ffs_alloc.c revision 1.152 1 /* $NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $");
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #include "opt_uvm_page_trkown.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/buf.h>
84 #include <sys/cprng.h>
85 #include <sys/fstrans.h>
86 #include <sys/kauth.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/proc.h>
90 #include <sys/syslog.h>
91 #include <sys/vnode.h>
92 #include <sys/wapbl.h>
93 #include <sys/cprng.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <ufs/ufs/quota.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/ufs_extern.h>
100 #include <ufs/ufs/ufs_bswap.h>
101 #include <ufs/ufs/ufs_wapbl.h>
102
103 #include <ufs/ffs/fs.h>
104 #include <ufs/ffs/ffs_extern.h>
105
106 #ifdef UVM_PAGE_TRKOWN
107 #include <uvm/uvm.h>
108 #endif
109
110 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
111 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
112 static ino_t ffs_dirpref(struct inode *);
113 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
114 static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
115 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
116 daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
117 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
118 static int32_t ffs_mapsearch(struct fs *, struct cg *,
119 daddr_t, int);
120 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
121 daddr_t, long, bool);
122 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
123 int, bool);
124
125 /* if 1, changes in optimalization strategy are logged */
126 int ffs_log_changeopt = 0;
127
128 /* in ffs_tables.c */
129 extern const int inside[], around[];
130 extern const u_char * const fragtbl[];
131
132 /* Basic consistency check for block allocations */
133 static int
134 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
135 long size, dev_t dev, ino_t inum)
136 {
137 if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
138 ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
139 printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
140 "size = %ld, fs = %s\n",
141 (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
142 panic("%s: bad size", func);
143 }
144
145 if (bno >= fs->fs_size) {
146 printf("bad block %" PRId64 ", ino %llu\n", bno,
147 (unsigned long long)inum);
148 ffs_fserr(fs, NOCRED, "bad block");
149 return EINVAL;
150 }
151 return 0;
152 }
153
154 /*
155 * Allocate a block in the file system.
156 *
157 * The size of the requested block is given, which must be some
158 * multiple of fs_fsize and <= fs_bsize.
159 * A preference may be optionally specified. If a preference is given
160 * the following hierarchy is used to allocate a block:
161 * 1) allocate the requested block.
162 * 2) allocate a rotationally optimal block in the same cylinder.
163 * 3) allocate a block in the same cylinder group.
164 * 4) quadradically rehash into other cylinder groups, until an
165 * available block is located.
166 * If no block preference is given the following hierarchy is used
167 * to allocate a block:
168 * 1) allocate a block in the cylinder group that contains the
169 * inode for the file.
170 * 2) quadradically rehash into other cylinder groups, until an
171 * available block is located.
172 *
173 * => called with um_lock held
174 * => releases um_lock before returning
175 */
176 int
177 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
178 int flags, kauth_cred_t cred, daddr_t *bnp)
179 {
180 struct ufsmount *ump;
181 struct fs *fs;
182 daddr_t bno;
183 int cg;
184 #if defined(QUOTA) || defined(QUOTA2)
185 int error;
186 #endif
187
188 fs = ip->i_fs;
189 ump = ip->i_ump;
190
191 KASSERT(mutex_owned(&ump->um_lock));
192
193 #ifdef UVM_PAGE_TRKOWN
194
195 /*
196 * Sanity-check that allocations within the file size
197 * do not allow other threads to read the stale contents
198 * of newly allocated blocks.
199 * Usually pages will exist to cover the new allocation.
200 * There is an optimization in ffs_write() where we skip
201 * creating pages if several conditions are met:
202 * - the file must not be mapped (in any user address space).
203 * - the write must cover whole pages and whole blocks.
204 * If those conditions are not met then pages must exist and
205 * be locked by the current thread.
