ffs_alloc.c revision 1.119 1 /* $NetBSD: ffs_alloc.c,v 1.119 2008/12/06 20:05:55 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.119 2008/12/06 20:05:55 joerg Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
91
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 static ino_t ffs_dirpref(struct inode *);
106 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 static void ffs_fserr(struct fs *, u_int, const char *);
108 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 daddr_t, int);
113 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
114 daddr_t, long, bool);
115 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
116 int, bool);
117
118 /* if 1, changes in optimalization strategy are logged */
119 int ffs_log_changeopt = 0;
120
121 /* in ffs_tables.c */
122 extern const int inside[], around[];
123 extern const u_char * const fragtbl[];
124
125 /* Basic consistency check for block allocations */
126 static int
127 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
128 long size, dev_t dev, ino_t inum)
129 {
130 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
131 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
132 printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
133 "size = %ld, fs = %s\n",
134 dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
135 panic("%s: bad size", func);
136 }
137
138 if (bno >= fs->fs_size) {
139 printf("bad block %" PRId64 ", ino %llu\n", bno,
140 (unsigned long long)inum);
141 ffs_fserr(fs, inum, "bad block");
142 return EINVAL;
143 }
144 return 0;
145 }
146
147 /*
148 * Allocate a block in the file system.
149 *
150 * The size of the requested block is given, which must be some
151 * multiple of fs_fsize and <= fs_bsize.
152 * A preference may be optionally specified. If a preference is given
153 * the following hierarchy is used to allocate a block:
154 * 1) allocate the requested block.
155 * 2) allocate a rotationally optimal block in the same cylinder.
156 * 3) allocate a block in the same cylinder group.
157 * 4) quadradically rehash into other cylinder groups, until an
158 * available block is located.
159 * If no block preference is given the following hierarchy is used
160 * to allocate a block:
161 * 1) allocate a block in the cylinder group that contains the
162 * inode for the file.
163 * 2) quadradically rehash into other cylinder groups, until an
164 * available block is located.
165 *
166 * => called with um_lock held
167 * => releases um_lock before returning
168 */
169 int
170 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
171 kauth_cred_t cred, daddr_t *bnp)
172 {
173 struct ufsmount *ump;
174 struct fs *fs;
175 daddr_t bno;
176 int cg;
177 #ifdef QUOTA
178 int error;
179 #endif
180
181 fs = ip->i_fs;
182 ump = ip->i_ump;
183
184 KASSERT(mutex_owned(&ump->um_lock));
185
186 #ifdef UVM_PAGE_TRKOWN
187 if (ITOV(ip)->v_type == VREG &&
188 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
189 struct vm_page *pg;
190 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
191 voff_t off = trunc_page(lblktosize(fs, lbn));
192 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
193
194 mutex_enter(&uobj->vmobjlock);
195 while (off < endoff) {
196 pg = uvm_pagelookup(uobj, off);
197 KASSERT(pg != NULL);
198 KASSERT(pg->owner == curproc->p_pid);
199 off += PAGE_SIZE;
200 }
201 mutex_exit(&uobj->vmobjlock);
202 }
203 #endif
204
205 *bnp = 0;
206 #ifdef DIAGNOSTIC
207 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
208 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
209 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
210 panic("ffs_alloc: bad size");
211 }
212 if (cred == NOCRED)
213 panic("ffs_alloc: missing credential");
214 #endif /* DIAGNOSTIC */
215 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
216 goto nospace;
217 if (freespace(fs, fs->fs_minfree) <= 0 &&
218 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
219 goto nospace;
220 #ifdef QUOTA
221 mutex_exit(&ump->um_lock);
222 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
223 return (error);
224 mutex_enter(&ump->um_lock);
225 #endif
226
227 if (bpref >= fs->fs_size)
228 bpref = 0;
229 if (bpref == 0)
230 cg = ino_to_cg(fs, ip->i_number);
231 else
232 cg = dtog(fs, bpref);
233 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
234 if (bno > 0) {
235 DIP_ADD(ip, blocks, btodb(size));
236 ip->i_flag |= IN_CHANGE | IN_UPDATE;
237 *bnp = bno;
238 return (0);
239 }
240 #ifdef QUOTA
241 /*
242 * Restore user's disk quota because allocation failed.
243 */
244 (void) chkdq(ip, -btodb(size), cred, FORCE);
245 #endif
246 if (flags & B_CONTIG) {
247 /*
248 * XXX ump->um_lock handling is "suspect" at best.
249 * For the case where ffs_hashalloc() fails early
250 * in the B_CONTIG case we reach here with um_lock
251 * already unlocked, so we can't release it again
252 * like in the normal error path. See kern/39206.
253 *
254 *
255 * Fail silently - it's up to our caller to report
256 * errors.
257 */
258 return (ENOSPC);
259 }
260 nospace:
261 mutex_exit(&ump->um_lock);
262 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
263 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
264 return (ENOSPC);
265 }
266
267 /*
268 * Reallocate a fragment to a bigger size
269 *
270 * The number and size of the old block is given, and a preference
271 * and new size is also specified. The allocator attempts to extend
272 * the original block. Failing that, the regular block allocator is
273 * invoked to get an appropriate block.
274 *
275 * => called with um_lock held
276 * => return with um_lock released
277 */
278 int
279 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
280 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
281 {
282 struct ufsmount *ump;
283 struct fs *fs;
284 struct buf *bp;
285 int cg, request, error;
286 daddr_t bprev, bno;
287
288 fs = ip->i_fs;
289 ump = ip->i_ump;
290
291 KASSERT(mutex_owned(&ump->um_lock));
292
293 #ifdef UVM_PAGE_TRKOWN
294 if (ITOV(ip)->v_type == VREG) {
295 struct vm_page *pg;
296 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
297 voff_t off = trunc_page(lblktosize(fs, lbprev));
298 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
299
300 mutex_enter(&uobj->vmobjlock);
301 while (off < endoff) {
302 pg = uvm_pagelookup(uobj, off);
303 KASSERT(pg != NULL);
304 KASSERT(pg->owner == curproc->p_pid);
305 KASSERT((pg->flags & PG_CLEAN) == 0);
306 off += PAGE_SIZE;
307 }
308 mutex_exit(&uobj->vmobjlock);
309 }
310 #endif
311
312 #ifdef DIAGNOSTIC
313 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
314 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
315 printf(
316 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
317 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
318 panic("ffs_realloccg: bad size");
319 }
320 if (cred == NOCRED)
321 panic("ffs_realloccg: missing credential");
322 #endif /* DIAGNOSTIC */
323 if (freespace(fs, fs->fs_minfree) <= 0 &&
324 kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
325 mutex_exit(&ump->um_lock);
326 goto nospace;
327 }
328 if (fs->fs_magic == FS_UFS2_MAGIC)
329 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
330 else
331 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
332
333 if (bprev == 0) {
334 printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
335 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
336 panic("ffs_realloccg: bad bprev");
337 }
338 mutex_exit(&ump->um_lock);
339
340 /*
341 * Allocate the extra space in the buffer.
342 */
343 if (bpp != NULL &&
344 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
345 brelse(bp, 0);
346 return (error);
347 }
348 #ifdef QUOTA
349 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
350 if (bpp != NULL) {
351 brelse(bp, 0);
352 }
353 return (error);
354 }
355 #endif
356 /*
357 * Check for extension in the existing location.
