ffs_alloc.c revision 1.129 1 /* $NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #include "opt_uvm_page_trkown.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/buf.h>
84 #include <sys/fstrans.h>
85 #include <sys/kauth.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/proc.h>
89 #include <sys/syslog.h>
90 #include <sys/vnode.h>
91 #include <sys/wapbl.h>
92
93 #include <miscfs/specfs/specdev.h>
94 #include <ufs/ufs/quota.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/inode.h>
97 #include <ufs/ufs/ufs_extern.h>
98 #include <ufs/ufs/ufs_bswap.h>
99 #include <ufs/ufs/ufs_wapbl.h>
100
101 #include <ufs/ffs/fs.h>
102 #include <ufs/ffs/ffs_extern.h>
103
104 #ifdef UVM_PAGE_TRKOWN
105 #include <uvm/uvm.h>
106 #endif
107
108 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
109 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
110 static ino_t ffs_dirpref(struct inode *);
111 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
112 static void ffs_fserr(struct fs *, u_int, const char *);
113 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
114 daddr_t (*)(struct inode *, int, daddr_t, int, int));
115 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
116 static int32_t ffs_mapsearch(struct fs *, struct cg *,
117 daddr_t, int);
118 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
119 daddr_t, long, bool);
120 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
121 int, bool);
122
123 /* if 1, changes in optimalization strategy are logged */
124 int ffs_log_changeopt = 0;
125
126 /* in ffs_tables.c */
127 extern const int inside[], around[];
128 extern const u_char * const fragtbl[];
129
130 /* Basic consistency check for block allocations */
131 static int
132 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
133 long size, dev_t dev, ino_t inum)
134 {
135 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
136 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
137 printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
138 "size = %ld, fs = %s\n",
139 (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
140 panic("%s: bad size", func);
141 }
142
143 if (bno >= fs->fs_size) {
144 printf("bad block %" PRId64 ", ino %llu\n", bno,
145 (unsigned long long)inum);
146 ffs_fserr(fs, inum, "bad block");
147 return EINVAL;
148 }
149 return 0;
150 }
151
152 /*
153 * Allocate a block in the file system.
154 *
155 * The size of the requested block is given, which must be some
156 * multiple of fs_fsize and <= fs_bsize.
157 * A preference may be optionally specified. If a preference is given
158 * the following hierarchy is used to allocate a block:
159 * 1) allocate the requested block.
160 * 2) allocate a rotationally optimal block in the same cylinder.
161 * 3) allocate a block in the same cylinder group.
162 * 4) quadradically rehash into other cylinder groups, until an
163 * available block is located.
164 * If no block preference is given the following hierarchy is used
165 * to allocate a block:
166 * 1) allocate a block in the cylinder group that contains the
167 * inode for the file.
168 * 2) quadradically rehash into other cylinder groups, until an
169 * available block is located.
170 *
171 * => called with um_lock held
172 * => releases um_lock before returning
173 */
174 int
175 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
176 kauth_cred_t cred, daddr_t *bnp)
177 {
178 struct ufsmount *ump;
179 struct fs *fs;
180 daddr_t bno;
181 int cg;
182 #if defined(QUOTA) || defined(QUOTA2)
183 int error;
184 #endif
185
186 fs = ip->i_fs;
187 ump = ip->i_ump;
188
189 KASSERT(mutex_owned(&ump->um_lock));
190
191 #ifdef UVM_PAGE_TRKOWN
192
193 /*
194 * Sanity-check that allocations within the file size
195 * do not allow other threads to read the stale contents
196 * of newly allocated blocks.
197 * Usually pages will exist to cover the new allocation.
198 * There is an optimization in ffs_write() where we skip
199 * creating pages if several conditions are met:
200 * - the file must not be mapped (in any user address space).
201 * - the write must cover whole pages and whole blocks.
202 * If those conditions are not met then pages must exist and
203 * be locked by the current thread.
204 */
205
206 if (ITOV(ip)->v_type == VREG &&
207 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
208 struct vm_page *pg;
209 struct vnode *vp = ITOV(ip);
210 struct uvm_object *uobj = &vp->v_uobj;
211 voff_t off = trunc_page(lblktosize(fs, lbn));
212 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
213
214 mutex_enter(uobj->vmobjlock);
215 while (off < endoff) {
216 pg = uvm_pagelookup(uobj, off);
217 KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
218 (size & PAGE_MASK) == 0 &&
219 blkoff(fs, size) == 0) ||
220 (pg != NULL && pg->owner == curproc->p_pid &&
221 pg->lowner == curlwp->l_lid));
222 off += PAGE_SIZE;
223 }
224 mutex_exit(uobj->vmobjlock);
225 }
226 #endif
227
228 *bnp = 0;
229 #ifdef DIAGNOSTIC
230 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
231 printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
232 (unsigned long long)ip->i_dev, fs->fs_bsize, size,
233 fs->fs_fsmnt);
234 panic("ffs_alloc: bad size");
235 }
236 if (cred == NOCRED)
237 panic("ffs_alloc: missing credential");
238 #endif /* DIAGNOSTIC */
239 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
240 goto nospace;
241 if (freespace(fs, fs->fs_minfree) <= 0 &&
242 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
243 NULL, NULL) != 0)
244 goto nospace;
245 #if defined(QUOTA) || defined(QUOTA2)
246 mutex_exit(&ump->um_lock);
247 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
248 return (error);
249 mutex_enter(&ump->um_lock);
250 #endif
251
252 if (bpref >= fs->fs_size)
253 bpref = 0;
254 if (bpref == 0)
255 cg = ino_to_cg(fs, ip->i_number);
256 else
257 cg = dtog(fs, bpref);
258 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
259 if (bno > 0) {
260 DIP_ADD(ip, blocks, btodb(size));
261 ip->i_flag |= IN_CHANGE | IN_UPDATE;
262 *bnp = bno;
263 return (0);
264 }
265 #if defined(QUOTA) || defined(QUOTA2)
266 /*
267 * Restore user's disk quota because allocation failed.
268 */
269 (void) chkdq(ip, -btodb(size), cred, FORCE);
270 #endif
271 if (flags & B_CONTIG) {
272 /*
273 * XXX ump->um_lock handling is "suspect" at best.
274 * For the case where ffs_hashalloc() fails early
275 * in the B_CONTIG case we reach here with um_lock
276 * already unlocked, so we can't release it again
277 * like in the normal error path. See kern/39206.
278 *
279 *
280 * Fail silently - it's up to our caller to report
281 * errors.
282 */
283 return (ENOSPC);
284 }
285 nospace:
286 mutex_exit(&ump->um_lock);
287 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
288 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
289 return (ENOSPC);
290 }
291
292 /*
293 * Reallocate a fragment to a bigger size
294 *
295 * The number and size of the old block is given, and a preference
296 * and new size is also specified. The allocator attempts to extend
297 * the original block. Failing that, the regular block allocator is
298 * invoked to get an appropriate block.
299 *
300 * => called with um_lock held
301 * => return with um_lock released
302 */
303 int
304 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
305 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
306 {
307 struct ufsmount *ump;
308 struct fs *fs;
309 struct buf *bp;
310 int cg, request, error;
311 daddr_t bprev, bno;
312
313 fs = ip->i_fs;
314 ump = ip->i_ump;
315
316 KASSERT(mutex_owned(&ump->um_lock));
317
318 #ifdef UVM_PAGE_TRKOWN
319
320 /*
321 * Sanity-check that allocations within the file size
322 * do not allow other threads to read the stale contents
323 * of newly allocated blocks.
