ffs_alloc.c revision 1.13.6.1 1 /* $NetBSD: ffs_alloc.c,v 1.13.6.1 1997/03/12 21:26:22 is Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46
47 #include <vm/vm.h>
48
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51 #include <ufs/ufs/ufs_extern.h>
52
53 #include <ufs/ffs/fs.h>
54 #include <ufs/ffs/ffs_extern.h>
55
56 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
57 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
58 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
59 static ino_t ffs_dirpref __P((struct fs *));
60 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
61 static void ffs_fserr __P((struct fs *, u_int, char *));
62 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
63 daddr_t (*)(struct inode *, int, daddr_t,
64 int)));
65 static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67
68 /*
69 * Allocate a block in the file system.
70 *
71 * The size of the requested block is given, which must be some
72 * multiple of fs_fsize and <= fs_bsize.
73 * A preference may be optionally specified. If a preference is given
74 * the following hierarchy is used to allocate a block:
75 * 1) allocate the requested block.
76 * 2) allocate a rotationally optimal block in the same cylinder.
77 * 3) allocate a block in the same cylinder group.
78 * 4) quadradically rehash into other cylinder groups, until an
79 * available block is located.
80 * If no block preference is given the following heirarchy is used
81 * to allocate a block:
82 * 1) allocate a block in the cylinder group that contains the
83 * inode for the file.
84 * 2) quadradically rehash into other cylinder groups, until an
85 * available block is located.
86 */
87 int
88 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
89 register struct inode *ip;
90 daddr_t lbn, bpref;
91 int size;
92 struct ucred *cred;
93 daddr_t *bnp;
94 {
95 register struct fs *fs;
96 daddr_t bno;
97 int cg;
98 #ifdef QUOTA
99 int error;
100 #endif
101
102 *bnp = 0;
103 fs = ip->i_fs;
104 #ifdef DIAGNOSTIC
105 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
106 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
107 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
108 panic("ffs_alloc: bad size");
109 }
110 if (cred == NOCRED)
111 panic("ffs_alloc: missing credential\n");
112 #endif /* DIAGNOSTIC */
113 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
114 goto nospace;
115 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
116 goto nospace;
117 #ifdef QUOTA
118 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
119 return (error);
120 #endif
121 if (bpref >= fs->fs_size)
122 bpref = 0;
123 if (bpref == 0)
124 cg = ino_to_cg(fs, ip->i_number);
125 else
126 cg = dtog(fs, bpref);
127 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
128 ffs_alloccg);
129 if (bno > 0) {
130 ip->i_blocks += btodb(size);
131 ip->i_flag |= IN_CHANGE | IN_UPDATE;
132 *bnp = bno;
133 return (0);
134 }
135 #ifdef QUOTA
136 /*
137 * Restore user's disk quota because allocation failed.
138 */
139 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
140 #endif
141 nospace:
142 ffs_fserr(fs, cred->cr_uid, "file system full");
143 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
144 return (ENOSPC);
145 }
146
147 /*
148 * Reallocate a fragment to a bigger size
149 *
150 * The number and size of the old block is given, and a preference
151 * and new size is also specified. The allocator attempts to extend
152 * the original block. Failing that, the regular block allocator is
153 * invoked to get an appropriate block.
154 */
155 int
156 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
157 register struct inode *ip;
158 daddr_t lbprev;
159 daddr_t bpref;
160 int osize, nsize;
161 struct ucred *cred;
162 struct buf **bpp;
163 {
164 register struct fs *fs;
165 struct buf *bp;
166 int cg, request, error;
167 daddr_t bprev, bno;
168
169 *bpp = 0;
170 fs = ip->i_fs;
171 #ifdef DIAGNOSTIC
172 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
173 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
174 printf(
175 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
176 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
177 panic("ffs_realloccg: bad size");
178 }
179 if (cred == NOCRED)
180 panic("ffs_realloccg: missing credential\n");
181 #endif /* DIAGNOSTIC */
182 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
183 goto nospace;
184 if ((bprev = ip->i_db[lbprev]) == 0) {
185 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
186 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
187 panic("ffs_realloccg: bad bprev");
188 }
189 /*
190 * Allocate the extra space in the buffer.
191 */
192 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
193 brelse(bp);
194 return (error);
195 }
196 #ifdef QUOTA
197 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
198 brelse(bp);
199 return (error);
200 }
201 #endif
202 /*
203 * Check for extension in the existing location.
204 */
205 cg = dtog(fs, bprev);
206 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
207 if (bp->b_blkno != fsbtodb(fs, bno))
208 panic("bad blockno");
209 ip->i_blocks += btodb(nsize - osize);
210 ip->i_flag |= IN_CHANGE | IN_UPDATE;
211 allocbuf(bp, nsize);
212 bp->b_flags |= B_DONE;
213 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
214 *bpp = bp;
215 return (0);
216 }
217 /*
218 * Allocate a new disk location.
219 */
220 if (bpref >= fs->fs_size)
221 bpref = 0;
222 switch ((int)fs->fs_optim) {
223 case FS_OPTSPACE:
224 /*
225 * Allocate an exact sized fragment. Although this makes
226 * best use of space, we will waste time relocating it if
227 * the file continues to grow. If the fragmentation is
228 * less than half of the minimum free reserve, we choose
229 * to begin optimizing for time.
230 */
231 request = nsize;
232 if (fs->fs_minfree < 5 ||
233 fs->fs_cstotal.cs_nffree >
234 fs->fs_dsize * fs->fs_minfree / (2 * 100))
235 break;
236 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
237 fs->fs_fsmnt);
238 fs->fs_optim = FS_OPTTIME;
239 break;
240 case FS_OPTTIME:
241 /*
242 * At this point we have discovered a file that is trying to
243 * grow a small fragment to a larger fragment. To save time,
244 * we allocate a full sized block, then free the unused portion.
245 * If the file continues to grow, the `ffs_fragextend' call
246 * above will be able to grow it in place without further
247 * copying. If aberrant programs cause disk fragmentation to
248 * grow within 2% of the free reserve, we choose to begin
249 * optimizing for space.
