Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.129
      1 /*	$NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Copyright (c) 1982, 1986, 1989, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $");
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ffs.h"
     77 #include "opt_quota.h"
     78 #include "opt_uvm_page_trkown.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/buf.h>
     84 #include <sys/fstrans.h>
     85 #include <sys/kauth.h>
     86 #include <sys/kernel.h>
     87 #include <sys/mount.h>
     88 #include <sys/proc.h>
     89 #include <sys/syslog.h>
     90 #include <sys/vnode.h>
     91 #include <sys/wapbl.h>
     92 
     93 #include <miscfs/specfs/specdev.h>
     94 #include <ufs/ufs/quota.h>
     95 #include <ufs/ufs/ufsmount.h>
     96 #include <ufs/ufs/inode.h>
     97 #include <ufs/ufs/ufs_extern.h>
     98 #include <ufs/ufs/ufs_bswap.h>
     99 #include <ufs/ufs/ufs_wapbl.h>
    100 
    101 #include <ufs/ffs/fs.h>
    102 #include <ufs/ffs/ffs_extern.h>
    103 
    104 #ifdef UVM_PAGE_TRKOWN
    105 #include <uvm/uvm.h>
    106 #endif
    107 
    108 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    109 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    110 static ino_t ffs_dirpref(struct inode *);
    111 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    112 static void ffs_fserr(struct fs *, u_int, const char *);
    113 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    114     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    115 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    116 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    117 				      daddr_t, int);
    118 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    119     daddr_t, long, bool);
    120 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    121     int, bool);
    122 
    123 /* if 1, changes in optimalization strategy are logged */
    124 int ffs_log_changeopt = 0;
    125 
    126 /* in ffs_tables.c */
    127 extern const int inside[], around[];
    128 extern const u_char * const fragtbl[];
    129 
    130 /* Basic consistency check for block allocations */
    131 static int
    132 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    133     long size, dev_t dev, ino_t inum)
    134 {
    135 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    136 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    137 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    138 		    "size = %ld, fs = %s\n",
    139 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    140 		panic("%s: bad size", func);
    141 	}
    142 
    143 	if (bno >= fs->fs_size) {
    144 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    145 		    (unsigned long long)inum);
    146 		ffs_fserr(fs, inum, "bad block");
    147 		return EINVAL;
    148 	}
    149 	return 0;
    150 }
    151 
    152 /*
    153  * Allocate a block in the file system.
    154  *
    155  * The size of the requested block is given, which must be some
    156  * multiple of fs_fsize and <= fs_bsize.
    157  * A preference may be optionally specified. If a preference is given
    158  * the following hierarchy is used to allocate a block:
    159  *   1) allocate the requested block.
    160  *   2) allocate a rotationally optimal block in the same cylinder.
    161  *   3) allocate a block in the same cylinder group.
    162  *   4) quadradically rehash into other cylinder groups, until an
    163  *      available block is located.
    164  * If no block preference is given the following hierarchy is used
    165  * to allocate a block:
    166  *   1) allocate a block in the cylinder group that contains the
    167  *      inode for the file.
    168  *   2) quadradically rehash into other cylinder groups, until an
    169  *      available block is located.
    170  *
    171  * => called with um_lock held
    172  * => releases um_lock before returning
    173  */
    174 int
    175 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    176     kauth_cred_t cred, daddr_t *bnp)
    177 {
    178 	struct ufsmount *ump;
    179 	struct fs *fs;
    180 	daddr_t bno;
    181 	int cg;
    182 #if defined(QUOTA) || defined(QUOTA2)
    183 	int error;
    184 #endif
    185 
    186 	fs = ip->i_fs;
    187 	ump = ip->i_ump;
    188 
    189 	KASSERT(mutex_owned(&ump->um_lock));
    190 
    191 #ifdef UVM_PAGE_TRKOWN
    192 
    193 	/*
    194 	 * Sanity-check that allocations within the file size
    195 	 * do not allow other threads to read the stale contents
    196 	 * of newly allocated blocks.
    197 	 * Usually pages will exist to cover the new allocation.
    198 	 * There is an optimization in ffs_write() where we skip
    199 	 * creating pages if several conditions are met:
    200 	 *  - the file must not be mapped (in any user address space).
    201 	 *  - the write must cover whole pages and whole blocks.
    202 	 * If those conditions are not met then pages must exist and
    203 	 * be locked by the current thread.
    204 	 */
    205 
    206 	if (ITOV(ip)->v_type == VREG &&
    207 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    208 		struct vm_page *pg;
    209 		struct vnode *vp = ITOV(ip);
    210 		struct uvm_object *uobj = &vp->v_uobj;
    211 		voff_t off = trunc_page(lblktosize(fs, lbn));
    212 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    213 
    214 		mutex_enter(uobj->vmobjlock);
    215 		while (off < endoff) {
    216 			pg = uvm_pagelookup(uobj, off);
    217 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    218 				 (size & PAGE_MASK) == 0 &&
    219 				 blkoff(fs, size) == 0) ||
    220 				(pg != NULL && pg->owner == curproc->p_pid &&
    221 				 pg->lowner == curlwp->l_lid));
    222 			off += PAGE_SIZE;
    223 		}
    224 		mutex_exit(uobj->vmobjlock);
    225 	}
    226 #endif
    227 
    228 	*bnp = 0;
    229 #ifdef DIAGNOSTIC
    230 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    231 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    232 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    233 		    fs->fs_fsmnt);
    234 		panic("ffs_alloc: bad size");
    235 	}
    236 	if (cred == NOCRED)
    237 		panic("ffs_alloc: missing credential");
    238 #endif /* DIAGNOSTIC */
    239 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    240 		goto nospace;
    241 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    242 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    243 	    NULL, NULL) != 0)
    244 		goto nospace;
    245 #if defined(QUOTA) || defined(QUOTA2)
    246 	mutex_exit(&ump->um_lock);
    247 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    248 		return (error);
    249 	mutex_enter(&ump->um_lock);
    250 #endif
    251 
    252 	if (bpref >= fs->fs_size)
    253 		bpref = 0;
    254 	if (bpref == 0)
    255 		cg = ino_to_cg(fs, ip->i_number);
    256 	else
    257 		cg = dtog(fs, bpref);
    258 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    259 	if (bno > 0) {
    260 		DIP_ADD(ip, blocks, btodb(size));
    261 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    262 		*bnp = bno;
    263 		return (0);
    264 	}
    265 #if defined(QUOTA) || defined(QUOTA2)
    266 	/*
    267 	 * Restore user's disk quota because allocation failed.
    268 	 */
    269 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    270 #endif
    271 	if (flags & B_CONTIG) {
    272 		/*
    273 		 * XXX ump->um_lock handling is "suspect" at best.
    274 		 * For the case where ffs_hashalloc() fails early
    275 		 * in the B_CONTIG case we reach here with um_lock
    276 		 * already unlocked, so we can't release it again
    277 		 * like in the normal error path.  See kern/39206.
    278 		 *
    279 		 *
    280 		 * Fail silently - it's up to our caller to report
    281 		 * errors.
    282 		 */
    283 		return (ENOSPC);
    284 	}
    285 nospace:
    286 	mutex_exit(&ump->um_lock);
    287 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    288 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    289 	return (ENOSPC);
    290 }
    291 
    292 /*
    293  * Reallocate a fragment to a bigger size
    294  *
    295  * The number and size of the old block is given, and a preference
    296  * and new size is also specified. The allocator attempts to extend
    297  * the original block. Failing that, the regular block allocator is
    298  * invoked to get an appropriate block.
    299  *
    300  * => called with um_lock held
    301  * => return with um_lock released
    302  */
    303 int
    304 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    305     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    306 {
    307 	struct ufsmount *ump;
    308 	struct fs *fs;
    309 	struct buf *bp;
    310 	int cg, request, error;
    311 	daddr_t bprev, bno;
    312 
    313 	fs = ip->i_fs;
    314 	ump = ip->i_ump;
    315 
    316 	KASSERT(mutex_owned(&ump->um_lock));
    317 
    318 #ifdef UVM_PAGE_TRKOWN
    319 
    320 	/*
    321 	 * Sanity-check that allocations within the file size
    322 	 * do not allow other threads to read the stale contents
    323 	 * of newly allocated blocks.