206 */
207
208 if (ITOV(ip)->v_type == VREG &&
209 ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
210 struct vm_page *pg;
211 struct vnode *vp = ITOV(ip);
212 struct uvm_object *uobj = &vp->v_uobj;
213 voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
214 voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
215
216 mutex_enter(uobj->vmobjlock);
217 while (off < endoff) {
218 pg = uvm_pagelookup(uobj, off);
219 KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
220 (size & PAGE_MASK) == 0 &&
221 ffs_blkoff(fs, size) == 0) ||
222 (pg != NULL && pg->owner == curproc->p_pid &&
223 pg->lowner == curlwp->l_lid));
224 off += PAGE_SIZE;
225 }
226 mutex_exit(uobj->vmobjlock);
227 }
228 #endif
229
230 *bnp = 0;
231 #ifdef DIAGNOSTIC
232 if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
233 printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
234 (unsigned long long)ip->i_dev, fs->fs_bsize, size,
235 fs->fs_fsmnt);
236 panic("ffs_alloc: bad size");
237 }
238 if (cred == NOCRED)
239 panic("ffs_alloc: missing credential");
240 #endif /* DIAGNOSTIC */
241 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
242 goto nospace;
243 if (freespace(fs, fs->fs_minfree) <= 0 &&
244 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
245 NULL, NULL) != 0)
246 goto nospace;
247 #if defined(QUOTA) || defined(QUOTA2)
248 mutex_exit(&ump->um_lock);
249 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
250 return (error);
251 mutex_enter(&ump->um_lock);
252 #endif
253
254 if (bpref >= fs->fs_size)
255 bpref = 0;
256 if (bpref == 0)
257 cg = ino_to_cg(fs, ip->i_number);
258 else
259 cg = dtog(fs, bpref);
260 bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
261 if (bno > 0) {
262 DIP_ADD(ip, blocks, btodb(size));
263 ip->i_flag |= IN_CHANGE | IN_UPDATE;
264 *bnp = bno;
265 return (0);
266 }
267 #if defined(QUOTA) || defined(QUOTA2)
268 /*
269 * Restore user's disk quota because allocation failed.
270 */
271 (void) chkdq(ip, -btodb(size), cred, FORCE);
272 #endif
273 if (flags & B_CONTIG) {
274 /*
275 * XXX ump->um_lock handling is "suspect" at best.
276 * For the case where ffs_hashalloc() fails early
277 * in the B_CONTIG case we reach here with um_lock
278 * already unlocked, so we can't release it again
279 * like in the normal error path. See kern/39206.
280 *
281 *
282 * Fail silently - it's up to our caller to report
283 * errors.
284 */
285 return (ENOSPC);
286 }
287 nospace:
288 mutex_exit(&ump->um_lock);
289 ffs_fserr(fs, cred, "file system full");
290 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
291 return (ENOSPC);
292 }
293
294 /*
295 * Reallocate a fragment to a bigger size
296 *
297 * The number and size of the old block is given, and a preference
298 * and new size is also specified. The allocator attempts to extend
299 * the original block. Failing that, the regular block allocator is
300 * invoked to get an appropriate block.
301 *
302 * => called with um_lock held
303 * => return with um_lock released
304 */
305 int
306 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
307 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
308 {
309 struct ufsmount *ump;
310 struct fs *fs;
311 struct buf *bp;
312 int cg, request, error;
313 daddr_t bprev, bno;
314
315 fs = ip->i_fs;
316 ump = ip->i_ump;
317
318 KASSERT(mutex_owned(&ump->um_lock));
319
320 #ifdef UVM_PAGE_TRKOWN
321
322 /*
323 * Sanity-check that allocations within the file size
324 * do not allow other threads to read the stale contents
325 * of newly allocated blocks.
326 * Unlike in ffs_alloc(), here pages must always exist
327 * for such allocations, because only the last block of a file
328 * can be a fragment and ffs_write() will reallocate the
329 * fragment to the new size using ufs_balloc_range(),
330 * which always creates pages to cover blocks it allocates.
331 */
332
333 if (ITOV(ip)->v_type == VREG) {
334 struct vm_page *pg;
335 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
336 voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
337 voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
338
339 mutex_enter(uobj->vmobjlock);
340 while (off < endoff) {
341 pg = uvm_pagelookup(uobj, off);
342 KASSERT(pg->owner == curproc->p_pid &&
343 pg->lowner == curlwp->l_lid);
344 off += PAGE_SIZE;
345 }
346 mutex_exit(uobj->vmobjlock);
347 }
348 #endif
349
350 #ifdef DIAGNOSTIC
351 if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
352 (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
353 printf(
354 "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
355 (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
356 fs->fs_fsmnt);
357 panic("ffs_realloccg: bad size");
358 }
359 if (cred == NOCRED)
360 panic("ffs_realloccg: missing credential");
361 #endif /* DIAGNOSTIC */
362 if (freespace(fs, fs->fs_minfree) <= 0 &&
363 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
364 NULL, NULL) != 0) {
365 mutex_exit(&ump->um_lock);
366 goto nospace;
367 }
368 if (fs->fs_magic == FS_UFS2_MAGIC)
369 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
370 else
371 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
372
373 if (bprev == 0) {
374 printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
375 (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
376 fs->fs_fsmnt);
377 panic("ffs_realloccg: bad bprev");
378 }
379 mutex_exit(&ump->um_lock);
380
381 /*
382 * Allocate the extra space in the buffer.