250 */
251 request = fs->fs_bsize;
252 if (fs->fs_cstotal.cs_nffree <
253 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
254 break;
255 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
256 fs->fs_fsmnt);
257 fs->fs_optim = FS_OPTSPACE;
258 break;
259 default:
260 printf("dev = 0x%x, optim = %d, fs = %s\n",
261 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
262 panic("ffs_realloccg: bad optim");
263 /* NOTREACHED */
264 }
265 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
266 ffs_alloccg);
267 if (bno > 0) {
268 bp->b_blkno = fsbtodb(fs, bno);
269 (void) vnode_pager_uncache(ITOV(ip));
270 ffs_blkfree(ip, bprev, (long)osize);
271 if (nsize < request)
272 ffs_blkfree(ip, bno + numfrags(fs, nsize),
273 (long)(request - nsize));
274 ip->i_blocks += btodb(nsize - osize);
275 ip->i_flag |= IN_CHANGE | IN_UPDATE;
276 allocbuf(bp, nsize);
277 bp->b_flags |= B_DONE;
278 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
279 *bpp = bp;
280 return (0);
281 }
282 #ifdef QUOTA
283 /*
284 * Restore user's disk quota because allocation failed.
285 */
286 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
287 #endif
288 brelse(bp);
289 nospace:
290 /*
291 * no space available
292 */
293 ffs_fserr(fs, cred->cr_uid, "file system full");
294 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
295 return (ENOSPC);
296 }
297
298 /*
299 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
300 *
301 * The vnode and an array of buffer pointers for a range of sequential
302 * logical blocks to be made contiguous is given. The allocator attempts
303 * to find a range of sequential blocks starting as close as possible to
304 * an fs_rotdelay offset from the end of the allocation for the logical
305 * block immediately preceeding the current range. If successful, the
306 * physical block numbers in the buffer pointers and in the inode are
307 * changed to reflect the new allocation. If unsuccessful, the allocation
308 * is left unchanged. The success in doing the reallocation is returned.
309 * Note that the error return is not reflected back to the user. Rather
310 * the previous block allocation will be used.
311 */
312 #ifdef DEBUG
313 #include <sys/sysctl.h>
314 int doasyncfree = 1;
315 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
316 int prtrealloc = 0;
317 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
318 #else
319 #define doasyncfree 1
320 #endif
321
322 int
323 ffs_reallocblks(v)
324 void *v;
325 {
326 struct vop_reallocblks_args /* {
327 struct vnode *a_vp;
328 struct cluster_save *a_buflist;
329 } */ *ap = v;
330 struct fs *fs;
331 struct inode *ip;
332 struct vnode *vp;
333 struct buf *sbp, *ebp;
334 daddr_t *bap, *sbap, *ebap = NULL;
335 struct cluster_save *buflist;
336 daddr_t start_lbn, end_lbn, soff, newblk, blkno;
337 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
338 int i, len, start_lvl, end_lvl, pref, ssize;
339 struct timespec ts;
340
341 vp = ap->a_vp;
342 ip = VTOI(vp);
343 fs = ip->i_fs;
344 if (fs->fs_contigsumsize <= 0)
345 return (ENOSPC);
346 buflist = ap->a_buflist;
347 len = buflist->bs_nchildren;
348 start_lbn = buflist->bs_children[0]->b_lblkno;
349 end_lbn = start_lbn + len - 1;
350 #ifdef DIAGNOSTIC
351 for (i = 1; i < len; i++)
352 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
353 panic("ffs_reallocblks: non-cluster");
354 #endif
355 /*
356 * If the latest allocation is in a new cylinder group, assume that
357 * the filesystem has decided to move and do not force it back to
358 * the previous cylinder group.
359 */
360 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
361 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
362 return (ENOSPC);
363 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
364 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
365 return (ENOSPC);
366 /*
367 * Get the starting offset and block map for the first block.
368 */
369 if (start_lvl == 0) {
370 sbap = &ip->i_db[0];
371 soff = start_lbn;
372 } else {
373 idp = &start_ap[start_lvl - 1];
374 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
375 brelse(sbp);
376 return (ENOSPC);
377 }
378 sbap = (daddr_t *)sbp->b_data;
379 soff = idp->in_off;
380 }
381 /*
382 * Find the preferred location for the cluster.
383 */
384 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
385 /*
386 * If the block range spans two block maps, get the second map.
387 */
388 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
389 ssize = len;
390 } else {
391 #ifdef DIAGNOSTIC
392 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
393 panic("ffs_reallocblk: start == end");
394 #endif
395 ssize = len - (idp->in_off + 1);
396 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
397 goto fail;
398 ebap = (daddr_t *)ebp->b_data;
399 }
400 /*
401 * Search the block map looking for an allocation of the desired size.
402 */
403 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
404 len, ffs_clusteralloc)) == 0)
405 goto fail;
406 /*
407 * We have found a new contiguous block.
408 *
409 * First we have to replace the old block pointers with the new
410 * block pointers in the inode and indirect blocks associated
411 * with the file.
412 */
413 #ifdef DEBUG
414 if (prtrealloc)
415 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
416 start_lbn, end_lbn);
417 #endif
418 blkno = newblk;
419 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
420 if (i == ssize)
421 bap = ebap;
422 #ifdef DIAGNOSTIC
423 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
424 panic("ffs_reallocblks: alloc mismatch");
425 #endif
426 #ifdef DEBUG
427 if (prtrealloc)
428 printf(" %d,", *bap);
429 #endif
430 *bap++ = blkno;
431 }
432 /*
433 * Next we must write out the modified inode and indirect blocks.
434 * For strict correctness, the writes should be synchronous since
435 * the old block values may have been written to disk. In practise
436 * they are almost never written, but if we are concerned about
437 * strict correctness, the `doasyncfree' flag should be set to zero.
438 *
439 * The test on `doasyncfree' should be changed to test a flag
440 * that shows whether the associated buffers and inodes have
441 * been written. The flag should be set when the cluster is
442 * started and cleared whenever the buffer or inode is flushed.
