkmagic(cgp, needswap) ||
1306 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1307 goto fail;
1308 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1309 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1310 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1311 cgp->cg_time = ufs_rw64(time_second, needswap);
1312 if (size == fs->fs_bsize) {
1313 mutex_enter(&ump->um_lock);
1314 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1315 ACTIVECG_CLR(fs, cg);
1316 mutex_exit(&ump->um_lock);
1317 bdwrite(bp);
1318 return (blkno);
1319 }
1320 /*
1321 * check to see if any fragments are already available
1322 * allocsiz is the size which will be allocated, hacking
1323 * it down to a smaller size if necessary
1324 */
1325 blksfree = cg_blksfree(cgp, needswap);
1326 frags = numfrags(fs, size);
1327 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1328 if (cgp->cg_frsum[allocsiz] != 0)
1329 break;
1330 if (allocsiz == fs->fs_frag) {
1331 /*
1332 * no fragments were available, so a block will be
1333 * allocated, and hacked up
1334 */
1335 if (cgp->cg_cs.cs_nbfree == 0)
1336 goto fail;
1337 mutex_enter(&ump->um_lock);
1338 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1339 bno = dtogd(fs, blkno);
1340 for (i = frags; i < fs->fs_frag; i++)
1341 setbit(blksfree, bno + i);
1342 i = fs->fs_frag - frags;
1343 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1344 fs->fs_cstotal.cs_nffree += i;
1345 fs->fs_cs(fs, cg).cs_nffree += i;
1346 fs->fs_fmod = 1;
1347 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1348 ACTIVECG_CLR(fs, cg);
1349 mutex_exit(&ump->um_lock);
1350 bdwrite(bp);
1351 return (blkno);
1352 }
1353 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1354 #if 0
1355 /*
1356 * XXX fvdl mapsearch will panic, and never return -1
1357 * also: returning NULL as daddr_t ?
1358 */
1359 if (bno < 0)
1360 goto fail;
1361 #endif
1362 for (i = 0; i < frags; i++)
1363 clrbit(blksfree, bno + i);
1364 mutex_enter(&ump->um_lock);
1365 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1366 fs->fs_cstotal.cs_nffree -= frags;
1367 fs->fs_cs(fs, cg).cs_nffree -= frags;
1368 fs->fs_fmod = 1;
1369 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1370 if (frags != allocsiz)
1371 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1372 blkno = cg * fs->fs_fpg + bno;
1373 ACTIVECG_CLR(fs, cg);
1374 mutex_exit(&ump->um_lock);
1375 if (DOINGSOFTDEP(ITOV(ip)))
1376 softdep_setup_blkmapdep(bp, fs, blkno);
1377 bdwrite(bp);
1378 return blkno;
1379
1380 fail:
1381 brelse(bp, 0);
1382 mutex_enter(&ump->um_lock);
1383 return (0);
1384 }
1385
1386 /*
1387 * Allocate a block in a cylinder group.
1388 *
1389 * This algorithm implements the following policy:
1390 * 1) allocate the requested block.
1391 * 2) allocate a rotationally optimal block in the same cylinder.
1392 * 3) allocate the next available block on the block rotor for the
1393 * specified cylinder group.
1394 * Note that this routine only allocates fs_bsize blocks; these
1395 * blocks may be fragmented by the routine that allocates them.
1396 */
1397 static daddr_t
1398 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1399 {
1400 struct ufsmount *ump;
1401 struct fs *fs = ip->i_fs;
1402 struct cg *cgp;
1403 daddr_t blkno;
1404 int32_t bno;
1405 u_int8_t *blksfree;
1406 #ifdef FFS_EI
1407 const int needswap = UFS_FSNEEDSWAP(fs);
1408 #endif
1409
1410 ump = ip->i_ump;
1411
1412 KASSERT(mutex_owned(&ump->um_lock));
1413
1414 cgp = (struct cg *)bp->b_data;
1415 blksfree = cg_blksfree(cgp, needswap);
1416 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1417 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1418 } else {
1419 bpref = blknum(fs, bpref);
1420 bno = dtogd(fs, bpref);
1421 /*
1422 * if the requested block is available, use it
1423 */
1424 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1425 goto gotit;
1426 /*
1427 * if the requested data block isn't available and we are
1428 * trying to allocate a contiguous file, return an error.
1429 */
1430 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1431 return (0);
1432 }
1433
1434 /*
1435 * Take the next available block in this cylinder group.