383 */
384 if (bpp != NULL &&
385 (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
386 return (error);
387 }
388 #if defined(QUOTA) || defined(QUOTA2)
389 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
390 if (bpp != NULL) {
391 brelse(bp, 0);
392 }
393 return (error);
394 }
395 #endif
396 /*
397 * Check for extension in the existing location.
398 */
399 cg = dtog(fs, bprev);
400 mutex_enter(&ump->um_lock);
401 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
402 DIP_ADD(ip, blocks, btodb(nsize - osize));
403 ip->i_flag |= IN_CHANGE | IN_UPDATE;
404
405 if (bpp != NULL) {
406 if (bp->b_blkno != FFS_FSBTODB(fs, bno))
407 panic("bad blockno");
408 allocbuf(bp, nsize, 1);
409 memset((char *)bp->b_data + osize, 0, nsize - osize);
410 mutex_enter(bp->b_objlock);
411 KASSERT(!cv_has_waiters(&bp->b_done));
412 bp->b_oflags |= BO_DONE;
413 mutex_exit(bp->b_objlock);
414 *bpp = bp;
415 }
416 if (blknop != NULL) {
417 *blknop = bno;
418 }
419 return (0);
420 }
421 /*
422 * Allocate a new disk location.
423 */
424 if (bpref >= fs->fs_size)
425 bpref = 0;
426 switch ((int)fs->fs_optim) {
427 case FS_OPTSPACE:
428 /*
429 * Allocate an exact sized fragment. Although this makes
430 * best use of space, we will waste time relocating it if
431 * the file continues to grow. If the fragmentation is
432 * less than half of the minimum free reserve, we choose
433 * to begin optimizing for time.
434 */
435 request = nsize;
436 if (fs->fs_minfree < 5 ||
437 fs->fs_cstotal.cs_nffree >
438 fs->fs_dsize * fs->fs_minfree / (2 * 100))
439 break;
440
441 if (ffs_log_changeopt) {
442 log(LOG_NOTICE,
443 "%s: optimization changed from SPACE to TIME\n",
444 fs->fs_fsmnt);
445 }
446
447 fs->fs_optim = FS_OPTTIME;
448 break;
449 case FS_OPTTIME:
450 /*
451 * At this point we have discovered a file that is trying to
452 * grow a small fragment to a larger fragment. To save time,
453 * we allocate a full sized block, then free the unused portion.
454 * If the file continues to grow, the `ffs_fragextend' call
455 * above will be able to grow it in place without further
456 * copying. If aberrant programs cause disk fragmentation to
457 * grow within 2% of the free reserve, we choose to begin
458 * optimizing for space.
459 */
460 request = fs->fs_bsize;
461 if (fs->fs_cstotal.cs_nffree <
462 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
463 break;
464
465 if (ffs_log_changeopt) {
466 log(LOG_NOTICE,
467 "%s: optimization changed from TIME to SPACE\n",
468 fs->fs_fsmnt);
469 }
470
471 fs->fs_optim = FS_OPTSPACE;
472 break;
473 default:
474 printf("dev = 0x%llx, optim = %d, fs = %s\n",
475 (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
476 panic("ffs_realloccg: bad optim");
477 /* NOTREACHED */
478 }
479 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
480 if (bno > 0) {
481 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
482 (ITOV(ip)->v_type != VREG)) {
483 UFS_WAPBL_REGISTER_DEALLOCATION(
484 ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
485 osize);
486 } else {
487 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
488 ip->i_number);
489 }
490 DIP_ADD(ip, blocks, btodb(nsize - osize));
491 ip->i_flag |= IN_CHANGE | IN_UPDATE;
492 if (bpp != NULL) {
493 bp->b_blkno = FFS_FSBTODB(fs, bno);
494 allocbuf(bp, nsize, 1);
495 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
496 mutex_enter(bp->b_objlock);
497 KASSERT(!cv_has_waiters(&bp->b_done));
498 bp->b_oflags |= BO_DONE;
499 mutex_exit(bp->b_objlock);
500 *bpp = bp;
501 }
502 if (blknop != NULL) {
503 *blknop = bno;
504 }
505 return (0);
506 }
507 mutex_exit(&ump->um_lock);
508
509 #if defined(QUOTA) || defined(QUOTA2)
510 /*
511 * Restore user's disk quota because allocation failed.