    324 	 * Unlike in ffs_alloc(), here pages must always exist
    325 	 * for such allocations, because only the last block of a file
    326 	 * can be a fragment and ffs_write() will reallocate the
    327 	 * fragment to the new size using ufs_balloc_range(),
    328 	 * which always creates pages to cover blocks it allocates.
    329 	 */
    330 
    331 	if (ITOV(ip)->v_type == VREG) {
    332 		struct vm_page *pg;
    333 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    334 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    335 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    336 
    337 		mutex_enter(uobj->vmobjlock);
    338 		while (off < endoff) {
    339 			pg = uvm_pagelookup(uobj, off);
    340 			KASSERT(pg->owner == curproc->p_pid &&
    341 				pg->lowner == curlwp->l_lid);
    342 			off += PAGE_SIZE;
    343 		}
    344 		mutex_exit(uobj->vmobjlock);
    345 	}
    346 #endif
    347 
    348 #ifdef DIAGNOSTIC
    349 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    350 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    351 		printf(
    352 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    353 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    354 		    fs->fs_fsmnt);
    355 		panic("ffs_realloccg: bad size");
    356 	}
    357 	if (cred == NOCRED)
    358 		panic("ffs_realloccg: missing credential");
    359 #endif /* DIAGNOSTIC */
    360 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    361 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    362 	    NULL, NULL) != 0) {
    363 		mutex_exit(&ump->um_lock);
    364 		goto nospace;
    365 	}
    366 	if (fs->fs_magic == FS_UFS2_MAGIC)
    367 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    368 	else
    369 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    370 
    371 	if (bprev == 0) {
    372 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    373 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    374 		    fs->fs_fsmnt);
    375 		panic("ffs_realloccg: bad bprev");
    376 	}
    377 	mutex_exit(&ump->um_lock);
    378 
    379 	/*
    380 	 * Allocate the extra space in the buffer.
    381 	 */
    382 	if (bpp != NULL &&
    383 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    384 		brelse(bp, 0);
    385 		return (error);
    386 	}
    387 #if defined(QUOTA) || defined(QUOTA2)
    388 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    389 		if (bpp != NULL) {
    390 			brelse(bp, 0);
    391 		}
    392 		return (error);
    393 	}
    394 #endif
    395 	/*
    396 	 * Check for extension in the existing location.
    397 	 */
    398 	cg = dtog(fs, bprev);
    399 	mutex_enter(&ump->um_lock);
    400 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    401 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    402 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    403 
    404 		if (bpp != NULL) {
    405 			if (bp->b_blkno != fsbtodb(fs, bno))
    406 				panic("bad blockno");
    407 			allocbuf(bp, nsize, 1);
    408 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    409 			mutex_enter(bp->b_objlock);
    410 			KASSERT(!cv_has_waiters(&bp->b_done));
    411 			bp->b_oflags |= BO_DONE;
    412 			mutex_exit(bp->b_objlock);
    413 			*bpp = bp;
    414 		}
    415 		if (blknop != NULL) {
    416 			*blknop = bno;
    417 		}
    418 		return (0);
    419 	}
    420 	/*
    421 	 * Allocate a new disk location.
    422 	 */
    423 	if (bpref >= fs->fs_size)
    424 		bpref = 0;
    425 	switch ((int)fs->fs_optim) {
    426 	case FS_OPTSPACE:
    427 		/*
    428 		 * Allocate an exact sized fragment. Although this makes
    429 		 * best use of space, we will waste time relocating it if
    430 		 * the file continues to grow. If the fragmentation is
    431 		 * less than half of the minimum free reserve, we choose
    432 		 * to begin optimizing for time.
    433 		 */
    434 		request = nsize;
    435 		if (fs->fs_minfree < 5 ||
    436 		    fs->fs_cstotal.cs_nffree >
    437 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    438 			break;
    439 
    440 		if (ffs_log_changeopt) {
    441 			log(LOG_NOTICE,
    442 				"%s: optimization changed from SPACE to TIME\n",
    443 				fs->fs_fsmnt);
    444 		}
    445 
    446 		fs->fs_optim = FS_OPTTIME;
    447 		break;
    448 	case FS_OPTTIME:
    449 		/*
    450 		 * At this point we have discovered a file that is trying to
    451 		 * grow a small fragment to a larger fragment. To save time,
    452 		 * we allocate a full sized block, then free the unused portion.
    453 		 * If the file continues to grow, the `ffs_fragextend' call
    454 		 * above will be able to grow it in place without further
    455 		 * copying. If aberrant programs cause disk fragmentation to
    456 		 * grow within 2% of the free reserve, we choose to begin
    457 		 * optimizing for space.
    458 		 */
    459 		request = fs->fs_bsize;
    460 		if (fs->fs_cstotal.cs_nffree <
    461 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    462 			break;
    463 
    464 		if (ffs_log_changeopt) {
    465 			log(LOG_NOTICE,
    466 				"%s: optimization changed from TIME to SPACE\n",
    467 				fs->fs_fsmnt);
    468 		}
    469 
    470 		fs->fs_optim = FS_OPTSPACE;
    471 		break;
    472 	default:
    473 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    474 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    475 		panic("ffs_realloccg: bad optim");
    476 		/* NOTREACHED */
    477 	}
    478 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    479 	if (bno > 0) {
    480 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    481 		    (ITOV(ip)->v_type != VREG)) {
    482 			UFS_WAPBL_REGISTER_DEALLOCATION(
    483 			    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    484 			    osize);
    485 		} else {
    486 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    487 			    ip->i_number);
    488 		}
    489 		if (nsize < request) {
    490 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    491 			    (ITOV(ip)->v_type != VREG)) {
    492 				UFS_WAPBL_REGISTER_DEALLOCATION(
    493 				    ip->i_ump->um_mountp,
    494 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    495 				    request - nsize);
    496 			} else
    497 				ffs_blkfree(fs, ip->i_devvp,
    498 				    bno + numfrags(fs, nsize),
    499 				    (long)(request - nsize), ip->i_number);
    500 		}
    501 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    502 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    503 		if (bpp != NULL) {
    504 			bp->b_blkno = fsbtodb(fs, bno);
    505 			allocbuf(bp, nsize, 1);
    506 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    507 			mutex_enter(bp->b_objlock);
    508 			KASSERT(!cv_has_waiters(&bp->b_done));
    509 			bp->b_oflags |= BO_DONE;
    510 			mutex_exit(bp->b_objlock);
    511 			*bpp = bp;
    512 		}
    513 		if (blknop != NULL) {
    514 			*blknop = bno;
    515 		}
    516 		return (0);
    517 	}
    518 	mutex_exit(&ump->um_lock);
    519 
    520 #if defined(QUOTA) || defined(QUOTA2)
    521 	/*
    522 	 * Restore user's disk quota because allocation failed.
    523 	 */
    524 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    525 #endif
    526 	if (bpp != NULL) {
    527 		brelse(bp, 0);
    528 	}
    529 
    530 nospace:
    531 	/*
    532 	 * no space available
    533 	 */
    534 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    535 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    536 	return (ENOSPC);
    537 }
    538 
    539 /*
    540  * Allocate an inode in the file system.
    541  *
    542  * If allocating a directory, use ffs_dirpref to select the inode.
    543  * If allocating in a directory, the following hierarchy is followed:
    544  *   1) allocate the preferred inode.
    545  *   2) allocate an inode in the same cylinder group.
    546  *   3) quadradically rehash into other cylinder groups, until an
    547  *      available inode is located.
    548  * If no inode preference is given the following hierarchy is used
    549  * to allocate an inode:
    550  *   1) allocate an inode in cylinder group 0.
    551  *   2) quadradically rehash into other cylinder groups, until an
    552  *      available inode is located.
