ffs_alloc.c revision 1.114 1 /* $NetBSD: ffs_alloc.c,v 1.114 2008/11/06 22:31:08 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.114 2008/11/06 22:31:08 joerg Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
91
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 static ino_t ffs_dirpref(struct inode *);
106 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 static void ffs_fserr(struct fs *, u_int, const char *);
108 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 daddr_t, int);
113
114 /* if 1, changes in optimalization strategy are logged */
115 int ffs_log_changeopt = 0;
116
117 /* in ffs_tables.c */
118 extern const int inside[], around[];
119 extern const u_char * const fragtbl[];
120
121 /*
122 * Allocate a block in the file system.
123 *
124 * The size of the requested block is given, which must be some
125 * multiple of fs_fsize and <= fs_bsize.
126 * A preference may be optionally specified. If a preference is given
127 * the following hierarchy is used to allocate a block:
128 * 1) allocate the requested block.
129 * 2) allocate a rotationally optimal block in the same cylinder.
130 * 3) allocate a block in the same cylinder group.
131 * 4) quadradically rehash into other cylinder groups, until an
132 * available block is located.
133 * If no block preference is given the following hierarchy is used
134 * to allocate a block:
135 * 1) allocate a block in the cylinder group that contains the
136 * inode for the file.
137 * 2) quadradically rehash into other cylinder groups, until an
138 * available block is located.
139 *
140 * => called with um_lock held
141 * => releases um_lock before returning
142 */
143 int
144 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
145 kauth_cred_t cred, daddr_t *bnp)
146 {
147 struct ufsmount *ump;
148 struct fs *fs;
149 daddr_t bno;
150 int cg;
151 #ifdef QUOTA
152 int error;
153 #endif
154
155 fs = ip->i_fs;
156 ump = ip->i_ump;
157
158 KASSERT(mutex_owned(&ump->um_lock));
159
160 #ifdef UVM_PAGE_TRKOWN
161 if (ITOV(ip)->v_type == VREG &&
162 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
163 struct vm_page *pg;
164 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
165 voff_t off = trunc_page(lblktosize(fs, lbn));
166 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
167
168 mutex_enter(&uobj->vmobjlock);
169 while (off < endoff) {
170 pg = uvm_pagelookup(uobj, off);
171 KASSERT(pg != NULL);
172 KASSERT(pg->owner == curproc->p_pid);
173 off += PAGE_SIZE;
174 }
175 mutex_exit(&uobj->vmobjlock);
176 }
177 #endif
178
179 *bnp = 0;
180 #ifdef DIAGNOSTIC
181 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
182 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
183 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
184 panic("ffs_alloc: bad size");
185 }
186 if (cred == NOCRED)
187 panic("ffs_alloc: missing credential");
188 #endif /* DIAGNOSTIC */
189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
190 goto nospace;
191 if (freespace(fs, fs->fs_minfree) <= 0 &&
192 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
193 goto nospace;
194 #ifdef QUOTA
195 mutex_exit(&ump->um_lock);
196 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
197 return (error);
198 mutex_enter(&ump->um_lock);
199 #endif
200
201 if (bpref >= fs->fs_size)
202 bpref = 0;
203 if (bpref == 0)
204 cg = ino_to_cg(fs, ip->i_number);
205 else
206 cg = dtog(fs, bpref);
207 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
208 if (bno > 0) {
209 DIP_ADD(ip, blocks, btodb(size));
210 ip->i_flag |= IN_CHANGE | IN_UPDATE;
211 *bnp = bno;
212 return (0);
213 }
214 #ifdef QUOTA
215 /*
216 * Restore user's disk quota because allocation failed.
217 */
218 (void) chkdq(ip, -btodb(size), cred, FORCE);
219 #endif
220 if (flags & B_CONTIG) {
221 /*
222 * XXX ump->um_lock handling is "suspect" at best.
223 * For the case where ffs_hashalloc() fails early
224 * in the B_CONTIG case we reach here with um_lock
225 * already unlocked, so we can't release it again
226 * like in the normal error path. See kern/39206.
227 *
228 *
229 * Fail silently - it's up to our caller to report
230 * errors.
231 */
232 return (ENOSPC);
233 }
234 nospace:
235 mutex_exit(&ump->um_lock);
236 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
237 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
238 return (ENOSPC);
239 }
240
241 /*
242 * Reallocate a fragment to a bigger size
243 *
244 * The number and size of the old block is given, and a preference
245 * and new size is also specified. The allocator attempts to extend
246 * the original block. Failing that, the regular block allocator is
247 * invoked to get an appropriate block.
248 *
249 * => called with um_lock held
250 * => return with um_lock released
251 */
252 int
253 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
254 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
255 {
256 struct ufsmount *ump;
257 struct fs *fs;
258 struct buf *bp;
259 int cg, request, error;
260 daddr_t bprev, bno;
261
262 fs = ip->i_fs;
263 ump = ip->i_ump;
264
265 KASSERT(mutex_owned(&ump->um_lock));
266
267 #ifdef UVM_PAGE_TRKOWN
268 if (ITOV(ip)->v_type == VREG) {
269 struct vm_page *pg;
270 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
271 voff_t off = trunc_page(lblktosize(fs, lbprev));
272 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
273
274 mutex_enter(&uobj->vmobjlock);
275 while (off < endoff) {
276 pg = uvm_pagelookup(uobj, off);
277 KASSERT(pg != NULL);
278 KASSERT(pg->owner == curproc->p_pid);
279 KASSERT((pg->flags & PG_CLEAN) == 0);
280 off += PAGE_SIZE;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 }
284 #endif
285
286 #ifdef DIAGNOSTIC
287 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
288 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
289 printf(
290 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
291 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
292 panic("ffs_realloccg: bad size");
293 }
294 if (cred == NOCRED)
295 panic("ffs_realloccg: missing credential");
296 #endif /* DIAGNOSTIC */
297 if (freespace(fs, fs->fs_minfree) <= 0 &&
298 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
299 mutex_exit(&ump->um_lock);
300 goto nospace;
301 }
302 if (fs->fs_magic == FS_UFS2_MAGIC)
303 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
304 else
305 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
306
307 if (bprev == 0) {
308 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
309 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
310 panic("ffs_realloccg: bad bprev");
311 }
312 mutex_exit(&ump->um_lock);
313
314 /*
315 * Allocate the extra space in the buffer.
316 */
317 if (bpp != NULL &&
318 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
319 brelse(bp, 0);
320 return (error);
321 }
322 #ifdef QUOTA
323 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
324 if (bpp != NULL) {
325 brelse(bp, 0);
326 }
327 return (error);
328 }
329 #endif
330 /*
331 * Check for extension in the existing location.
332 */
333 cg = dtog(fs, bprev);
334 mutex_enter(&ump->um_lock);
335 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
336 DIP_ADD(ip, blocks, btodb(nsize - osize));
337 ip->i_flag |= IN_CHANGE | IN_UPDATE;
338
339 if (bpp != NULL) {
340 if (bp->b_blkno != fsbtodb(fs, bno))
341 panic("bad blockno");
342 allocbuf(bp, nsize, 1);
343 memset((char *)bp->b_data + osize, 0, nsize - osize);
344 mutex_enter(bp->b_objlock);
345 KASSERT(!cv_has_waiters(&bp->b_done));
346 bp->b_oflags |= BO_DONE;
347 mutex_exit(bp->b_objlock);
348 *bpp = bp;
349 }
350 if (blknop != NULL) {
351 *blknop = bno;
352 }
353 return (0);
354 }
355 /*
356 * Allocate a new disk location.