358 */
359 cg = dtog(fs, bprev);
360 mutex_enter(&ump->um_lock);
361 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
362 DIP_ADD(ip, blocks, btodb(nsize - osize));
363 ip->i_flag |= IN_CHANGE | IN_UPDATE;
364
365 if (bpp != NULL) {
366 if (bp->b_blkno != fsbtodb(fs, bno))
367 panic("bad blockno");
368 allocbuf(bp, nsize, 1);
369 memset((char *)bp->b_data + osize, 0, nsize - osize);
370 mutex_enter(bp->b_objlock);
371 KASSERT(!cv_has_waiters(&bp->b_done));
372 bp->b_oflags |= BO_DONE;
373 mutex_exit(bp->b_objlock);
374 *bpp = bp;
375 }
376 if (blknop != NULL) {
377 *blknop = bno;
378 }
379 return (0);
380 }
381 /*
382 * Allocate a new disk location.
383 */
384 if (bpref >= fs->fs_size)
385 bpref = 0;
386 switch ((int)fs->fs_optim) {
387 case FS_OPTSPACE:
388 /*
389 * Allocate an exact sized fragment. Although this makes
390 * best use of space, we will waste time relocating it if
391 * the file continues to grow. If the fragmentation is
392 * less than half of the minimum free reserve, we choose
393 * to begin optimizing for time.
394 */
395 request = nsize;
396 if (fs->fs_minfree < 5 ||
397 fs->fs_cstotal.cs_nffree >
398 fs->fs_dsize * fs->fs_minfree / (2 * 100))
399 break;
400
401 if (ffs_log_changeopt) {
402 log(LOG_NOTICE,
403 "%s: optimization changed from SPACE to TIME\n",
404 fs->fs_fsmnt);
405 }
406
407 fs->fs_optim = FS_OPTTIME;
408 break;
409 case FS_OPTTIME:
410 /*
411 * At this point we have discovered a file that is trying to
412 * grow a small fragment to a larger fragment. To save time,
413 * we allocate a full sized block, then free the unused portion.
414 * If the file continues to grow, the `ffs_fragextend' call
415 * above will be able to grow it in place without further
416 * copying. If aberrant programs cause disk fragmentation to
417 * grow within 2% of the free reserve, we choose to begin
418 * optimizing for space.
419 */
420 request = fs->fs_bsize;
421 if (fs->fs_cstotal.cs_nffree <
422 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
423 break;
424
425 if (ffs_log_changeopt) {
426 log(LOG_NOTICE,
427 "%s: optimization changed from TIME to SPACE\n",
428 fs->fs_fsmnt);
429 }
430
431 fs->fs_optim = FS_OPTSPACE;
432 break;
433 default:
434 printf("dev = 0x%x, optim = %d, fs = %s\n",
435 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
436 panic("ffs_realloccg: bad optim");
437 /* NOTREACHED */
438 }
439 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
440 if (bno > 0) {
441 if (!DOINGSOFTDEP(ITOV(ip))) {
442 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
443 (ITOV(ip)->v_type != VREG)) {
444 UFS_WAPBL_REGISTER_DEALLOCATION(
445 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
446 osize);
447 } else
448 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
449 ip->i_number);
450 }
451 if (nsize < request) {
452 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
453 (ITOV(ip)->v_type != VREG)) {
454 UFS_WAPBL_REGISTER_DEALLOCATION(
455 ip->i_ump->um_mountp,
456 fsbtodb(fs, (bno + numfrags(fs, nsize))),
457 request - nsize);
458 } else
459 ffs_blkfree(fs, ip->i_devvp,
460 bno + numfrags(fs, nsize),
461 (long)(request - nsize), ip->i_number);
462 }
463 DIP_ADD(ip, blocks, btodb(nsize - osize));
464 ip->i_flag |= IN_CHANGE | IN_UPDATE;
465 if (bpp != NULL) {
466 bp->b_blkno = fsbtodb(fs, bno);
467 allocbuf(bp, nsize, 1);
468 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
469 mutex_enter(bp->b_objlock);
470 KASSERT(!cv_has_waiters(&bp->b_done));
471 bp->b_oflags |= BO_DONE;
472 mutex_exit(bp->b_objlock);
473 *bpp = bp;
474 }
475 if (blknop != NULL) {
476 *blknop = bno;
477 }
478 return (0);
479 }
480 mutex_exit(&ump->um_lock);
481
482 #ifdef QUOTA
483 /*
484 * Restore user's disk quota because allocation failed.
485 */
486 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
487 #endif
488 if (bpp != NULL) {
489 brelse(bp, 0);
490 }
491
492 nospace:
493 /*
494 * no space available
495 */
496 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
497 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
498 return (ENOSPC);
499 }
500
501 /*
502 * Allocate an inode in the file system.
503 *
504 * If allocating a directory, use ffs_dirpref to select the inode.
505 * If allocating in a directory, the following hierarchy is followed:
506 * 1) allocate the preferred inode.
507 * 2) allocate an inode in the same cylinder group.
508 * 3) quadradically rehash into other cylinder groups, until an
509 * available inode is located.
510 * If no inode preference is given the following hierarchy is used
511 * to allocate an inode:
512 * 1) allocate an inode in cylinder group 0.
513 * 2) quadradically rehash into other cylinder groups, until an
514 * available inode is located.
515 *
516 * => um_lock not held upon entry or return
517 */
518 int
519 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
520 struct vnode **vpp)
521 {
522 struct ufsmount *ump;
523 struct inode *pip;
524 struct fs *fs;
525 struct inode *ip;
526 struct timespec ts;
527 ino_t ino, ipref;
528 int cg, error;
529
530 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
531
532 *vpp = NULL;
533 pip = VTOI(pvp);
534 fs = pip->i_fs;
535 ump = pip->i_ump;
536
537 error = UFS_WAPBL_BEGIN(pvp->v_mount);
538 if (error) {
539 return error;
540 }
541 mutex_enter(&ump->um_lock);
542 if (fs->fs_cstotal.cs_nifree == 0)
543 goto noinodes;
544
545 if ((mode & IFMT) == IFDIR)
546 ipref = ffs_dirpref(pip);
547 else
548 ipref = pip->i_number;
549 if (ipref >= fs->fs_ncg * fs->fs_ipg)
550 ipref = 0;
551 cg = ino_to_cg(fs, ipref);
552 /*
553 * Track number of dirs created one after another
554 * in a same cg without intervening by files.
555 */
556 if ((mode & IFMT) == IFDIR) {
557 if (fs->fs_contigdirs[cg] < 255)
558 fs->fs_contigdirs[cg]++;
559 } else {
560 if (fs->fs_contigdirs[cg] > 0)
561 fs->fs_contigdirs[cg]--;
562 }
563 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
564 if (ino == 0)
565 goto noinodes;
566 UFS_WAPBL_END(pvp->v_mount);
567 error = VFS_VGET(pvp->v_mount, ino, vpp);
568 if (error) {
569 int err;
570 err = UFS_WAPBL_BEGIN(pvp->v_mount);
571 if (err == 0)
572 ffs_vfree(pvp, ino, mode);
573 if (err == 0)
574 UFS_WAPBL_END(pvp->v_mount);
575 return (error);
576 }
577 KASSERT((*vpp)->v_type == VNON);
578 ip = VTOI(*vpp);
579 if (ip->i_mode) {
580 #if 0
581 printf("mode = 0%o, inum = %d, fs = %s\n",
582 ip->i_mode, ip->i_number, fs->fs_fsmnt);
583 #else
584 printf("dmode %x mode %x dgen %x gen %x\n",
585 DIP(ip, mode), ip->i_mode,
586 DIP(ip, gen), ip->i_gen);
587 printf("size %llx blocks %llx\n",
588 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
589 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
590 (unsigned long long)ipref);
591 #if 0
592 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
593 (int)fs->fs_bsize, NOCRED, 0, &bp);
594 #endif
595
596 #endif
597 panic("ffs_valloc: dup alloc");
598 }
599 if (DIP(ip, blocks)) { /* XXX */
600 printf("free inode %s/%llu had %" PRId64 " blocks\n",
601 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
602 DIP_ASSIGN(ip, blocks, 0);
603 }
604 ip->i_flag &= ~IN_SPACECOUNTED;
605 ip->i_flags = 0;
606 DIP_ASSIGN(ip, flags, 0);
607 /*
608 * Set up a new generation number for this inode.