1436 */
1437 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1438 if (bno < 0)
1439 return (0);
1440 cgp->cg_rotor = ufs_rw32(bno, needswap);
1441 gotit:
1442 blkno = fragstoblks(fs, bno);
1443 ffs_clrblock(fs, blksfree, blkno);
1444 ffs_clusteracct(fs, cgp, blkno, -1);
1445 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1446 fs->fs_cstotal.cs_nbfree--;
1447 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1448 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1449 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1450 int cylno;
1451 cylno = old_cbtocylno(fs, bno);
1452 KASSERT(cylno >= 0);
1453 KASSERT(cylno < fs->fs_old_ncyl);
1454 KASSERT(old_cbtorpos(fs, bno) >= 0);
1455 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1456 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1457 needswap);
1458 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1459 }
1460 fs->fs_fmod = 1;
1461 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1462 if (DOINGSOFTDEP(ITOV(ip))) {
1463 mutex_exit(&ump->um_lock);
1464 softdep_setup_blkmapdep(bp, fs, blkno);
1465 mutex_enter(&ump->um_lock);
1466 }
1467 return (blkno);
1468 }
1469
1470 #ifdef XXXUBC
1471 /*
1472 * Determine whether a cluster can be allocated.
1473 *
1474 * We do not currently check for optimal rotational layout if there
1475 * are multiple choices in the same cylinder group. Instead we just
1476 * take the first one that we find following bpref.
1477 */
1478
1479 /*
1480 * This function must be fixed for UFS2 if re-enabled.
1481 */
1482 static daddr_t
1483 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1484 {
1485 struct ufsmount *ump;
1486 struct fs *fs;
1487 struct cg *cgp;
1488 struct buf *bp;
1489 int i, got, run, bno, bit, map;
1490 u_char *mapp;
1491 int32_t *lp;
1492
1493 fs = ip->i_fs;
1494 ump = ip->i_ump;
1495
1496 KASSERT(mutex_owned(&ump->um_lock));
1497 if (fs->fs_maxcluster[cg] < len)
1498 return (0);
1499 mutex_exit(&ump->um_lock);
1500 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1501 NOCRED, 0, &bp))
1502 goto fail;
1503 cgp = (struct cg *)bp->b_data;
1504 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1505 goto fail;
1506 /*
1507 * Check to see if a cluster of the needed size (or bigger) is
1508 * available in this cylinder group.
1509 */
1510 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1511 for (i = len; i <= fs->fs_contigsumsize; i++)
1512 if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1513 break;
1514 if (i > fs->fs_contigsumsize) {
1515 /*
1516 * This is the first time looking for a cluster in this
1517 * cylinder group. Update the cluster summary information
1518 * to reflect the true maximum sized cluster so that
1519 * future cluster allocation requests can avoid reading
1520 * the cylinder group map only to find no clusters.
1521 */
1522 lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1523 for (i = len - 1; i > 0; i--)
1524 if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1525 break;
1526 mutex_enter(&ump->um_lock);
1527 fs->fs_maxcluster[cg] = i;
1528 mutex_exit(&ump->um_lock);
1529 goto fail;
1530 }
1531 /*
1532 * Search the cluster map to find a big enough cluster.
1533 * We take the first one that we find, even if it is larger
1534 * than we need as we prefer to get one close to the previous
1535 * block allocation. We do not search before the current
1536 * preference point as we do not want to allocate a block
1537 * that is allocated before the previous one (as we will
1538 * then have to wait for another pass of the elevator
1539 * algorithm before it will be read). We prefer to fail and
1540 * be recalled to try an allocation in the next cylinder group.
1541 */
1542 if (dtog(fs, bpref) != cg)
1543 bpref = 0;
1544 else
1545 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1546 mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1547 map = *mapp++;
1548 bit = 1 << (bpref % NBBY);
1549 for (run = 0, got = bpref;
1550 got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1551 if ((map & bit) == 0) {
1552 run = 0;
1553 } else {
1554 run++;
1555 if (run == len)
1556 break;
1557 }
1558 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1559 bit <<= 1;
1560 } else {
1561 map = *mapp++;
1562 bit = 1;
1563 }
1564 }
1565 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1566 goto fail;
1567 /*
1568 * Allocate the cluster that we have found.