357 */
358 if (bpref >= fs->fs_size)
359 bpref = 0;
360 switch ((int)fs->fs_optim) {
361 case FS_OPTSPACE:
362 /*
363 * Allocate an exact sized fragment. Although this makes
364 * best use of space, we will waste time relocating it if
365 * the file continues to grow. If the fragmentation is
366 * less than half of the minimum free reserve, we choose
367 * to begin optimizing for time.
368 */
369 request = nsize;
370 if (fs->fs_minfree < 5 ||
371 fs->fs_cstotal.cs_nffree >
372 fs->fs_dsize * fs->fs_minfree / (2 * 100))
373 break;
374
375 if (ffs_log_changeopt) {
376 log(LOG_NOTICE,
377 "%s: optimization changed from SPACE to TIME\n",
378 fs->fs_fsmnt);
379 }
380
381 fs->fs_optim = FS_OPTTIME;
382 break;
383 case FS_OPTTIME:
384 /*
385 * At this point we have discovered a file that is trying to
386 * grow a small fragment to a larger fragment. To save time,
387 * we allocate a full sized block, then free the unused portion.
388 * If the file continues to grow, the `ffs_fragextend' call
389 * above will be able to grow it in place without further
390 * copying. If aberrant programs cause disk fragmentation to
391 * grow within 2% of the free reserve, we choose to begin
392 * optimizing for space.
393 */
394 request = fs->fs_bsize;
395 if (fs->fs_cstotal.cs_nffree <
396 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
397 break;
398
399 if (ffs_log_changeopt) {
400 log(LOG_NOTICE,
401 "%s: optimization changed from TIME to SPACE\n",
402 fs->fs_fsmnt);
403 }
404
405 fs->fs_optim = FS_OPTSPACE;
406 break;
407 default:
408 printf("dev = 0x%x, optim = %d, fs = %s\n",
409 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
410 panic("ffs_realloccg: bad optim");
411 /* NOTREACHED */
412 }
413 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
414 if (bno > 0) {
415 if (!DOINGSOFTDEP(ITOV(ip))) {
416 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
417 (ITOV(ip)->v_type != VREG)) {
418 UFS_WAPBL_REGISTER_DEALLOCATION(
419 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
420 osize);
421 } else
422 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
423 ip->i_number);
424 }
425 if (nsize < request) {
426 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
427 (ITOV(ip)->v_type != VREG)) {
428 UFS_WAPBL_REGISTER_DEALLOCATION(
429 ip->i_ump->um_mountp,
430 fsbtodb(fs, (bno + numfrags(fs, nsize))),
431 request - nsize);
432 } else
433 ffs_blkfree(fs, ip->i_devvp,
434 bno + numfrags(fs, nsize),
435 (long)(request - nsize), ip->i_number);
436 }
437 DIP_ADD(ip, blocks, btodb(nsize - osize));
438 ip->i_flag |= IN_CHANGE | IN_UPDATE;
439 if (bpp != NULL) {
440 bp->b_blkno = fsbtodb(fs, bno);
441 allocbuf(bp, nsize, 1);
442 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
443 mutex_enter(bp->b_objlock);
444 KASSERT(!cv_has_waiters(&bp->b_done));
445 bp->b_oflags |= BO_DONE;
446 mutex_exit(bp->b_objlock);
447 *bpp = bp;
448 }
449 if (blknop != NULL) {
450 *blknop = bno;
451 }
452 return (0);
453 }
454 mutex_exit(&ump->um_lock);
455
456 #ifdef QUOTA
457 /*
458 * Restore user's disk quota because allocation failed.
459 */
460 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
461 #endif
462 if (bpp != NULL) {
463 brelse(bp, 0);
464 }
465
466 nospace:
467 /*
468 * no space available
469 */
470 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
471 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
472 return (ENOSPC);
473 }
474
475 /*
476 * Allocate an inode in the file system.
477 *
478 * If allocating a directory, use ffs_dirpref to select the inode.
479 * If allocating in a directory, the following hierarchy is followed:
480 * 1) allocate the preferred inode.
481 * 2) allocate an inode in the same cylinder group.
482 * 3) quadradically rehash into other cylinder groups, until an
483 * available inode is located.
484 * If no inode preference is given the following hierarchy is used
485 * to allocate an inode:
486 * 1) allocate an inode in cylinder group 0.
487 * 2) quadradically rehash into other cylinder groups, until an
488 * available inode is located.
489 *
490 * => um_lock not held upon entry or return
491 */
492 int
493 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
494 struct vnode **vpp)
495 {
496 struct ufsmount *ump;
497 struct inode *pip;
498 struct fs *fs;
499 struct inode *ip;
500 struct timespec ts;
501 ino_t ino, ipref;
502 int cg, error;
503
504 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
505
506 *vpp = NULL;
507 pip = VTOI(pvp);
508 fs = pip->i_fs;
509 ump = pip->i_ump;
510
511 error = UFS_WAPBL_BEGIN(pvp->v_mount);
512 if (error) {
513 return error;
514 }
515 mutex_enter(&ump->um_lock);
516 if (fs->fs_cstotal.cs_nifree == 0)
517 goto noinodes;
518
519 if ((mode & IFMT) == IFDIR)
520 ipref = ffs_dirpref(pip);
521 else
522 ipref = pip->i_number;
523 if (ipref >= fs->fs_ncg * fs->fs_ipg)
524 ipref = 0;
525 cg = ino_to_cg(fs, ipref);
526 /*
527 * Track number of dirs created one after another
528 * in a same cg without intervening by files.
529 */
530 if ((mode & IFMT) == IFDIR) {
531 if (fs->fs_contigdirs[cg] < 255)
532 fs->fs_contigdirs[cg]++;
533 } else {
534 if (fs->fs_contigdirs[cg] > 0)
535 fs->fs_contigdirs[cg]--;
536 }
537 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
538 if (ino == 0)
539 goto noinodes;
540 UFS_WAPBL_END(pvp->v_mount);
541 error = VFS_VGET(pvp->v_mount, ino, vpp);
542 if (error) {
543 int err;
544 err = UFS_WAPBL_BEGIN(pvp->v_mount);
545 if (err == 0)
546 ffs_vfree(pvp, ino, mode);
547 if (err == 0)
548 UFS_WAPBL_END(pvp->v_mount);
549 return (error);
550 }
551 KASSERT((*vpp)->v_type == VNON);
552 ip = VTOI(*vpp);
553 if (ip->i_mode) {
554 #if 0
555 printf("mode = 0%o, inum = %d, fs = %s\n",
556 ip->i_mode, ip->i_number, fs->fs_fsmnt);
557 #else
558 printf("dmode %x mode %x dgen %x gen %x\n",
559 DIP(ip, mode), ip->i_mode,
560 DIP(ip, gen), ip->i_gen);
561 printf("size %llx blocks %llx\n",
562 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
563 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
564 (unsigned long long)ipref);
565 #if 0
566 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
567 (int)fs->fs_bsize, NOCRED, 0, &bp);
568 #endif
569
570 #endif
571 panic("ffs_valloc: dup alloc");
572 }
573 if (DIP(ip, blocks)) { /* XXX */
574 printf("free inode %s/%llu had %" PRId64 " blocks\n",
575 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
576 DIP_ASSIGN(ip, blocks, 0);
577 }
578 ip->i_flag &= ~IN_SPACECOUNTED;
579 ip->i_flags = 0;
580 DIP_ASSIGN(ip, flags, 0);
581 /*
582 * Set up a new generation number for this inode.