609 */
610 ip->i_gen++;
611 DIP_ASSIGN(ip, gen, ip->i_gen);
612 if (fs->fs_magic == FS_UFS2_MAGIC) {
613 vfs_timestamp(&ts);
614 ip->i_ffs2_birthtime = ts.tv_sec;
615 ip->i_ffs2_birthnsec = ts.tv_nsec;
616 }
617 return (0);
618 noinodes:
619 mutex_exit(&ump->um_lock);
620 UFS_WAPBL_END(pvp->v_mount);
621 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
622 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
623 return (ENOSPC);
624 }
625
626 /*
627 * Find a cylinder group in which to place a directory.
628 *
629 * The policy implemented by this algorithm is to allocate a
630 * directory inode in the same cylinder group as its parent
631 * directory, but also to reserve space for its files inodes
632 * and data. Restrict the number of directories which may be
633 * allocated one after another in the same cylinder group
634 * without intervening allocation of files.
635 *
636 * If we allocate a first level directory then force allocation
637 * in another cylinder group.
638 */
639 static ino_t
640 ffs_dirpref(struct inode *pip)
641 {
642 register struct fs *fs;
643 int cg, prefcg;
644 int64_t dirsize, cgsize, curdsz;
645 int avgifree, avgbfree, avgndir;
646 int minifree, minbfree, maxndir;
647 int mincg, minndir;
648 int maxcontigdirs;
649
650 KASSERT(mutex_owned(&pip->i_ump->um_lock));
651
652 fs = pip->i_fs;
653
654 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
655 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
656 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
657
658 /*
659 * Force allocation in another cg if creating a first level dir.
660 */
661 if (ITOV(pip)->v_vflag & VV_ROOT) {
662 prefcg = random() % fs->fs_ncg;
663 mincg = prefcg;
664 minndir = fs->fs_ipg;
665 for (cg = prefcg; cg < fs->fs_ncg; cg++)
666 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
667 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
668 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
669 mincg = cg;
670 minndir = fs->fs_cs(fs, cg).cs_ndir;
671 }
672 for (cg = 0; cg < prefcg; cg++)
673 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
674 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
675 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
676 mincg = cg;
677 minndir = fs->fs_cs(fs, cg).cs_ndir;
678 }
679 return ((ino_t)(fs->fs_ipg * mincg));
680 }
681
682 /*
683 * Count various limits which used for
684 * optimal allocation of a directory inode.
685 */
686 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
687 minifree = avgifree - fs->fs_ipg / 4;
688 if (minifree < 0)
689 minifree = 0;
690 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
691 if (minbfree < 0)
692 minbfree = 0;
693 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
694 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
695 if (avgndir != 0) {
696 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
697 if (dirsize < curdsz)
698 dirsize = curdsz;
699 }
700 if (cgsize < dirsize * 255)
701 maxcontigdirs = cgsize / dirsize;
702 else
703 maxcontigdirs = 255;
704 if (fs->fs_avgfpdir > 0)
705 maxcontigdirs = min(maxcontigdirs,
706 fs->fs_ipg / fs->fs_avgfpdir);
707 if (maxcontigdirs == 0)
708 maxcontigdirs = 1;
709
710 /*
711 * Limit number of dirs in one cg and reserve space for
712 * regular files, but only if we have no deficit in
713 * inodes or space.
714 */
715 prefcg = ino_to_cg(fs, pip->i_number);
716 for (cg = prefcg; cg < fs->fs_ncg; cg++)
717 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
718 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
719 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
720 if (fs->fs_contigdirs[cg] < maxcontigdirs)
721 return ((ino_t)(fs->fs_ipg * cg));
722 }
723 for (cg = 0; cg < prefcg; cg++)
724 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
725 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
726 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
727 if (fs->fs_contigdirs[cg] < maxcontigdirs)
728 return ((ino_t)(fs->fs_ipg * cg));
729 }
730 /*
731 * This is a backstop when we are deficient in space.
732 */
733 for (cg = prefcg; cg < fs->fs_ncg; cg++)
734 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
735 return ((ino_t)(fs->fs_ipg * cg));
736 for (cg = 0; cg < prefcg; cg++)
737 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
738 break;
739 return ((ino_t)(fs->fs_ipg * cg));
740 }
741
742 /*
743 * Select the desired position for the next block in a file. The file is
744 * logically divided into sections. The first section is composed of the
745 * direct blocks. Each additional section contains fs_maxbpg blocks.
746 *
747 * If no blocks have been allocated in the first section, the policy is to
748 * request a block in the same cylinder group as the inode that describes
749 * the file. If no blocks have been allocated in any other section, the
750 * policy is to place the section in a cylinder group with a greater than
751 * average number of free blocks. An appropriate cylinder group is found
752 * by using a rotor that sweeps the cylinder groups. When a new group of
753 * blocks is needed, the sweep begins in the cylinder group following the
754 * cylinder group from which the previous allocation was made. The sweep
755 * continues until a cylinder group with greater than the average number
756 * of free blocks is found. If the allocation is for the first block in an
757 * indirect block, the information on the previous allocation is unavailable;
758 * here a best guess is made based upon the logical block number being
759 * allocated.
760 *
761 * If a section is already partially allocated, the policy is to
762 * contiguously allocate fs_maxcontig blocks. The end of one of these
763 * contiguous blocks and the beginning of the next is laid out
764 * contigously if possible.
765 *
766 * => um_lock held on entry and exit
767 */
768 daddr_t
769 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
770 int32_t *bap /* XXX ondisk32 */)
771 {
772 struct fs *fs;
773 int cg;
774 int avgbfree, startcg;
775
776 KASSERT(mutex_owned(&ip->i_ump->um_lock));
777
778 fs = ip->i_fs;
779
780 /*
781 * If allocating a contiguous file with B_CONTIG, use the hints
782 * in the inode extentions to return the desired block.
783 *
784 * For metadata (indirect blocks) return the address of where
785 * the first indirect block resides - we'll scan for the next
786 * available slot if we need to allocate more than one indirect
787 * block. For data, return the address of the actual block
788 * relative to the address of the first data block.
789 */
790 if (flags & B_CONTIG) {
791 KASSERT(ip->i_ffs_first_data_blk != 0);
792 KASSERT(ip->i_ffs_first_indir_blk != 0);
793 if (flags & B_METAONLY)
794 return ip->i_ffs_first_indir_blk;
795 else
796 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
797 }
798
799 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
800 if (lbn < NDADDR + NINDIR(fs)) {
801 cg = ino_to_cg(fs, ip->i_number);
802 return (cgbase(fs, cg) + fs->fs_frag);
803 }
804 /*
805 * Find a cylinder with greater than average number of
806 * unused data blocks.
807 */
808 if (indx == 0 || bap[indx - 1] == 0)
809 startcg =
810 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
811 else
812 startcg = dtog(fs,
813 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
814 startcg %= fs->fs_ncg;
815 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
816 for (cg = startcg; cg < fs->fs_ncg; cg++)
817 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
818 return (cgbase(fs, cg) + fs->fs_frag);
819 }
820 for (cg = 0; cg < startcg; cg++)
821 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
822 return (cgbase(fs, cg) + fs->fs_frag);
823 }
824 return (0);
825 }
826 /*
827 * We just always try to lay things out contiguously.
828 */
829 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
830 }
831
832 daddr_t
833 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
834 int64_t *bap)
835 {
836 struct fs *fs;
837 int cg;
838 int avgbfree, startcg;
839
840 KASSERT(mutex_owned(&ip->i_ump->um_lock));
841
842 fs = ip->i_fs;
843
844 /*
845 * If allocating a contiguous file with B_CONTIG, use the hints
846 * in the inode extentions to return the desired block.