1569 */
1570 #ifdef DIAGNOSTIC
1571 for (i = 1; i <= len; i++)
1572 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1573 got - run + i))
1574 panic("ffs_clusteralloc: map mismatch");
1575 #endif
1576 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1577 if (dtog(fs, bno) != cg)
1578 panic("ffs_clusteralloc: allocated out of group");
1579 len = blkstofrags(fs, len);
1580 mutex_enter(&ump->um_lock);
1581 for (i = 0; i < len; i += fs->fs_frag)
1582 if ((got = ffs_alloccgblk(ip, bp, bno + i, flags)) != bno + i)
1583 panic("ffs_clusteralloc: lost block");
1584 ACTIVECG_CLR(fs, cg);
1585 mutex_exit(&ump->um_lock);
1586 bdwrite(bp);
1587 return (bno);
1588
1589 fail:
1590 brelse(bp, 0);
1591 mutex_enter(&ump->um_lock);
1592 return (0);
1593 }
1594 #endif /* XXXUBC */
1595
1596 /*
1597 * Determine whether an inode can be allocated.
1598 *
1599 * Check to see if an inode is available, and if it is,
1600 * allocate it using the following policy:
1601 * 1) allocate the requested inode.
1602 * 2) allocate the next available inode after the requested
1603 * inode in the specified cylinder group.
1604 */
1605 static daddr_t
1606 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1607 {
1608 struct ufsmount *ump = ip->i_ump;
1609 struct fs *fs = ip->i_fs;
1610 struct cg *cgp;
1611 struct buf *bp, *ibp;
1612 u_int8_t *inosused;
1613 int error, start, len, loc, map, i;
1614 int32_t initediblk;
1615 daddr_t nalloc;
1616 struct ufs2_dinode *dp2;
1617 #ifdef FFS_EI
1618 const int needswap = UFS_FSNEEDSWAP(fs);
1619 #endif
1620
1621 KASSERT(mutex_owned(&ump->um_lock));
1622 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1623
1624 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1625 return (0);
1626 mutex_exit(&ump->um_lock);
1627 ibp = NULL;
1628 initediblk = -1;
1629 retry:
1630 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1631 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1632 if (error)
1633 goto fail;
1634 cgp = (struct cg *)bp->b_data;
1635 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1636 goto fail;
1637
1638 if (ibp != NULL &&
1639 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1640 /* Another thread allocated more inodes so we retry the test. */
1641 brelse(ibp, BC_INVAL);
1642 ibp = NULL;
1643 }
1644 /*
1645 * Check to see if we need to initialize more inodes.
1646 */
1647 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1648 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1649 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1650 if (nalloc + INOPB(fs) > initediblk &&
1651 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1652 /*
1653 * We have to release the cg buffer here to prevent
1654 * a deadlock when reading the inode block will
1655 * run a copy-on-write that might use this cg.
1656 */
1657 brelse(bp, 0);
1658 bp = NULL;
1659 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1660 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1661 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1662 if (error)
1663 goto fail;
1664 goto retry;
1665 }
1666 }
1667
1668 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1669 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1670 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1671 cgp->cg_time = ufs_rw64(time_second, needswap);
1672 inosused = cg_inosused(cgp, needswap);
1673 if (ipref) {
1674 ipref %= fs->fs_ipg;
1675 if (isclr(inosused, ipref))
1676 goto gotit;
1677 }
1678 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1679 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1680 NBBY);
1681 loc = skpc(0xff, len, &inosused[start]);
1682 if (loc == 0) {
1683 len = start + 1;
1684 start = 0;
1685 loc = skpc(0xff, len, &inosused[0]);
1686 if (loc == 0) {
1687 printf("cg = %d, irotor = %d, fs = %s\n",
1688 cg, ufs_rw32(cgp->cg_irotor, needswap),
1689 fs->fs_fsmnt);
1690 panic("ffs_nodealloccg: map corrupted");
1691 /* NOTREACHED */
1692 }
1693 }
1694 i = start + len - loc;
1695 map = inosused[i];
1696 ipref = i * NBBY;
1697 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1698 if ((map & i) == 0) {
1699 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1700 goto gotit;
1701 }
1702 }
1703 printf("fs = %s\n", fs->fs_fsmnt);
1704 panic("ffs_nodealloccg: block not in map");
1705 /* NOTREACHED */
1706 gotit:
1707 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1708 mode);
1709 /*
1710 * Check to see if we need to initialize more inodes.
1711 */
1712 if (ibp != NULL) {
1713 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1714 memset(ibp->b_data, 0, fs->fs_bsize);
1715 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1716 for (i = 0; i < INOPB(fs); i++) {
1717 /*
1718 * Don't bother to swap, it's supposed to be
1719 * random, after all.