324 * Unlike in ffs_alloc(), here pages must always exist
325 * for such allocations, because only the last block of a file
326 * can be a fragment and ffs_write() will reallocate the
327 * fragment to the new size using ufs_balloc_range(),
328 * which always creates pages to cover blocks it allocates.
329 */
330
331 if (ITOV(ip)->v_type == VREG) {
332 struct vm_page *pg;
333 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
334 voff_t off = trunc_page(lblktosize(fs, lbprev));
335 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
336
337 mutex_enter(uobj->vmobjlock);
338 while (off < endoff) {
339 pg = uvm_pagelookup(uobj, off);
340 KASSERT(pg->owner == curproc->p_pid &&
341 pg->lowner == curlwp->l_lid);
342 off += PAGE_SIZE;
343 }
344 mutex_exit(uobj->vmobjlock);
345 }
346 #endif
347
348 #ifdef DIAGNOSTIC
349 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
350 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
351 printf(
352 "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
353 (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
354 fs->fs_fsmnt);
355 panic("ffs_realloccg: bad size");
356 }
357 if (cred == NOCRED)
358 panic("ffs_realloccg: missing credential");
359 #endif /* DIAGNOSTIC */
360 if (freespace(fs, fs->fs_minfree) <= 0 &&
361 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
362 NULL, NULL) != 0) {
363 mutex_exit(&ump->um_lock);
364 goto nospace;
365 }
366 if (fs->fs_magic == FS_UFS2_MAGIC)
367 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
368 else
369 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
370
371 if (bprev == 0) {
372 printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
373 (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
374 fs->fs_fsmnt);
375 panic("ffs_realloccg: bad bprev");
376 }
377 mutex_exit(&ump->um_lock);
378
379 /*
380 * Allocate the extra space in the buffer.
381 */
382 if (bpp != NULL &&
383 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
384 brelse(bp, 0);
385 return (error);
386 }
387 #if defined(QUOTA) || defined(QUOTA2)
388 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
389 if (bpp != NULL) {
390 brelse(bp, 0);
391 }
392 return (error);
393 }
394 #endif
395 /*
396 * Check for extension in the existing location.
397 */
398 cg = dtog(fs, bprev);
399 mutex_enter(&ump->um_lock);
400 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
401 DIP_ADD(ip, blocks, btodb(nsize - osize));
402 ip->i_flag |= IN_CHANGE | IN_UPDATE;
403
404 if (bpp != NULL) {
405 if (bp->b_blkno != fsbtodb(fs, bno))
406 panic("bad blockno");
407 allocbuf(bp, nsize, 1);
408 memset((char *)bp->b_data + osize, 0, nsize - osize);
409 mutex_enter(bp->b_objlock);
410 KASSERT(!cv_has_waiters(&bp->b_done));
411 bp->b_oflags |= BO_DONE;
412 mutex_exit(bp->b_objlock);
413 *bpp = bp;
414 }
415 if (blknop != NULL) {
416 *blknop = bno;
417 }
418 return (0);
419 }
420 /*
421 * Allocate a new disk location.
422 */
423 if (bpref >= fs->fs_size)
424 bpref = 0;
425 switch ((int)fs->fs_optim) {
426 case FS_OPTSPACE:
427 /*
428 * Allocate an exact sized fragment. Although this makes
429 * best use of space, we will waste time relocating it if
430 * the file continues to grow. If the fragmentation is
431 * less than half of the minimum free reserve, we choose
432 * to begin optimizing for time.
433 */
434 request = nsize;
435 if (fs->fs_minfree < 5 ||
436 fs->fs_cstotal.cs_nffree >
437 fs->fs_dsize * fs->fs_minfree / (2 * 100))
438 break;
439
440 if (ffs_log_changeopt) {
441 log(LOG_NOTICE,
442 "%s: optimization changed from SPACE to TIME\n",
443 fs->fs_fsmnt);
444 }
445
446 fs->fs_optim = FS_OPTTIME;
447 break;
448 case FS_OPTTIME:
449 /*
450 * At this point we have discovered a file that is trying to
451 * grow a small fragment to a larger fragment. To save time,
452 * we allocate a full sized block, then free the unused portion.
453 * If the file continues to grow, the `ffs_fragextend' call
454 * above will be able to grow it in place without further
455 * copying. If aberrant programs cause disk fragmentation to
456 * grow within 2% of the free reserve, we choose to begin
457 * optimizing for space.
458 */
459 request = fs->fs_bsize;
460 if (fs->fs_cstotal.cs_nffree <
461 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
462 break;
463
464 if (ffs_log_changeopt) {
465 log(LOG_NOTICE,
466 "%s: optimization changed from TIME to SPACE\n",
467 fs->fs_fsmnt);
468 }
469
470 fs->fs_optim = FS_OPTSPACE;
471 break;
472 default:
473 printf("dev = 0x%llx, optim = %d, fs = %s\n",
474 (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
475 panic("ffs_realloccg: bad optim");
476 /* NOTREACHED */
477 }
478 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
479 if (bno > 0) {
480 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
481 (ITOV(ip)->v_type != VREG)) {
482 UFS_WAPBL_REGISTER_DEALLOCATION(
483 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
484 osize);
485 } else {
486 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
487 ip->i_number);
488 }
489 if (nsize < request) {
490 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
491 (ITOV(ip)->v_type != VREG)) {
492 UFS_WAPBL_REGISTER_DEALLOCATION(
493 ip->i_ump->um_mountp,
494 fsbtodb(fs, (bno + numfrags(fs, nsize))),
495 request - nsize);
496 } else
497 ffs_blkfree(fs, ip->i_devvp,
498 bno + numfrags(fs, nsize),
499 (long)(request - nsize), ip->i_number);
500 }
501 DIP_ADD(ip, blocks, btodb(nsize - osize));
502 ip->i_flag |= IN_CHANGE | IN_UPDATE;
503 if (bpp != NULL) {
504 bp->b_blkno = fsbtodb(fs, bno);
505 allocbuf(bp, nsize, 1);
506 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
507 mutex_enter(bp->b_objlock);
508 KASSERT(!cv_has_waiters(&bp->b_done));
509 bp->b_oflags |= BO_DONE;
510 mutex_exit(bp->b_objlock);
511 *bpp = bp;
512 }
513 if (blknop != NULL) {
514 *blknop = bno;
515 }
516 return (0);
517 }
518 mutex_exit(&ump->um_lock);
519
520 #if defined(QUOTA) || defined(QUOTA2)
521 /*
522 * Restore user's disk quota because allocation failed.
523 */
524 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
525 #endif
526 if (bpp != NULL) {
527 brelse(bp, 0);
528 }
529
530 nospace:
531 /*
532 * no space available
533 */
534 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
535 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
536 return (ENOSPC);
537 }
538
539 /*
540 * Allocate an inode in the file system.
541 *
542 * If allocating a directory, use ffs_dirpref to select the inode.
543 * If allocating in a directory, the following hierarchy is followed:
544 * 1) allocate the preferred inode.
545 * 2) allocate an inode in the same cylinder group.
546 * 3) quadradically rehash into other cylinder groups, until an
547 * available inode is located.
548 * If no inode preference is given the following hierarchy is used
549 * to allocate an inode:
550 * 1) allocate an inode in cylinder group 0.
551 * 2) quadradically rehash into other cylinder groups, until an
552 * available inode is located.