    553  *
    554  * => um_lock not held upon entry or return
    555  */
    556 int
    557 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    558     struct vnode **vpp)
    559 {
    560 	struct ufsmount *ump;
    561 	struct inode *pip;
    562 	struct fs *fs;
    563 	struct inode *ip;
    564 	struct timespec ts;
    565 	ino_t ino, ipref;
    566 	int cg, error;
    567 
    568 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    569 
    570 	*vpp = NULL;
    571 	pip = VTOI(pvp);
    572 	fs = pip->i_fs;
    573 	ump = pip->i_ump;
    574 
    575 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    576 	if (error) {
    577 		return error;
    578 	}
    579 	mutex_enter(&ump->um_lock);
    580 	if (fs->fs_cstotal.cs_nifree == 0)
    581 		goto noinodes;
    582 
    583 	if ((mode & IFMT) == IFDIR)
    584 		ipref = ffs_dirpref(pip);
    585 	else
    586 		ipref = pip->i_number;
    587 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    588 		ipref = 0;
    589 	cg = ino_to_cg(fs, ipref);
    590 	/*
    591 	 * Track number of dirs created one after another
    592 	 * in a same cg without intervening by files.
    593 	 */
    594 	if ((mode & IFMT) == IFDIR) {
    595 		if (fs->fs_contigdirs[cg] < 255)
    596 			fs->fs_contigdirs[cg]++;
    597 	} else {
    598 		if (fs->fs_contigdirs[cg] > 0)
    599 			fs->fs_contigdirs[cg]--;
    600 	}
    601 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    602 	if (ino == 0)
    603 		goto noinodes;
    604 	UFS_WAPBL_END(pvp->v_mount);
    605 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    606 	if (error) {
    607 		int err;
    608 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    609 		if (err == 0)
    610 			ffs_vfree(pvp, ino, mode);
    611 		if (err == 0)
    612 			UFS_WAPBL_END(pvp->v_mount);
    613 		return (error);
    614 	}
    615 	KASSERT((*vpp)->v_type == VNON);
    616 	ip = VTOI(*vpp);
    617 	if (ip->i_mode) {
    618 #if 0
    619 		printf("mode = 0%o, inum = %d, fs = %s\n",
    620 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    621 #else
    622 		printf("dmode %x mode %x dgen %x gen %x\n",
    623 		    DIP(ip, mode), ip->i_mode,
    624 		    DIP(ip, gen), ip->i_gen);
    625 		printf("size %llx blocks %llx\n",
    626 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    627 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    628 		    (unsigned long long)ipref);
    629 #if 0
    630 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    631 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    632 #endif
    633 
    634 #endif
    635 		panic("ffs_valloc: dup alloc");
    636 	}
    637 	if (DIP(ip, blocks)) {				/* XXX */
    638 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    639 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    640 		DIP_ASSIGN(ip, blocks, 0);
    641 	}
    642 	ip->i_flag &= ~IN_SPACECOUNTED;
    643 	ip->i_flags = 0;
    644 	DIP_ASSIGN(ip, flags, 0);
    645 	/*
    646 	 * Set up a new generation number for this inode.
    647 	 */
    648 	ip->i_gen++;
    649 	DIP_ASSIGN(ip, gen, ip->i_gen);
    650 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    651 		vfs_timestamp(&ts);
    652 		ip->i_ffs2_birthtime = ts.tv_sec;
    653 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    654 	}
    655 	return (0);
    656 noinodes:
    657 	mutex_exit(&ump->um_lock);
    658 	UFS_WAPBL_END(pvp->v_mount);
    659 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    660 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    661 	return (ENOSPC);
    662 }
    663 
    664 /*
    665  * Find a cylinder group in which to place a directory.
    666  *
    667  * The policy implemented by this algorithm is to allocate a
    668  * directory inode in the same cylinder group as its parent
    669  * directory, but also to reserve space for its files inodes
    670  * and data. Restrict the number of directories which may be
    671  * allocated one after another in the same cylinder group
    672  * without intervening allocation of files.
    673  *
    674  * If we allocate a first level directory then force allocation
    675  * in another cylinder group.
    676  */
    677 static ino_t
    678 ffs_dirpref(struct inode *pip)
    679 {
    680 	register struct fs *fs;
    681 	int cg, prefcg;
    682 	int64_t dirsize, cgsize, curdsz;
    683 	int avgifree, avgbfree, avgndir;
    684 	int minifree, minbfree, maxndir;
    685 	int mincg, minndir;
    686 	int maxcontigdirs;
    687 
    688 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    689 
    690 	fs = pip->i_fs;
    691 
    692 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    693 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    694 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    695 
    696 	/*
    697 	 * Force allocation in another cg if creating a first level dir.
    698 	 */
    699 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    700 		prefcg = random() % fs->fs_ncg;
    701 		mincg = prefcg;
    702 		minndir = fs->fs_ipg;
    703 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    704 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    705 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    706 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    707 				mincg = cg;
    708 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    709 			}
    710 		for (cg = 0; cg < prefcg; cg++)
    711 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    712 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    713 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    714 				mincg = cg;
    715 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    716 			}
    717 		return ((ino_t)(fs->fs_ipg * mincg));
    718 	}
    719 
    720 	/*
    721 	 * Count various limits which used for
    722 	 * optimal allocation of a directory inode.
    723 	 */
    724 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    725 	minifree = avgifree - fs->fs_ipg / 4;
    726 	if (minifree < 0)
    727 		minifree = 0;
    728 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    729 	if (minbfree < 0)
    730 		minbfree = 0;
    731 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    732 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    733 	if (avgndir != 0) {
    734 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    735 		if (dirsize < curdsz)
    736 			dirsize = curdsz;
    737 	}
    738 	if (cgsize < dirsize * 255)
    739 		maxcontigdirs = cgsize / dirsize;
    740 	else
    741 		maxcontigdirs = 255;
    742 	if (fs->fs_avgfpdir > 0)
    743 		maxcontigdirs = min(maxcontigdirs,
    744 				    fs->fs_ipg / fs->fs_avgfpdir);
    745 	if (maxcontigdirs == 0)
    746 		maxcontigdirs = 1;
    747 
    748 	/*
    749 	 * Limit number of dirs in one cg and reserve space for
    750 	 * regular files, but only if we have no deficit in
    751 	 * inodes or space.
    752 	 */
    753 	prefcg = ino_to_cg(fs, pip->i_number);
    754 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    755 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    756 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    757 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    758 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    759 				return ((ino_t)(fs->fs_ipg * cg));
    760 		}
    761 	for (cg = 0; cg < prefcg; cg++)
    762 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    763 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    764 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    765 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    766 				return ((ino_t)(fs->fs_ipg * cg));
    767 		}
    768 	/*
    769 	 * This is a backstop when we are deficient in space.
    770 	 */
    771 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    772 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    773 			return ((ino_t)(fs->fs_ipg * cg));
    774 	for (cg = 0; cg < prefcg; cg++)
    775 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    776 			break;
    777 	return ((ino_t)(fs->fs_ipg * cg));
    778 }
    779 
    780 /*
    781  * Select the desired position for the next block in a file.  The file is
    782  * logically divided into sections. The first section is composed of the
    783  * direct blocks. Each additional section contains fs_maxbpg blocks.
    784  *
    785  * If no blocks have been allocated in the first section, the policy is to
    786  * request a block in the same cylinder group as the inode that describes
    787  * the file. If no blocks have been allocated in any other section, the
    788  * policy is to place the section in a cylinder group with a greater than
    789  * average number of free blocks.  An appropriate cylinder group is found
    790  * by using a rotor that sweeps the cylinder groups. When a new group of
    791  * blocks is needed, the sweep begins in the cylinder group following the
    792  * cylinder group from which the previous allocation was made. The sweep
    793  * continues until a cylinder group with greater than the average number
    794  * of free blocks is found. If the allocation is for the first block in an
    795  * indirect block, the information on the previous allocation is unavailable;
    796  * here a best guess is made based upon the logical block number being
    797  * allocated.
    798  *
    799  * If a section is already partially allocated, the policy is to
    800  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    801  * contiguous blocks and the beginning of the next is laid out
    802  * contigously if possible.