847 *
848 * For metadata (indirect blocks) return the address of where
849 * the first indirect block resides - we'll scan for the next
850 * available slot if we need to allocate more than one indirect
851 * block. For data, return the address of the actual block
852 * relative to the address of the first data block.
853 */
854 if (flags & B_CONTIG) {
855 KASSERT(ip->i_ffs_first_data_blk != 0);
856 KASSERT(ip->i_ffs_first_indir_blk != 0);
857 if (flags & B_METAONLY)
858 return ip->i_ffs_first_indir_blk;
859 else
860 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
861 }
862
863 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
864 if (lbn < NDADDR + NINDIR(fs)) {
865 cg = ino_to_cg(fs, ip->i_number);
866 return (cgbase(fs, cg) + fs->fs_frag);
867 }
868 /*
869 * Find a cylinder with greater than average number of
870 * unused data blocks.
871 */
872 if (indx == 0 || bap[indx - 1] == 0)
873 startcg =
874 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
875 else
876 startcg = dtog(fs,
877 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
878 startcg %= fs->fs_ncg;
879 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
880 for (cg = startcg; cg < fs->fs_ncg; cg++)
881 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
882 return (cgbase(fs, cg) + fs->fs_frag);
883 }
884 for (cg = 0; cg < startcg; cg++)
885 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
886 return (cgbase(fs, cg) + fs->fs_frag);
887 }
888 return (0);
889 }
890 /*
891 * We just always try to lay things out contiguously.
892 */
893 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
894 }
895
896
897 /*
898 * Implement the cylinder overflow algorithm.
899 *
900 * The policy implemented by this algorithm is:
901 * 1) allocate the block in its requested cylinder group.
902 * 2) quadradically rehash on the cylinder group number.
903 * 3) brute force search for a free block.
904 *
905 * => called with um_lock held
906 * => returns with um_lock released on success, held on failure
907 * (*allocator releases lock on success, retains lock on failure)
908 */
909 /*VARARGS5*/
910 static daddr_t
911 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
912 int size /* size for data blocks, mode for inodes */,
913 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
914 {
915 struct fs *fs;
916 daddr_t result;
917 int i, icg = cg;
918
919 fs = ip->i_fs;
920 /*
921 * 1: preferred cylinder group
922 */
923 result = (*allocator)(ip, cg, pref, size, flags);
924 if (result)
925 return (result);
926
927 if (flags & B_CONTIG)
928 return (result);
929 /*
930 * 2: quadratic rehash
931 */
932 for (i = 1; i < fs->fs_ncg; i *= 2) {
933 cg += i;
934 if (cg >= fs->fs_ncg)
935 cg -= fs->fs_ncg;
936 result = (*allocator)(ip, cg, 0, size, flags);
937 if (result)
938 return (result);
939 }
940 /*
941 * 3: brute force search
942 * Note that we start at i == 2, since 0 was checked initially,
943 * and 1 is always checked in the quadratic rehash.
944 */
945 cg = (icg + 2) % fs->fs_ncg;
946 for (i = 2; i < fs->fs_ncg; i++) {
947 result = (*allocator)(ip, cg, 0, size, flags);
948 if (result)
949 return (result);
950 cg++;
951 if (cg == fs->fs_ncg)
952 cg = 0;
953 }
954 return (0);
955 }
956
957 /*
958 * Determine whether a fragment can be extended.
959 *
960 * Check to see if the necessary fragments are available, and
961 * if they are, allocate them.
962 *
963 * => called with um_lock held
964 * => returns with um_lock released on success, held on failure
965 */
966 static daddr_t
967 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
968 {
969 struct ufsmount *ump;
970 struct fs *fs;
971 struct cg *cgp;
972 struct buf *bp;
973 daddr_t bno;
974 int frags, bbase;
975 int i, error;
976 u_int8_t *blksfree;
977
978 fs = ip->i_fs;
979 ump = ip->i_ump;
980
981 KASSERT(mutex_owned(&ump->um_lock));
982
983 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
984 return (0);
985 frags = numfrags(fs, nsize);
986 bbase = fragnum(fs, bprev);
987 if (bbase > fragnum(fs, (bprev + frags - 1))) {
988 /* cannot extend across a block boundary */
989 return (0);
990 }
991 mutex_exit(&ump->um_lock);
992 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
993 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
994 if (error)
995 goto fail;
996 cgp = (struct cg *)bp->b_data;
997 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
998 goto fail;
999 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1000 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1001 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1002 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1003 bno = dtogd(fs, bprev);
1004 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1005 for (i = numfrags(fs, osize); i < frags; i++)
1006 if (isclr(blksfree, bno + i))
1007 goto fail;
1008 /*
1009 * the current fragment can be extended
1010 * deduct the count on fragment being extended into
1011 * increase the count on the remaining fragment (if any)
1012 * allocate the extended piece
1013 */
1014 for (i = frags; i < fs->fs_frag - bbase; i++)
1015 if (isclr(blksfree, bno + i))
1016 break;
1017 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1018 if (i != frags)
1019 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1020 mutex_enter(&ump->um_lock);
1021 for (i = numfrags(fs, osize); i < frags; i++) {
1022 clrbit(blksfree, bno + i);
1023 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1024 fs->fs_cstotal.cs_nffree--;
1025 fs->fs_cs(fs, cg).cs_nffree--;
1026 }
1027 fs->fs_fmod = 1;
1028 ACTIVECG_CLR(fs, cg);
1029 mutex_exit(&ump->um_lock);
1030 if (DOINGSOFTDEP(ITOV(ip)))
1031 softdep_setup_blkmapdep(bp, fs, bprev);
1032 bdwrite(bp);
1033 return (bprev);
1034
1035 fail:
1036 brelse(bp, 0);
1037 mutex_enter(&ump->um_lock);
1038 return (0);
1039 }
1040
1041 /*
1042 * Determine whether a block can be allocated.
1043 *
1044 * Check to see if a block of the appropriate size is available,
1045 * and if it is, allocate it.
1046 */
1047 static daddr_t
1048 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1049 {
1050 struct ufsmount *ump;
1051 struct fs *fs = ip->i_fs;
1052 struct cg *cgp;
1053 struct buf *bp;
1054 int32_t bno;
1055 daddr_t blkno;
1056 int error, frags, allocsiz, i;
1057 u_int8_t *blksfree;
1058 #ifdef FFS_EI
1059 const int needswap = UFS_FSNEEDSWAP(fs);
1060 #endif
1061
1062 ump = ip->i_ump;
1063
1064 KASSERT(mutex_owned(&ump->um_lock));
1065
1066 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1067 return (0);
1068 mutex_exit(&ump->um_lock);
1069 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1070 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1071 if (error)
1072 goto fail;
1073 cgp = (struct cg *)bp->b_data;
1074 if (!cg_chkmagic(cgp, needswap) ||
1075 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1076 goto fail;
1077 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1078 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1079 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1080 cgp->cg_time = ufs_rw64(time_second, needswap);
1081 if (size == fs->fs_bsize) {
1082 mutex_enter(&ump->um_lock);
1083 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1084 ACTIVECG_CLR(fs, cg);
1085 mutex_exit(&ump->um_lock);
1086 bdwrite(bp);
1087 return (blkno);
1088 }
1089 /*
1090 * check to see if any fragments are already available
1091 * allocsiz is the size which will be allocated, hacking
1092 * it down to a smaller size if necessary
1093 */
1094 blksfree = cg_blksfree(cgp, needswap);
1095 frags = numfrags(fs, size);
1096 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1097 if (cgp->cg_frsum[allocsiz] != 0)
1098 break;
1099 if (allocsiz == fs->fs_frag) {
1100 /*
1101 * no fragments were available, so a block will be
1102 * allocated, and hacked up
1103 */
1104 if (cgp->cg_cs.cs_nbfree == 0)
1105 goto fail;
1106 mutex_enter(&ump->um_lock);
1107 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1108 bno = dtogd(fs, blkno);
1109 for (i = frags; i < fs->fs_frag; i++)
1110 setbit(blksfree, bno + i);
1111 i = fs->fs_frag - frags;
1112 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1113 fs->fs_cstotal.cs_nffree += i;
1114 fs->fs_cs(fs, cg).cs_nffree += i;
1115 fs->fs_fmod = 1;
1116 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1117 ACTIVECG_CLR(fs, cg);
1118 mutex_exit(&ump->um_lock);
1119 bdwrite(bp);
1120 return (blkno);
1121 }
1122 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1123 #if 0
1124 /*
1125 * XXX fvdl mapsearch will panic, and never return -1
1126 * also: returning NULL as daddr_t ?