583 */
584 ip->i_gen++;
585 DIP_ASSIGN(ip, gen, ip->i_gen);
586 if (fs->fs_magic == FS_UFS2_MAGIC) {
587 vfs_timestamp(&ts);
588 ip->i_ffs2_birthtime = ts.tv_sec;
589 ip->i_ffs2_birthnsec = ts.tv_nsec;
590 }
591 return (0);
592 noinodes:
593 mutex_exit(&ump->um_lock);
594 UFS_WAPBL_END(pvp->v_mount);
595 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
596 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
597 return (ENOSPC);
598 }
599
600 /*
601 * Find a cylinder group in which to place a directory.
602 *
603 * The policy implemented by this algorithm is to allocate a
604 * directory inode in the same cylinder group as its parent
605 * directory, but also to reserve space for its files inodes
606 * and data. Restrict the number of directories which may be
607 * allocated one after another in the same cylinder group
608 * without intervening allocation of files.
609 *
610 * If we allocate a first level directory then force allocation
611 * in another cylinder group.
612 */
613 static ino_t
614 ffs_dirpref(struct inode *pip)
615 {
616 register struct fs *fs;
617 int cg, prefcg;
618 int64_t dirsize, cgsize, curdsz;
619 int avgifree, avgbfree, avgndir;
620 int minifree, minbfree, maxndir;
621 int mincg, minndir;
622 int maxcontigdirs;
623
624 KASSERT(mutex_owned(&pip->i_ump->um_lock));
625
626 fs = pip->i_fs;
627
628 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
629 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
630 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
631
632 /*
633 * Force allocation in another cg if creating a first level dir.
634 */
635 if (ITOV(pip)->v_vflag & VV_ROOT) {
636 prefcg = random() % fs->fs_ncg;
637 mincg = prefcg;
638 minndir = fs->fs_ipg;
639 for (cg = prefcg; cg < fs->fs_ncg; cg++)
640 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
641 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
642 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
643 mincg = cg;
644 minndir = fs->fs_cs(fs, cg).cs_ndir;
645 }
646 for (cg = 0; cg < prefcg; cg++)
647 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
648 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
649 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
650 mincg = cg;
651 minndir = fs->fs_cs(fs, cg).cs_ndir;
652 }
653 return ((ino_t)(fs->fs_ipg * mincg));
654 }
655
656 /*
657 * Count various limits which used for
658 * optimal allocation of a directory inode.
659 */
660 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
661 minifree = avgifree - fs->fs_ipg / 4;
662 if (minifree < 0)
663 minifree = 0;
664 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
665 if (minbfree < 0)
666 minbfree = 0;
667 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
668 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
669 if (avgndir != 0) {
670 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
671 if (dirsize < curdsz)
672 dirsize = curdsz;
673 }
674 if (cgsize < dirsize * 255)
675 maxcontigdirs = cgsize / dirsize;
676 else
677 maxcontigdirs = 255;
678 if (fs->fs_avgfpdir > 0)
679 maxcontigdirs = min(maxcontigdirs,
680 fs->fs_ipg / fs->fs_avgfpdir);
681 if (maxcontigdirs == 0)
682 maxcontigdirs = 1;
683
684 /*
685 * Limit number of dirs in one cg and reserve space for
686 * regular files, but only if we have no deficit in
687 * inodes or space.
688 */
689 prefcg = ino_to_cg(fs, pip->i_number);
690 for (cg = prefcg; cg < fs->fs_ncg; cg++)
691 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
692 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
693 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
694 if (fs->fs_contigdirs[cg] < maxcontigdirs)
695 return ((ino_t)(fs->fs_ipg * cg));
696 }
697 for (cg = 0; cg < prefcg; cg++)
698 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
699 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
700 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
701 if (fs->fs_contigdirs[cg] < maxcontigdirs)
702 return ((ino_t)(fs->fs_ipg * cg));
703 }
704 /*
705 * This is a backstop when we are deficient in space.
706 */
707 for (cg = prefcg; cg < fs->fs_ncg; cg++)
708 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
709 return ((ino_t)(fs->fs_ipg * cg));
710 for (cg = 0; cg < prefcg; cg++)
711 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
712 break;
713 return ((ino_t)(fs->fs_ipg * cg));
714 }
715
716 /*
717 * Select the desired position for the next block in a file. The file is
718 * logically divided into sections. The first section is composed of the
719 * direct blocks. Each additional section contains fs_maxbpg blocks.
720 *
721 * If no blocks have been allocated in the first section, the policy is to
722 * request a block in the same cylinder group as the inode that describes
723 * the file. If no blocks have been allocated in any other section, the
724 * policy is to place the section in a cylinder group with a greater than
725 * average number of free blocks. An appropriate cylinder group is found
726 * by using a rotor that sweeps the cylinder groups. When a new group of
727 * blocks is needed, the sweep begins in the cylinder group following the
728 * cylinder group from which the previous allocation was made. The sweep
729 * continues until a cylinder group with greater than the average number
730 * of free blocks is found. If the allocation is for the first block in an
731 * indirect block, the information on the previous allocation is unavailable;
732 * here a best guess is made based upon the logical block number being
733 * allocated.
734 *
735 * If a section is already partially allocated, the policy is to
736 * contiguously allocate fs_maxcontig blocks. The end of one of these
737 * contiguous blocks and the beginning of the next is laid out
738 * contigously if possible.
739 *
740 * => um_lock held on entry and exit
741 */
742 daddr_t
743 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
744 int32_t *bap /* XXX ondisk32 */)
745 {
746 struct fs *fs;
747 int cg;
748 int avgbfree, startcg;
749
750 KASSERT(mutex_owned(&ip->i_ump->um_lock));
751
752 fs = ip->i_fs;
753
754 /*
755 * If allocating a contiguous file with B_CONTIG, use the hints
756 * in the inode extentions to return the desired block.
757 *
758 * For metadata (indirect blocks) return the address of where
759 * the first indirect block resides - we'll scan for the next
760 * available slot if we need to allocate more than one indirect
761 * block. For data, return the address of the actual block
762 * relative to the address of the first data block.
763 */
764 if (flags & B_CONTIG) {
765 KASSERT(ip->i_ffs_first_data_blk != 0);
766 KASSERT(ip->i_ffs_first_indir_blk != 0);
767 if (flags & B_METAONLY)
768 return ip->i_ffs_first_indir_blk;
769 else
770 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
771 }
772
773 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
774 if (lbn < NDADDR + NINDIR(fs)) {
775 cg = ino_to_cg(fs, ip->i_number);
776 return (cgbase(fs, cg) + fs->fs_frag);
777 }
778 /*
779 * Find a cylinder with greater than average number of
780 * unused data blocks.