    803  *
    804  * => um_lock held on entry and exit
    805  */
    806 daddr_t
    807 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    808     int32_t *bap /* XXX ondisk32 */)
    809 {
    810 	struct fs *fs;
    811 	int cg;
    812 	int avgbfree, startcg;
    813 
    814 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    815 
    816 	fs = ip->i_fs;
    817 
    818 	/*
    819 	 * If allocating a contiguous file with B_CONTIG, use the hints
    820 	 * in the inode extentions to return the desired block.
    821 	 *
    822 	 * For metadata (indirect blocks) return the address of where
    823 	 * the first indirect block resides - we'll scan for the next
    824 	 * available slot if we need to allocate more than one indirect
    825 	 * block.  For data, return the address of the actual block
    826 	 * relative to the address of the first data block.
    827 	 */
    828 	if (flags & B_CONTIG) {
    829 		KASSERT(ip->i_ffs_first_data_blk != 0);
    830 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    831 		if (flags & B_METAONLY)
    832 			return ip->i_ffs_first_indir_blk;
    833 		else
    834 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    835 	}
    836 
    837 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    838 		if (lbn < NDADDR + NINDIR(fs)) {
    839 			cg = ino_to_cg(fs, ip->i_number);
    840 			return (cgbase(fs, cg) + fs->fs_frag);
    841 		}
    842 		/*
    843 		 * Find a cylinder with greater than average number of
    844 		 * unused data blocks.
    845 		 */
    846 		if (indx == 0 || bap[indx - 1] == 0)
    847 			startcg =
    848 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    849 		else
    850 			startcg = dtog(fs,
    851 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    852 		startcg %= fs->fs_ncg;
    853 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    854 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    855 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    856 				return (cgbase(fs, cg) + fs->fs_frag);
    857 			}
    858 		for (cg = 0; cg < startcg; cg++)
    859 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    860 				return (cgbase(fs, cg) + fs->fs_frag);
    861 			}
    862 		return (0);
    863 	}
    864 	/*
    865 	 * We just always try to lay things out contiguously.
    866 	 */
    867 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    868 }
    869 
    870 daddr_t
    871 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    872     int64_t *bap)
    873 {
    874 	struct fs *fs;
    875 	int cg;
    876 	int avgbfree, startcg;
    877 
    878 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    879 
    880 	fs = ip->i_fs;
    881 
    882 	/*
    883 	 * If allocating a contiguous file with B_CONTIG, use the hints
    884 	 * in the inode extentions to return the desired block.
    885 	 *
    886 	 * For metadata (indirect blocks) return the address of where
    887 	 * the first indirect block resides - we'll scan for the next
    888 	 * available slot if we need to allocate more than one indirect
    889 	 * block.  For data, return the address of the actual block
    890 	 * relative to the address of the first data block.
    891 	 */
    892 	if (flags & B_CONTIG) {
    893 		KASSERT(ip->i_ffs_first_data_blk != 0);
    894 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    895 		if (flags & B_METAONLY)
    896 			return ip->i_ffs_first_indir_blk;
    897 		else
    898 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    899 	}
    900 
    901 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    902 		if (lbn < NDADDR + NINDIR(fs)) {
    903 			cg = ino_to_cg(fs, ip->i_number);
    904 			return (cgbase(fs, cg) + fs->fs_frag);
    905 		}
    906 		/*
    907 		 * Find a cylinder with greater than average number of
    908 		 * unused data blocks.
    909 		 */
    910 		if (indx == 0 || bap[indx - 1] == 0)
    911 			startcg =
    912 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    913 		else
    914 			startcg = dtog(fs,
    915 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    916 		startcg %= fs->fs_ncg;
    917 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    918 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    919 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    920 				return (cgbase(fs, cg) + fs->fs_frag);
    921 			}
    922 		for (cg = 0; cg < startcg; cg++)
    923 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    924 				return (cgbase(fs, cg) + fs->fs_frag);
    925 			}
    926 		return (0);
    927 	}
    928 	/*
    929 	 * We just always try to lay things out contiguously.
    930 	 */
    931 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    932 }
    933 
    934 
    935 /*
    936  * Implement the cylinder overflow algorithm.
    937  *
    938  * The policy implemented by this algorithm is:
    939  *   1) allocate the block in its requested cylinder group.
    940  *   2) quadradically rehash on the cylinder group number.
    941  *   3) brute force search for a free block.
    942  *
    943  * => called with um_lock held
    944  * => returns with um_lock released on success, held on failure
    945  *    (*allocator releases lock on success, retains lock on failure)
    946  */
    947 /*VARARGS5*/
    948 static daddr_t
    949 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    950     int size /* size for data blocks, mode for inodes */,
    951     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    952 {
    953 	struct fs *fs;
    954 	daddr_t result;
    955 	int i, icg = cg;
    956 
    957 	fs = ip->i_fs;
    958 	/*
    959 	 * 1: preferred cylinder group
    960 	 */
    961 	result = (*allocator)(ip, cg, pref, size, flags);
    962 	if (result)
    963 		return (result);
    964 
    965 	if (flags & B_CONTIG)
    966 		return (result);
    967 	/*
    968 	 * 2: quadratic rehash
    969 	 */
    970 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    971 		cg += i;
    972 		if (cg >= fs->fs_ncg)
    973 			cg -= fs->fs_ncg;
    974 		result = (*allocator)(ip, cg, 0, size, flags);
    975 		if (result)
    976 			return (result);
    977 	}
    978 	/*
    979 	 * 3: brute force search
    980 	 * Note that we start at i == 2, since 0 was checked initially,
    981 	 * and 1 is always checked in the quadratic rehash.
    982 	 */
    983 	cg = (icg + 2) % fs->fs_ncg;
    984 	for (i = 2; i < fs->fs_ncg; i++) {
    985 		result = (*allocator)(ip, cg, 0, size, flags);
    986 		if (result)
    987 			return (result);
    988 		cg++;
    989 		if (cg == fs->fs_ncg)
    990 			cg = 0;
    991 	}
    992 	return (0);
    993 }
    994 
    995 /*
    996  * Determine whether a fragment can be extended.
    997  *
    998  * Check to see if the necessary fragments are available, and
    999  * if they are, allocate them.
   1000  *
   1001  * => called with um_lock held
   1002  * => returns with um_lock released on success, held on failure
   1003  */
   1004 static daddr_t
   1005 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1006 {
   1007 	struct ufsmount *ump;
   1008 	struct fs *fs;
   1009 	struct cg *cgp;
   1010 	struct buf *bp;
   1011 	daddr_t bno;
   1012 	int frags, bbase;
   1013 	int i, error;
   1014 	u_int8_t *blksfree;
   1015 
   1016 	fs = ip->i_fs;
   1017 	ump = ip->i_ump;
   1018 
   1019 	KASSERT(mutex_owned(&ump->um_lock));
   1020 
   1021 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1022 		return (0);
   1023 	frags = numfrags(fs, nsize);
   1024 	bbase = fragnum(fs, bprev);
   1025 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1026 		/* cannot extend across a block boundary */
   1027 		return (0);
   1028 	}
   1029 	mutex_exit(&ump->um_lock);
   1030 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1031 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1032 	if (error)
   1033 		goto fail;
   1034 	cgp = (struct cg *)bp->b_data;
   1035 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1036 		goto fail;
   1037 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1038 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1039 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1040 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1041 	bno = dtogd(fs, bprev);
   1042 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1043 	for (i = numfrags(fs, osize); i < frags; i++)
   1044 		if (isclr(blksfree, bno + i))
   1045 			goto fail;
   1046 	/*
   1047 	 * the current fragment can be extended
   1048 	 * deduct the count on fragment being extended into
   1049 	 * increase the count on the remaining fragment (if any)
   1050 	 * allocate the extended piece
   1051 	 */
   1052 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1053 		if (isclr(blksfree, bno + i))
   1054 			break;
   1055 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1056 	if (i != frags)
   1057 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1058 	mutex_enter(&ump->um_lock);
   1059 	for (i = numfrags(fs, osize); i < frags; i++) {
   1060 		clrbit(blksfree, bno + i);
   1061 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1062 		fs->fs_cstotal.cs_nffree--;
   1063 		fs->fs_cs(fs, cg).cs_nffree--;
   1064 	}
   1065 	fs->fs_fmod = 1;
   1066 	ACTIVECG_CLR(fs, cg);
   1067 	mutex_exit(&ump->um_lock);
   1068 	bdwrite(bp);
   1069 	return (bprev);
   1070 
   1071  fail:
   1072  	brelse(bp, 0);
   1073  	mutex_enter(&ump->um_lock);
   1074  	return (0);
   1075 }
   1076 
   1077 /*
   1078  * Determine whether a block can be allocated.