553 *
554 * => um_lock not held upon entry or return
555 */
556 int
557 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
558 struct vnode **vpp)
559 {
560 struct ufsmount *ump;
561 struct inode *pip;
562 struct fs *fs;
563 struct inode *ip;
564 struct timespec ts;
565 ino_t ino, ipref;
566 int cg, error;
567
568 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
569
570 *vpp = NULL;
571 pip = VTOI(pvp);
572 fs = pip->i_fs;
573 ump = pip->i_ump;
574
575 error = UFS_WAPBL_BEGIN(pvp->v_mount);
576 if (error) {
577 return error;
578 }
579 mutex_enter(&ump->um_lock);
580 if (fs->fs_cstotal.cs_nifree == 0)
581 goto noinodes;
582
583 if ((mode & IFMT) == IFDIR)
584 ipref = ffs_dirpref(pip);
585 else
586 ipref = pip->i_number;
587 if (ipref >= fs->fs_ncg * fs->fs_ipg)
588 ipref = 0;
589 cg = ino_to_cg(fs, ipref);
590 /*
591 * Track number of dirs created one after another
592 * in a same cg without intervening by files.
593 */
594 if ((mode & IFMT) == IFDIR) {
595 if (fs->fs_contigdirs[cg] < 255)
596 fs->fs_contigdirs[cg]++;
597 } else {
598 if (fs->fs_contigdirs[cg] > 0)
599 fs->fs_contigdirs[cg]--;
600 }
601 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
602 if (ino == 0)
603 goto noinodes;
604 UFS_WAPBL_END(pvp->v_mount);
605 error = VFS_VGET(pvp->v_mount, ino, vpp);
606 if (error) {
607 int err;
608 err = UFS_WAPBL_BEGIN(pvp->v_mount);
609 if (err == 0)
610 ffs_vfree(pvp, ino, mode);
611 if (err == 0)
612 UFS_WAPBL_END(pvp->v_mount);
613 return (error);
614 }
615 KASSERT((*vpp)->v_type == VNON);
616 ip = VTOI(*vpp);
617 if (ip->i_mode) {
618 #if 0
619 printf("mode = 0%o, inum = %d, fs = %s\n",
620 ip->i_mode, ip->i_number, fs->fs_fsmnt);
621 #else
622 printf("dmode %x mode %x dgen %x gen %x\n",
623 DIP(ip, mode), ip->i_mode,
624 DIP(ip, gen), ip->i_gen);
625 printf("size %llx blocks %llx\n",
626 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
627 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
628 (unsigned long long)ipref);
629 #if 0
630 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
631 (int)fs->fs_bsize, NOCRED, 0, &bp);
632 #endif
633
634 #endif
635 panic("ffs_valloc: dup alloc");
636 }
637 if (DIP(ip, blocks)) { /* XXX */
638 printf("free inode %s/%llu had %" PRId64 " blocks\n",
639 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
640 DIP_ASSIGN(ip, blocks, 0);
641 }
642 ip->i_flag &= ~IN_SPACECOUNTED;
643 ip->i_flags = 0;
644 DIP_ASSIGN(ip, flags, 0);
645 /*
646 * Set up a new generation number for this inode.
647 */
648 ip->i_gen++;
649 DIP_ASSIGN(ip, gen, ip->i_gen);
650 if (fs->fs_magic == FS_UFS2_MAGIC) {
651 vfs_timestamp(&ts);
652 ip->i_ffs2_birthtime = ts.tv_sec;
653 ip->i_ffs2_birthnsec = ts.tv_nsec;
654 }
655 return (0);
656 noinodes:
657 mutex_exit(&ump->um_lock);
658 UFS_WAPBL_END(pvp->v_mount);
659 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
660 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
661 return (ENOSPC);
662 }
663
664 /*
665 * Find a cylinder group in which to place a directory.
666 *
667 * The policy implemented by this algorithm is to allocate a
668 * directory inode in the same cylinder group as its parent
669 * directory, but also to reserve space for its files inodes
670 * and data. Restrict the number of directories which may be
671 * allocated one after another in the same cylinder group
672 * without intervening allocation of files.
673 *
674 * If we allocate a first level directory then force allocation
675 * in another cylinder group.
676 */
677 static ino_t
678 ffs_dirpref(struct inode *pip)
679 {
680 register struct fs *fs;
681 int cg, prefcg;
682 int64_t dirsize, cgsize, curdsz;
683 int avgifree, avgbfree, avgndir;
684 int minifree, minbfree, maxndir;
685 int mincg, minndir;
686 int maxcontigdirs;
687
688 KASSERT(mutex_owned(&pip->i_ump->um_lock));
689
690 fs = pip->i_fs;
691
692 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
693 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
694 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
695
696 /*
697 * Force allocation in another cg if creating a first level dir.
698 */
699 if (ITOV(pip)->v_vflag & VV_ROOT) {
700 prefcg = random() % fs->fs_ncg;
701 mincg = prefcg;
702 minndir = fs->fs_ipg;
703 for (cg = prefcg; cg < fs->fs_ncg; cg++)
704 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
705 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
706 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
707 mincg = cg;
708 minndir = fs->fs_cs(fs, cg).cs_ndir;
709 }
710 for (cg = 0; cg < prefcg; cg++)
711 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
712 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
713 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
714 mincg = cg;
715 minndir = fs->fs_cs(fs, cg).cs_ndir;
716 }
717 return ((ino_t)(fs->fs_ipg * mincg));
718 }
719
720 /*
721 * Count various limits which used for
722 * optimal allocation of a directory inode.
723 */
724 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
725 minifree = avgifree - fs->fs_ipg / 4;
726 if (minifree < 0)
727 minifree = 0;
728 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
729 if (minbfree < 0)
730 minbfree = 0;
731 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
732 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
733 if (avgndir != 0) {
734 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
735 if (dirsize < curdsz)
736 dirsize = curdsz;
737 }
738 if (cgsize < dirsize * 255)
739 maxcontigdirs = cgsize / dirsize;
740 else
741 maxcontigdirs = 255;
742 if (fs->fs_avgfpdir > 0)
743 maxcontigdirs = min(maxcontigdirs,
744 fs->fs_ipg / fs->fs_avgfpdir);
745 if (maxcontigdirs == 0)
746 maxcontigdirs = 1;
747
748 /*
749 * Limit number of dirs in one cg and reserve space for
750 * regular files, but only if we have no deficit in
751 * inodes or space.
752 */
753 prefcg = ino_to_cg(fs, pip->i_number);
754 for (cg = prefcg; cg < fs->fs_ncg; cg++)
755 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
756 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
757 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
758 if (fs->fs_contigdirs[cg] < maxcontigdirs)
759 return ((ino_t)(fs->fs_ipg * cg));
760 }
761 for (cg = 0; cg < prefcg; cg++)
762 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
763 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
764 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
765 if (fs->fs_contigdirs[cg] < maxcontigdirs)
766 return ((ino_t)(fs->fs_ipg * cg));
767 }
768 /*
769 * This is a backstop when we are deficient in space.
770 */
771 for (cg = prefcg; cg < fs->fs_ncg; cg++)
772 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
773 return ((ino_t)(fs->fs_ipg * cg));
774 for (cg = 0; cg < prefcg; cg++)
775 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
776 break;
777 return ((ino_t)(fs->fs_ipg * cg));
778 }
779
780 /*
781 * Select the desired position for the next block in a file. The file is
782 * logically divided into sections. The first section is composed of the
783 * direct blocks. Each additional section contains fs_maxbpg blocks.
784 *
785 * If no blocks have been allocated in the first section, the policy is to
786 * request a block in the same cylinder group as the inode that describes
787 * the file. If no blocks have been allocated in any other section, the
788 * policy is to place the section in a cylinder group with a greater than
789 * average number of free blocks. An appropriate cylinder group is found
790 * by using a rotor that sweeps the cylinder groups. When a new group of
791 * blocks is needed, the sweep begins in the cylinder group following the
792 * cylinder group from which the previous allocation was made. The sweep
793 * continues until a cylinder group with greater than the average number
794 * of free blocks is found. If the allocation is for the first block in an
795 * indirect block, the information on the previous allocation is unavailable;
796 * here a best guess is made based upon the logical block number being
797 * allocated.