1127 */
1128 if (bno < 0)
1129 goto fail;
1130 #endif
1131 for (i = 0; i < frags; i++)
1132 clrbit(blksfree, bno + i);
1133 mutex_enter(&ump->um_lock);
1134 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1135 fs->fs_cstotal.cs_nffree -= frags;
1136 fs->fs_cs(fs, cg).cs_nffree -= frags;
1137 fs->fs_fmod = 1;
1138 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1139 if (frags != allocsiz)
1140 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1141 blkno = cg * fs->fs_fpg + bno;
1142 ACTIVECG_CLR(fs, cg);
1143 mutex_exit(&ump->um_lock);
1144 if (DOINGSOFTDEP(ITOV(ip)))
1145 softdep_setup_blkmapdep(bp, fs, blkno);
1146 bdwrite(bp);
1147 return blkno;
1148
1149 fail:
1150 brelse(bp, 0);
1151 mutex_enter(&ump->um_lock);
1152 return (0);
1153 }
1154
1155 /*
1156 * Allocate a block in a cylinder group.
1157 *
1158 * This algorithm implements the following policy:
1159 * 1) allocate the requested block.
1160 * 2) allocate a rotationally optimal block in the same cylinder.
1161 * 3) allocate the next available block on the block rotor for the
1162 * specified cylinder group.
1163 * Note that this routine only allocates fs_bsize blocks; these
1164 * blocks may be fragmented by the routine that allocates them.
1165 */
1166 static daddr_t
1167 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1168 {
1169 struct ufsmount *ump;
1170 struct fs *fs = ip->i_fs;
1171 struct cg *cgp;
1172 daddr_t blkno;
1173 int32_t bno;
1174 u_int8_t *blksfree;
1175 #ifdef FFS_EI
1176 const int needswap = UFS_FSNEEDSWAP(fs);
1177 #endif
1178
1179 ump = ip->i_ump;
1180
1181 KASSERT(mutex_owned(&ump->um_lock));
1182
1183 cgp = (struct cg *)bp->b_data;
1184 blksfree = cg_blksfree(cgp, needswap);
1185 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1186 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1187 } else {
1188 bpref = blknum(fs, bpref);
1189 bno = dtogd(fs, bpref);
1190 /*
1191 * if the requested block is available, use it
1192 */
1193 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1194 goto gotit;
1195 /*
1196 * if the requested data block isn't available and we are
1197 * trying to allocate a contiguous file, return an error.
1198 */
1199 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1200 return (0);
1201 }
1202
1203 /*
1204 * Take the next available block in this cylinder group.
1205 */
1206 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1207 if (bno < 0)
1208 return (0);
1209 cgp->cg_rotor = ufs_rw32(bno, needswap);
1210 gotit:
1211 blkno = fragstoblks(fs, bno);
1212 ffs_clrblock(fs, blksfree, blkno);
1213 ffs_clusteracct(fs, cgp, blkno, -1);
1214 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1215 fs->fs_cstotal.cs_nbfree--;
1216 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1217 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1218 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1219 int cylno;
1220 cylno = old_cbtocylno(fs, bno);
1221 KASSERT(cylno >= 0);
1222 KASSERT(cylno < fs->fs_old_ncyl);
1223 KASSERT(old_cbtorpos(fs, bno) >= 0);
1224 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1225 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1226 needswap);
1227 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1228 }
1229 fs->fs_fmod = 1;
1230 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1231 if (DOINGSOFTDEP(ITOV(ip))) {
1232 mutex_exit(&ump->um_lock);
1233 softdep_setup_blkmapdep(bp, fs, blkno);
1234 mutex_enter(&ump->um_lock);
1235 }
1236 return (blkno);
1237 }
1238
1239 /*
1240 * Determine whether an inode can be allocated.
1241 *
1242 * Check to see if an inode is available, and if it is,
1243 * allocate it using the following policy:
1244 * 1) allocate the requested inode.
1245 * 2) allocate the next available inode after the requested
1246 * inode in the specified cylinder group.
1247 */
1248 static daddr_t
1249 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1250 {
1251 struct ufsmount *ump = ip->i_ump;
1252 struct fs *fs = ip->i_fs;
1253 struct cg *cgp;
1254 struct buf *bp, *ibp;
1255 u_int8_t *inosused;
1256 int error, start, len, loc, map, i;
1257 int32_t initediblk;
1258 daddr_t nalloc;
1259 struct ufs2_dinode *dp2;
1260 #ifdef FFS_EI
1261 const int needswap = UFS_FSNEEDSWAP(fs);
1262 #endif
1263
1264 KASSERT(mutex_owned(&ump->um_lock));
1265 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1266
1267 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1268 return (0);
1269 mutex_exit(&ump->um_lock);
1270 ibp = NULL;
1271 initediblk = -1;
1272 retry:
1273 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1274 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1275 if (error)
1276 goto fail;
1277 cgp = (struct cg *)bp->b_data;
1278 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1279 goto fail;
1280
1281 if (ibp != NULL &&
1282 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1283 /* Another thread allocated more inodes so we retry the test. */
1284 brelse(ibp, BC_INVAL);
1285 ibp = NULL;
1286 }
1287 /*
1288 * Check to see if we need to initialize more inodes.
1289 */
1290 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1291 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1292 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1293 if (nalloc + INOPB(fs) > initediblk &&
1294 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1295 /*
1296 * We have to release the cg buffer here to prevent
1297 * a deadlock when reading the inode block will
1298 * run a copy-on-write that might use this cg.
1299 */
1300 brelse(bp, 0);
1301 bp = NULL;
1302 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1303 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1304 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1305 if (error)
1306 goto fail;
1307 goto retry;
1308 }
1309 }
1310
1311 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1312 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1313 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1314 cgp->cg_time = ufs_rw64(time_second, needswap);
1315 inosused = cg_inosused(cgp, needswap);
1316 if (ipref) {
1317 ipref %= fs->fs_ipg;
1318 if (isclr(inosused, ipref))
1319 goto gotit;
1320 }
1321 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1322 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1323 NBBY);
1324 loc = skpc(0xff, len, &inosused[start]);
1325 if (loc == 0) {
1326 len = start + 1;
1327 start = 0;
1328 loc = skpc(0xff, len, &inosused[0]);
1329 if (loc == 0) {
1330 printf("cg = %d, irotor = %d, fs = %s\n",
1331 cg, ufs_rw32(cgp->cg_irotor, needswap),
1332 fs->fs_fsmnt);
1333 panic("ffs_nodealloccg: map corrupted");
1334 /* NOTREACHED */
1335 }
1336 }
1337 i = start + len - loc;
1338 map = inosused[i];
1339 ipref = i * NBBY;
1340 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1341 if ((map & i) == 0) {
1342 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1343 goto gotit;
1344 }
1345 }
1346 printf("fs = %s\n", fs->fs_fsmnt);
1347 panic("ffs_nodealloccg: block not in map");
1348 /* NOTREACHED */
1349 gotit:
1350 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1351 mode);
1352 /*
1353 * Check to see if we need to initialize more inodes.