   1079  *
   1080  * Check to see if a block of the appropriate size is available,
   1081  * and if it is, allocate it.
   1082  */
   1083 static daddr_t
   1084 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1085 {
   1086 	struct ufsmount *ump;
   1087 	struct fs *fs = ip->i_fs;
   1088 	struct cg *cgp;
   1089 	struct buf *bp;
   1090 	int32_t bno;
   1091 	daddr_t blkno;
   1092 	int error, frags, allocsiz, i;
   1093 	u_int8_t *blksfree;
   1094 #ifdef FFS_EI
   1095 	const int needswap = UFS_FSNEEDSWAP(fs);
   1096 #endif
   1097 
   1098 	ump = ip->i_ump;
   1099 
   1100 	KASSERT(mutex_owned(&ump->um_lock));
   1101 
   1102 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1103 		return (0);
   1104 	mutex_exit(&ump->um_lock);
   1105 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1106 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1107 	if (error)
   1108 		goto fail;
   1109 	cgp = (struct cg *)bp->b_data;
   1110 	if (!cg_chkmagic(cgp, needswap) ||
   1111 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1112 		goto fail;
   1113 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1114 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1115 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1116 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1117 	if (size == fs->fs_bsize) {
   1118 		mutex_enter(&ump->um_lock);
   1119 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1120 		ACTIVECG_CLR(fs, cg);
   1121 		mutex_exit(&ump->um_lock);
   1122 		bdwrite(bp);
   1123 		return (blkno);
   1124 	}
   1125 	/*
   1126 	 * check to see if any fragments are already available
   1127 	 * allocsiz is the size which will be allocated, hacking
   1128 	 * it down to a smaller size if necessary
   1129 	 */
   1130 	blksfree = cg_blksfree(cgp, needswap);
   1131 	frags = numfrags(fs, size);
   1132 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1133 		if (cgp->cg_frsum[allocsiz] != 0)
   1134 			break;
   1135 	if (allocsiz == fs->fs_frag) {
   1136 		/*
   1137 		 * no fragments were available, so a block will be
   1138 		 * allocated, and hacked up
   1139 		 */
   1140 		if (cgp->cg_cs.cs_nbfree == 0)
   1141 			goto fail;
   1142 		mutex_enter(&ump->um_lock);
   1143 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1144 		bno = dtogd(fs, blkno);
   1145 		for (i = frags; i < fs->fs_frag; i++)
   1146 			setbit(blksfree, bno + i);
   1147 		i = fs->fs_frag - frags;
   1148 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1149 		fs->fs_cstotal.cs_nffree += i;
   1150 		fs->fs_cs(fs, cg).cs_nffree += i;
   1151 		fs->fs_fmod = 1;
   1152 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1153 		ACTIVECG_CLR(fs, cg);
   1154 		mutex_exit(&ump->um_lock);
   1155 		bdwrite(bp);
   1156 		return (blkno);
   1157 	}
   1158 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1159 #if 0
   1160 	/*
   1161 	 * XXX fvdl mapsearch will panic, and never return -1
   1162 	 *          also: returning NULL as daddr_t ?
   1163 	 */
   1164 	if (bno < 0)
   1165 		goto fail;
   1166 #endif
   1167 	for (i = 0; i < frags; i++)
   1168 		clrbit(blksfree, bno + i);
   1169 	mutex_enter(&ump->um_lock);
   1170 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1171 	fs->fs_cstotal.cs_nffree -= frags;
   1172 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1173 	fs->fs_fmod = 1;
   1174 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1175 	if (frags != allocsiz)
   1176 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1177 	blkno = cgbase(fs, cg) + bno;
   1178 	ACTIVECG_CLR(fs, cg);
   1179 	mutex_exit(&ump->um_lock);
   1180 	bdwrite(bp);
   1181 	return blkno;
   1182 
   1183  fail:
   1184  	brelse(bp, 0);
   1185  	mutex_enter(&ump->um_lock);
   1186  	return (0);
   1187 }
   1188 
   1189 /*
   1190  * Allocate a block in a cylinder group.
   1191  *
   1192  * This algorithm implements the following policy:
   1193  *   1) allocate the requested block.
   1194  *   2) allocate a rotationally optimal block in the same cylinder.
   1195  *   3) allocate the next available block on the block rotor for the
   1196  *      specified cylinder group.
   1197  * Note that this routine only allocates fs_bsize blocks; these
   1198  * blocks may be fragmented by the routine that allocates them.
   1199  */
   1200 static daddr_t
   1201 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1202 {
   1203 	struct ufsmount *ump;
   1204 	struct fs *fs = ip->i_fs;
   1205 	struct cg *cgp;
   1206 	int cg;
   1207 	daddr_t blkno;
   1208 	int32_t bno;
   1209 	u_int8_t *blksfree;
   1210 #ifdef FFS_EI
   1211 	const int needswap = UFS_FSNEEDSWAP(fs);
   1212 #endif
   1213 
   1214 	ump = ip->i_ump;
   1215 
   1216 	KASSERT(mutex_owned(&ump->um_lock));
   1217 
   1218 	cgp = (struct cg *)bp->b_data;
   1219 	blksfree = cg_blksfree(cgp, needswap);
   1220 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1221 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1222 	} else {
   1223 		bpref = blknum(fs, bpref);
   1224 		bno = dtogd(fs, bpref);
   1225 		/*
   1226 		 * if the requested block is available, use it
   1227 		 */
   1228 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1229 			goto gotit;
   1230 		/*
   1231 		 * if the requested data block isn't available and we are
   1232 		 * trying to allocate a contiguous file, return an error.
   1233 		 */
   1234 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1235 			return (0);
   1236 	}
   1237 
   1238 	/*
   1239 	 * Take the next available block in this cylinder group.
   1240 	 */
   1241 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1242 	if (bno < 0)
   1243 		return (0);
   1244 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1245 gotit:
   1246 	blkno = fragstoblks(fs, bno);
   1247 	ffs_clrblock(fs, blksfree, blkno);
   1248 	ffs_clusteracct(fs, cgp, blkno, -1);
   1249 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1250 	fs->fs_cstotal.cs_nbfree--;
   1251 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1252 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1253 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1254 		int cylno;
   1255 		cylno = old_cbtocylno(fs, bno);
   1256 		KASSERT(cylno >= 0);
   1257 		KASSERT(cylno < fs->fs_old_ncyl);
   1258 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1259 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1260 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1261 		    needswap);
   1262 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1263 	}
   1264 	fs->fs_fmod = 1;
   1265 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1266 	blkno = cgbase(fs, cg) + bno;
   1267 	return (blkno);
   1268 }
   1269 
   1270 /*
   1271  * Determine whether an inode can be allocated.
   1272  *
   1273  * Check to see if an inode is available, and if it is,
   1274  * allocate it using the following policy:
   1275  *   1) allocate the requested inode.
   1276  *   2) allocate the next available inode after the requested
   1277  *      inode in the specified cylinder group.