512 */
513 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
514 #endif
515 if (bpp != NULL) {
516 brelse(bp, 0);
517 }
518
519 nospace:
520 /*
521 * no space available
522 */
523 ffs_fserr(fs, cred, "file system full");
524 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
525 return (ENOSPC);
526 }
527
528 /*
529 * Allocate an inode in the file system.
530 *
531 * If allocating a directory, use ffs_dirpref to select the inode.
532 * If allocating in a directory, the following hierarchy is followed:
533 * 1) allocate the preferred inode.
534 * 2) allocate an inode in the same cylinder group.
535 * 3) quadradically rehash into other cylinder groups, until an
536 * available inode is located.
537 * If no inode preference is given the following hierarchy is used
538 * to allocate an inode:
539 * 1) allocate an inode in cylinder group 0.
540 * 2) quadradically rehash into other cylinder groups, until an
541 * available inode is located.
542 *
543 * => um_lock not held upon entry or return
544 */
545 int
546 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
547 {
548 struct ufsmount *ump;
549 struct inode *pip;
550 struct fs *fs;
551 ino_t ino, ipref;
552 int cg, error;
553
554 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
555
556 pip = VTOI(pvp);
557 fs = pip->i_fs;
558 ump = pip->i_ump;
559
560 error = UFS_WAPBL_BEGIN(pvp->v_mount);
561 if (error) {
562 return error;
563 }
564 mutex_enter(&ump->um_lock);
565 if (fs->fs_cstotal.cs_nifree == 0)
566 goto noinodes;
567
568 if ((mode & IFMT) == IFDIR)
569 ipref = ffs_dirpref(pip);
570 else
571 ipref = pip->i_number;
572 if (ipref >= fs->fs_ncg * fs->fs_ipg)
573 ipref = 0;
574 cg = ino_to_cg(fs, ipref);
575 /*
576 * Track number of dirs created one after another
577 * in a same cg without intervening by files.
578 */
579 if ((mode & IFMT) == IFDIR) {
580 if (fs->fs_contigdirs[cg] < 255)
581 fs->fs_contigdirs[cg]++;
582 } else {
583 if (fs->fs_contigdirs[cg] > 0)
584 fs->fs_contigdirs[cg]--;
585 }
586 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
587 if (ino == 0)
588 goto noinodes;
589 UFS_WAPBL_END(pvp->v_mount);
590 *inop = ino;
591 return 0;
592
593 noinodes:
594 mutex_exit(&ump->um_lock);
595 UFS_WAPBL_END(pvp->v_mount);
596 ffs_fserr(fs, cred, "out of inodes");
597 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
598 return ENOSPC;
599 }
600
601 /*
602 * Find a cylinder group in which to place a directory.
603 *
604 * The policy implemented by this algorithm is to allocate a
605 * directory inode in the same cylinder group as its parent
606 * directory, but also to reserve space for its files inodes
607 * and data. Restrict the number of directories which may be
608 * allocated one after another in the same cylinder group
609 * without intervening allocation of files.
610 *
611 * If we allocate a first level directory then force allocation
612 * in another cylinder group.
613 */
614 static ino_t
615 ffs_dirpref(struct inode *pip)
616 {
617 register struct fs *fs;
618 int cg, prefcg;
619 int64_t dirsize, cgsize, curdsz;
620 int avgifree, avgbfree, avgndir;
621 int minifree, minbfree, maxndir;
622 int mincg, minndir;
623 int maxcontigdirs;
624
625 KASSERT(mutex_owned(&pip->i_ump->um_lock));
626
627 fs = pip->i_fs;
628
629 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
630 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
631 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
632
633 /*
634 * Force allocation in another cg if creating a first level dir.