781 */
782 if (indx == 0 || bap[indx - 1] == 0)
783 startcg =
784 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
785 else
786 startcg = dtog(fs,
787 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
788 startcg %= fs->fs_ncg;
789 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
790 for (cg = startcg; cg < fs->fs_ncg; cg++)
791 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
792 return (cgbase(fs, cg) + fs->fs_frag);
793 }
794 for (cg = 0; cg < startcg; cg++)
795 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
796 return (cgbase(fs, cg) + fs->fs_frag);
797 }
798 return (0);
799 }
800 /*
801 * We just always try to lay things out contiguously.
802 */
803 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
804 }
805
806 daddr_t
807 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
808 int64_t *bap)
809 {
810 struct fs *fs;
811 int cg;
812 int avgbfree, startcg;
813
814 KASSERT(mutex_owned(&ip->i_ump->um_lock));
815
816 fs = ip->i_fs;
817
818 /*
819 * If allocating a contiguous file with B_CONTIG, use the hints
820 * in the inode extentions to return the desired block.
821 *
822 * For metadata (indirect blocks) return the address of where
823 * the first indirect block resides - we'll scan for the next
824 * available slot if we need to allocate more than one indirect
825 * block. For data, return the address of the actual block
826 * relative to the address of the first data block.
827 */
828 if (flags & B_CONTIG) {
829 KASSERT(ip->i_ffs_first_data_blk != 0);
830 KASSERT(ip->i_ffs_first_indir_blk != 0);
831 if (flags & B_METAONLY)
832 return ip->i_ffs_first_indir_blk;
833 else
834 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
835 }
836
837 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
838 if (lbn < NDADDR + NINDIR(fs)) {
839 cg = ino_to_cg(fs, ip->i_number);
840 return (cgbase(fs, cg) + fs->fs_frag);
841 }
842 /*
843 * Find a cylinder with greater than average number of
844 * unused data blocks.
845 */
846 if (indx == 0 || bap[indx - 1] == 0)
847 startcg =
848 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
849 else
850 startcg = dtog(fs,
851 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
852 startcg %= fs->fs_ncg;
853 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
854 for (cg = startcg; cg < fs->fs_ncg; cg++)
855 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
856 return (cgbase(fs, cg) + fs->fs_frag);
857 }
858 for (cg = 0; cg < startcg; cg++)
859 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 return (cgbase(fs, cg) + fs->fs_frag);
861 }
862 return (0);
863 }
864 /*
865 * We just always try to lay things out contiguously.
866 */
867 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
868 }
869
870
871 /*
872 * Implement the cylinder overflow algorithm.
873 *
874 * The policy implemented by this algorithm is:
875 * 1) allocate the block in its requested cylinder group.
876 * 2) quadradically rehash on the cylinder group number.
877 * 3) brute force search for a free block.
878 *
879 * => called with um_lock held
880 * => returns with um_lock released on success, held on failure
881 * (*allocator releases lock on success, retains lock on failure)
882 */
883 /*VARARGS5*/
884 static daddr_t
885 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
886 int size /* size for data blocks, mode for inodes */,
887 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
888 {
889 struct fs *fs;
890 daddr_t result;
891 int i, icg = cg;
892
893 fs = ip->i_fs;
894 /*
895 * 1: preferred cylinder group
896 */
897 result = (*allocator)(ip, cg, pref, size, flags);
898 if (result)
899 return (result);
900
901 if (flags & B_CONTIG)
902 return (result);
903 /*
904 * 2: quadratic rehash
905 */
906 for (i = 1; i < fs->fs_ncg; i *= 2) {
907 cg += i;
908 if (cg >= fs->fs_ncg)
909 cg -= fs->fs_ncg;
910 result = (*allocator)(ip, cg, 0, size, flags);
911 if (result)
912 return (result);
913 }
914 /*
915 * 3: brute force search
916 * Note that we start at i == 2, since 0 was checked initially,
917 * and 1 is always checked in the quadratic rehash.
918 */
919 cg = (icg + 2) % fs->fs_ncg;
920 for (i = 2; i < fs->fs_ncg; i++) {
921 result = (*allocator)(ip, cg, 0, size, flags);
922 if (result)
923 return (result);
924 cg++;
925 if (cg == fs->fs_ncg)
926 cg = 0;
927 }
928 return (0);
929 }
930
931 /*
932 * Determine whether a fragment can be extended.
933 *
934 * Check to see if the necessary fragments are available, and
935 * if they are, allocate them.
936 *
937 * => called with um_lock held
938 * => returns with um_lock released on success, held on failure
939 */
940 static daddr_t
941 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
942 {
943 struct ufsmount *ump;
944 struct fs *fs;
945 struct cg *cgp;
946 struct buf *bp;
947 daddr_t bno;
948 int frags, bbase;
949 int i, error;
950 u_int8_t *blksfree;
951
952 fs = ip->i_fs;
953 ump = ip->i_ump;
954
955 KASSERT(mutex_owned(&ump->um_lock));
956
957 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
958 return (0);
959 frags = numfrags(fs, nsize);
960 bbase = fragnum(fs, bprev);
961 if (bbase > fragnum(fs, (bprev + frags - 1))) {
962 /* cannot extend across a block boundary */
963 return (0);
964 }
965 mutex_exit(&ump->um_lock);
966 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
967 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
968 if (error)
969 goto fail;
970 cgp = (struct cg *)bp->b_data;
971 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
972 goto fail;
973 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
974 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
975 (fs->fs_old_flags & FS_FLAGS_UPDATED))
976 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
977 bno = dtogd(fs, bprev);
978 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
979 for (i = numfrags(fs, osize); i < frags; i++)
980 if (isclr(blksfree, bno + i))
981 goto fail;
982 /*
983 * the current fragment can be extended
984 * deduct the count on fragment being extended into
985 * increase the count on the remaining fragment (if any)
986 * allocate the extended piece
987 */
988 for (i = frags; i < fs->fs_frag - bbase; i++)
989 if (isclr(blksfree, bno + i))
990 break;
991 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
992 if (i != frags)
993 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
994 mutex_enter(&ump->um_lock);
995 for (i = numfrags(fs, osize); i < frags; i++) {
996 clrbit(blksfree, bno + i);
997 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
998 fs->fs_cstotal.cs_nffree--;
999 fs->fs_cs(fs, cg).cs_nffree--;
1000 }
1001 fs->fs_fmod = 1;
1002 ACTIVECG_CLR(fs, cg);
1003 mutex_exit(&ump->um_lock);
1004 if (DOINGSOFTDEP(ITOV(ip)))
1005 softdep_setup_blkmapdep(bp, fs, bprev);
1006 bdwrite(bp);
1007 return (bprev);
1008
1009 fail:
1010 brelse(bp, 0);
1011 mutex_enter(&ump->um_lock);
1012 return (0);
1013 }
1014
1015 /*
1016 * Determine whether a block can be allocated.
1017 *
1018 * Check to see if a block of the appropriate size is available,
1019 * and if it is, allocate it.