   1278  */
   1279 static daddr_t
   1280 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1281 {
   1282 	struct ufsmount *ump = ip->i_ump;
   1283 	struct fs *fs = ip->i_fs;
   1284 	struct cg *cgp;
   1285 	struct buf *bp, *ibp;
   1286 	u_int8_t *inosused;
   1287 	int error, start, len, loc, map, i;
   1288 	int32_t initediblk;
   1289 	daddr_t nalloc;
   1290 	struct ufs2_dinode *dp2;
   1291 #ifdef FFS_EI
   1292 	const int needswap = UFS_FSNEEDSWAP(fs);
   1293 #endif
   1294 
   1295 	KASSERT(mutex_owned(&ump->um_lock));
   1296 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1297 
   1298 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1299 		return (0);
   1300 	mutex_exit(&ump->um_lock);
   1301 	ibp = NULL;
   1302 	initediblk = -1;
   1303 retry:
   1304 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1305 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1306 	if (error)
   1307 		goto fail;
   1308 	cgp = (struct cg *)bp->b_data;
   1309 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1310 		goto fail;
   1311 
   1312 	if (ibp != NULL &&
   1313 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1314 		/* Another thread allocated more inodes so we retry the test. */
   1315 		brelse(ibp, 0);
   1316 		ibp = NULL;
   1317 	}
   1318 	/*
   1319 	 * Check to see if we need to initialize more inodes.
   1320 	 */
   1321 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1322 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1323 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1324 		if (nalloc + INOPB(fs) > initediblk &&
   1325 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1326 			/*
   1327 			 * We have to release the cg buffer here to prevent
   1328 			 * a deadlock when reading the inode block will
   1329 			 * run a copy-on-write that might use this cg.
   1330 			 */
   1331 			brelse(bp, 0);
   1332 			bp = NULL;
   1333 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1334 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1335 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1336 			if (error)
   1337 				goto fail;
   1338 			goto retry;
   1339 		}
   1340 	}
   1341 
   1342 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1343 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1344 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1345 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1346 	inosused = cg_inosused(cgp, needswap);
   1347 	if (ipref) {
   1348 		ipref %= fs->fs_ipg;
   1349 		if (isclr(inosused, ipref))
   1350 			goto gotit;
   1351 	}
   1352 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1353 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1354 		NBBY);
   1355 	loc = skpc(0xff, len, &inosused[start]);
   1356 	if (loc == 0) {
   1357 		len = start + 1;
   1358 		start = 0;
   1359 		loc = skpc(0xff, len, &inosused[0]);
   1360 		if (loc == 0) {
   1361 			printf("cg = %d, irotor = %d, fs = %s\n",
   1362 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1363 				fs->fs_fsmnt);
   1364 			panic("ffs_nodealloccg: map corrupted");
   1365 			/* NOTREACHED */
   1366 		}
   1367 	}
   1368 	i = start + len - loc;
   1369 	map = inosused[i] ^ 0xff;
   1370 	if (map == 0) {
   1371 		printf("fs = %s\n", fs->fs_fsmnt);
   1372 		panic("ffs_nodealloccg: block not in map");
   1373 	}
   1374 	ipref = i * NBBY + ffs(map) - 1;
   1375 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1376 gotit:
   1377 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1378 	    mode);
   1379 	/*
   1380 	 * Check to see if we need to initialize more inodes.
   1381 	 */
   1382 	if (ibp != NULL) {
   1383 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1384 		memset(ibp->b_data, 0, fs->fs_bsize);
   1385 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1386 		for (i = 0; i < INOPB(fs); i++) {
   1387 			/*
   1388 			 * Don't bother to swap, it's supposed to be
   1389 			 * random, after all.
   1390 			 */
   1391 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1392 			dp2++;
   1393 		}
   1394 		initediblk += INOPB(fs);
   1395 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1396 	}
   1397 
   1398 	mutex_enter(&ump->um_lock);
   1399 	ACTIVECG_CLR(fs, cg);
   1400 	setbit(inosused, ipref);
   1401 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1402 	fs->fs_cstotal.cs_nifree--;
   1403 	fs->fs_cs(fs, cg).cs_nifree--;
   1404 	fs->fs_fmod = 1;
   1405 	if ((mode & IFMT) == IFDIR) {
   1406 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1407 		fs->fs_cstotal.cs_ndir++;
   1408 		fs->fs_cs(fs, cg).cs_ndir++;
   1409 	}
   1410 	mutex_exit(&ump->um_lock);
   1411 	if (ibp != NULL) {
   1412 		bwrite(bp);
   1413 		bawrite(ibp);
   1414 	} else
   1415 		bdwrite(bp);
   1416 	return (cg * fs->fs_ipg + ipref);
   1417  fail:
   1418 	if (bp != NULL)
   1419 		brelse(bp, 0);
   1420 	if (ibp != NULL)
   1421 		brelse(ibp, 0);
   1422 	mutex_enter(&ump->um_lock);
   1423 	return (0);
   1424 }
   1425 
   1426 /*
   1427  * Allocate a block or fragment.
   1428  *
   1429  * The specified block or fragment is removed from the
   1430  * free map, possibly fragmenting a block in the process.
   1431  *
   1432  * This implementation should mirror fs_blkfree
   1433  *
   1434  * => um_lock not held on entry or exit
   1435  */
   1436 int
   1437 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1438 {
   1439 	int error;
   1440 
   1441 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1442 	    ip->i_dev, ip->i_uid);
   1443 	if (error)
   1444 		return error;
   1445 
   1446 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1447 }
   1448 
   1449 int
   1450 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1451 {
   1452 	struct fs *fs = ump->um_fs;
   1453 	struct cg *cgp;
   1454 	struct buf *bp;
   1455 	int32_t fragno, cgbno;
   1456 	int i, error, cg, blk, frags, bbase;
   1457 	u_int8_t *blksfree;
   1458 	const int needswap = UFS_FSNEEDSWAP(fs);
   1459 
   1460 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1461 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1462 	KASSERT(bno < fs->fs_size);
   1463 
   1464 	cg = dtog(fs, bno);
   1465 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1466 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1467 	if (error) {
   1468 		brelse(bp, 0);
   1469 		return error;
   1470 	}
   1471 	cgp = (struct cg *)bp->b_data;
   1472 	if (!cg_chkmagic(cgp, needswap)) {
   1473 		brelse(bp, 0);
   1474 		return EIO;
   1475 	}
   1476 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1477 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1478 	cgbno = dtogd(fs, bno);
   1479 	blksfree = cg_blksfree(cgp, needswap);
   1480 
   1481 	mutex_enter(&ump->um_lock);
   1482 	if (size == fs->fs_bsize) {
   1483 		fragno = fragstoblks(fs, cgbno);
   1484 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1485 			mutex_exit(&ump->um_lock);
   1486 			brelse(bp, 0);
   1487 			return EBUSY;
   1488 		}
   1489 		ffs_clrblock(fs, blksfree, fragno);
   1490 		ffs_clusteracct(fs, cgp, fragno, -1);
   1491 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1492 		fs->fs_cstotal.cs_nbfree--;
   1493 		fs->fs_cs(fs, cg).cs_nbfree--;
   1494 	} else {
   1495 		bbase = cgbno - fragnum(fs, cgbno);
   1496 
   1497 		frags = numfrags(fs, size);
   1498 		for (i = 0; i < frags; i++) {
   1499 			if (isclr(blksfree, cgbno + i)) {
   1500 				mutex_exit(&ump->um_lock);
   1501 				brelse(bp, 0);
   1502 				return EBUSY;
   1503 			}
   1504 		}
   1505 		/*
   1506 		 * if a complete block is being split, account for it
   1507 		 */
   1508 		fragno = fragstoblks(fs, bbase);
   1509 		if (ffs_isblock(fs, blksfree, fragno)) {
   1510 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1511 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1512 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1513 			ffs_clusteracct(fs, cgp, fragno, -1);
   1514 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1515 			fs->fs_cstotal.cs_nbfree--;
   1516 			fs->fs_cs(fs, cg).cs_nbfree--;
   1517 		}
   1518 		/*
   1519 		 * decrement the counts associated with the old frags
   1520 		 */
   1521 		blk = blkmap(fs, blksfree, bbase);
   1522 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1523 		/*
   1524 		 * allocate the fragment
   1525 		 */
   1526 		for (i = 0; i < frags; i++) {
   1527 			clrbit(blksfree, cgbno + i);
   1528 		}
   1529 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1530 		fs->fs_cstotal.cs_nffree -= i;
   1531 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1532 		/*
   1533 		 * add back in counts associated with the new frags
   1534 		 */
   1535 		blk = blkmap(fs, blksfree, bbase);
   1536 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1537 	}
   1538 	fs->fs_fmod = 1;
   1539 	ACTIVECG_CLR(fs, cg);
   1540 	mutex_exit(&ump->um_lock);
   1541 	bdwrite(bp);
   1542 	return 0;
   1543 }
   1544 
   1545 /*
   1546  * Free a block or fragment.