1720 */
1721 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1722 dp2++;
1723 }
1724 initediblk += INOPB(fs);
1725 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1726 }
1727
1728 mutex_enter(&ump->um_lock);
1729 ACTIVECG_CLR(fs, cg);
1730 setbit(inosused, ipref);
1731 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1732 fs->fs_cstotal.cs_nifree--;
1733 fs->fs_cs(fs, cg).cs_nifree--;
1734 fs->fs_fmod = 1;
1735 if ((mode & IFMT) == IFDIR) {
1736 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1737 fs->fs_cstotal.cs_ndir++;
1738 fs->fs_cs(fs, cg).cs_ndir++;
1739 }
1740 mutex_exit(&ump->um_lock);
1741 if (DOINGSOFTDEP(ITOV(ip)))
1742 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1743 if (ibp != NULL) {
1744 bwrite(bp);
1745 bawrite(ibp);
1746 } else
1747 bdwrite(bp);
1748 return (cg * fs->fs_ipg + ipref);
1749 fail:
1750 if (bp != NULL)
1751 brelse(bp, 0);
1752 if (ibp != NULL)
1753 brelse(ibp, BC_INVAL);
1754 mutex_enter(&ump->um_lock);
1755 return (0);
1756 }
1757
1758 /*
1759 * Allocate a block or fragment.
1760 *
1761 * The specified block or fragment is removed from the
1762 * free map, possibly fragmenting a block in the process.
1763 *
1764 * This implementation should mirror fs_blkfree
1765 *
1766 * => um_lock not held on entry or exit
1767 */
1768 int
1769 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1770 {
1771 struct ufsmount *ump = ip->i_ump;
1772 struct fs *fs = ip->i_fs;
1773 struct cg *cgp;
1774 struct buf *bp;
1775 int32_t fragno, cgbno;
1776 int i, error, cg, blk, frags, bbase;
1777 u_int8_t *blksfree;
1778 const int needswap = UFS_FSNEEDSWAP(fs);
1779
1780 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1781 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1782 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1783 "size = %ld, fs = %s\n",
1784 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1785 panic("blkalloc: bad size");
1786 }
1787 cg = dtog(fs, bno);
1788 if (bno >= fs->fs_size) {
1789 printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1790 ip->i_number);
1791 ffs_fserr(fs, ip->i_uid, "bad block");
1792 return EINVAL;
1793 }
1794 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1795 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1796 if (error) {
1797 brelse(bp, 0);
1798 return error;
1799 }
1800 cgp = (struct cg *)bp->b_data;
1801 if (!cg_chkmagic(cgp, needswap)) {
1802 brelse(bp, 0);
1803 return EIO;
1804 }
1805 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1806 cgp->cg_time = ufs_rw64(time_second, needswap);
1807 cgbno = dtogd(fs, bno);
1808 blksfree = cg_blksfree(cgp, needswap);
1809
1810 mutex_enter(&ump->um_lock);
1811 if (size == fs->fs_bsize) {
1812 fragno = fragstoblks(fs, cgbno);
1813 if (!ffs_isblock(fs, blksfree, fragno)) {
1814 mutex_exit(&ump->um_lock);
1815 brelse(bp, 0);
1816 return EBUSY;
1817 }
1818 ffs_clrblock(fs, blksfree, fragno);
1819 ffs_clusteracct(fs, cgp, fragno, -1);
1820 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1821 fs->fs_cstotal.cs_nbfree--;
1822 fs->fs_cs(fs, cg).cs_nbfree--;
1823 } else {
1824 bbase = cgbno - fragnum(fs, cgbno);
1825
1826 frags = numfrags(fs, size);
1827 for (i = 0; i < frags; i++) {
1828 if (isclr(blksfree, cgbno + i)) {
1829 mutex_exit(&ump->um_lock);
1830 brelse(bp, 0);
1831 return EBUSY;
1832 }
1833 }
1834 /*
1835 * if a complete block is being split, account for it
1836 */
1837 fragno = fragstoblks(fs, bbase);
1838 if (ffs_isblock(fs, blksfree, fragno)) {
1839 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1840 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1841 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1842 ffs_clusteracct(fs, cgp, fragno, -1);
1843 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1844 fs->fs_cstotal.cs_nbfree--;
1845 fs->fs_cs(fs, cg).cs_nbfree--;
1846 }
1847 /*
1848 * decrement the counts associated with the old frags
1849 */
1850 blk = blkmap(fs, blksfree, bbase);
1851 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1852 /*
1853 * allocate the fragment
1854 */
1855 for (i = 0; i < frags; i++) {
1856 clrbit(blksfree, cgbno + i);
1857 }
1858 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1859 fs->fs_cstotal.cs_nffree -= i;
1860 fs->fs_cs(fs, cg).cs_nffree -= i;
1861 /*
1862 * add back in counts associated with the new frags
1863 */
1864 blk = blkmap(fs, blksfree, bbase);
1865 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1866 }
1867 fs->fs_fmod = 1;
1868 ACTIVECG_CLR(fs, cg);
1869 mutex_exit(&ump->um_lock);
1870 bdwrite(bp);
1871 return 0;
1872 }
1873
1874 /*
1875 * Free a block or fragment.