1020 */
1021 static daddr_t
1022 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1023 {
1024 struct ufsmount *ump;
1025 struct fs *fs = ip->i_fs;
1026 struct cg *cgp;
1027 struct buf *bp;
1028 int32_t bno;
1029 daddr_t blkno;
1030 int error, frags, allocsiz, i;
1031 u_int8_t *blksfree;
1032 #ifdef FFS_EI
1033 const int needswap = UFS_FSNEEDSWAP(fs);
1034 #endif
1035
1036 ump = ip->i_ump;
1037
1038 KASSERT(mutex_owned(&ump->um_lock));
1039
1040 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1041 return (0);
1042 mutex_exit(&ump->um_lock);
1043 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1044 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1045 if (error)
1046 goto fail;
1047 cgp = (struct cg *)bp->b_data;
1048 if (!cg_chkmagic(cgp, needswap) ||
1049 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1050 goto fail;
1051 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1052 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1053 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1054 cgp->cg_time = ufs_rw64(time_second, needswap);
1055 if (size == fs->fs_bsize) {
1056 mutex_enter(&ump->um_lock);
1057 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1058 ACTIVECG_CLR(fs, cg);
1059 mutex_exit(&ump->um_lock);
1060 bdwrite(bp);
1061 return (blkno);
1062 }
1063 /*
1064 * check to see if any fragments are already available
1065 * allocsiz is the size which will be allocated, hacking
1066 * it down to a smaller size if necessary
1067 */
1068 blksfree = cg_blksfree(cgp, needswap);
1069 frags = numfrags(fs, size);
1070 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1071 if (cgp->cg_frsum[allocsiz] != 0)
1072 break;
1073 if (allocsiz == fs->fs_frag) {
1074 /*
1075 * no fragments were available, so a block will be
1076 * allocated, and hacked up
1077 */
1078 if (cgp->cg_cs.cs_nbfree == 0)
1079 goto fail;
1080 mutex_enter(&ump->um_lock);
1081 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1082 bno = dtogd(fs, blkno);
1083 for (i = frags; i < fs->fs_frag; i++)
1084 setbit(blksfree, bno + i);
1085 i = fs->fs_frag - frags;
1086 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1087 fs->fs_cstotal.cs_nffree += i;
1088 fs->fs_cs(fs, cg).cs_nffree += i;
1089 fs->fs_fmod = 1;
1090 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1091 ACTIVECG_CLR(fs, cg);
1092 mutex_exit(&ump->um_lock);
1093 bdwrite(bp);
1094 return (blkno);
1095 }
1096 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1097 #if 0
1098 /*
1099 * XXX fvdl mapsearch will panic, and never return -1
1100 * also: returning NULL as daddr_t ?
1101 */
1102 if (bno < 0)
1103 goto fail;
1104 #endif
1105 for (i = 0; i < frags; i++)
1106 clrbit(blksfree, bno + i);
1107 mutex_enter(&ump->um_lock);
1108 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1109 fs->fs_cstotal.cs_nffree -= frags;
1110 fs->fs_cs(fs, cg).cs_nffree -= frags;
1111 fs->fs_fmod = 1;
1112 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1113 if (frags != allocsiz)
1114 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1115 blkno = cg * fs->fs_fpg + bno;
1116 ACTIVECG_CLR(fs, cg);
1117 mutex_exit(&ump->um_lock);
1118 if (DOINGSOFTDEP(ITOV(ip)))
1119 softdep_setup_blkmapdep(bp, fs, blkno);
1120 bdwrite(bp);
1121 return blkno;
1122
1123 fail:
1124 brelse(bp, 0);
1125 mutex_enter(&ump->um_lock);
1126 return (0);
1127 }
1128
1129 /*
1130 * Allocate a block in a cylinder group.
1131 *
1132 * This algorithm implements the following policy:
1133 * 1) allocate the requested block.
1134 * 2) allocate a rotationally optimal block in the same cylinder.
1135 * 3) allocate the next available block on the block rotor for the
1136 * specified cylinder group.
1137 * Note that this routine only allocates fs_bsize blocks; these
1138 * blocks may be fragmented by the routine that allocates them.
1139 */
1140 static daddr_t
1141 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1142 {
1143 struct ufsmount *ump;
1144 struct fs *fs = ip->i_fs;
1145 struct cg *cgp;
1146 daddr_t blkno;
1147 int32_t bno;
1148 u_int8_t *blksfree;
1149 #ifdef FFS_EI
1150 const int needswap = UFS_FSNEEDSWAP(fs);
1151 #endif
1152
1153 ump = ip->i_ump;
1154
1155 KASSERT(mutex_owned(&ump->um_lock));
1156
1157 cgp = (struct cg *)bp->b_data;
1158 blksfree = cg_blksfree(cgp, needswap);
1159 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1160 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1161 } else {
1162 bpref = blknum(fs, bpref);
1163 bno = dtogd(fs, bpref);
1164 /*
1165 * if the requested block is available, use it
1166 */
1167 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1168 goto gotit;
1169 /*
1170 * if the requested data block isn't available and we are
1171 * trying to allocate a contiguous file, return an error.
1172 */
1173 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1174 return (0);
1175 }
1176
1177 /*
1178 * Take the next available block in this cylinder group.
1179 */
1180 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1181 if (bno < 0)
1182 return (0);
1183 cgp->cg_rotor = ufs_rw32(bno, needswap);
1184 gotit:
1185 blkno = fragstoblks(fs, bno);
1186 ffs_clrblock(fs, blksfree, blkno);
1187 ffs_clusteracct(fs, cgp, blkno, -1);
1188 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1189 fs->fs_cstotal.cs_nbfree--;
1190 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1191 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1192 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1193 int cylno;
1194 cylno = old_cbtocylno(fs, bno);
1195 KASSERT(cylno >= 0);
1196 KASSERT(cylno < fs->fs_old_ncyl);
1197 KASSERT(old_cbtorpos(fs, bno) >= 0);
1198 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1199 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1200 needswap);
1201 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1202 }
1203 fs->fs_fmod = 1;
1204 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1205 if (DOINGSOFTDEP(ITOV(ip))) {
1206 mutex_exit(&ump->um_lock);
1207 softdep_setup_blkmapdep(bp, fs, blkno);
1208 mutex_enter(&ump->um_lock);
1209 }
1210 return (blkno);
1211 }
1212
1213 /*
1214 * Determine whether an inode can be allocated.
1215 *
1216 * Check to see if an inode is available, and if it is,
1217 * allocate it using the following policy:
1218 * 1) allocate the requested inode.
1219 * 2) allocate the next available inode after the requested
1220 * inode in the specified cylinder group.
1221 */
1222 static daddr_t
1223 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1224 {
1225 struct ufsmount *ump = ip->i_ump;
1226 struct fs *fs = ip->i_fs;
1227 struct cg *cgp;
1228 struct buf *bp, *ibp;
1229 u_int8_t *inosused;
1230 int error, start, len, loc, map, i;
1231 int32_t initediblk;
1232 daddr_t nalloc;
1233 struct ufs2_dinode *dp2;
1234 #ifdef FFS_EI
1235 const int needswap = UFS_FSNEEDSWAP(fs);
1236 #endif
1237
1238 KASSERT(mutex_owned(&ump->um_lock));
1239 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1240
1241 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1242 return (0);
1243 mutex_exit(&ump->um_lock);
1244 ibp = NULL;
1245 initediblk = -1;
1246 retry:
1247 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1248 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1249 if (error)
1250 goto fail;
1251 cgp = (struct cg *)bp->b_data;
1252 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1253 goto fail;
1254
1255 if (ibp != NULL &&
1256 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1257 /* Another thread allocated more inodes so we retry the test. */
1258 brelse(ibp, BC_INVAL);
1259 ibp = NULL;
1260 }
1261 /*
1262 * Check to see if we need to initialize more inodes.