   1547  *
   1548  * The specified block or fragment is placed back in the
   1549  * free map. If a fragment is deallocated, a possible
   1550  * block reassembly is checked.
   1551  *
   1552  * => um_lock not held on entry or exit
   1553  */
   1554 void
   1555 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1556     ino_t inum)
   1557 {
   1558 	struct cg *cgp;
   1559 	struct buf *bp;
   1560 	struct ufsmount *ump;
   1561 	daddr_t cgblkno;
   1562 	int error, cg;
   1563 	dev_t dev;
   1564 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1565 #ifdef FFS_EI
   1566 	const int needswap = UFS_FSNEEDSWAP(fs);
   1567 #endif
   1568 
   1569 	KASSERT(!devvp_is_snapshot);
   1570 
   1571 	cg = dtog(fs, bno);
   1572 	dev = devvp->v_rdev;
   1573 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1574 	KASSERT(fs == ump->um_fs);
   1575 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1576 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1577 		return;
   1578 
   1579 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1580 	if (error)
   1581 		return;
   1582 
   1583 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1584 	    NOCRED, B_MODIFY, &bp);
   1585 	if (error) {
   1586 		brelse(bp, 0);
   1587 		return;
   1588 	}
   1589 	cgp = (struct cg *)bp->b_data;
   1590 	if (!cg_chkmagic(cgp, needswap)) {
   1591 		brelse(bp, 0);
   1592 		return;
   1593 	}
   1594 
   1595 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1596 
   1597 	bdwrite(bp);
   1598 }
   1599 
   1600 /*
   1601  * Free a block or fragment from a snapshot cg copy.
   1602  *
   1603  * The specified block or fragment is placed back in the
   1604  * free map. If a fragment is deallocated, a possible
   1605  * block reassembly is checked.
   1606  *
   1607  * => um_lock not held on entry or exit
   1608  */
   1609 void
   1610 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1611     ino_t inum)
   1612 {
   1613 	struct cg *cgp;
   1614 	struct buf *bp;
   1615 	struct ufsmount *ump;
   1616 	daddr_t cgblkno;
   1617 	int error, cg;
   1618 	dev_t dev;
   1619 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1620 #ifdef FFS_EI
   1621 	const int needswap = UFS_FSNEEDSWAP(fs);
   1622 #endif
   1623 
   1624 	KASSERT(devvp_is_snapshot);
   1625 
   1626 	cg = dtog(fs, bno);
   1627 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1628 	ump = VFSTOUFS(devvp->v_mount);
   1629 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1630 
   1631 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1632 	if (error)
   1633 		return;
   1634 
   1635 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1636 	    NOCRED, B_MODIFY, &bp);
   1637 	if (error) {
   1638 		brelse(bp, 0);
   1639 		return;
   1640 	}
   1641 	cgp = (struct cg *)bp->b_data;
   1642 	if (!cg_chkmagic(cgp, needswap)) {
   1643 		brelse(bp, 0);
   1644 		return;
   1645 	}
   1646 
   1647 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1648 
   1649 	bdwrite(bp);
   1650 }
   1651 
   1652 static void
   1653 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1654     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1655 {
   1656 	struct cg *cgp;
   1657 	int32_t fragno, cgbno;
   1658 	int i, cg, blk, frags, bbase;
   1659 	u_int8_t *blksfree;
   1660 	const int needswap = UFS_FSNEEDSWAP(fs);
   1661 
   1662 	cg = dtog(fs, bno);
   1663 	cgp = (struct cg *)bp->b_data;
   1664 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1665 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1666 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1667 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1668 	cgbno = dtogd(fs, bno);
   1669 	blksfree = cg_blksfree(cgp, needswap);
   1670 	mutex_enter(&ump->um_lock);
   1671 	if (size == fs->fs_bsize) {
   1672 		fragno = fragstoblks(fs, cgbno);
   1673 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1674 			if (devvp_is_snapshot) {
   1675 				mutex_exit(&ump->um_lock);
   1676 				return;
   1677 			}
   1678 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1679 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1680 			panic("blkfree: freeing free block");
   1681 		}
   1682 		ffs_setblock(fs, blksfree, fragno);
   1683 		ffs_clusteracct(fs, cgp, fragno, 1);
   1684 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1685 		fs->fs_cstotal.cs_nbfree++;
   1686 		fs->fs_cs(fs, cg).cs_nbfree++;
   1687 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1688 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1689 			i = old_cbtocylno(fs, cgbno);
   1690 			KASSERT(i >= 0);
   1691 			KASSERT(i < fs->fs_old_ncyl);
   1692 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1693 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1694 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1695 			    needswap);
   1696 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1697 		}
   1698 	} else {
   1699 		bbase = cgbno - fragnum(fs, cgbno);
   1700 		/*
   1701 		 * decrement the counts associated with the old frags
   1702 		 */
   1703 		blk = blkmap(fs, blksfree, bbase);
   1704 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1705 		/*
   1706 		 * deallocate the fragment
   1707 		 */
   1708 		frags = numfrags(fs, size);
   1709 		for (i = 0; i < frags; i++) {
   1710 			if (isset(blksfree, cgbno + i)) {
   1711 				printf("dev = 0x%llx, block = %" PRId64
   1712 				       ", fs = %s\n",
   1713 				    (unsigned long long)dev, bno + i,
   1714 				    fs->fs_fsmnt);
   1715 				panic("blkfree: freeing free frag");
   1716 			}
   1717 			setbit(blksfree, cgbno + i);
   1718 		}
   1719 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1720 		fs->fs_cstotal.cs_nffree += i;
   1721 		fs->fs_cs(fs, cg).cs_nffree += i;
   1722 		/*
   1723 		 * add back in counts associated with the new frags
   1724 		 */
   1725 		blk = blkmap(fs, blksfree, bbase);
   1726 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1727 		/*
   1728 		 * if a complete block has been reassembled, account for it
   1729 		 */
   1730 		fragno = fragstoblks(fs, bbase);
   1731 		if (ffs_isblock(fs, blksfree, fragno)) {
   1732 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1733 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1734 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1735 			ffs_clusteracct(fs, cgp, fragno, 1);
   1736 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1737 			fs->fs_cstotal.cs_nbfree++;
   1738 			fs->fs_cs(fs, cg).cs_nbfree++;
   1739 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1740 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1741 				i = old_cbtocylno(fs, bbase);
   1742 				KASSERT(i >= 0);
   1743 				KASSERT(i < fs->fs_old_ncyl);
   1744 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1745 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1746 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1747 				    bbase)], 1, needswap);
   1748 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1749 			}
   1750 		}
   1751 	}
   1752 	fs->fs_fmod = 1;
   1753 	ACTIVECG_CLR(fs, cg);
   1754 	mutex_exit(&ump->um_lock);
   1755 }
   1756 
   1757 /*
   1758  * Free an inode.
   1759  */
   1760 int
   1761 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1762 {
   1763 
   1764 	return ffs_freefile(vp->v_mount, ino, mode);
   1765 }
   1766 
   1767 /*
   1768  * Do the actual free operation.
   1769  * The specified inode is placed back in the free map.