1354 */
1355 if (ibp != NULL) {
1356 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1357 memset(ibp->b_data, 0, fs->fs_bsize);
1358 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1359 for (i = 0; i < INOPB(fs); i++) {
1360 /*
1361 * Don't bother to swap, it's supposed to be
1362 * random, after all.
1363 */
1364 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1365 dp2++;
1366 }
1367 initediblk += INOPB(fs);
1368 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1369 }
1370
1371 mutex_enter(&ump->um_lock);
1372 ACTIVECG_CLR(fs, cg);
1373 setbit(inosused, ipref);
1374 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1375 fs->fs_cstotal.cs_nifree--;
1376 fs->fs_cs(fs, cg).cs_nifree--;
1377 fs->fs_fmod = 1;
1378 if ((mode & IFMT) == IFDIR) {
1379 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1380 fs->fs_cstotal.cs_ndir++;
1381 fs->fs_cs(fs, cg).cs_ndir++;
1382 }
1383 mutex_exit(&ump->um_lock);
1384 if (DOINGSOFTDEP(ITOV(ip)))
1385 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1386 if (ibp != NULL) {
1387 bwrite(bp);
1388 bawrite(ibp);
1389 } else
1390 bdwrite(bp);
1391 return (cg * fs->fs_ipg + ipref);
1392 fail:
1393 if (bp != NULL)
1394 brelse(bp, 0);
1395 if (ibp != NULL)
1396 brelse(ibp, BC_INVAL);
1397 mutex_enter(&ump->um_lock);
1398 return (0);
1399 }
1400
1401 /*
1402 * Allocate a block or fragment.
1403 *
1404 * The specified block or fragment is removed from the
1405 * free map, possibly fragmenting a block in the process.
1406 *
1407 * This implementation should mirror fs_blkfree
1408 *
1409 * => um_lock not held on entry or exit
1410 */
1411 int
1412 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1413 {
1414 int error;
1415
1416 error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1417 ip->i_dev, ip->i_uid);
1418 if (error)
1419 return error;
1420
1421 return ffs_blkalloc_ump(ip->i_ump, bno, size);
1422 }
1423
1424 int
1425 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1426 {
1427 struct fs *fs = ump->um_fs;
1428 struct cg *cgp;
1429 struct buf *bp;
1430 int32_t fragno, cgbno;
1431 int i, error, cg, blk, frags, bbase;
1432 u_int8_t *blksfree;
1433 const int needswap = UFS_FSNEEDSWAP(fs);
1434
1435 KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1436 fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1437 KASSERT(bno < fs->fs_size);
1438
1439 cg = dtog(fs, bno);
1440 error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1441 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1442 if (error) {
1443 brelse(bp, 0);
1444 return error;
1445 }
1446 cgp = (struct cg *)bp->b_data;
1447 if (!cg_chkmagic(cgp, needswap)) {
1448 brelse(bp, 0);
1449 return EIO;
1450 }
1451 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1452 cgp->cg_time = ufs_rw64(time_second, needswap);
1453 cgbno = dtogd(fs, bno);
1454 blksfree = cg_blksfree(cgp, needswap);
1455
1456 mutex_enter(&ump->um_lock);
1457 if (size == fs->fs_bsize) {
1458 fragno = fragstoblks(fs, cgbno);
1459 if (!ffs_isblock(fs, blksfree, fragno)) {
1460 mutex_exit(&ump->um_lock);
1461 brelse(bp, 0);
1462 return EBUSY;
1463 }
1464 ffs_clrblock(fs, blksfree, fragno);
1465 ffs_clusteracct(fs, cgp, fragno, -1);
1466 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1467 fs->fs_cstotal.cs_nbfree--;
1468 fs->fs_cs(fs, cg).cs_nbfree--;
1469 } else {
1470 bbase = cgbno - fragnum(fs, cgbno);
1471
1472 frags = numfrags(fs, size);
1473 for (i = 0; i < frags; i++) {
1474 if (isclr(blksfree, cgbno + i)) {
1475 mutex_exit(&ump->um_lock);
1476 brelse(bp, 0);
1477 return EBUSY;
1478 }
1479 }
1480 /*
1481 * if a complete block is being split, account for it
1482 */
1483 fragno = fragstoblks(fs, bbase);
1484 if (ffs_isblock(fs, blksfree, fragno)) {
1485 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1486 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1487 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1488 ffs_clusteracct(fs, cgp, fragno, -1);
1489 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1490 fs->fs_cstotal.cs_nbfree--;
1491 fs->fs_cs(fs, cg).cs_nbfree--;
1492 }
1493 /*
1494 * decrement the counts associated with the old frags
1495 */
1496 blk = blkmap(fs, blksfree, bbase);
1497 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1498 /*
1499 * allocate the fragment
1500 */
1501 for (i = 0; i < frags; i++) {
1502 clrbit(blksfree, cgbno + i);
1503 }
1504 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1505 fs->fs_cstotal.cs_nffree -= i;
1506 fs->fs_cs(fs, cg).cs_nffree -= i;
1507 /*
1508 * add back in counts associated with the new frags
1509 */
1510 blk = blkmap(fs, blksfree, bbase);
1511 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1512 }
1513 fs->fs_fmod = 1;
1514 ACTIVECG_CLR(fs, cg);
1515 mutex_exit(&ump->um_lock);
1516 bdwrite(bp);
1517 return 0;
1518 }
1519
1520 /*
1521 * Free a block or fragment.
1522 *
1523 * The specified block or fragment is placed back in the
1524 * free map. If a fragment is deallocated, a possible
1525 * block reassembly is checked.
1526 *
1527 * => um_lock not held on entry or exit
1528 */
1529 void
1530 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1531 ino_t inum)
1532 {
1533 struct cg *cgp;
1534 struct buf *bp;
1535 struct ufsmount *ump;
1536 daddr_t cgblkno;
1537 int error, cg;
1538 dev_t dev;
1539 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1540 #ifdef FFS_EI
1541 const int needswap = UFS_FSNEEDSWAP(fs);
1542 #endif
1543
1544 KASSERT(!devvp_is_snapshot);
1545
1546 cg = dtog(fs, bno);
1547 dev = devvp->v_rdev;
1548 ump = VFSTOUFS(devvp->v_specmountpoint);
1549 KASSERT(fs == ump->um_fs);
1550 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1551 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1552 return;
1553
1554 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1555 if (error)
1556 return;
1557
1558 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1559 NOCRED, B_MODIFY, &bp);
1560 if (error) {
1561 brelse(bp, 0);
1562 return;
1563 }
1564 cgp = (struct cg *)bp->b_data;
1565 if (!cg_chkmagic(cgp, needswap)) {
1566 brelse(bp, 0);
1567 return;
1568 }
1569
1570 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1571
1572 bdwrite(bp);
1573 }
1574
1575 /*
1576 * Free a block or fragment from a snapshot cg copy.
1577 *
1578 * The specified block or fragment is placed back in the
1579 * free map. If a fragment is deallocated, a possible
1580 * block reassembly is checked.