1876 *
1877 * The specified block or fragment is placed back in the
1878 * free map. If a fragment is deallocated, a possible
1879 * block reassembly is checked.
1880 *
1881 * => um_lock not held on entry or exit
1882 */
1883 void
1884 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1885 ino_t inum)
1886 {
1887 struct cg *cgp;
1888 struct buf *bp;
1889 struct ufsmount *ump;
1890 int32_t fragno, cgbno;
1891 daddr_t cgblkno;
1892 int i, error, cg, blk, frags, bbase;
1893 u_int8_t *blksfree;
1894 dev_t dev;
1895 const int needswap = UFS_FSNEEDSWAP(fs);
1896
1897 cg = dtog(fs, bno);
1898 if (devvp->v_type != VBLK) {
1899 /* devvp is a snapshot */
1900 dev = VTOI(devvp)->i_devvp->v_rdev;
1901 ump = VFSTOUFS(devvp->v_mount);
1902 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1903 } else {
1904 dev = devvp->v_rdev;
1905 ump = VFSTOUFS(devvp->v_specmountpoint);
1906 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1907 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1908 return;
1909 }
1910 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1911 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1912 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1913 "size = %ld, fs = %s\n",
1914 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1915 panic("blkfree: bad size");
1916 }
1917
1918 if (bno >= fs->fs_size) {
1919 printf("bad block %" PRId64 ", ino %llu\n", bno,
1920 (unsigned long long)inum);
1921 ffs_fserr(fs, inum, "bad block");
1922 return;
1923 }
1924 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1925 NOCRED, B_MODIFY, &bp);
1926 if (error) {
1927 brelse(bp, 0);
1928 return;
1929 }
1930 cgp = (struct cg *)bp->b_data;
1931 if (!cg_chkmagic(cgp, needswap)) {
1932 brelse(bp, 0);
1933 return;
1934 }
1935 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1936 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1937 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1938 cgp->cg_time = ufs_rw64(time_second, needswap);
1939 cgbno = dtogd(fs, bno);
1940 blksfree = cg_blksfree(cgp, needswap);
1941 mutex_enter(&ump->um_lock);
1942 if (size == fs->fs_bsize) {
1943 fragno = fragstoblks(fs, cgbno);
1944 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1945 if (devvp->v_type != VBLK) {
1946 /* devvp is a snapshot */
1947 mutex_exit(&ump->um_lock);
1948 brelse(bp, 0);
1949 return;
1950 }
1951 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1952 dev, bno, fs->fs_fsmnt);
1953 panic("blkfree: freeing free block");
1954 }
1955 ffs_setblock(fs, blksfree, fragno);
1956 ffs_clusteracct(fs, cgp, fragno, 1);
1957 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1958 fs->fs_cstotal.cs_nbfree++;
1959 fs->fs_cs(fs, cg).cs_nbfree++;
1960 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1961 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1962 i = old_cbtocylno(fs, cgbno);
1963 KASSERT(i >= 0);
1964 KASSERT(i < fs->fs_old_ncyl);
1965 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1966 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1967 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1968 needswap);
1969 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1970 }
1971 } else {
1972 bbase = cgbno - fragnum(fs, cgbno);
1973 /*
1974 * decrement the counts associated with the old frags
1975 */
1976 blk = blkmap(fs, blksfree, bbase);
1977 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1978 /*
1979 * deallocate the fragment
1980 */
1981 frags = numfrags(fs, size);
1982 for (i = 0; i < frags; i++) {