798 *
799 * If a section is already partially allocated, the policy is to
800 * contiguously allocate fs_maxcontig blocks. The end of one of these
801 * contiguous blocks and the beginning of the next is laid out
802 * contigously if possible.
803 *
804 * => um_lock held on entry and exit
805 */
806 daddr_t
807 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
808 int32_t *bap /* XXX ondisk32 */)
809 {
810 struct fs *fs;
811 int cg;
812 int avgbfree, startcg;
813
814 KASSERT(mutex_owned(&ip->i_ump->um_lock));
815
816 fs = ip->i_fs;
817
818 /*
819 * If allocating a contiguous file with B_CONTIG, use the hints
820 * in the inode extentions to return the desired block.
821 *
822 * For metadata (indirect blocks) return the address of where
823 * the first indirect block resides - we'll scan for the next
824 * available slot if we need to allocate more than one indirect
825 * block. For data, return the address of the actual block
826 * relative to the address of the first data block.
827 */
828 if (flags & B_CONTIG) {
829 KASSERT(ip->i_ffs_first_data_blk != 0);
830 KASSERT(ip->i_ffs_first_indir_blk != 0);
831 if (flags & B_METAONLY)
832 return ip->i_ffs_first_indir_blk;
833 else
834 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
835 }
836
837 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
838 if (lbn < NDADDR + NINDIR(fs)) {
839 cg = ino_to_cg(fs, ip->i_number);
840 return (cgbase(fs, cg) + fs->fs_frag);
841 }
842 /*
843 * Find a cylinder with greater than average number of
844 * unused data blocks.
845 */
846 if (indx == 0 || bap[indx - 1] == 0)
847 startcg =
848 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
849 else
850 startcg = dtog(fs,
851 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
852 startcg %= fs->fs_ncg;
853 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
854 for (cg = startcg; cg < fs->fs_ncg; cg++)
855 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
856 return (cgbase(fs, cg) + fs->fs_frag);
857 }
858 for (cg = 0; cg < startcg; cg++)
859 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 return (cgbase(fs, cg) + fs->fs_frag);
861 }
862 return (0);
863 }
864 /*
865 * We just always try to lay things out contiguously.
866 */
867 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
868 }
869
870 daddr_t
871 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
872 int64_t *bap)
873 {
874 struct fs *fs;
875 int cg;
876 int avgbfree, startcg;
877
878 KASSERT(mutex_owned(&ip->i_ump->um_lock));
879
880 fs = ip->i_fs;
881
882 /*
883 * If allocating a contiguous file with B_CONTIG, use the hints
884 * in the inode extentions to return the desired block.
885 *
886 * For metadata (indirect blocks) return the address of where
887 * the first indirect block resides - we'll scan for the next
888 * available slot if we need to allocate more than one indirect
889 * block. For data, return the address of the actual block
890 * relative to the address of the first data block.
891 */
892 if (flags & B_CONTIG) {
893 KASSERT(ip->i_ffs_first_data_blk != 0);
894 KASSERT(ip->i_ffs_first_indir_blk != 0);
895 if (flags & B_METAONLY)
896 return ip->i_ffs_first_indir_blk;
897 else
898 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
899 }
900
901 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
902 if (lbn < NDADDR + NINDIR(fs)) {
903 cg = ino_to_cg(fs, ip->i_number);
904 return (cgbase(fs, cg) + fs->fs_frag);
905 }
906 /*
907 * Find a cylinder with greater than average number of
908 * unused data blocks.
909 */
910 if (indx == 0 || bap[indx - 1] == 0)
911 startcg =
912 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
913 else
914 startcg = dtog(fs,
915 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
916 startcg %= fs->fs_ncg;
917 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
918 for (cg = startcg; cg < fs->fs_ncg; cg++)
919 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
920 return (cgbase(fs, cg) + fs->fs_frag);
921 }
922 for (cg = 0; cg < startcg; cg++)
923 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
924 return (cgbase(fs, cg) + fs->fs_frag);
925 }
926 return (0);
927 }
928 /*
929 * We just always try to lay things out contiguously.
930 */
931 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
932 }
933
934
935 /*
936 * Implement the cylinder overflow algorithm.
937 *
938 * The policy implemented by this algorithm is:
939 * 1) allocate the block in its requested cylinder group.
940 * 2) quadradically rehash on the cylinder group number.
941 * 3) brute force search for a free block.
942 *
943 * => called with um_lock held
944 * => returns with um_lock released on success, held on failure
945 * (*allocator releases lock on success, retains lock on failure)
946 */
947 /*VARARGS5*/
948 static daddr_t
949 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
950 int size /* size for data blocks, mode for inodes */,
951 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
952 {
953 struct fs *fs;
954 daddr_t result;
955 int i, icg = cg;
956
957 fs = ip->i_fs;
958 /*
959 * 1: preferred cylinder group
960 */
961 result = (*allocator)(ip, cg, pref, size, flags);
962 if (result)
963 return (result);
964
965 if (flags & B_CONTIG)
966 return (result);
967 /*
968 * 2: quadratic rehash
969 */
970 for (i = 1; i < fs->fs_ncg; i *= 2) {
971 cg += i;
972 if (cg >= fs->fs_ncg)
973 cg -= fs->fs_ncg;
974 result = (*allocator)(ip, cg, 0, size, flags);
975 if (result)
976 return (result);
977 }
978 /*
979 * 3: brute force search
980 * Note that we start at i == 2, since 0 was checked initially,
981 * and 1 is always checked in the quadratic rehash.
982 */
983 cg = (icg + 2) % fs->fs_ncg;
984 for (i = 2; i < fs->fs_ncg; i++) {
985 result = (*allocator)(ip, cg, 0, size, flags);
986 if (result)
987 return (result);
988 cg++;
989 if (cg == fs->fs_ncg)
990 cg = 0;
991 }
992 return (0);
993 }
994
995 /*
996 * Determine whether a fragment can be extended.
997 *
998 * Check to see if the necessary fragments are available, and
999 * if they are, allocate them.
1000 *
1001 * => called with um_lock held
1002 * => returns with um_lock released on success, held on failure
1003 */
1004 static daddr_t
1005 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1006 {
1007 struct ufsmount *ump;
1008 struct fs *fs;
1009 struct cg *cgp;
1010 struct buf *bp;
1011 daddr_t bno;
1012 int frags, bbase;
1013 int i, error;
1014 u_int8_t *blksfree;
1015
1016 fs = ip->i_fs;
1017 ump = ip->i_ump;
1018
1019 KASSERT(mutex_owned(&ump->um_lock));
1020
1021 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1022 return (0);
1023 frags = numfrags(fs, nsize);
1024 bbase = fragnum(fs, bprev);
1025 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1026 /* cannot extend across a block boundary */
1027 return (0);
1028 }
1029 mutex_exit(&ump->um_lock);
1030 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1031 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1032 if (error)
1033 goto fail;
1034 cgp = (struct cg *)bp->b_data;
1035 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1036 goto fail;
1037 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1038 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1039 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1040 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1041 bno = dtogd(fs, bprev);
1042 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1043 for (i = numfrags(fs, osize); i < frags; i++)
1044 if (isclr(blksfree, bno + i))
1045 goto fail;
1046 /*
1047 * the current fragment can be extended
1048 * deduct the count on fragment being extended into
1049 * increase the count on the remaining fragment (if any)
1050 * allocate the extended piece
1051 */
1052 for (i = frags; i < fs->fs_frag - bbase; i++)
1053 if (isclr(blksfree, bno + i))
1054 break;
1055 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1056 if (i != frags)
1057 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1058 mutex_enter(&ump->um_lock);
1059 for (i = numfrags(fs, osize); i < frags; i++) {
1060 clrbit(blksfree, bno + i);
1061 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1062 fs->fs_cstotal.cs_nffree--;
1063 fs->fs_cs(fs, cg).cs_nffree--;
1064 }
1065 fs->fs_fmod = 1;
1066 ACTIVECG_CLR(fs, cg);
1067 mutex_exit(&ump->um_lock);
1068 bdwrite(bp);
1069 return (bprev);
1070
1071 fail:
1072 brelse(bp, 0);
1073 mutex_enter(&ump->um_lock);
1074 return (0);
1075 }
1076
1077 /*
1078 * Determine whether a block can be allocated.