443 * We can then check below to see if it is set, and do the
444 * synchronous write only when it has been cleared.
445 */
446 if (sbap != &ip->i_db[0]) {
447 if (doasyncfree)
448 bdwrite(sbp);
449 else
450 bwrite(sbp);
451 } else {
452 ip->i_flag |= IN_CHANGE | IN_UPDATE;
453 if (!doasyncfree) {
454 TIMEVAL_TO_TIMESPEC(&time, &ts);
455 VOP_UPDATE(vp, &ts, &ts, 1);
456 }
457 }
458 if (ssize < len)
459 if (doasyncfree)
460 bdwrite(ebp);
461 else
462 bwrite(ebp);
463 /*
464 * Last, free the old blocks and assign the new blocks to the buffers.
465 */
466 #ifdef DEBUG
467 if (prtrealloc)
468 printf("\n\tnew:");
469 #endif
470 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
471 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
472 fs->fs_bsize);
473 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
474 #ifdef DEBUG
475 if (prtrealloc)
476 printf(" %d,", blkno);
477 #endif
478 }
479 #ifdef DEBUG
480 if (prtrealloc) {
481 prtrealloc--;
482 printf("\n");
483 }
484 #endif
485 return (0);
486
487 fail:
488 if (ssize < len)
489 brelse(ebp);
490 if (sbap != &ip->i_db[0])
491 brelse(sbp);
492 return (ENOSPC);
493 }
494
495 /*
496 * Allocate an inode in the file system.
497 *
498 * If allocating a directory, use ffs_dirpref to select the inode.
499 * If allocating in a directory, the following hierarchy is followed:
500 * 1) allocate the preferred inode.
501 * 2) allocate an inode in the same cylinder group.
502 * 3) quadradically rehash into other cylinder groups, until an
503 * available inode is located.
504 * If no inode preference is given the following heirarchy is used
505 * to allocate an inode:
506 * 1) allocate an inode in cylinder group 0.
507 * 2) quadradically rehash into other cylinder groups, until an
508 * available inode is located.
509 */
510 int
511 ffs_valloc(v)
512 void *v;
513 {
514 struct vop_valloc_args /* {
515 struct vnode *a_pvp;
516 int a_mode;
517 struct ucred *a_cred;
518 struct vnode **a_vpp;
519 } */ *ap = v;
520 register struct vnode *pvp = ap->a_pvp;
521 register struct inode *pip;
522 register struct fs *fs;
523 register struct inode *ip;
524 mode_t mode = ap->a_mode;
525 ino_t ino, ipref;
526 int cg, error;
527
528 *ap->a_vpp = NULL;
529 pip = VTOI(pvp);
530 fs = pip->i_fs;
531 if (fs->fs_cstotal.cs_nifree == 0)
532 goto noinodes;
533
534 if ((mode & IFMT) == IFDIR)
535 ipref = ffs_dirpref(fs);
536 else
537 ipref = pip->i_number;
538 if (ipref >= fs->fs_ncg * fs->fs_ipg)
539 ipref = 0;
540 cg = ino_to_cg(fs, ipref);
541 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
542 if (ino == 0)
543 goto noinodes;
544 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
545 if (error) {
546 VOP_VFREE(pvp, ino, mode);
547 return (error);
548 }
549 ip = VTOI(*ap->a_vpp);
550 if (ip->i_mode) {
551 printf("mode = 0%o, inum = %d, fs = %s\n",
552 ip->i_mode, ip->i_number, fs->fs_fsmnt);
553 panic("ffs_valloc: dup alloc");
554 }
555 if (ip->i_blocks) { /* XXX */
556 printf("free inode %s/%d had %d blocks\n",
557 fs->fs_fsmnt, ino, ip->i_blocks);
558 ip->i_blocks = 0;
559 }
560 ip->i_flags = 0;
561 /*
562 * Set up a new generation number for this inode.
563 */
564 ip->i_gen++;
565 return (0);
566 noinodes:
567 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
568 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
569 return (ENOSPC);
570 }
571
572 /*
573 * Find a cylinder to place a directory.
574 *
575 * The policy implemented by this algorithm is to select from
576 * among those cylinder groups with above the average number of
577 * free inodes, the one with the smallest number of directories.
578 */
579 static ino_t
580 ffs_dirpref(fs)
581 register struct fs *fs;
582 {
583 int cg, minndir, mincg, avgifree;
584
585 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
586 minndir = fs->fs_ipg;
587 mincg = 0;
588 for (cg = 0; cg < fs->fs_ncg; cg++)
589 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
590 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
591 mincg = cg;
592 minndir = fs->fs_cs(fs, cg).cs_ndir;
593 }
594 return ((ino_t)(fs->fs_ipg * mincg));
595 }
596
597 /*
598 * Select the desired position for the next block in a file. The file is
599 * logically divided into sections. The first section is composed of the
600 * direct blocks. Each additional section contains fs_maxbpg blocks.
601 *
602 * If no blocks have been allocated in the first section, the policy is to
603 * request a block in the same cylinder group as the inode that describes
604 * the file. If no blocks have been allocated in any other section, the
605 * policy is to place the section in a cylinder group with a greater than
606 * average number of free blocks. An appropriate cylinder group is found
607 * by using a rotor that sweeps the cylinder groups. When a new group of
608 * blocks is needed, the sweep begins in the cylinder group following the
609 * cylinder group from which the previous allocation was made. The sweep
610 * continues until a cylinder group with greater than the average number
611 * of free blocks is found. If the allocation is for the first block in an
612 * indirect block, the information on the previous allocation is unavailable;
613 * here a best guess is made based upon the logical block number being
614 * allocated.
615 *
616 * If a section is already partially allocated, the policy is to
617 * contiguously allocate fs_maxcontig blocks. The end of one of these
618 * contiguous blocks and the beginning of the next is physically separated
619 * so that the disk head will be in transit between them for at least
620 * fs_rotdelay milliseconds. This is to allow time for the processor to
621 * schedule another I/O transfer.