1983 if (isset(blksfree, cgbno + i)) {
1984 printf("dev = 0x%x, block = %" PRId64
1985 ", fs = %s\n",
1986 dev, bno + i, fs->fs_fsmnt);
1987 panic("blkfree: freeing free frag");
1988 }
1989 setbit(blksfree, cgbno + i);
1990 }
1991 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1992 fs->fs_cstotal.cs_nffree += i;
1993 fs->fs_cs(fs, cg).cs_nffree += i;
1994 /*
1995 * add back in counts associated with the new frags
1996 */
1997 blk = blkmap(fs, blksfree, bbase);
1998 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1999 /*
2000 * if a complete block has been reassembled, account for it
2001 */
2002 fragno = fragstoblks(fs, bbase);
2003 if (ffs_isblock(fs, blksfree, fragno)) {
2004 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
2005 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2006 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2007 ffs_clusteracct(fs, cgp, fragno, 1);
2008 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
2009 fs->fs_cstotal.cs_nbfree++;
2010 fs->fs_cs(fs, cg).cs_nbfree++;
2011 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
2012 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
2013 i = old_cbtocylno(fs, bbase);
2014 KASSERT(i >= 0);
2015 KASSERT(i < fs->fs_old_ncyl);
2016 KASSERT(old_cbtorpos(fs, bbase) >= 0);
2017 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
2018 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
2019 bbase)], 1, needswap);
2020 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
2021 }
2022 }
2023 }
2024 fs->fs_fmod = 1;
2025 ACTIVECG_CLR(fs, cg);
2026 mutex_exit(&ump->um_lock);
2027 bdwrite(bp);
2028 }
2029
2030 #if defined(DIAGNOSTIC) || defined(DEBUG)
2031 #ifdef XXXUBC
2032 /*
2033 * Verify allocation of a block or fragment. Returns true if block or
2034 * fragment is allocated, false if it is free.
2035 */
2036 static int
2037 ffs_checkblk(struct inode *ip, daddr_t bno, long size)
2038 {
2039 struct fs *fs;
2040 struct cg *cgp;
2041 struct buf *bp;
2042 int i, error, frags, free;
2043
2044 fs = ip->i_fs;
2045 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2046 printf("bsize = %d, size = %ld, fs = %s\n",
2047 fs->fs_bsize, size, fs->fs_fsmnt);
2048 panic("checkblk: bad size");
2049 }
2050 if (bno >= fs->fs_size)
2051 panic("checkblk: bad block %d", bno);
2052 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2053 (int)fs->fs_cgsize, NOCRED, 0, &bp);
2054 if (error) {
2055 brelse(bp, 0);
2056 return 0;
2057 }
2058 cgp = (struct cg *)bp->b_data;
2059 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2060 brelse(bp, 0);
2061 return 0;
2062 }
2063 bno = dtogd(fs, bno);
2064 if (size == fs->fs_bsize) {
2065 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
2066 fragstoblks(fs, bno));
2067 } else {
2068 frags = numfrags(fs, size);
2069 for (free = 0, i = 0; i < frags; i++)
2070 if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
2071 free++;
2072 if (free != 0 && free != frags)
2073 panic("checkblk: partially free fragment");
2074 }
2075 brelse(bp, 0);
2076 return (!free);
2077 }
2078 #endif /* XXXUBC */
2079 #endif /* DIAGNOSTIC */
2080
2081 /*
2082 * Free an inode.
2083 */
2084 int
2085 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
2086 {
2087
2088 if (DOINGSOFTDEP(vp)) {
2089 softdep_freefile(vp, ino, mode);
2090 return (0);
2091 }
2092 return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
2093 }
2094
2095 /*
2096 * Do the actual free operation.
2097 * The specified inode is placed back in the free map.