1079 *
1080 * Check to see if a block of the appropriate size is available,
1081 * and if it is, allocate it.
1082 */
1083 static daddr_t
1084 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1085 {
1086 struct ufsmount *ump;
1087 struct fs *fs = ip->i_fs;
1088 struct cg *cgp;
1089 struct buf *bp;
1090 int32_t bno;
1091 daddr_t blkno;
1092 int error, frags, allocsiz, i;
1093 u_int8_t *blksfree;
1094 #ifdef FFS_EI
1095 const int needswap = UFS_FSNEEDSWAP(fs);
1096 #endif
1097
1098 ump = ip->i_ump;
1099
1100 KASSERT(mutex_owned(&ump->um_lock));
1101
1102 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1103 return (0);
1104 mutex_exit(&ump->um_lock);
1105 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1106 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1107 if (error)
1108 goto fail;
1109 cgp = (struct cg *)bp->b_data;
1110 if (!cg_chkmagic(cgp, needswap) ||
1111 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1112 goto fail;
1113 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1114 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1115 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1116 cgp->cg_time = ufs_rw64(time_second, needswap);
1117 if (size == fs->fs_bsize) {
1118 mutex_enter(&ump->um_lock);
1119 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1120 ACTIVECG_CLR(fs, cg);
1121 mutex_exit(&ump->um_lock);
1122 bdwrite(bp);
1123 return (blkno);
1124 }
1125 /*
1126 * check to see if any fragments are already available
1127 * allocsiz is the size which will be allocated, hacking
1128 * it down to a smaller size if necessary
1129 */
1130 blksfree = cg_blksfree(cgp, needswap);
1131 frags = numfrags(fs, size);
1132 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1133 if (cgp->cg_frsum[allocsiz] != 0)
1134 break;
1135 if (allocsiz == fs->fs_frag) {
1136 /*
1137 * no fragments were available, so a block will be
1138 * allocated, and hacked up
1139 */
1140 if (cgp->cg_cs.cs_nbfree == 0)
1141 goto fail;
1142 mutex_enter(&ump->um_lock);
1143 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1144 bno = dtogd(fs, blkno);
1145 for (i = frags; i < fs->fs_frag; i++)
1146 setbit(blksfree, bno + i);
1147 i = fs->fs_frag - frags;
1148 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1149 fs->fs_cstotal.cs_nffree += i;
1150 fs->fs_cs(fs, cg).cs_nffree += i;
1151 fs->fs_fmod = 1;
1152 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1153 ACTIVECG_CLR(fs, cg);
1154 mutex_exit(&ump->um_lock);
1155 bdwrite(bp);
1156 return (blkno);
1157 }
1158 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1159 #if 0
1160 /*
1161 * XXX fvdl mapsearch will panic, and never return -1
1162 * also: returning NULL as daddr_t ?
1163 */
1164 if (bno < 0)
1165 goto fail;
1166 #endif
1167 for (i = 0; i < frags; i++)
1168 clrbit(blksfree, bno + i);
1169 mutex_enter(&ump->um_lock);
1170 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1171 fs->fs_cstotal.cs_nffree -= frags;
1172 fs->fs_cs(fs, cg).cs_nffree -= frags;
1173 fs->fs_fmod = 1;
1174 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1175 if (frags != allocsiz)
1176 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1177 blkno = cgbase(fs, cg) + bno;
1178 ACTIVECG_CLR(fs, cg);
1179 mutex_exit(&ump->um_lock);
1180 bdwrite(bp);
1181 return blkno;
1182
1183 fail:
1184 brelse(bp, 0);
1185 mutex_enter(&ump->um_lock);
1186 return (0);
1187 }
1188
1189 /*
1190 * Allocate a block in a cylinder group.
1191 *
1192 * This algorithm implements the following policy:
1193 * 1) allocate the requested block.
1194 * 2) allocate a rotationally optimal block in the same cylinder.
1195 * 3) allocate the next available block on the block rotor for the
1196 * specified cylinder group.
1197 * Note that this routine only allocates fs_bsize blocks; these
1198 * blocks may be fragmented by the routine that allocates them.
1199 */
1200 static daddr_t
1201 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1202 {
1203 struct ufsmount *ump;
1204 struct fs *fs = ip->i_fs;
1205 struct cg *cgp;
1206 int cg;
1207 daddr_t blkno;
1208 int32_t bno;
1209 u_int8_t *blksfree;
1210 #ifdef FFS_EI
1211 const int needswap = UFS_FSNEEDSWAP(fs);
1212 #endif
1213
1214 ump = ip->i_ump;
1215
1216 KASSERT(mutex_owned(&ump->um_lock));
1217
1218 cgp = (struct cg *)bp->b_data;
1219 blksfree = cg_blksfree(cgp, needswap);
1220 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1221 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1222 } else {
1223 bpref = blknum(fs, bpref);
1224 bno = dtogd(fs, bpref);
1225 /*
1226 * if the requested block is available, use it
1227 */
1228 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1229 goto gotit;
1230 /*
1231 * if the requested data block isn't available and we are
1232 * trying to allocate a contiguous file, return an error.
1233 */
1234 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1235 return (0);
1236 }
1237
1238 /*
1239 * Take the next available block in this cylinder group.
1240 */
1241 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1242 if (bno < 0)
1243 return (0);
1244 cgp->cg_rotor = ufs_rw32(bno, needswap);
1245 gotit:
1246 blkno = fragstoblks(fs, bno);
1247 ffs_clrblock(fs, blksfree, blkno);
1248 ffs_clusteracct(fs, cgp, blkno, -1);
1249 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1250 fs->fs_cstotal.cs_nbfree--;
1251 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1252 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1253 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1254 int cylno;
1255 cylno = old_cbtocylno(fs, bno);
1256 KASSERT(cylno >= 0);
1257 KASSERT(cylno < fs->fs_old_ncyl);
1258 KASSERT(old_cbtorpos(fs, bno) >= 0);
1259 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1260 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1261 needswap);
1262 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1263 }
1264 fs->fs_fmod = 1;
1265 cg = ufs_rw32(cgp->cg_cgx, needswap);
1266 blkno = cgbase(fs, cg) + bno;
1267 return (blkno);
1268 }
1269
1270 /*
1271 * Determine whether an inode can be allocated.
1272 *
1273 * Check to see if an inode is available, and if it is,
1274 * allocate it using the following policy:
1275 * 1) allocate the requested inode.
1276 * 2) allocate the next available inode after the requested
1277 * inode in the specified cylinder group.