1263 */
1264 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1265 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1266 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1267 if (nalloc + INOPB(fs) > initediblk &&
1268 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1269 /*
1270 * We have to release the cg buffer here to prevent
1271 * a deadlock when reading the inode block will
1272 * run a copy-on-write that might use this cg.
1273 */
1274 brelse(bp, 0);
1275 bp = NULL;
1276 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1277 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1278 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1279 if (error)
1280 goto fail;
1281 goto retry;
1282 }
1283 }
1284
1285 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1286 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1287 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1288 cgp->cg_time = ufs_rw64(time_second, needswap);
1289 inosused = cg_inosused(cgp, needswap);
1290 if (ipref) {
1291 ipref %= fs->fs_ipg;
1292 if (isclr(inosused, ipref))
1293 goto gotit;
1294 }
1295 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1296 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1297 NBBY);
1298 loc = skpc(0xff, len, &inosused[start]);
1299 if (loc == 0) {
1300 len = start + 1;
1301 start = 0;
1302 loc = skpc(0xff, len, &inosused[0]);
1303 if (loc == 0) {
1304 printf("cg = %d, irotor = %d, fs = %s\n",
1305 cg, ufs_rw32(cgp->cg_irotor, needswap),
1306 fs->fs_fsmnt);
1307 panic("ffs_nodealloccg: map corrupted");
1308 /* NOTREACHED */
1309 }
1310 }
1311 i = start + len - loc;
1312 map = inosused[i];
1313 ipref = i * NBBY;
1314 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1315 if ((map & i) == 0) {
1316 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1317 goto gotit;
1318 }
1319 }
1320 printf("fs = %s\n", fs->fs_fsmnt);
1321 panic("ffs_nodealloccg: block not in map");
1322 /* NOTREACHED */
1323 gotit:
1324 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1325 mode);
1326 /*
1327 * Check to see if we need to initialize more inodes.
1328 */
1329 if (ibp != NULL) {
1330 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1331 memset(ibp->b_data, 0, fs->fs_bsize);
1332 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1333 for (i = 0; i < INOPB(fs); i++) {
1334 /*
1335 * Don't bother to swap, it's supposed to be
1336 * random, after all.
1337 */
1338 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1339 dp2++;
1340 }
1341 initediblk += INOPB(fs);
1342 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1343 }
1344
1345 mutex_enter(&ump->um_lock);
1346 ACTIVECG_CLR(fs, cg);
1347 setbit(inosused, ipref);
1348 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1349 fs->fs_cstotal.cs_nifree--;
1350 fs->fs_cs(fs, cg).cs_nifree--;
1351 fs->fs_fmod = 1;
1352 if ((mode & IFMT) == IFDIR) {
1353 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1354 fs->fs_cstotal.cs_ndir++;
1355 fs->fs_cs(fs, cg).cs_ndir++;
1356 }
1357 mutex_exit(&ump->um_lock);
1358 if (DOINGSOFTDEP(ITOV(ip)))
1359 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1360 if (ibp != NULL) {
1361 bwrite(bp);
1362 bawrite(ibp);
1363 } else
1364 bdwrite(bp);
1365 return (cg * fs->fs_ipg + ipref);
1366 fail:
1367 if (bp != NULL)
1368 brelse(bp, 0);
1369 if (ibp != NULL)
1370 brelse(ibp, BC_INVAL);
1371 mutex_enter(&ump->um_lock);
1372 return (0);
1373 }
1374
1375 /*
1376 * Allocate a block or fragment.
1377 *
1378 * The specified block or fragment is removed from the
1379 * free map, possibly fragmenting a block in the process.
1380 *
1381 * This implementation should mirror fs_blkfree
1382 *
1383 * => um_lock not held on entry or exit
1384 */
1385 int
1386 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1387 {
1388 struct ufsmount *ump = ip->i_ump;
1389 struct fs *fs = ip->i_fs;
1390 struct cg *cgp;
1391 struct buf *bp;
1392 int32_t fragno, cgbno;
1393 int i, error, cg, blk, frags, bbase;
1394 u_int8_t *blksfree;
1395 const int needswap = UFS_FSNEEDSWAP(fs);
1396
1397 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1398 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1399 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1400 "size = %ld, fs = %s\n",
1401 ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1402 panic("blkalloc: bad size");
1403 }
1404 cg = dtog(fs, bno);
1405 if (bno >= fs->fs_size) {
1406 printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1407 ip->i_number);
1408 ffs_fserr(fs, ip->i_uid, "bad block");
1409 return EINVAL;
1410 }
1411 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1412 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1413 if (error) {
1414 brelse(bp, 0);
1415 return error;
1416 }
1417 cgp = (struct cg *)bp->b_data;
1418 if (!cg_chkmagic(cgp, needswap)) {
1419 brelse(bp, 0);
1420 return EIO;
1421 }
1422 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1423 cgp->cg_time = ufs_rw64(time_second, needswap);
1424 cgbno = dtogd(fs, bno);
1425 blksfree = cg_blksfree(cgp, needswap);
1426
1427 mutex_enter(&ump->um_lock);
1428 if (size == fs->fs_bsize) {
1429 fragno = fragstoblks(fs, cgbno);
1430 if (!ffs_isblock(fs, blksfree, fragno)) {
1431 mutex_exit(&ump->um_lock);
1432 brelse(bp, 0);
1433 return EBUSY;
1434 }
1435 ffs_clrblock(fs, blksfree, fragno);
1436 ffs_clusteracct(fs, cgp, fragno, -1);
1437 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1438 fs->fs_cstotal.cs_nbfree--;
1439 fs->fs_cs(fs, cg).cs_nbfree--;
1440 } else {
1441 bbase = cgbno - fragnum(fs, cgbno);
1442
1443 frags = numfrags(fs, size);
1444 for (i = 0; i < frags; i++) {
1445 if (isclr(blksfree, cgbno + i)) {
1446 mutex_exit(&ump->um_lock);
1447 brelse(bp, 0);
1448 return EBUSY;
1449 }
1450 }
1451 /*
1452 * if a complete block is being split, account for it
1453 */
1454 fragno = fragstoblks(fs, bbase);
1455 if (ffs_isblock(fs, blksfree, fragno)) {
1456 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1457 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1458 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1459 ffs_clusteracct(fs, cgp, fragno, -1);
1460 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1461 fs->fs_cstotal.cs_nbfree--;
1462 fs->fs_cs(fs, cg).cs_nbfree--;
1463 }
1464 /*
1465 * decrement the counts associated with the old frags
1466 */
1467 blk = blkmap(fs, blksfree, bbase);
1468 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1469 /*
1470 * allocate the fragment
1471 */
1472 for (i = 0; i < frags; i++) {
1473 clrbit(blksfree, cgbno + i);
1474 }
1475 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1476 fs->fs_cstotal.cs_nffree -= i;
1477 fs->fs_cs(fs, cg).cs_nffree -= i;
1478 /*
1479 * add back in counts associated with the new frags
1480 */
1481 blk = blkmap(fs, blksfree, bbase);
1482 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1483 }
1484 fs->fs_fmod = 1;
1485 ACTIVECG_CLR(fs, cg);
1486 mutex_exit(&ump->um_lock);
1487 bdwrite(bp);
1488 return 0;
1489 }
1490
1491 /*
1492 * Free a block or fragment.
1493 *
1494 * The specified block or fragment is placed back in the
1495 * free map. If a fragment is deallocated, a possible
1496 * block reassembly is checked.