635 */
636 if (ITOV(pip)->v_vflag & VV_ROOT) {
637 prefcg = cprng_fast32() % fs->fs_ncg;
638 mincg = prefcg;
639 minndir = fs->fs_ipg;
640 for (cg = prefcg; cg < fs->fs_ncg; cg++)
641 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
642 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
643 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
644 mincg = cg;
645 minndir = fs->fs_cs(fs, cg).cs_ndir;
646 }
647 for (cg = 0; cg < prefcg; cg++)
648 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
649 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
650 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
651 mincg = cg;
652 minndir = fs->fs_cs(fs, cg).cs_ndir;
653 }
654 return ((ino_t)(fs->fs_ipg * mincg));
655 }
656
657 /*
658 * Count various limits which used for
659 * optimal allocation of a directory inode.
660 * Try cylinder groups with >75% avgifree and avgbfree.
661 * Avoid cylinder groups with no free blocks or inodes as that
662 * triggers an I/O-expensive cylinder group scan.
663 */
664 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
665 minifree = avgifree - avgifree / 4;
666 if (minifree < 1)
667 minifree = 1;
668 minbfree = avgbfree - avgbfree / 4;
669 if (minbfree < 1)
670 minbfree = 1;
671 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
672 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
673 if (avgndir != 0) {
674 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
675 if (dirsize < curdsz)
676 dirsize = curdsz;
677 }
678 if (cgsize < dirsize * 255)
679 maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
680 else
681 maxcontigdirs = 255;
682 if (fs->fs_avgfpdir > 0)
683 maxcontigdirs = min(maxcontigdirs,
684 fs->fs_ipg / fs->fs_avgfpdir);
685 if (maxcontigdirs == 0)
686 maxcontigdirs = 1;
687
688 /*
689 * Limit number of dirs in one cg and reserve space for
690 * regular files, but only if we have no deficit in
691 * inodes or space.
692 */
693 prefcg = ino_to_cg(fs, pip->i_number);
694 for (cg = prefcg; cg < fs->fs_ncg; cg++)
695 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
696 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
697 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
698 if (fs->fs_contigdirs[cg] < maxcontigdirs)
699 return ((ino_t)(fs->fs_ipg * cg));
700 }
701 for (cg = 0; cg < prefcg; cg++)
702 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
703 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
704 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
705 if (fs->fs_contigdirs[cg] < maxcontigdirs)
706 return ((ino_t)(fs->fs_ipg * cg));
707 }
708 /*
709 * This is a backstop when we are deficient in space.
710 */
711 for (cg = prefcg; cg < fs->fs_ncg; cg++)
712 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
713 return ((ino_t)(fs->fs_ipg * cg));
714 for (cg = 0; cg < prefcg; cg++)
715 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
716 break;
717 return ((ino_t)(fs->fs_ipg * cg));
718 }
719
720 /*
721 * Select the desired position for the next block in a file. The file is
722 * logically divided into sections. The first section is composed of the
723 * direct blocks. Each additional section contains fs_maxbpg blocks.
724 *
725 * If no blocks have been allocated in the first section, the policy is to
726 * request a block in the same cylinder group as the inode that describes
727 * the file. If no blocks have been allocated in any other section, the
728 * policy is to place the section in a cylinder group with a greater than
729 * average number of free blocks. An appropriate cylinder group is found
730 * by using a rotor that sweeps the cylinder groups. When a new group of
731 * blocks is needed, the sweep begins in the cylinder group following the
732 * cylinder group from which the previous allocation was made. The sweep
733 * continues until a cylinder group with greater than the average number
734 * of free blocks is found. If the allocation is for the first block in an
735 * indirect block, the information on the previous allocation is unavailable;
736 * here a best guess is made based upon the logical block number being
737 * allocated.
738 *
739 * If a section is already partially allocated, the policy is to
740 * contiguously allocate fs_maxcontig blocks. The end of one of these
741 * contiguous blocks and the beginning of the next is laid out
742 * contigously if possible.
743 *
744 * => um_lock held on entry and exit
745 */
746 daddr_t
747 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
748 int32_t *bap /* XXX ondisk32 */)
749 {
750 struct fs *fs;
751 int cg;
752 int avgbfree, startcg;
753
754 KASSERT(mutex_owned(&ip->i_ump->um_lock));
755
756 fs = ip->i_fs;
757
758 /*
759 * If allocating a contiguous file with B_CONTIG, use the hints
760 * in the inode extentions to return the desired block.