1278 */
1279 static daddr_t
1280 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1281 {
1282 struct ufsmount *ump = ip->i_ump;
1283 struct fs *fs = ip->i_fs;
1284 struct cg *cgp;
1285 struct buf *bp, *ibp;
1286 u_int8_t *inosused;
1287 int error, start, len, loc, map, i;
1288 int32_t initediblk;
1289 daddr_t nalloc;
1290 struct ufs2_dinode *dp2;
1291 #ifdef FFS_EI
1292 const int needswap = UFS_FSNEEDSWAP(fs);
1293 #endif
1294
1295 KASSERT(mutex_owned(&ump->um_lock));
1296 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1297
1298 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1299 return (0);
1300 mutex_exit(&ump->um_lock);
1301 ibp = NULL;
1302 initediblk = -1;
1303 retry:
1304 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1305 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1306 if (error)
1307 goto fail;
1308 cgp = (struct cg *)bp->b_data;
1309 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1310 goto fail;
1311
1312 if (ibp != NULL &&
1313 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1314 /* Another thread allocated more inodes so we retry the test. */
1315 brelse(ibp, 0);
1316 ibp = NULL;
1317 }
1318 /*
1319 * Check to see if we need to initialize more inodes.
1320 */
1321 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1322 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1323 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1324 if (nalloc + INOPB(fs) > initediblk &&
1325 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1326 /*
1327 * We have to release the cg buffer here to prevent
1328 * a deadlock when reading the inode block will
1329 * run a copy-on-write that might use this cg.
1330 */
1331 brelse(bp, 0);
1332 bp = NULL;
1333 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1334 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1335 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1336 if (error)
1337 goto fail;
1338 goto retry;
1339 }
1340 }
1341
1342 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1343 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1344 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1345 cgp->cg_time = ufs_rw64(time_second, needswap);
1346 inosused = cg_inosused(cgp, needswap);
1347 if (ipref) {
1348 ipref %= fs->fs_ipg;
1349 if (isclr(inosused, ipref))
1350 goto gotit;
1351 }
1352 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1353 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1354 NBBY);
1355 loc = skpc(0xff, len, &inosused[start]);
1356 if (loc == 0) {
1357 len = start + 1;
1358 start = 0;
1359 loc = skpc(0xff, len, &inosused[0]);
1360 if (loc == 0) {
1361 printf("cg = %d, irotor = %d, fs = %s\n",
1362 cg, ufs_rw32(cgp->cg_irotor, needswap),
1363 fs->fs_fsmnt);
1364 panic("ffs_nodealloccg: map corrupted");
1365 /* NOTREACHED */
1366 }
1367 }
1368 i = start + len - loc;
1369 map = inosused[i] ^ 0xff;
1370 if (map == 0) {
1371 printf("fs = %s\n", fs->fs_fsmnt);
1372 panic("ffs_nodealloccg: block not in map");
1373 }
1374 ipref = i * NBBY + ffs(map) - 1;
1375 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1376 gotit:
1377 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1378 mode);
1379 /*
1380 * Check to see if we need to initialize more inodes.
1381 */
1382 if (ibp != NULL) {
1383 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1384 memset(ibp->b_data, 0, fs->fs_bsize);
1385 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1386 for (i = 0; i < INOPB(fs); i++) {
1387 /*
1388 * Don't bother to swap, it's supposed to be
1389 * random, after all.
1390 */
1391 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1392 dp2++;
1393 }
1394 initediblk += INOPB(fs);
1395 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1396 }
1397
1398 mutex_enter(&ump->um_lock);
1399 ACTIVECG_CLR(fs, cg);
1400 setbit(inosused, ipref);
1401 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1402 fs->fs_cstotal.cs_nifree--;
1403 fs->fs_cs(fs, cg).cs_nifree--;
1404 fs->fs_fmod = 1;
1405 if ((mode & IFMT) == IFDIR) {
1406 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1407 fs->fs_cstotal.cs_ndir++;
1408 fs->fs_cs(fs, cg).cs_ndir++;
1409 }
1410 mutex_exit(&ump->um_lock);
1411 if (ibp != NULL) {
1412 bwrite(bp);
1413 bawrite(ibp);
1414 } else
1415 bdwrite(bp);
1416 return (cg * fs->fs_ipg + ipref);
1417 fail:
1418 if (bp != NULL)
1419 brelse(bp, 0);
1420 if (ibp != NULL)
1421 brelse(ibp, 0);
1422 mutex_enter(&ump->um_lock);
1423 return (0);
1424 }
1425
1426 /*
1427 * Allocate a block or fragment.
1428 *
1429 * The specified block or fragment is removed from the
1430 * free map, possibly fragmenting a block in the process.
1431 *
1432 * This implementation should mirror fs_blkfree
1433 *
1434 * => um_lock not held on entry or exit
1435 */
1436 int
1437 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1438 {
1439 int error;
1440
1441 error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1442 ip->i_dev, ip->i_uid);
1443 if (error)
1444 return error;
1445
1446 return ffs_blkalloc_ump(ip->i_ump, bno, size);
1447 }
1448
1449 int
1450 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1451 {
1452 struct fs *fs = ump->um_fs;
1453 struct cg *cgp;
1454 struct buf *bp;
1455 int32_t fragno, cgbno;
1456 int i, error, cg, blk, frags, bbase;
1457 u_int8_t *blksfree;
1458 const int needswap = UFS_FSNEEDSWAP(fs);
1459
1460 KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1461 fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1462 KASSERT(bno < fs->fs_size);
1463
1464 cg = dtog(fs, bno);
1465 error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1466 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1467 if (error) {
1468 brelse(bp, 0);
1469 return error;
1470 }
1471 cgp = (struct cg *)bp->b_data;
1472 if (!cg_chkmagic(cgp, needswap)) {
1473 brelse(bp, 0);
1474 return EIO;
1475 }
1476 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1477 cgp->cg_time = ufs_rw64(time_second, needswap);
1478 cgbno = dtogd(fs, bno);
1479 blksfree = cg_blksfree(cgp, needswap);
1480
1481 mutex_enter(&ump->um_lock);
1482 if (size == fs->fs_bsize) {
1483 fragno = fragstoblks(fs, cgbno);
1484 if (!ffs_isblock(fs, blksfree, fragno)) {
1485 mutex_exit(&ump->um_lock);
1486 brelse(bp, 0);
1487 return EBUSY;
1488 }
1489 ffs_clrblock(fs, blksfree, fragno);
1490 ffs_clusteracct(fs, cgp, fragno, -1);
1491 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1492 fs->fs_cstotal.cs_nbfree--;
1493 fs->fs_cs(fs, cg).cs_nbfree--;
1494 } else {
1495 bbase = cgbno - fragnum(fs, cgbno);
1496
1497 frags = numfrags(fs, size);
1498 for (i = 0; i < frags; i++) {
1499 if (isclr(blksfree, cgbno + i)) {
1500 mutex_exit(&ump->um_lock);
1501 brelse(bp, 0);
1502 return EBUSY;
1503 }
1504 }
1505 /*
1506 * if a complete block is being split, account for it
1507 */
1508 fragno = fragstoblks(fs, bbase);
1509 if (ffs_isblock(fs, blksfree, fragno)) {
1510 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1511 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1512 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1513 ffs_clusteracct(fs, cgp, fragno, -1);
1514 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1515 fs->fs_cstotal.cs_nbfree--;
1516 fs->fs_cs(fs, cg).cs_nbfree--;
1517 }
1518 /*
1519 * decrement the counts associated with the old frags
1520 */
1521 blk = blkmap(fs, blksfree, bbase);
1522 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1523 /*
1524 * allocate the fragment
1525 */
1526 for (i = 0; i < frags; i++) {
1527 clrbit(blksfree, cgbno + i);
1528 }
1529 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1530 fs->fs_cstotal.cs_nffree -= i;
1531 fs->fs_cs(fs, cg).cs_nffree -= i;
1532 /*
1533 * add back in counts associated with the new frags
1534 */
1535 blk = blkmap(fs, blksfree, bbase);
1536 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1537 }
1538 fs->fs_fmod = 1;
1539 ACTIVECG_CLR(fs, cg);
1540 mutex_exit(&ump->um_lock);
1541 bdwrite(bp);
1542 return 0;
1543 }
1544
1545 /*
1546 * Free a block or fragment.