1497 *
1498 * => um_lock not held on entry or exit
1499 */
1500 void
1501 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1502 ino_t inum)
1503 {
1504 struct cg *cgp;
1505 struct buf *bp;
1506 struct ufsmount *ump;
1507 int32_t fragno, cgbno;
1508 daddr_t cgblkno;
1509 int i, error, cg, blk, frags, bbase;
1510 u_int8_t *blksfree;
1511 dev_t dev;
1512 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1513 const int needswap = UFS_FSNEEDSWAP(fs);
1514
1515 cg = dtog(fs, bno);
1516 if (devvp_is_snapshot) {
1517 dev = VTOI(devvp)->i_devvp->v_rdev;
1518 ump = VFSTOUFS(devvp->v_mount);
1519 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1520 } else {
1521 dev = devvp->v_rdev;
1522 ump = VFSTOUFS(devvp->v_specmountpoint);
1523 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1524 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1525 return;
1526 }
1527 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1528 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1529 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1530 "size = %ld, fs = %s\n",
1531 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1532 panic("blkfree: bad size");
1533 }
1534
1535 if (bno >= fs->fs_size) {
1536 printf("bad block %" PRId64 ", ino %llu\n", bno,
1537 (unsigned long long)inum);
1538 ffs_fserr(fs, inum, "bad block");
1539 return;
1540 }
1541 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1542 NOCRED, B_MODIFY, &bp);
1543 if (error) {
1544 brelse(bp, 0);
1545 return;
1546 }
1547 cgp = (struct cg *)bp->b_data;
1548 if (!cg_chkmagic(cgp, needswap)) {
1549 brelse(bp, 0);
1550 return;
1551 }
1552 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1553 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1554 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1555 cgp->cg_time = ufs_rw64(time_second, needswap);
1556 cgbno = dtogd(fs, bno);
1557 blksfree = cg_blksfree(cgp, needswap);
1558 mutex_enter(&ump->um_lock);
1559 if (size == fs->fs_bsize) {
1560 fragno = fragstoblks(fs, cgbno);
1561 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1562 if (devvp_is_snapshot) {
1563 mutex_exit(&ump->um_lock);
1564 brelse(bp, 0);
1565 return;
1566 }
1567 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1568 dev, bno, fs->fs_fsmnt);
1569 panic("blkfree: freeing free block");
1570 }
1571 ffs_setblock(fs, blksfree, fragno);
1572 ffs_clusteracct(fs, cgp, fragno, 1);
1573 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1574 fs->fs_cstotal.cs_nbfree++;
1575 fs->fs_cs(fs, cg).cs_nbfree++;
1576 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1577 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1578 i = old_cbtocylno(fs, cgbno);
1579 KASSERT(i >= 0);
1580 KASSERT(i < fs->fs_old_ncyl);
1581 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1582 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1583 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1584 needswap);
1585 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1586 }
1587 } else {
1588 bbase = cgbno - fragnum(fs, cgbno);
1589 /*
1590 * decrement the counts associated with the old frags
1591 */
1592 blk = blkmap(fs, blksfree, bbase);
1593 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1594 /*
1595 * deallocate the fragment
1596 */
1597 frags = numfrags(fs, size);
1598 for (i = 0; i < frags; i++) {
1599 if (isset(blksfree, cgbno + i)) {
1600 printf("dev = 0x%x, block = %" PRId64
1601 ", fs = %s\n",
1602 dev, bno + i, fs->fs_fsmnt);
1603 panic("blkfree: freeing free frag");
1604 }
1605 setbit(blksfree, cgbno + i);
1606 }
1607 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1608 fs->fs_cstotal.cs_nffree += i;
1609 fs->fs_cs(fs, cg).cs_nffree += i;
1610 /*
1611 * add back in counts associated with the new frags
1612 */
1613 blk = blkmap(fs, blksfree, bbase);
1614 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1615 /*
1616 * if a complete block has been reassembled, account for it
1617 */
1618 fragno = fragstoblks(fs, bbase);
1619 if (ffs_isblock(fs, blksfree, fragno)) {
1620 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1621 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1622 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1623 ffs_clusteracct(fs, cgp, fragno, 1);
1624 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1625 fs->fs_cstotal.cs_nbfree++;
1626 fs->fs_cs(fs, cg).cs_nbfree++;
1627 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1628 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1629 i = old_cbtocylno(fs, bbase);
1630 KASSERT(i >= 0);
1631 KASSERT(i < fs->fs_old_ncyl);
1632 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1633 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1634 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1635 bbase)], 1, needswap);
1636 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1637 }
1638 }
1639 }
1640 fs->fs_fmod = 1;
1641 ACTIVECG_CLR(fs, cg);
1642 mutex_exit(&ump->um_lock);
1643 bdwrite(bp);
1644 }
1645
1646 /*
1647 * Free an inode.
1648 */
1649 int
1650 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1651 {
1652
1653 if (DOINGSOFTDEP(vp)) {
1654 softdep_freefile(vp, ino, mode);
1655 return (0);
1656 }
1657 return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1658 }
1659
1660 /*
1661 * Do the actual free operation.
1662 * The specified inode is placed back in the free map.
1663 *
1664 * => um_lock not held on entry or exit
1665 */
1666 int
1667 ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1668 {
1669 struct ufsmount *ump;
1670 struct cg *cgp;
1671 struct buf *bp;
1672 int error, cg;
1673 daddr_t cgbno;
1674 u_int8_t *inosused;
1675 dev_t dev;
1676 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1677 #ifdef FFS_EI
1678 const int needswap = UFS_FSNEEDSWAP(fs);
1679 #endif
1680
1681 if (!devvp_is_snapshot) {
1682 UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
1683 }
1684
1685 cg = ino_to_cg(fs, ino);
1686 if (devvp_is_snapshot) {
1687 dev = VTOI(devvp)->i_devvp->v_rdev;
1688 ump = VFSTOUFS(devvp->v_mount);
1689 cgbno = fragstoblks(fs, cgtod(fs, cg));
1690 } else {
1691 dev = devvp->v_rdev;
1692 ump = VFSTOUFS(devvp->v_specmountpoint);
1693 cgbno = fsbtodb(fs, cgtod(fs, cg));
1694 }
1695 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1696 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1697 dev, (unsigned long long)ino, fs->fs_fsmnt);
1698 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1699 NOCRED, B_MODIFY, &bp);
1700 if (error) {
1701 brelse(bp, 0);
1702 return (error);
1703 }
1704 cgp = (struct cg *)bp->b_data;
1705 if (!cg_chkmagic(cgp, needswap)) {
1706 brelse(bp, 0);
1707 return (0);
1708 }
1709 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1710 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1711 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1712 cgp->cg_time = ufs_rw64(time_second, needswap);
1713 inosused = cg_inosused(cgp, needswap);
1714 ino %= fs->fs_ipg;
1715 if (isclr(inosused, ino)) {
1716 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1717 dev, (unsigned long long)ino + cg * fs->fs_ipg,
1718 fs->fs_fsmnt);
1719 if (fs->fs_ronly == 0)
1720 panic("ifree: freeing free inode");
1721 }
1722 clrbit(inosused, ino);
1723 if (!devvp_is_snapshot)
1724 UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
1725 ino + cg * fs->fs_ipg, mode);
1726 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1727 cgp->cg_irotor = ufs_rw32(ino, needswap);
1728 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1729 mutex_enter(&ump->um_lock);
1730 fs->fs_cstotal.cs_nifree++;
1731 fs->fs_cs(fs, cg).cs_nifree++;
1732 if ((mode & IFMT) == IFDIR) {
1733 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1734 fs->fs_cstotal.cs_ndir--;
1735 fs->fs_cs(fs, cg).cs_ndir--;
1736 }
1737 fs->fs_fmod = 1;
1738 ACTIVECG_CLR(fs, cg);
1739 mutex_exit(&ump->um_lock);
1740 bdwrite(bp);
1741 return (0);
1742 }
1743
1744 /*
1745 * Check to see if a file is free.