622 */
623 daddr_t
624 ffs_blkpref(ip, lbn, indx, bap)
625 struct inode *ip;
626 daddr_t lbn;
627 int indx;
628 daddr_t *bap;
629 {
630 register struct fs *fs;
631 register int cg;
632 int avgbfree, startcg;
633 daddr_t nextblk;
634
635 fs = ip->i_fs;
636 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
637 if (lbn < NDADDR) {
638 cg = ino_to_cg(fs, ip->i_number);
639 return (fs->fs_fpg * cg + fs->fs_frag);
640 }
641 /*
642 * Find a cylinder with greater than average number of
643 * unused data blocks.
644 */
645 if (indx == 0 || bap[indx - 1] == 0)
646 startcg =
647 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
648 else
649 startcg = dtog(fs, bap[indx - 1]) + 1;
650 startcg %= fs->fs_ncg;
651 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
652 for (cg = startcg; cg < fs->fs_ncg; cg++)
653 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
654 fs->fs_cgrotor = cg;
655 return (fs->fs_fpg * cg + fs->fs_frag);
656 }
657 for (cg = 0; cg <= startcg; cg++)
658 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
659 fs->fs_cgrotor = cg;
660 return (fs->fs_fpg * cg + fs->fs_frag);
661 }
662 return (NULL);
663 }
664 /*
665 * One or more previous blocks have been laid out. If less
666 * than fs_maxcontig previous blocks are contiguous, the
667 * next block is requested contiguously, otherwise it is
668 * requested rotationally delayed by fs_rotdelay milliseconds.
669 */
670 nextblk = bap[indx - 1] + fs->fs_frag;
671 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
672 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
673 return (nextblk);
674 if (fs->fs_rotdelay != 0)
675 /*
676 * Here we convert ms of delay to frags as:
677 * (frags) = (ms) * (rev/sec) * (sect/rev) /
678 * ((sect/frag) * (ms/sec))
679 * then round up to the next block.
680 */
681 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
682 (NSPF(fs) * 1000), fs->fs_frag);
683 return (nextblk);
684 }
685
686 /*
687 * Implement the cylinder overflow algorithm.
688 *
689 * The policy implemented by this algorithm is:
690 * 1) allocate the block in its requested cylinder group.
691 * 2) quadradically rehash on the cylinder group number.
692 * 3) brute force search for a free block.
693 */
694 /*VARARGS5*/
695 static u_long
696 ffs_hashalloc(ip, cg, pref, size, allocator)
697 struct inode *ip;
698 int cg;
699 long pref;
700 int size; /* size for data blocks, mode for inodes */
701 daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
702 {
703 register struct fs *fs;
704 long result;
705 int i, icg = cg;
706
707 fs = ip->i_fs;
708 /*
709 * 1: preferred cylinder group
710 */
711 result = (*allocator)(ip, cg, pref, size);
712 if (result)
713 return (result);
714 /*
715 * 2: quadratic rehash
716 */
717 for (i = 1; i < fs->fs_ncg; i *= 2) {
718 cg += i;
719 if (cg >= fs->fs_ncg)
720 cg -= fs->fs_ncg;
721 result = (*allocator)(ip, cg, 0, size);
722 if (result)
723 return (result);
724 }
725 /*
726 * 3: brute force search
727 * Note that we start at i == 2, since 0 was checked initially,
728 * and 1 is always checked in the quadratic rehash.
729 */
730 cg = (icg + 2) % fs->fs_ncg;
731 for (i = 2; i < fs->fs_ncg; i++) {
732 result = (*allocator)(ip, cg, 0, size);
733 if (result)
734 return (result);
735 cg++;
736 if (cg == fs->fs_ncg)
737 cg = 0;
738 }
739 return (NULL);
740 }
741
742 /*
743 * Determine whether a fragment can be extended.
744 *
745 * Check to see if the necessary fragments are available, and
746 * if they are, allocate them.
747 */
748 static daddr_t
749 ffs_fragextend(ip, cg, bprev, osize, nsize)
750 struct inode *ip;
751 int cg;
752 long bprev;
753 int osize, nsize;
754 {
755 register struct fs *fs;
756 register struct cg *cgp;
757 struct buf *bp;
758 long bno;
759 int frags, bbase;
760 int i, error;
761
762 fs = ip->i_fs;
763 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
764 return (NULL);
765 frags = numfrags(fs, nsize);
766 bbase = fragnum(fs, bprev);
767 if (bbase > fragnum(fs, (bprev + frags - 1))) {
768 /* cannot extend across a block boundary */
769 return (NULL);
770 }
771 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
772 (int)fs->fs_cgsize, NOCRED, &bp);
773 if (error) {
774 brelse(bp);
775 return (NULL);
776 }
777 cgp = (struct cg *)bp->b_data;
778 if (!cg_chkmagic(cgp)) {
779 brelse(bp);
780 return (NULL);
781 }
782 cgp->cg_time = time.tv_sec;
783 bno = dtogd(fs, bprev);
784 for (i = numfrags(fs, osize); i < frags; i++)
785 if (isclr(cg_blksfree(cgp), bno + i)) {
786 brelse(bp);
787 return (NULL);
788 }
789 /*
790 * the current fragment can be extended
791 * deduct the count on fragment being extended into
792 * increase the count on the remaining fragment (if any)
793 * allocate the extended piece
794 */
795 for (i = frags; i < fs->fs_frag - bbase; i++)
796 if (isclr(cg_blksfree(cgp), bno + i))
797 break;
798 cgp->cg_frsum[i - numfrags(fs, osize)]--;
799 if (i != frags)
800 cgp->cg_frsum[i - frags]++;
801 for (i = numfrags(fs, osize); i < frags; i++) {
802 clrbit(cg_blksfree(cgp), bno + i);
803 cgp->cg_cs.cs_nffree--;
804 fs->fs_cstotal.cs_nffree--;
805 fs->fs_cs(fs, cg).cs_nffree--;
806 }
807 fs->fs_fmod = 1;
808 bdwrite(bp);
809 return (bprev);
810 }
811
812 /*
813 * Determine whether a block can be allocated.