1547 *
1548 * The specified block or fragment is placed back in the
1549 * free map. If a fragment is deallocated, a possible
1550 * block reassembly is checked.
1551 *
1552 * => um_lock not held on entry or exit
1553 */
1554 void
1555 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1556 ino_t inum)
1557 {
1558 struct cg *cgp;
1559 struct buf *bp;
1560 struct ufsmount *ump;
1561 daddr_t cgblkno;
1562 int error, cg;
1563 dev_t dev;
1564 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1565 #ifdef FFS_EI
1566 const int needswap = UFS_FSNEEDSWAP(fs);
1567 #endif
1568
1569 KASSERT(!devvp_is_snapshot);
1570
1571 cg = dtog(fs, bno);
1572 dev = devvp->v_rdev;
1573 ump = VFSTOUFS(devvp->v_specmountpoint);
1574 KASSERT(fs == ump->um_fs);
1575 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1576 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1577 return;
1578
1579 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1580 if (error)
1581 return;
1582
1583 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1584 NOCRED, B_MODIFY, &bp);
1585 if (error) {
1586 brelse(bp, 0);
1587 return;
1588 }
1589 cgp = (struct cg *)bp->b_data;
1590 if (!cg_chkmagic(cgp, needswap)) {
1591 brelse(bp, 0);
1592 return;
1593 }
1594
1595 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1596
1597 bdwrite(bp);
1598 }
1599
1600 /*
1601 * Free a block or fragment from a snapshot cg copy.
1602 *
1603 * The specified block or fragment is placed back in the
1604 * free map. If a fragment is deallocated, a possible
1605 * block reassembly is checked.
1606 *
1607 * => um_lock not held on entry or exit
1608 */
1609 void
1610 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1611 ino_t inum)
1612 {
1613 struct cg *cgp;
1614 struct buf *bp;
1615 struct ufsmount *ump;
1616 daddr_t cgblkno;
1617 int error, cg;
1618 dev_t dev;
1619 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1620 #ifdef FFS_EI
1621 const int needswap = UFS_FSNEEDSWAP(fs);
1622 #endif
1623
1624 KASSERT(devvp_is_snapshot);
1625
1626 cg = dtog(fs, bno);
1627 dev = VTOI(devvp)->i_devvp->v_rdev;
1628 ump = VFSTOUFS(devvp->v_mount);
1629 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1630
1631 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1632 if (error)
1633 return;
1634
1635 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1636 NOCRED, B_MODIFY, &bp);
1637 if (error) {
1638 brelse(bp, 0);
1639 return;
1640 }
1641 cgp = (struct cg *)bp->b_data;
1642 if (!cg_chkmagic(cgp, needswap)) {
1643 brelse(bp, 0);
1644 return;
1645 }
1646
1647 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1648
1649 bdwrite(bp);
1650 }
1651
1652 static void
1653 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1654 struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1655 {
1656 struct cg *cgp;
1657 int32_t fragno, cgbno;
1658 int i, cg, blk, frags, bbase;
1659 u_int8_t *blksfree;
1660 const int needswap = UFS_FSNEEDSWAP(fs);
1661
1662 cg = dtog(fs, bno);
1663 cgp = (struct cg *)bp->b_data;
1664 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1665 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1666 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1667 cgp->cg_time = ufs_rw64(time_second, needswap);
1668 cgbno = dtogd(fs, bno);
1669 blksfree = cg_blksfree(cgp, needswap);
1670 mutex_enter(&ump->um_lock);
1671 if (size == fs->fs_bsize) {
1672 fragno = fragstoblks(fs, cgbno);
1673 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1674 if (devvp_is_snapshot) {
1675 mutex_exit(&ump->um_lock);
1676 return;
1677 }
1678 printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1679 (unsigned long long)dev, bno, fs->fs_fsmnt);
1680 panic("blkfree: freeing free block");
1681 }
1682 ffs_setblock(fs, blksfree, fragno);
1683 ffs_clusteracct(fs, cgp, fragno, 1);
1684 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1685 fs->fs_cstotal.cs_nbfree++;
1686 fs->fs_cs(fs, cg).cs_nbfree++;
1687 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1688 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1689 i = old_cbtocylno(fs, cgbno);
1690 KASSERT(i >= 0);
1691 KASSERT(i < fs->fs_old_ncyl);
1692 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1693 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1694 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1695 needswap);
1696 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1697 }
1698 } else {
1699 bbase = cgbno - fragnum(fs, cgbno);
1700 /*
1701 * decrement the counts associated with the old frags
1702 */
1703 blk = blkmap(fs, blksfree, bbase);
1704 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1705 /*
1706 * deallocate the fragment
1707 */
1708 frags = numfrags(fs, size);
1709 for (i = 0; i < frags; i++) {
1710 if (isset(blksfree, cgbno + i)) {
1711 printf("dev = 0x%llx, block = %" PRId64
1712 ", fs = %s\n",
1713 (unsigned long long)dev, bno + i,
1714 fs->fs_fsmnt);
1715 panic("blkfree: freeing free frag");
1716 }
1717 setbit(blksfree, cgbno + i);
1718 }
1719 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1720 fs->fs_cstotal.cs_nffree += i;
1721 fs->fs_cs(fs, cg).cs_nffree += i;
1722 /*
1723 * add back in counts associated with the new frags
1724 */
1725 blk = blkmap(fs, blksfree, bbase);
1726 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1727 /*
1728 * if a complete block has been reassembled, account for it
1729 */
1730 fragno = fragstoblks(fs, bbase);
1731 if (ffs_isblock(fs, blksfree, fragno)) {
1732 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1733 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1734 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1735 ffs_clusteracct(fs, cgp, fragno, 1);
1736 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1737 fs->fs_cstotal.cs_nbfree++;
1738 fs->fs_cs(fs, cg).cs_nbfree++;
1739 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1740 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1741 i = old_cbtocylno(fs, bbase);
1742 KASSERT(i >= 0);
1743 KASSERT(i < fs->fs_old_ncyl);
1744 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1745 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1746 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1747 bbase)], 1, needswap);
1748 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1749 }
1750 }
1751 }
1752 fs->fs_fmod = 1;
1753 ACTIVECG_CLR(fs, cg);
1754 mutex_exit(&ump->um_lock);
1755 }
1756
1757 /*
1758 * Free an inode.
1759 */
1760 int
1761 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1762 {
1763
1764 return ffs_freefile(vp->v_mount, ino, mode);
1765 }
1766
1767 /*
1768 * Do the actual free operation.
1769 * The specified inode is placed back in the free map.