2098 *
2099 * => um_lock not held on entry or exit
2100 */
2101 int
2102 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
2103 {
2104 struct ufsmount *ump;
2105 struct cg *cgp;
2106 struct buf *bp;
2107 int error, cg;
2108 daddr_t cgbno;
2109 u_int8_t *inosused;
2110 dev_t dev;
2111 #ifdef FFS_EI
2112 const int needswap = UFS_FSNEEDSWAP(fs);
2113 #endif
2114
2115 UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
2116
2117 cg = ino_to_cg(fs, ino);
2118 if (devvp->v_type != VBLK) {
2119 /* devvp is a snapshot */
2120 dev = VTOI(devvp)->i_devvp->v_rdev;
2121 ump = VFSTOUFS(devvp->v_mount);
2122 cgbno = fragstoblks(fs, cgtod(fs, cg));
2123 } else {
2124 dev = devvp->v_rdev;
2125 ump = VFSTOUFS(devvp->v_specmountpoint);
2126 cgbno = fsbtodb(fs, cgtod(fs, cg));
2127 }
2128 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2129 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
2130 dev, (unsigned long long)ino, fs->fs_fsmnt);
2131 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2132 NOCRED, B_MODIFY, &bp);
2133 if (error) {
2134 brelse(bp, 0);
2135 return (error);
2136 }
2137 cgp = (struct cg *)bp->b_data;
2138 if (!cg_chkmagic(cgp, needswap)) {
2139 brelse(bp, 0);
2140 return (0);
2141 }
2142 cgp->cg_old_time = ufs_rw32(time_second, needswap);
2143 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2144 (fs->fs_old_flags & FS_FLAGS_UPDATED))
2145 cgp->cg_time = ufs_rw64(time_second, needswap);
2146 inosused = cg_inosused(cgp, needswap);
2147 ino %= fs->fs_ipg;
2148 if (isclr(inosused, ino)) {
2149 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
2150 dev, (unsigned long long)ino + cg * fs->fs_ipg,
2151 fs->fs_fsmnt);
2152 if (fs->fs_ronly == 0)
2153 panic("ifree: freeing free inode");
2154 }
2155 clrbit(inosused, ino);
2156 UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
2157 ino + cg * fs->fs_ipg, mode);
2158 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2159 cgp->cg_irotor = ufs_rw32(ino, needswap);
2160 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2161 mutex_enter(&ump->um_lock);
2162 fs->fs_cstotal.cs_nifree++;
2163 fs->fs_cs(fs, cg).cs_nifree++;
2164 if ((mode & IFMT) == IFDIR) {
2165 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2166 fs->fs_cstotal.cs_ndir--;
2167 fs->fs_cs(fs, cg).cs_ndir--;
2168 }
2169 fs->fs_fmod = 1;
2170 ACTIVECG_CLR(fs, cg);
2171 mutex_exit(&ump->um_lock);
2172 bdwrite(bp);
2173 return (0);
2174 }
2175
2176 /*
2177 * Check to see if a file is free.
2178 */
2179 int
2180 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2181 {
2182 struct cg *cgp;
2183 struct buf *bp;
2184 daddr_t cgbno;
2185 int ret, cg;
2186 u_int8_t *inosused;
2187
2188 cg = ino_to_cg(fs, ino);
2189 if (devvp->v_type != VBLK) {
2190 /* devvp is a snapshot */
2191 cgbno = fragstoblks(fs, cgtod(fs, cg));
2192 } else
2193 cgbno = fsbtodb(fs, cgtod(fs, cg));
2194 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2195 return 1;
2196 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2197 brelse(bp, 0);
2198 return 1;
2199 }
2200 cgp = (struct cg *)bp->b_data;
2201 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2202 brelse(bp, 0);
2203 return 1;
2204 }
2205 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2206 ino %= fs->fs_ipg;
2207 ret = isclr(inosused, ino);
2208 brelse(bp, 0);
2209 return ret;
2210 }
2211
2212 /*
2213 * Find a block of the specified size in the specified cylinder group.
2214 *
2215 * It is a panic if a request is made to find a block if none are
2216 * available.
2217 */
2218 static int32_t
2219 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2220 {
2221 int32_t bno;
2222 int start, len, loc, i;
2223 int blk, field, subfield, pos;
2224 int ostart, olen;
2225 u_int8_t *blksfree;
2226 #ifdef FFS_EI
2227 const int needswap = UFS_FSNEEDSWAP(fs);
2228 #endif
2229
2230 /* KASSERT(mutex_owned(&ump->um_lock)); */
2231
2232 /*
2233 * find the fragment by searching through the free block
2234 * map for an appropriate bit pattern
2235 */
2236 if (bpref)
2237 start = dtogd(fs, bpref) / NBBY;
2238 else
2239 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2240 blksfree = cg_blksfree(cgp, needswap);
2241 len = howmany(fs->fs_fpg, NBBY) - start;
2242 ostart = start;
2243 olen = len;
2244 loc = scanc((u_int)len,
2245 (const u_char *)&blksfree[start],
2246 (const u_char *)fragtbl[fs->fs_frag],
2247 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2248 if (loc == 0) {
2249 len = start + 1;
2250 start = 0;
2251 loc = scanc((u_int)len,
2252 (const u_char *)&blksfree[0],
2253 (const u_char *)fragtbl[fs->fs_frag],
2254 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2255 if (loc == 0) {
2256 printf("start = %d, len = %d, fs = %s\n",
2257 ostart, olen, fs->fs_fsmnt);
2258 printf("offset=%d %ld\n",
2259 ufs_rw32(cgp->cg_freeoff, needswap),
2260 (long)blksfree - (long)cgp);
2261 printf("cg %d\n", cgp->cg_cgx);
2262 panic("ffs_alloccg: map corrupted");
2263 /* NOTREACHED */
2264 }
2265 }
2266 bno = (start + len - loc) * NBBY;
2267 cgp->cg_frotor = ufs_rw32(bno, needswap);
2268 /*
2269 * found the byte in the map
2270 * sift through the bits to find the selected frag
2271 */
2272 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2273 blk = blkmap(fs, blksfree, bno);
2274 blk <<= 1;
2275 field = around[allocsiz];
2276 subfield = inside[allocsiz];
2277 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2278 if ((blk & field) == subfield)
2279 return (bno + pos);
2280 field <<= 1;
2281 subfield <<= 1;
2282 }
2283 }
2284 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2285 panic("ffs_alloccg: block not in map");
2286 /* return (-1); */
2287 }
2288
2289 /*
2290 * Update the cluster map because of an allocation or free.