814 *
815 * Check to see if a block of the appropriate size is available,
816 * and if it is, allocate it.
817 */
818 static daddr_t
819 ffs_alloccg(ip, cg, bpref, size)
820 struct inode *ip;
821 int cg;
822 daddr_t bpref;
823 int size;
824 {
825 register struct fs *fs;
826 register struct cg *cgp;
827 struct buf *bp;
828 register int i;
829 int error, bno, frags, allocsiz;
830
831 fs = ip->i_fs;
832 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
833 return (NULL);
834 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
835 (int)fs->fs_cgsize, NOCRED, &bp);
836 if (error) {
837 brelse(bp);
838 return (NULL);
839 }
840 cgp = (struct cg *)bp->b_data;
841 if (!cg_chkmagic(cgp) ||
842 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
843 brelse(bp);
844 return (NULL);
845 }
846 cgp->cg_time = time.tv_sec;
847 if (size == fs->fs_bsize) {
848 bno = ffs_alloccgblk(fs, cgp, bpref);
849 bdwrite(bp);
850 return (bno);
851 }
852 /*
853 * check to see if any fragments are already available
854 * allocsiz is the size which will be allocated, hacking
855 * it down to a smaller size if necessary
856 */
857 frags = numfrags(fs, size);
858 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
859 if (cgp->cg_frsum[allocsiz] != 0)
860 break;
861 if (allocsiz == fs->fs_frag) {
862 /*
863 * no fragments were available, so a block will be
864 * allocated, and hacked up
865 */
866 if (cgp->cg_cs.cs_nbfree == 0) {
867 brelse(bp);
868 return (NULL);
869 }
870 bno = ffs_alloccgblk(fs, cgp, bpref);
871 bpref = dtogd(fs, bno);
872 for (i = frags; i < fs->fs_frag; i++)
873 setbit(cg_blksfree(cgp), bpref + i);
874 i = fs->fs_frag - frags;
875 cgp->cg_cs.cs_nffree += i;
876 fs->fs_cstotal.cs_nffree += i;
877 fs->fs_cs(fs, cg).cs_nffree += i;
878 fs->fs_fmod = 1;
879 cgp->cg_frsum[i]++;
880 bdwrite(bp);
881 return (bno);
882 }
883 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
884 if (bno < 0) {
885 brelse(bp);
886 return (NULL);
887 }
888 for (i = 0; i < frags; i++)
889 clrbit(cg_blksfree(cgp), bno + i);
890 cgp->cg_cs.cs_nffree -= frags;
891 fs->fs_cstotal.cs_nffree -= frags;
892 fs->fs_cs(fs, cg).cs_nffree -= frags;
893 fs->fs_fmod = 1;
894 cgp->cg_frsum[allocsiz]--;
895 if (frags != allocsiz)
896 cgp->cg_frsum[allocsiz - frags]++;
897 bdwrite(bp);
898 return (cg * fs->fs_fpg + bno);
899 }
900
901 /*
902 * Allocate a block in a cylinder group.
903 *
904 * This algorithm implements the following policy:
905 * 1) allocate the requested block.
906 * 2) allocate a rotationally optimal block in the same cylinder.
907 * 3) allocate the next available block on the block rotor for the
908 * specified cylinder group.
909 * Note that this routine only allocates fs_bsize blocks; these
910 * blocks may be fragmented by the routine that allocates them.
911 */
912 static daddr_t
913 ffs_alloccgblk(fs, cgp, bpref)
914 register struct fs *fs;
915 register struct cg *cgp;
916 daddr_t bpref;
917 {
918 daddr_t bno, blkno;
919 int cylno, pos, delta;
920 short *cylbp;
921 register int i;
922
923 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
924 bpref = cgp->cg_rotor;
925 goto norot;
926 }
927 bpref = blknum(fs, bpref);
928 bpref = dtogd(fs, bpref);
929 /*
930 * if the requested block is available, use it
931 */
932 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
933 bno = bpref;
934 goto gotit;
935 }
936 if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
937 /*
938 * Block layout information is not available.
939 * Leaving bpref unchanged means we take the
940 * next available free block following the one
941 * we just allocated. Hopefully this will at
942 * least hit a track cache on drives of unknown
943 * geometry (e.g. SCSI).
944 */
945 goto norot;
946 }
947 /*
948 * check for a block available on the same cylinder
949 */
950 cylno = cbtocylno(fs, bpref);
951 if (cg_blktot(cgp)[cylno] == 0)
952 goto norot;
953 /*
954 * check the summary information to see if a block is
955 * available in the requested cylinder starting at the
956 * requested rotational position and proceeding around.
957 */
958 cylbp = cg_blks(fs, cgp, cylno);
959 pos = cbtorpos(fs, bpref);
960 for (i = pos; i < fs->fs_nrpos; i++)
961 if (cylbp[i] > 0)
962 break;
963 if (i == fs->fs_nrpos)
964 for (i = 0; i < pos; i++)
965 if (cylbp[i] > 0)
966 break;
967 if (cylbp[i] > 0) {
968 /*
969 * found a rotational position, now find the actual
970 * block. A panic if none is actually there.
971 */
972 pos = cylno % fs->fs_cpc;
973 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
974 if (fs_postbl(fs, pos)[i] == -1) {
975 printf("pos = %d, i = %d, fs = %s\n",
976 pos, i, fs->fs_fsmnt);
977 panic("ffs_alloccgblk: cyl groups corrupted");
978 }
979 for (i = fs_postbl(fs, pos)[i];; ) {
980 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
981 bno = blkstofrags(fs, (bno + i));
982 goto gotit;
983 }
984 delta = fs_rotbl(fs)[i];
985 if (delta <= 0 ||
986 delta + i > fragstoblks(fs, fs->fs_fpg))
987 break;
988 i += delta;
989 }
990 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
991 panic("ffs_alloccgblk: can't find blk in cyl");
992 }
993 norot:
994 /*
995 * no blocks in the requested cylinder, so take next
996 * available one in this cylinder group.