1581 *
1582 * => um_lock not held on entry or exit
1583 */
1584 void
1585 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1586 ino_t inum)
1587 {
1588 struct cg *cgp;
1589 struct buf *bp;
1590 struct ufsmount *ump;
1591 daddr_t cgblkno;
1592 int error, cg;
1593 dev_t dev;
1594 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1595 #ifdef FFS_EI
1596 const int needswap = UFS_FSNEEDSWAP(fs);
1597 #endif
1598
1599 KASSERT(devvp_is_snapshot);
1600
1601 cg = dtog(fs, bno);
1602 dev = VTOI(devvp)->i_devvp->v_rdev;
1603 ump = VFSTOUFS(devvp->v_mount);
1604 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1605
1606 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1607 if (error)
1608 return;
1609
1610 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1611 NOCRED, B_MODIFY, &bp);
1612 if (error) {
1613 brelse(bp, 0);
1614 return;
1615 }
1616 cgp = (struct cg *)bp->b_data;
1617 if (!cg_chkmagic(cgp, needswap)) {
1618 brelse(bp, 0);
1619 return;
1620 }
1621
1622 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1623
1624 bdwrite(bp);
1625 }
1626
1627 static void
1628 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1629 struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1630 {
1631 struct cg *cgp;
1632 int32_t fragno, cgbno;
1633 int i, cg, blk, frags, bbase;
1634 u_int8_t *blksfree;
1635 const int needswap = UFS_FSNEEDSWAP(fs);
1636
1637 cg = dtog(fs, bno);
1638 cgp = (struct cg *)bp->b_data;
1639 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1640 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1641 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1642 cgp->cg_time = ufs_rw64(time_second, needswap);
1643 cgbno = dtogd(fs, bno);
1644 blksfree = cg_blksfree(cgp, needswap);
1645 mutex_enter(&ump->um_lock);
1646 if (size == fs->fs_bsize) {
1647 fragno = fragstoblks(fs, cgbno);
1648 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1649 if (devvp_is_snapshot) {
1650 mutex_exit(&ump->um_lock);
1651 return;
1652 }
1653 printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1654 dev, bno, fs->fs_fsmnt);
1655 panic("blkfree: freeing free block");
1656 }
1657 ffs_setblock(fs, blksfree, fragno);
1658 ffs_clusteracct(fs, cgp, fragno, 1);
1659 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1660 fs->fs_cstotal.cs_nbfree++;
1661 fs->fs_cs(fs, cg).cs_nbfree++;
1662 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1663 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1664 i = old_cbtocylno(fs, cgbno);
1665 KASSERT(i >= 0);
1666 KASSERT(i < fs->fs_old_ncyl);
1667 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1668 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1669 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1670 needswap);
1671 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1672 }
1673 } else {
1674 bbase = cgbno - fragnum(fs, cgbno);
1675 /*
1676 * decrement the counts associated with the old frags
1677 */
1678 blk = blkmap(fs, blksfree, bbase);
1679 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1680 /*
1681 * deallocate the fragment
1682 */
1683 frags = numfrags(fs, size);
1684 for (i = 0; i < frags; i++) {
1685 if (isset(blksfree, cgbno + i)) {
1686 printf("dev = 0x%x, block = %" PRId64
1687 ", fs = %s\n",
1688 dev, bno + i, fs->fs_fsmnt);
1689 panic("blkfree: freeing free frag");
1690 }
1691 setbit(blksfree, cgbno + i);
1692 }
1693 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1694 fs->fs_cstotal.cs_nffree += i;
1695 fs->fs_cs(fs, cg).cs_nffree += i;
1696 /*
1697 * add back in counts associated with the new frags
1698 */
1699 blk = blkmap(fs, blksfree, bbase);
1700 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1701 /*
1702 * if a complete block has been reassembled, account for it
1703 */
1704 fragno = fragstoblks(fs, bbase);
1705 if (ffs_isblock(fs, blksfree, fragno)) {
1706 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1707 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1708 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1709 ffs_clusteracct(fs, cgp, fragno, 1);
1710 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1711 fs->fs_cstotal.cs_nbfree++;
1712 fs->fs_cs(fs, cg).cs_nbfree++;
1713 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1714 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1715 i = old_cbtocylno(fs, bbase);
1716 KASSERT(i >= 0);
1717 KASSERT(i < fs->fs_old_ncyl);
1718 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1719 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1720 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1721 bbase)], 1, needswap);
1722 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1723 }
1724 }
1725 }
1726 fs->fs_fmod = 1;
1727 ACTIVECG_CLR(fs, cg);
1728 mutex_exit(&ump->um_lock);
1729 }
1730
1731 /*
1732 * Free an inode.
1733 */
1734 int
1735 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1736 {
1737
1738 if (DOINGSOFTDEP(vp)) {
1739 softdep_freefile(vp, ino, mode);
1740 return (0);
1741 }
1742 return ffs_freefile(vp->v_mount, ino, mode);
1743 }
1744
1745 /*
1746 * Do the actual free operation.
1747 * The specified inode is placed back in the free map.
1748 *
1749 * => um_lock not held on entry or exit
1750 */
1751 int
1752 ffs_freefile(struct mount *mp, ino_t ino, int mode)
1753 {
1754 struct ufsmount *ump = VFSTOUFS(mp);
1755 struct fs *fs = ump->um_fs;
1756 struct vnode *devvp;
1757 struct cg *cgp;
1758 struct buf *bp;
1759 int error, cg;
1760 daddr_t cgbno;
1761 dev_t dev;
1762 #ifdef FFS_EI
1763 const int needswap = UFS_FSNEEDSWAP(fs);
1764 #endif
1765
1766 cg = ino_to_cg(fs, ino);
1767 devvp = ump->um_devvp;
1768 dev = devvp->v_rdev;
1769 cgbno = fsbtodb(fs, cgtod(fs, cg));
1770
1771 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1772 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1773 dev, (unsigned long long)ino, fs->fs_fsmnt);
1774 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1775 NOCRED, B_MODIFY, &bp);
1776 if (error) {
1777 brelse(bp, 0);
1778 return (error);
1779 }
1780 cgp = (struct cg *)bp->b_data;
1781 if (!cg_chkmagic(cgp, needswap)) {
1782 brelse(bp, 0);
1783 return (0);
1784 }
1785
1786 ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1787
1788 bdwrite(bp);
1789
1790 return 0;
1791 }
1792
1793 int
1794 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1795 {
1796 struct ufsmount *ump;
1797 struct cg *cgp;
1798 struct buf *bp;
1799 int error, cg;
1800 daddr_t cgbno;
1801 dev_t dev;
1802 #ifdef FFS_EI
1803 const int needswap = UFS_FSNEEDSWAP(fs);
1804 #endif
1805
1806 KASSERT(devvp->v_type != VBLK);
1807
1808 cg = ino_to_cg(fs, ino);
1809 dev = VTOI(devvp)->i_devvp->v_rdev;
1810 ump = VFSTOUFS(devvp->v_mount);
1811 cgbno = fragstoblks(fs, cgtod(fs, cg));
1812 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1813 panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1814 dev, (unsigned long long)ino, fs->fs_fsmnt);
1815 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1816 NOCRED, B_MODIFY, &bp);
1817 if (error) {
1818 brelse(bp, 0);
1819 return (error);
1820 }
1821 cgp = (struct cg *)bp->b_data;
1822 if (!cg_chkmagic(cgp, needswap)) {
1823 brelse(bp, 0);
1824 return (0);
1825 }
1826 ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1827
1828 bdwrite(bp);
1829
1830 return 0;
1831 }
1832
1833 static void
1834 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1835 struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1836 {
1837 int cg;
1838 struct cg *cgp;
1839 u_int8_t *inosused;
1840 #ifdef FFS_EI
1841 const int needswap = UFS_FSNEEDSWAP(fs);
1842 #endif
1843
1844 cg = ino_to_cg(fs, ino);
1845 cgp = (struct cg *)bp->b_data;
1846 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1847 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1848 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1849 cgp->cg_time = ufs_rw64(time_second, needswap);
1850 inosused = cg_inosused(cgp, needswap);
1851 ino %= fs->fs_ipg;
1852 if (isclr(inosused, ino)) {
1853 printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1854 dev, (unsigned long long)ino + cg * fs->fs_ipg,
1855 fs->fs_fsmnt);
1856 if (fs->fs_ronly == 0)
1857 panic("ifree: freeing free inode");
1858 }
1859 clrbit(inosused, ino);
1860 if (!devvp_is_snapshot)
1861 UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1862 ino + cg * fs->fs_ipg, mode);
1863 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1864 cgp->cg_irotor = ufs_rw32(ino, needswap);
1865 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1866 mutex_enter(&ump->um_lock);
1867 fs->fs_cstotal.cs_nifree++;
1868 fs->fs_cs(fs, cg).cs_nifree++;
1869 if ((mode & IFMT) == IFDIR) {
1870 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1871 fs->fs_cstotal.cs_ndir--;
1872 fs->fs_cs(fs, cg).cs_ndir--;
1873 }
1874 fs->fs_fmod = 1;
1875 ACTIVECG_CLR(fs, cg);
1876 mutex_exit(&ump->um_lock);
1877 }
1878
1879 /*
1880 * Check to see if a file is free.