761 *
762 * For metadata (indirect blocks) return the address of where
763 * the first indirect block resides - we'll scan for the next
764 * available slot if we need to allocate more than one indirect
765 * block. For data, return the address of the actual block
766 * relative to the address of the first data block.
767 */
768 if (flags & B_CONTIG) {
769 KASSERT(ip->i_ffs_first_data_blk != 0);
770 KASSERT(ip->i_ffs_first_indir_blk != 0);
771 if (flags & B_METAONLY)
772 return ip->i_ffs_first_indir_blk;
773 else
774 return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
775 }
776
777 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
778 if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
779 cg = ino_to_cg(fs, ip->i_number);
780 return (cgbase(fs, cg) + fs->fs_frag);
781 }
782 /*
783 * Find a cylinder with greater than average number of
784 * unused data blocks.
785 */
786 if (indx == 0 || bap[indx - 1] == 0)
787 startcg =
788 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
789 else
790 startcg = dtog(fs,
791 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
792 startcg %= fs->fs_ncg;
793 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
794 for (cg = startcg; cg < fs->fs_ncg; cg++)
795 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
796 return (cgbase(fs, cg) + fs->fs_frag);
797 }
798 for (cg = 0; cg < startcg; cg++)
799 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
800 return (cgbase(fs, cg) + fs->fs_frag);
801 }
802 return (0);
803 }
804 /*
805 * We just always try to lay things out contiguously.
806 */
807 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
808 }
809
810 daddr_t
811 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
812 int64_t *bap)
813 {
814 struct fs *fs;
815 int cg;
816 int avgbfree, startcg;
817
818 KASSERT(mutex_owned(&ip->i_ump->um_lock));
819
820 fs = ip->i_fs;
821
822 /*
823 * If allocating a contiguous file with B_CONTIG, use the hints
824 * in the inode extentions to return the desired block.
825 *
826 * For metadata (indirect blocks) return the address of where
827 * the first indirect block resides - we'll scan for the next
828 * available slot if we need to allocate more than one indirect
829 * block. For data, return the address of the actual block
830 * relative to the address of the first data block.
831 */
832 if (flags & B_CONTIG) {
833 KASSERT(ip->i_ffs_first_data_blk != 0);
834 KASSERT(ip->i_ffs_first_indir_blk != 0);
835 if (flags & B_METAONLY)
836 return ip->i_ffs_first_indir_blk;
837 else
838 return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
839 }
840
841 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
842 if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
843 cg = ino_to_cg(fs, ip->i_number);
844 return (cgbase(fs, cg) + fs->fs_frag);
845 }
846 /*
847 * Find a cylinder with greater than average number of
848 * unused data blocks.
849 */
850 if (indx == 0 || bap[indx - 1] == 0)
851 startcg =
852 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
853 else
854 startcg = dtog(fs,
855 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
856 startcg %= fs->fs_ncg;
857 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
858 for (cg = startcg; cg < fs->fs_ncg; cg++)
859 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 return (cgbase(fs, cg) + fs->fs_frag);
861 }
862 for (cg = 0; cg < startcg; cg++)
863 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
864 return (cgbase(fs, cg) + fs->fs_frag);
865 }
866 return (0);
867 }
868 /*
869 * We just always try to lay things out contiguously.
870 */
871 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
872 }
873
874
875 /*
876 * Implement the cylinder overflow algorithm.
877 *
878 * The policy implemented by this algorithm is:
879 * 1) allocate the block in its requested cylinder group.
880 * 2) quadradically rehash on the cylinder group number.
881 * 3) brute force search for a free block.
882 *
883 * => called with um_lock held
884 * => returns with um_lock released on success, held on failure
885 * (*allocator releases lock on success, retains lock on failure)
886 */
887 /*VARARGS5*/
888 static daddr_t
889 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
890 int size /* size for data blocks, mode for inodes */,
891 int realsize,
892 int flags,
893 daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
894 {
895 struct fs *fs;
896 daddr_t result;
897 int i, icg = cg;
898
899 fs = ip->i_fs;
900 /*
901 * 1: preferred cylinder group
902 */
903 result = (*allocator)(ip, cg, pref, size, realsize, flags);
904 if (result)
905 return (result);
906
907 if (flags & B_CONTIG)
908 return (result);
909 /*
910 * 2: quadratic rehash
911 */
912 for (i = 1; i < fs->fs_ncg; i *= 2) {
913 cg += i;
914 if (cg >= fs->fs_ncg)
915 cg -= fs->fs_ncg;
916 result = (*allocator)(ip, cg, 0, size, realsize, flags);
917 if (result)
918 return (result);
919 }
920 /*
921 * 3: brute force search
922 * Note that we start at i == 2, since 0 was checked initially,
923 * and 1 is always checked in the quadratic rehash.