997 */
998 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
999 if (bno < 0)
1000 return (NULL);
1001 cgp->cg_rotor = bno;
1002 gotit:
1003 blkno = fragstoblks(fs, bno);
1004 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1005 ffs_clusteracct(fs, cgp, blkno, -1);
1006 cgp->cg_cs.cs_nbfree--;
1007 fs->fs_cstotal.cs_nbfree--;
1008 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1009 cylno = cbtocylno(fs, bno);
1010 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1011 cg_blktot(cgp)[cylno]--;
1012 fs->fs_fmod = 1;
1013 return (cgp->cg_cgx * fs->fs_fpg + bno);
1014 }
1015
1016 /*
1017 * Determine whether a cluster can be allocated.
1018 *
1019 * We do not currently check for optimal rotational layout if there
1020 * are multiple choices in the same cylinder group. Instead we just
1021 * take the first one that we find following bpref.
1022 */
1023 static daddr_t
1024 ffs_clusteralloc(ip, cg, bpref, len)
1025 struct inode *ip;
1026 int cg;
1027 daddr_t bpref;
1028 int len;
1029 {
1030 register struct fs *fs;
1031 register struct cg *cgp;
1032 struct buf *bp;
1033 int i, run, bno, bit, map;
1034 u_char *mapp;
1035 int32_t *lp;
1036
1037 fs = ip->i_fs;
1038 if (fs->fs_maxcluster[cg] < len)
1039 return (NULL);
1040 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1041 NOCRED, &bp))
1042 goto fail;
1043 cgp = (struct cg *)bp->b_data;
1044 if (!cg_chkmagic(cgp))
1045 goto fail;
1046 /*
1047 * Check to see if a cluster of the needed size (or bigger) is
1048 * available in this cylinder group.
1049 */
1050 lp = &cg_clustersum(cgp)[len];
1051 for (i = len; i <= fs->fs_contigsumsize; i++)
1052 if (*lp++ > 0)
1053 break;
1054 if (i > fs->fs_contigsumsize) {
1055 /*
1056 * This is the first time looking for a cluster in this
1057 * cylinder group. Update the cluster summary information
1058 * to reflect the true maximum sized cluster so that
1059 * future cluster allocation requests can avoid reading
1060 * the cylinder group map only to find no clusters.
1061 */
1062 lp = &cg_clustersum(cgp)[len - 1];
1063 for (i = len - 1; i > 0; i--)
1064 if (*lp-- > 0)
1065 break;
1066 fs->fs_maxcluster[cg] = i;
1067 goto fail;
1068 }
1069 /*
1070 * Search the cluster map to find a big enough cluster.
1071 * We take the first one that we find, even if it is larger
1072 * than we need as we prefer to get one close to the previous
1073 * block allocation. We do not search before the current
1074 * preference point as we do not want to allocate a block
1075 * that is allocated before the previous one (as we will
1076 * then have to wait for another pass of the elevator
1077 * algorithm before it will be read). We prefer to fail and
1078 * be recalled to try an allocation in the next cylinder group.
1079 */
1080 if (dtog(fs, bpref) != cg)
1081 bpref = 0;
1082 else
1083 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1084 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1085 map = *mapp++;
1086 bit = 1 << (bpref % NBBY);
1087 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1088 if ((map & bit) == 0) {
1089 run = 0;
1090 } else {
1091 run++;
1092 if (run == len)
1093 break;
1094 }
1095 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1096 bit <<= 1;
1097 } else {
1098 map = *mapp++;
1099 bit = 1;
1100 }
1101 }
1102 if (i == cgp->cg_nclusterblks)
1103 goto fail;
1104 /*
1105 * Allocate the cluster that we have found.
1106 */
1107 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1108 len = blkstofrags(fs, len);
1109 for (i = 0; i < len; i += fs->fs_frag)
1110 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1111 panic("ffs_clusteralloc: lost block");
1112 bdwrite(bp);
1113 return (bno);
1114
1115 fail:
1116 brelse(bp);
1117 return (0);
1118 }
1119
1120 /*
1121 * Determine whether an inode can be allocated.
1122 *
1123 * Check to see if an inode is available, and if it is,
1124 * allocate it using the following policy:
1125 * 1) allocate the requested inode.
1126 * 2) allocate the next available inode after the requested
1127 * inode in the specified cylinder group.
1128 */
1129 static daddr_t
1130 ffs_nodealloccg(ip, cg, ipref, mode)
1131 struct inode *ip;
1132 int cg;
1133 daddr_t ipref;
1134 int mode;
1135 {
1136 register struct fs *fs;
1137 register struct cg *cgp;
1138 struct buf *bp;
1139 int error, start, len, loc, map, i;
1140
1141 fs = ip->i_fs;
1142 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1143 return (NULL);
1144 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1145 (int)fs->fs_cgsize, NOCRED, &bp);
1146 if (error) {
1147 brelse(bp);
1148 return (NULL);
1149 }
1150 cgp = (struct cg *)bp->b_data;
1151 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1152 brelse(bp);
1153 return (NULL);
1154 }
1155 cgp->cg_time = time.tv_sec;
1156 if (ipref) {
1157 ipref %= fs->fs_ipg;
1158 if (isclr(cg_inosused(cgp), ipref))
1159 goto gotit;
1160 }
1161 start = cgp->cg_irotor / NBBY;
1162 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1163 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1164 if (loc == 0) {
1165 len = start + 1;
1166 start = 0;
1167 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1168 if (loc == 0) {
1169 printf("cg = %d, irotor = %d, fs = %s\n",
1170 cg, cgp->cg_irotor, fs->fs_fsmnt);
1171 panic("ffs_nodealloccg: map corrupted");
1172 /* NOTREACHED */
1173 }
1174 }
1175 i = start + len - loc;
1176 map = cg_inosused(cgp)[i];
1177 ipref = i * NBBY;
1178 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1179 if ((map & i) == 0) {
1180 cgp->cg_irotor = ipref;
1181 goto gotit;
1182 }
1183 }
1184 printf("fs = %s\n", fs->fs_fsmnt);
1185 panic("ffs_nodealloccg: block not in map");
1186 /* NOTREACHED */
1187 gotit:
1188 setbit(cg_inosused(cgp), ipref);
1189 cgp->cg_cs.cs_nifree--;
1190 fs->fs_cstotal.cs_nifree--;
1191 fs->fs_cs(fs, cg).cs_nifree--;
1192 fs->fs_fmod = 1;
1193 if ((mode & IFMT) == IFDIR) {
1194 cgp->cg_cs.cs_ndir++;
1195 fs->fs_cstotal.cs_ndir++;
1196 fs->fs_cs(fs, cg).cs_ndir++;
1197 }
1198 bdwrite(bp);
1199 return (cg * fs->fs_ipg + ipref);
1200 }
1201
1202 /*
1203 * Free a block or fragment.