1881 */
1882 int
1883 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1884 {
1885 struct cg *cgp;
1886 struct buf *bp;
1887 daddr_t cgbno;
1888 int ret, cg;
1889 u_int8_t *inosused;
1890 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1891
1892 KASSERT(devvp_is_snapshot);
1893
1894 cg = ino_to_cg(fs, ino);
1895 if (devvp_is_snapshot)
1896 cgbno = fragstoblks(fs, cgtod(fs, cg));
1897 else
1898 cgbno = fsbtodb(fs, cgtod(fs, cg));
1899 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1900 return 1;
1901 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1902 brelse(bp, 0);
1903 return 1;
1904 }
1905 cgp = (struct cg *)bp->b_data;
1906 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1907 brelse(bp, 0);
1908 return 1;
1909 }
1910 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1911 ino %= fs->fs_ipg;
1912 ret = isclr(inosused, ino);
1913 brelse(bp, 0);
1914 return ret;
1915 }
1916
1917 /*
1918 * Find a block of the specified size in the specified cylinder group.
1919 *
1920 * It is a panic if a request is made to find a block if none are
1921 * available.
1922 */
1923 static int32_t
1924 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1925 {
1926 int32_t bno;
1927 int start, len, loc, i;
1928 int blk, field, subfield, pos;
1929 int ostart, olen;
1930 u_int8_t *blksfree;
1931 #ifdef FFS_EI
1932 const int needswap = UFS_FSNEEDSWAP(fs);
1933 #endif
1934
1935 /* KASSERT(mutex_owned(&ump->um_lock)); */
1936
1937 /*
1938 * find the fragment by searching through the free block
1939 * map for an appropriate bit pattern
1940 */
1941 if (bpref)
1942 start = dtogd(fs, bpref) / NBBY;
1943 else
1944 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1945 blksfree = cg_blksfree(cgp, needswap);
1946 len = howmany(fs->fs_fpg, NBBY) - start;
1947 ostart = start;
1948 olen = len;
1949 loc = scanc((u_int)len,
1950 (const u_char *)&blksfree[start],
1951 (const u_char *)fragtbl[fs->fs_frag],
1952 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1953 if (loc == 0) {
1954 len = start + 1;
1955 start = 0;
1956 loc = scanc((u_int)len,
1957 (const u_char *)&blksfree[0],
1958 (const u_char *)fragtbl[fs->fs_frag],
1959 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1960 if (loc == 0) {
1961 printf("start = %d, len = %d, fs = %s\n",
1962 ostart, olen, fs->fs_fsmnt);
1963 printf("offset=%d %ld\n",
1964 ufs_rw32(cgp->cg_freeoff, needswap),
1965 (long)blksfree - (long)cgp);
1966 printf("cg %d\n", cgp->cg_cgx);
1967 panic("ffs_alloccg: map corrupted");
1968 /* NOTREACHED */
1969 }
1970 }
1971 bno = (start + len - loc) * NBBY;
1972 cgp->cg_frotor = ufs_rw32(bno, needswap);
1973 /*
1974 * found the byte in the map
1975 * sift through the bits to find the selected frag
1976 */
1977 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1978 blk = blkmap(fs, blksfree, bno);
1979 blk <<= 1;
1980 field = around[allocsiz];
1981 subfield = inside[allocsiz];
1982 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1983 if ((blk & field) == subfield)
1984 return (bno + pos);
1985 field <<= 1;
1986 subfield <<= 1;
1987 }
1988 }
1989 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1990 panic("ffs_alloccg: block not in map");
1991 /* return (-1); */
1992 }
1993
1994 /*
1995 * Update the cluster map because of an allocation or free.
1996 *
1997 * Cnt == 1 means free; cnt == -1 means allocating.
1998 */
1999 void
2000 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2001 {
2002 int32_t *sump;
2003 int32_t *lp;
2004 u_char *freemapp, *mapp;
2005 int i, start, end, forw, back, map, bit;
2006 #ifdef FFS_EI
2007 const int needswap = UFS_FSNEEDSWAP(fs);
2008 #endif
2009
2010 /* KASSERT(mutex_owned(&ump->um_lock)); */
2011
2012 if (fs->fs_contigsumsize <= 0)
2013 return;
2014 freemapp = cg_clustersfree(cgp, needswap);
2015 sump = cg_clustersum(cgp, needswap);
2016 /*
2017 * Allocate or clear the actual block.
2018 */
2019 if (cnt > 0)
2020 setbit(freemapp, blkno);
2021 else
2022 clrbit(freemapp, blkno);
2023 /*
2024 * Find the size of the cluster going forward.
2025 */
2026 start = blkno + 1;
2027 end = start + fs->fs_contigsumsize;
2028 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2029 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2030 mapp = &freemapp[start / NBBY];
2031 map = *mapp++;
2032 bit = 1 << (start % NBBY);
2033 for (i = start; i < end; i++) {
2034 if ((map & bit) == 0)
2035 break;
2036 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2037 bit <<= 1;
2038 } else {
2039 map = *mapp++;
2040 bit = 1;
2041 }
2042 }
2043 forw = i - start;
2044 /*
2045 * Find the size of the cluster going backward.
2046 */
2047 start = blkno - 1;
2048 end = start - fs->fs_contigsumsize;
2049 if (end < 0)
2050 end = -1;
2051 mapp = &freemapp[start / NBBY];
2052 map = *mapp--;
2053 bit = 1 << (start % NBBY);
2054 for (i = start; i > end; i--) {
2055 if ((map & bit) == 0)
2056 break;
2057 if ((i & (NBBY - 1)) != 0) {
2058 bit >>= 1;
2059 } else {
2060 map = *mapp--;
2061 bit = 1 << (NBBY - 1);
2062 }
2063 }
2064 back = start - i;
2065 /*
2066 * Account for old cluster and the possibly new forward and
2067 * back clusters.
2068 */
2069 i = back + forw + 1;
2070 if (i > fs->fs_contigsumsize)
2071 i = fs->fs_contigsumsize;
2072 ufs_add32(sump[i], cnt, needswap);
2073 if (back > 0)
2074 ufs_add32(sump[back], -cnt, needswap);
2075 if (forw > 0)
2076 ufs_add32(sump[forw], -cnt, needswap);
2077
2078 /*
2079 * Update cluster summary information.
2080 */
2081 lp = &sump[fs->fs_contigsumsize];
2082 for (i = fs->fs_contigsumsize; i > 0; i--)
2083 if (ufs_rw32(*lp--, needswap) > 0)
2084 break;
2085 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2086 }
2087
2088 /*
2089 * Fserr prints the name of a file system with an error diagnostic.
2090 *
2091 * The form of the error message is:
2092 * fs: error message
2093 */
2094 static void
2095 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2096 {
2097
2098 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2099 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2100 }
2101