2291 *
2292 * Cnt == 1 means free; cnt == -1 means allocating.
2293 */
2294 void
2295 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2296 {
2297 int32_t *sump;
2298 int32_t *lp;
2299 u_char *freemapp, *mapp;
2300 int i, start, end, forw, back, map, bit;
2301 #ifdef FFS_EI
2302 const int needswap = UFS_FSNEEDSWAP(fs);
2303 #endif
2304
2305 /* KASSERT(mutex_owned(&ump->um_lock)); */
2306
2307 if (fs->fs_contigsumsize <= 0)
2308 return;
2309 freemapp = cg_clustersfree(cgp, needswap);
2310 sump = cg_clustersum(cgp, needswap);
2311 /*
2312 * Allocate or clear the actual block.
2313 */
2314 if (cnt > 0)
2315 setbit(freemapp, blkno);
2316 else
2317 clrbit(freemapp, blkno);
2318 /*
2319 * Find the size of the cluster going forward.
2320 */
2321 start = blkno + 1;
2322 end = start + fs->fs_contigsumsize;
2323 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2324 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2325 mapp = &freemapp[start / NBBY];
2326 map = *mapp++;
2327 bit = 1 << (start % NBBY);
2328 for (i = start; i < end; i++) {
2329 if ((map & bit) == 0)
2330 break;
2331 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2332 bit <<= 1;
2333 } else {
2334 map = *mapp++;
2335 bit = 1;
2336 }
2337 }
2338 forw = i - start;
2339 /*
2340 * Find the size of the cluster going backward.
2341 */
2342 start = blkno - 1;
2343 end = start - fs->fs_contigsumsize;
2344 if (end < 0)
2345 end = -1;
2346 mapp = &freemapp[start / NBBY];
2347 map = *mapp--;
2348 bit = 1 << (start % NBBY);
2349 for (i = start; i > end; i--) {
2350 if ((map & bit) == 0)
2351 break;
2352 if ((i & (NBBY - 1)) != 0) {
2353 bit >>= 1;
2354 } else {
2355 map = *mapp--;
2356 bit = 1 << (NBBY - 1);
2357 }
2358 }
2359 back = start - i;
2360 /*
2361 * Account for old cluster and the possibly new forward and
2362 * back clusters.
2363 */
2364 i = back + forw + 1;
2365 if (i > fs->fs_contigsumsize)
2366 i = fs->fs_contigsumsize;
2367 ufs_add32(sump[i], cnt, needswap);
2368 if (back > 0)
2369 ufs_add32(sump[back], -cnt, needswap);
2370 if (forw > 0)
2371 ufs_add32(sump[forw], -cnt, needswap);
2372
2373 /*
2374 * Update cluster summary information.
2375 */
2376 lp = &sump[fs->fs_contigsumsize];
2377 for (i = fs->fs_contigsumsize; i > 0; i--)
2378 if (ufs_rw32(*lp--, needswap) > 0)
2379 break;
2380 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2381 }
2382
2383 /*
2384 * Fserr prints the name of a file system with an error diagnostic.
2385 *
2386 * The form of the error message is:
2387 * fs: error message
2388 */
2389 static void
2390 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2391 {
2392
2393 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2394 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2395 }
2396