1204 *
1205 * The specified block or fragment is placed back in the
1206 * free map. If a fragment is deallocated, a possible
1207 * block reassembly is checked.
1208 */
1209 void
1210 ffs_blkfree(ip, bno, size)
1211 register struct inode *ip;
1212 daddr_t bno;
1213 long size;
1214 {
1215 register struct fs *fs;
1216 register struct cg *cgp;
1217 struct buf *bp;
1218 daddr_t blkno;
1219 int i, error, cg, blk, frags, bbase;
1220
1221 fs = ip->i_fs;
1222 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1223 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1224 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1225 panic("blkfree: bad size");
1226 }
1227 cg = dtog(fs, bno);
1228 if ((u_int)bno >= fs->fs_size) {
1229 printf("bad block %d, ino %d\n", bno, ip->i_number);
1230 ffs_fserr(fs, ip->i_uid, "bad block");
1231 return;
1232 }
1233 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1234 (int)fs->fs_cgsize, NOCRED, &bp);
1235 if (error) {
1236 brelse(bp);
1237 return;
1238 }
1239 cgp = (struct cg *)bp->b_data;
1240 if (!cg_chkmagic(cgp)) {
1241 brelse(bp);
1242 return;
1243 }
1244 cgp->cg_time = time.tv_sec;
1245 bno = dtogd(fs, bno);
1246 if (size == fs->fs_bsize) {
1247 blkno = fragstoblks(fs, bno);
1248 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1249 printf("dev = 0x%x, block = %d, fs = %s\n",
1250 ip->i_dev, bno, fs->fs_fsmnt);
1251 panic("blkfree: freeing free block");
1252 }
1253 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1254 ffs_clusteracct(fs, cgp, blkno, 1);
1255 cgp->cg_cs.cs_nbfree++;
1256 fs->fs_cstotal.cs_nbfree++;
1257 fs->fs_cs(fs, cg).cs_nbfree++;
1258 i = cbtocylno(fs, bno);
1259 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1260 cg_blktot(cgp)[i]++;
1261 } else {
1262 bbase = bno - fragnum(fs, bno);
1263 /*
1264 * decrement the counts associated with the old frags
1265 */
1266 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1267 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1268 /*
1269 * deallocate the fragment
1270 */
1271 frags = numfrags(fs, size);
1272 for (i = 0; i < frags; i++) {
1273 if (isset(cg_blksfree(cgp), bno + i)) {
1274 printf("dev = 0x%x, block = %d, fs = %s\n",
1275 ip->i_dev, bno + i, fs->fs_fsmnt);
1276 panic("blkfree: freeing free frag");
1277 }
1278 setbit(cg_blksfree(cgp), bno + i);
1279 }
1280 cgp->cg_cs.cs_nffree += i;
1281 fs->fs_cstotal.cs_nffree += i;
1282 fs->fs_cs(fs, cg).cs_nffree += i;
1283 /*
1284 * add back in counts associated with the new frags
1285 */
1286 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1287 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1288 /*
1289 * if a complete block has been reassembled, account for it
1290 */
1291 blkno = fragstoblks(fs, bbase);
1292 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1293 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1294 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1295 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1296 ffs_clusteracct(fs, cgp, blkno, 1);
1297 cgp->cg_cs.cs_nbfree++;
1298 fs->fs_cstotal.cs_nbfree++;
1299 fs->fs_cs(fs, cg).cs_nbfree++;
1300 i = cbtocylno(fs, bbase);
1301 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1302 cg_blktot(cgp)[i]++;
1303 }
1304 }
1305 fs->fs_fmod = 1;
1306 bdwrite(bp);
1307 }
1308
1309 /*
1310 * Free an inode.
1311 *
1312 * The specified inode is placed back in the free map.
1313 */
1314 int
1315 ffs_vfree(v)
1316 void *v;
1317 {
1318 struct vop_vfree_args /* {
1319 struct vnode *a_pvp;
1320 ino_t a_ino;
1321 int a_mode;
1322 } */ *ap = v;
1323 register struct fs *fs;
1324 register struct cg *cgp;
1325 register struct inode *pip;
1326 ino_t ino = ap->a_ino;
1327 struct buf *bp;
1328 int error, cg;
1329
1330 pip = VTOI(ap->a_pvp);
1331 fs = pip->i_fs;
1332 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1333 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1334 pip->i_dev, ino, fs->fs_fsmnt);
1335 cg = ino_to_cg(fs, ino);
1336 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1337 (int)fs->fs_cgsize, NOCRED, &bp);
1338 if (error) {
1339 brelse(bp);
1340 return (0);
1341 }
1342 cgp = (struct cg *)bp->b_data;
1343 if (!cg_chkmagic(cgp)) {
1344 brelse(bp);
1345 return (0);
1346 }
1347 cgp->cg_time = time.tv_sec;
1348 ino %= fs->fs_ipg;
1349 if (isclr(cg_inosused(cgp), ino)) {
1350 printf("dev = 0x%x, ino = %d, fs = %s\n",
1351 pip->i_dev, ino, fs->fs_fsmnt);
1352 if (fs->fs_ronly == 0)
1353 panic("ifree: freeing free inode");
1354 }
1355 clrbit(cg_inosused(cgp), ino);
1356 if (ino < cgp->cg_irotor)
1357 cgp->cg_irotor = ino;
1358 cgp->cg_cs.cs_nifree++;
1359 fs->fs_cstotal.cs_nifree++;
1360 fs->fs_cs(fs, cg).cs_nifree++;
1361 if ((ap->a_mode & IFMT) == IFDIR) {
1362 cgp->cg_cs.cs_ndir--;
1363 fs->fs_cstotal.cs_ndir--;
1364 fs->fs_cs(fs, cg).cs_ndir--;
1365 }
1366 fs->fs_fmod = 1;
1367 bdwrite(bp);
1368 return (0);
1369 }
1370
1371 /*
1372 * Find a block of the specified size in the specified cylinder group.