1746 */
1747 int
1748 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1749 {
1750 struct cg *cgp;
1751 struct buf *bp;
1752 daddr_t cgbno;
1753 int ret, cg;
1754 u_int8_t *inosused;
1755 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1756
1757 cg = ino_to_cg(fs, ino);
1758 if (devvp_is_snapshot)
1759 cgbno = fragstoblks(fs, cgtod(fs, cg));
1760 else
1761 cgbno = fsbtodb(fs, cgtod(fs, cg));
1762 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1763 return 1;
1764 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1765 brelse(bp, 0);
1766 return 1;
1767 }
1768 cgp = (struct cg *)bp->b_data;
1769 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1770 brelse(bp, 0);
1771 return 1;
1772 }
1773 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1774 ino %= fs->fs_ipg;
1775 ret = isclr(inosused, ino);
1776 brelse(bp, 0);
1777 return ret;
1778 }
1779
1780 /*
1781 * Find a block of the specified size in the specified cylinder group.
1782 *
1783 * It is a panic if a request is made to find a block if none are
1784 * available.
1785 */
1786 static int32_t
1787 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1788 {
1789 int32_t bno;
1790 int start, len, loc, i;
1791 int blk, field, subfield, pos;
1792 int ostart, olen;
1793 u_int8_t *blksfree;
1794 #ifdef FFS_EI
1795 const int needswap = UFS_FSNEEDSWAP(fs);
1796 #endif
1797
1798 /* KASSERT(mutex_owned(&ump->um_lock)); */
1799
1800 /*
1801 * find the fragment by searching through the free block
1802 * map for an appropriate bit pattern
1803 */
1804 if (bpref)
1805 start = dtogd(fs, bpref) / NBBY;
1806 else
1807 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1808 blksfree = cg_blksfree(cgp, needswap);
1809 len = howmany(fs->fs_fpg, NBBY) - start;
1810 ostart = start;
1811 olen = len;
1812 loc = scanc((u_int)len,
1813 (const u_char *)&blksfree[start],
1814 (const u_char *)fragtbl[fs->fs_frag],
1815 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1816 if (loc == 0) {
1817 len = start + 1;
1818 start = 0;
1819 loc = scanc((u_int)len,
1820 (const u_char *)&blksfree[0],
1821 (const u_char *)fragtbl[fs->fs_frag],
1822 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1823 if (loc == 0) {
1824 printf("start = %d, len = %d, fs = %s\n",
1825 ostart, olen, fs->fs_fsmnt);
1826 printf("offset=%d %ld\n",
1827 ufs_rw32(cgp->cg_freeoff, needswap),
1828 (long)blksfree - (long)cgp);
1829 printf("cg %d\n", cgp->cg_cgx);
1830 panic("ffs_alloccg: map corrupted");
1831 /* NOTREACHED */
1832 }
1833 }
1834 bno = (start + len - loc) * NBBY;
1835 cgp->cg_frotor = ufs_rw32(bno, needswap);
1836 /*
1837 * found the byte in the map
1838 * sift through the bits to find the selected frag
1839 */
1840 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1841 blk = blkmap(fs, blksfree, bno);
1842 blk <<= 1;
1843 field = around[allocsiz];
1844 subfield = inside[allocsiz];
1845 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1846 if ((blk & field) == subfield)
1847 return (bno + pos);
1848 field <<= 1;
1849 subfield <<= 1;
1850 }
1851 }
1852 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1853 panic("ffs_alloccg: block not in map");
1854 /* return (-1); */
1855 }
1856
1857 /*
1858 * Update the cluster map because of an allocation or free.
1859 *
1860 * Cnt == 1 means free; cnt == -1 means allocating.
1861 */
1862 void
1863 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1864 {
1865 int32_t *sump;
1866 int32_t *lp;
1867 u_char *freemapp, *mapp;
1868 int i, start, end, forw, back, map, bit;
1869 #ifdef FFS_EI
1870 const int needswap = UFS_FSNEEDSWAP(fs);
1871 #endif
1872
1873 /* KASSERT(mutex_owned(&ump->um_lock)); */
1874
1875 if (fs->fs_contigsumsize <= 0)
1876 return;
1877 freemapp = cg_clustersfree(cgp, needswap);
1878 sump = cg_clustersum(cgp, needswap);
1879 /*
1880 * Allocate or clear the actual block.
1881 */
1882 if (cnt > 0)
1883 setbit(freemapp, blkno);
1884 else
1885 clrbit(freemapp, blkno);
1886 /*
1887 * Find the size of the cluster going forward.
1888 */
1889 start = blkno + 1;
1890 end = start + fs->fs_contigsumsize;
1891 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1892 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1893 mapp = &freemapp[start / NBBY];
1894 map = *mapp++;
1895 bit = 1 << (start % NBBY);
1896 for (i = start; i < end; i++) {
1897 if ((map & bit) == 0)
1898 break;
1899 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1900 bit <<= 1;
1901 } else {
1902 map = *mapp++;
1903 bit = 1;
1904 }
1905 }
1906 forw = i - start;
1907 /*
1908 * Find the size of the cluster going backward.
1909 */
1910 start = blkno - 1;
1911 end = start - fs->fs_contigsumsize;
1912 if (end < 0)
1913 end = -1;
1914 mapp = &freemapp[start / NBBY];
1915 map = *mapp--;
1916 bit = 1 << (start % NBBY);
1917 for (i = start; i > end; i--) {
1918 if ((map & bit) == 0)
1919 break;
1920 if ((i & (NBBY - 1)) != 0) {
1921 bit >>= 1;
1922 } else {
1923 map = *mapp--;
1924 bit = 1 << (NBBY - 1);
1925 }
1926 }
1927 back = start - i;
1928 /*
1929 * Account for old cluster and the possibly new forward and
1930 * back clusters.
1931 */
1932 i = back + forw + 1;
1933 if (i > fs->fs_contigsumsize)
1934 i = fs->fs_contigsumsize;
1935 ufs_add32(sump[i], cnt, needswap);
1936 if (back > 0)
1937 ufs_add32(sump[back], -cnt, needswap);
1938 if (forw > 0)
1939 ufs_add32(sump[forw], -cnt, needswap);
1940
1941 /*
1942 * Update cluster summary information.
1943 */
1944 lp = &sump[fs->fs_contigsumsize];
1945 for (i = fs->fs_contigsumsize; i > 0; i--)
1946 if (ufs_rw32(*lp--, needswap) > 0)
1947 break;
1948 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1949 }
1950
1951 /*
1952 * Fserr prints the name of a file system with an error diagnostic.
1953 *
1954 * The form of the error message is:
1955 * fs: error message
1956 */
1957 static void
1958 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
1959 {
1960
1961 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1962 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1963 }
1964