1770 *
1771 * => um_lock not held on entry or exit
1772 */
1773 int
1774 ffs_freefile(struct mount *mp, ino_t ino, int mode)
1775 {
1776 struct ufsmount *ump = VFSTOUFS(mp);
1777 struct fs *fs = ump->um_fs;
1778 struct vnode *devvp;
1779 struct cg *cgp;
1780 struct buf *bp;
1781 int error, cg;
1782 daddr_t cgbno;
1783 dev_t dev;
1784 #ifdef FFS_EI
1785 const int needswap = UFS_FSNEEDSWAP(fs);
1786 #endif
1787
1788 cg = ino_to_cg(fs, ino);
1789 devvp = ump->um_devvp;
1790 dev = devvp->v_rdev;
1791 cgbno = fsbtodb(fs, cgtod(fs, cg));
1792
1793 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1794 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1795 (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1796 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1797 NOCRED, B_MODIFY, &bp);
1798 if (error) {
1799 brelse(bp, 0);
1800 return (error);
1801 }
1802 cgp = (struct cg *)bp->b_data;
1803 if (!cg_chkmagic(cgp, needswap)) {
1804 brelse(bp, 0);
1805 return (0);
1806 }
1807
1808 ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1809
1810 bdwrite(bp);
1811
1812 return 0;
1813 }
1814
1815 int
1816 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1817 {
1818 struct ufsmount *ump;
1819 struct cg *cgp;
1820 struct buf *bp;
1821 int error, cg;
1822 daddr_t cgbno;
1823 dev_t dev;
1824 #ifdef FFS_EI
1825 const int needswap = UFS_FSNEEDSWAP(fs);
1826 #endif
1827
1828 KASSERT(devvp->v_type != VBLK);
1829
1830 cg = ino_to_cg(fs, ino);
1831 dev = VTOI(devvp)->i_devvp->v_rdev;
1832 ump = VFSTOUFS(devvp->v_mount);
1833 cgbno = fragstoblks(fs, cgtod(fs, cg));
1834 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1835 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1836 (unsigned long long)dev, (unsigned long long)ino,
1837 fs->fs_fsmnt);
1838 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1839 NOCRED, B_MODIFY, &bp);
1840 if (error) {
1841 brelse(bp, 0);
1842 return (error);
1843 }
1844 cgp = (struct cg *)bp->b_data;
1845 if (!cg_chkmagic(cgp, needswap)) {
1846 brelse(bp, 0);
1847 return (0);
1848 }
1849 ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1850
1851 bdwrite(bp);
1852
1853 return 0;
1854 }
1855
1856 static void
1857 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1858 struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1859 {
1860 int cg;
1861 struct cg *cgp;
1862 u_int8_t *inosused;
1863 #ifdef FFS_EI
1864 const int needswap = UFS_FSNEEDSWAP(fs);
1865 #endif
1866
1867 cg = ino_to_cg(fs, ino);
1868 cgp = (struct cg *)bp->b_data;
1869 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1870 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1871 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1872 cgp->cg_time = ufs_rw64(time_second, needswap);
1873 inosused = cg_inosused(cgp, needswap);
1874 ino %= fs->fs_ipg;
1875 if (isclr(inosused, ino)) {
1876 printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
1877 (unsigned long long)dev, (unsigned long long)ino +
1878 cg * fs->fs_ipg, fs->fs_fsmnt);
1879 if (fs->fs_ronly == 0)
1880 panic("ifree: freeing free inode");
1881 }
1882 clrbit(inosused, ino);
1883 if (!devvp_is_snapshot)
1884 UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1885 ino + cg * fs->fs_ipg, mode);
1886 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1887 cgp->cg_irotor = ufs_rw32(ino, needswap);
1888 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1889 mutex_enter(&ump->um_lock);
1890 fs->fs_cstotal.cs_nifree++;
1891 fs->fs_cs(fs, cg).cs_nifree++;
1892 if ((mode & IFMT) == IFDIR) {
1893 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1894 fs->fs_cstotal.cs_ndir--;
1895 fs->fs_cs(fs, cg).cs_ndir--;
1896 }
1897 fs->fs_fmod = 1;
1898 ACTIVECG_CLR(fs, cg);
1899 mutex_exit(&ump->um_lock);
1900 }
1901
1902 /*
1903 * Check to see if a file is free.
1904 */
1905 int
1906 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1907 {
1908 struct cg *cgp;
1909 struct buf *bp;
1910 daddr_t cgbno;
1911 int ret, cg;
1912 u_int8_t *inosused;
1913 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1914
1915 KASSERT(devvp_is_snapshot);
1916
1917 cg = ino_to_cg(fs, ino);
1918 if (devvp_is_snapshot)
1919 cgbno = fragstoblks(fs, cgtod(fs, cg));
1920 else
1921 cgbno = fsbtodb(fs, cgtod(fs, cg));
1922 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1923 return 1;
1924 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1925 brelse(bp, 0);
1926 return 1;
1927 }
1928 cgp = (struct cg *)bp->b_data;
1929 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1930 brelse(bp, 0);
1931 return 1;
1932 }
1933 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1934 ino %= fs->fs_ipg;
1935 ret = isclr(inosused, ino);
1936 brelse(bp, 0);
1937 return ret;
1938 }
1939
1940 /*
1941 * Find a block of the specified size in the specified cylinder group.
1942 *
1943 * It is a panic if a request is made to find a block if none are
1944 * available.
1945 */
1946 static int32_t
1947 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1948 {
1949 int32_t bno;
1950 int start, len, loc, i;
1951 int blk, field, subfield, pos;
1952 int ostart, olen;
1953 u_int8_t *blksfree;
1954 #ifdef FFS_EI
1955 const int needswap = UFS_FSNEEDSWAP(fs);
1956 #endif
1957
1958 /* KASSERT(mutex_owned(&ump->um_lock)); */
1959
1960 /*
1961 * find the fragment by searching through the free block
1962 * map for an appropriate bit pattern
1963 */
1964 if (bpref)
1965 start = dtogd(fs, bpref) / NBBY;
1966 else
1967 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1968 blksfree = cg_blksfree(cgp, needswap);
1969 len = howmany(fs->fs_fpg, NBBY) - start;
1970 ostart = start;
1971 olen = len;
1972 loc = scanc((u_int)len,
1973 (const u_char *)&blksfree[start],
1974 (const u_char *)fragtbl[fs->fs_frag],
1975 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1976 if (loc == 0) {
1977 len = start + 1;
1978 start = 0;
1979 loc = scanc((u_int)len,
1980 (const u_char *)&blksfree[0],
1981 (const u_char *)fragtbl[fs->fs_frag],
1982 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1983 if (loc == 0) {
1984 printf("start = %d, len = %d, fs = %s\n",
1985 ostart, olen, fs->fs_fsmnt);
1986 printf("offset=%d %ld\n",
1987 ufs_rw32(cgp->cg_freeoff, needswap),
1988 (long)blksfree - (long)cgp);
1989 printf("cg %d\n", cgp->cg_cgx);
1990 panic("ffs_alloccg: map corrupted");
1991 /* NOTREACHED */
1992 }
1993 }
1994 bno = (start + len - loc) * NBBY;
1995 cgp->cg_frotor = ufs_rw32(bno, needswap);
1996 /*
1997 * found the byte in the map
1998 * sift through the bits to find the selected frag
1999 */
2000 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2001 blk = blkmap(fs, blksfree, bno);
2002 blk <<= 1;
2003 field = around[allocsiz];
2004 subfield = inside[allocsiz];
2005 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2006 if ((blk & field) == subfield)
2007 return (bno + pos);
2008 field <<= 1;
2009 subfield <<= 1;
2010 }
2011 }
2012 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2013 panic("ffs_alloccg: block not in map");
2014 /* return (-1); */
2015 }
2016
2017 /*
2018 * Fserr prints the name of a file system with an error diagnostic.
2019 *
2020 * The form of the error message is:
2021 * fs: error message
2022 */
2023 static void
2024 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2025 {
2026
2027 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2028 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2029 }
2030