1373 *
1374 * It is a panic if a request is made to find a block if none are
1375 * available.
1376 */
1377 static daddr_t
1378 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1379 register struct fs *fs;
1380 register struct cg *cgp;
1381 daddr_t bpref;
1382 int allocsiz;
1383 {
1384 daddr_t bno;
1385 int start, len, loc, i;
1386 int blk, field, subfield, pos;
1387
1388 /*
1389 * find the fragment by searching through the free block
1390 * map for an appropriate bit pattern
1391 */
1392 if (bpref)
1393 start = dtogd(fs, bpref) / NBBY;
1394 else
1395 start = cgp->cg_frotor / NBBY;
1396 len = howmany(fs->fs_fpg, NBBY) - start;
1397 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1398 (u_char *)fragtbl[fs->fs_frag],
1399 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1400 if (loc == 0) {
1401 len = start + 1;
1402 start = 0;
1403 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1404 (u_char *)fragtbl[fs->fs_frag],
1405 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1406 if (loc == 0) {
1407 printf("start = %d, len = %d, fs = %s\n",
1408 start, len, fs->fs_fsmnt);
1409 panic("ffs_alloccg: map corrupted");
1410 /* NOTREACHED */
1411 }
1412 }
1413 bno = (start + len - loc) * NBBY;
1414 cgp->cg_frotor = bno;
1415 /*
1416 * found the byte in the map
1417 * sift through the bits to find the selected frag
1418 */
1419 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1420 blk = blkmap(fs, cg_blksfree(cgp), bno);
1421 blk <<= 1;
1422 field = around[allocsiz];
1423 subfield = inside[allocsiz];
1424 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1425 if ((blk & field) == subfield)
1426 return (bno + pos);
1427 field <<= 1;
1428 subfield <<= 1;
1429 }
1430 }
1431 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1432 panic("ffs_alloccg: block not in map");
1433 return (-1);
1434 }
1435
1436 /*
1437 * Update the cluster map because of an allocation or free.
1438 *
1439 * Cnt == 1 means free; cnt == -1 means allocating.
1440 */
1441 void
1442 ffs_clusteracct(fs, cgp, blkno, cnt)
1443 struct fs *fs;
1444 struct cg *cgp;
1445 daddr_t blkno;
1446 int cnt;
1447 {
1448 int32_t *sump;
1449 int32_t *lp;
1450 u_char *freemapp, *mapp;
1451 int i, start, end, forw, back, map, bit;
1452
1453 if (fs->fs_contigsumsize <= 0)
1454 return;
1455 freemapp = cg_clustersfree(cgp);
1456 sump = cg_clustersum(cgp);
1457 /*
1458 * Allocate or clear the actual block.
1459 */
1460 if (cnt > 0)
1461 setbit(freemapp, blkno);
1462 else
1463 clrbit(freemapp, blkno);
1464 /*
1465 * Find the size of the cluster going forward.
1466 */
1467 start = blkno + 1;
1468 end = start + fs->fs_contigsumsize;
1469 if (end >= cgp->cg_nclusterblks)
1470 end = cgp->cg_nclusterblks;
1471 mapp = &freemapp[start / NBBY];
1472 map = *mapp++;
1473 bit = 1 << (start % NBBY);
1474 for (i = start; i < end; i++) {
1475 if ((map & bit) == 0)
1476 break;
1477 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1478 bit <<= 1;
1479 } else {
1480 map = *mapp++;
1481 bit = 1;
1482 }
1483 }
1484 forw = i - start;
1485 /*
1486 * Find the size of the cluster going backward.
1487 */
1488 start = blkno - 1;
1489 end = start - fs->fs_contigsumsize;
1490 if (end < 0)
1491 end = -1;
1492 mapp = &freemapp[start / NBBY];
1493 map = *mapp--;
1494 bit = 1 << (start % NBBY);
1495 for (i = start; i > end; i--) {
1496 if ((map & bit) == 0)
1497 break;
1498 if ((i & (NBBY - 1)) != 0) {
1499 bit >>= 1;
1500 } else {
1501 map = *mapp--;
1502 bit = 1 << (NBBY - 1);
1503 }
1504 }
1505 back = start - i;
1506 /*
1507 * Account for old cluster and the possibly new forward and
1508 * back clusters.
1509 */
1510 i = back + forw + 1;
1511 if (i > fs->fs_contigsumsize)
1512 i = fs->fs_contigsumsize;
1513 sump[i] += cnt;
1514 if (back > 0)
1515 sump[back] -= cnt;
1516 if (forw > 0)
1517 sump[forw] -= cnt;
1518 /*
1519 * Update cluster summary information.
1520 */
1521 lp = &sump[fs->fs_contigsumsize];
1522 for (i = fs->fs_contigsumsize; i > 0; i--)
1523 if (*lp-- > 0)
1524 break;
1525 fs->fs_maxcluster[cgp->cg_cgx] = i;
1526 }
1527
1528 /*
1529 * Fserr prints the name of a file system with an error diagnostic.
1530 *
1531 * The form of the error message is:
1532 * fs: error message
1533 */
1534 static void
1535 ffs_fserr(fs, uid, cp)
1536 struct fs *fs;
1537 u_int uid;
1538 char *cp;
1539 {
1540
1541 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1542 }
1543