   1770  *
   1771  * => um_lock not held on entry or exit
   1772  */
   1773 int
   1774 ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1775 {
   1776 	struct ufsmount *ump = VFSTOUFS(mp);
   1777 	struct fs *fs = ump->um_fs;
   1778 	struct vnode *devvp;
   1779 	struct cg *cgp;
   1780 	struct buf *bp;
   1781 	int error, cg;
   1782 	daddr_t cgbno;
   1783 	dev_t dev;
   1784 #ifdef FFS_EI
   1785 	const int needswap = UFS_FSNEEDSWAP(fs);
   1786 #endif
   1787 
   1788 	cg = ino_to_cg(fs, ino);
   1789 	devvp = ump->um_devvp;
   1790 	dev = devvp->v_rdev;
   1791 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1792 
   1793 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1794 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1795 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1796 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1797 	    NOCRED, B_MODIFY, &bp);
   1798 	if (error) {
   1799 		brelse(bp, 0);
   1800 		return (error);
   1801 	}
   1802 	cgp = (struct cg *)bp->b_data;
   1803 	if (!cg_chkmagic(cgp, needswap)) {
   1804 		brelse(bp, 0);
   1805 		return (0);
   1806 	}
   1807 
   1808 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1809 
   1810 	bdwrite(bp);
   1811 
   1812 	return 0;
   1813 }
   1814 
   1815 int
   1816 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1817 {
   1818 	struct ufsmount *ump;
   1819 	struct cg *cgp;
   1820 	struct buf *bp;
   1821 	int error, cg;
   1822 	daddr_t cgbno;
   1823 	dev_t dev;
   1824 #ifdef FFS_EI
   1825 	const int needswap = UFS_FSNEEDSWAP(fs);
   1826 #endif
   1827 
   1828 	KASSERT(devvp->v_type != VBLK);
   1829 
   1830 	cg = ino_to_cg(fs, ino);
   1831 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1832 	ump = VFSTOUFS(devvp->v_mount);
   1833 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1834 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1835 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1836 		    (unsigned long long)dev, (unsigned long long)ino,
   1837 		    fs->fs_fsmnt);
   1838 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1839 	    NOCRED, B_MODIFY, &bp);
   1840 	if (error) {
   1841 		brelse(bp, 0);
   1842 		return (error);
   1843 	}
   1844 	cgp = (struct cg *)bp->b_data;
   1845 	if (!cg_chkmagic(cgp, needswap)) {
   1846 		brelse(bp, 0);
   1847 		return (0);
   1848 	}
   1849 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1850 
   1851 	bdwrite(bp);
   1852 
   1853 	return 0;
   1854 }
   1855 
   1856 static void
   1857 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1858     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1859 {
   1860 	int cg;
   1861 	struct cg *cgp;
   1862 	u_int8_t *inosused;
   1863 #ifdef FFS_EI
   1864 	const int needswap = UFS_FSNEEDSWAP(fs);
   1865 #endif
   1866 
   1867 	cg = ino_to_cg(fs, ino);
   1868 	cgp = (struct cg *)bp->b_data;
   1869 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1870 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1871 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1872 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1873 	inosused = cg_inosused(cgp, needswap);
   1874 	ino %= fs->fs_ipg;
   1875 	if (isclr(inosused, ino)) {
   1876 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   1877 		    (unsigned long long)dev, (unsigned long long)ino +
   1878 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   1879 		if (fs->fs_ronly == 0)
   1880 			panic("ifree: freeing free inode");
   1881 	}
   1882 	clrbit(inosused, ino);
   1883 	if (!devvp_is_snapshot)
   1884 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1885 		    ino + cg * fs->fs_ipg, mode);
   1886 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1887 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1888 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1889 	mutex_enter(&ump->um_lock);
   1890 	fs->fs_cstotal.cs_nifree++;
   1891 	fs->fs_cs(fs, cg).cs_nifree++;
   1892 	if ((mode & IFMT) == IFDIR) {
   1893 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1894 		fs->fs_cstotal.cs_ndir--;
   1895 		fs->fs_cs(fs, cg).cs_ndir--;
   1896 	}
   1897 	fs->fs_fmod = 1;
   1898 	ACTIVECG_CLR(fs, cg);
   1899 	mutex_exit(&ump->um_lock);
   1900 }
   1901 
   1902 /*
   1903  * Check to see if a file is free.
   1904  */
   1905 int
   1906 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1907 {
   1908 	struct cg *cgp;
   1909 	struct buf *bp;
   1910 	daddr_t cgbno;
   1911 	int ret, cg;
   1912 	u_int8_t *inosused;
   1913 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1914 
   1915 	KASSERT(devvp_is_snapshot);
   1916 
   1917 	cg = ino_to_cg(fs, ino);
   1918 	if (devvp_is_snapshot)
   1919 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1920 	else
   1921 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1922 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1923 		return 1;
   1924 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1925 		brelse(bp, 0);
   1926 		return 1;
   1927 	}
   1928 	cgp = (struct cg *)bp->b_data;
   1929 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1930 		brelse(bp, 0);
   1931 		return 1;
   1932 	}
   1933 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1934 	ino %= fs->fs_ipg;
   1935 	ret = isclr(inosused, ino);
   1936 	brelse(bp, 0);
   1937 	return ret;
   1938 }
   1939 
   1940 /*
   1941  * Find a block of the specified size in the specified cylinder group.
   1942  *
   1943  * It is a panic if a request is made to find a block if none are
   1944  * available.
   1945  */
   1946 static int32_t
   1947 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1948 {
   1949 	int32_t bno;
   1950 	int start, len, loc, i;
   1951 	int blk, field, subfield, pos;
   1952 	int ostart, olen;
   1953 	u_int8_t *blksfree;
   1954 #ifdef FFS_EI
   1955 	const int needswap = UFS_FSNEEDSWAP(fs);
   1956 #endif
   1957 
   1958 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1959 
   1960 	/*
   1961 	 * find the fragment by searching through the free block
   1962 	 * map for an appropriate bit pattern
   1963 	 */
   1964 	if (bpref)
   1965 		start = dtogd(fs, bpref) / NBBY;
   1966 	else
   1967 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1968 	blksfree = cg_blksfree(cgp, needswap);
   1969 	len = howmany(fs->fs_fpg, NBBY) - start;
   1970 	ostart = start;
   1971 	olen = len;
   1972 	loc = scanc((u_int)len,
   1973 		(const u_char *)&blksfree[start],
   1974 		(const u_char *)fragtbl[fs->fs_frag],
   1975 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1976 	if (loc == 0) {
   1977 		len = start + 1;
   1978 		start = 0;
   1979 		loc = scanc((u_int)len,
   1980 			(const u_char *)&blksfree[0],
   1981 			(const u_char *)fragtbl[fs->fs_frag],
   1982 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1983 		if (loc == 0) {
   1984 			printf("start = %d, len = %d, fs = %s\n",
   1985 			    ostart, olen, fs->fs_fsmnt);
   1986 			printf("offset=%d %ld\n",
   1987 				ufs_rw32(cgp->cg_freeoff, needswap),
   1988 				(long)blksfree - (long)cgp);
   1989 			printf("cg %d\n", cgp->cg_cgx);
   1990 			panic("ffs_alloccg: map corrupted");
   1991 			/* NOTREACHED */
   1992 		}
   1993 	}
   1994 	bno = (start + len - loc) * NBBY;
   1995 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1996 	/*
   1997 	 * found the byte in the map
   1998 	 * sift through the bits to find the selected frag
   1999 	 */
   2000 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2001 		blk = blkmap(fs, blksfree, bno);
   2002 		blk <<= 1;
   2003 		field = around[allocsiz];
   2004 		subfield = inside[allocsiz];
   2005 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2006 			if ((blk & field) == subfield)
   2007 				return (bno + pos);
   2008 			field <<= 1;
   2009 			subfield <<= 1;
   2010 		}
   2011 	}
   2012 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2013 	panic("ffs_alloccg: block not in map");
   2014 	/* return (-1); */
   2015 }
   2016 
   2017 /*
   2018  * Fserr prints the name of a file system with an error diagnostic.
   2019  *
   2020  * The form of the error message is:
   2021  *	fs: error message
   2022  */
   2023 static void
   2024 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2025 {
   2026 
   2027 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2028 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2029 }
   2030