924 */
925 cg = (icg + 2) % fs->fs_ncg;
926 for (i = 2; i < fs->fs_ncg; i++) {
927 result = (*allocator)(ip, cg, 0, size, realsize, flags);
928 if (result)
929 return (result);
930 cg++;
931 if (cg == fs->fs_ncg)
932 cg = 0;
933 }
934 return (0);
935 }
936
937 /*
938 * Determine whether a fragment can be extended.
939 *
940 * Check to see if the necessary fragments are available, and
941 * if they are, allocate them.
942 *
943 * => called with um_lock held
944 * => returns with um_lock released on success, held on failure
945 */
946 static daddr_t
947 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
948 {
949 struct ufsmount *ump;
950 struct fs *fs;
951 struct cg *cgp;
952 struct buf *bp;
953 daddr_t bno;
954 int frags, bbase;
955 int i, error;
956 u_int8_t *blksfree;
957
958 fs = ip->i_fs;
959 ump = ip->i_ump;
960
961 KASSERT(mutex_owned(&ump->um_lock));
962
963 if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
964 return (0);
965 frags = ffs_numfrags(fs, nsize);
966 bbase = ffs_fragnum(fs, bprev);
967 if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
968 /* cannot extend across a block boundary */
969 return (0);
970 }
971 mutex_exit(&ump->um_lock);
972 error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
973 (int)fs->fs_cgsize, B_MODIFY, &bp);
974 if (error)
975 goto fail;
976 cgp = (struct cg *)bp->b_data;
977 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
978 goto fail;
979 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
980 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
981 (fs->fs_old_flags & FS_FLAGS_UPDATED))
982 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
983 bno = dtogd(fs, bprev);
984 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
985 for (i = ffs_numfrags(fs, osize); i < frags; i++)
986 if (isclr(blksfree, bno + i))
987 goto fail;
988 /*
989 * the current fragment can be extended
990 * deduct the count on fragment being extended into
991 * increase the count on the remaining fragment (if any)
992 * allocate the extended piece
993 */
994 for (i = frags; i < fs->fs_frag - bbase; i++)
995 if (isclr(blksfree, bno + i))
996 break;
997 ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
998 if (i != frags)
999 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1000 mutex_enter(&ump->um_lock);
1001 for (i = ffs_numfrags(fs, osize); i < frags; i++) {
1002 clrbit(blksfree, bno + i);
1003 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1004 fs->fs_cstotal.cs_nffree--;
1005 fs->fs_cs(fs, cg).cs_nffree--;
1006 }
1007 fs->fs_fmod = 1;
1008 ACTIVECG_CLR(fs, cg);
1009 mutex_exit(&ump->um_lock);
1010 bdwrite(bp);
1011 return (bprev);
1012
1013 fail:
1014 if (bp != NULL)
1015 brelse(bp, 0);
1016 mutex_enter(&ump->um_lock);
1017 return (0);
1018 }
1019
1020 /*
1021 * Determine whether a block can be allocated.
1022 *
1023 * Check to see if a block of the appropriate size is available,
1024 * and if it is, allocate it.
1025 */
1026 static daddr_t
1027 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
1028 int flags)
1029 {
1030 struct ufsmount *ump;
1031 struct fs *fs = ip->i_fs;
1032 struct cg *cgp;
1033 struct buf *bp;
1034 int32_t bno;
1035 daddr_t blkno;
1036 int error, frags, allocsiz, i;
1037 u_int8_t *blksfree;
1038 const int needswap = UFS_FSNEEDSWAP(fs);
1039
1040 ump = ip->i_ump;
1041
1042 KASSERT(mutex_owned(&ump->um_lock));
1043
1044 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1045 return (0);
1046 mutex_exit(&ump->um_lock);
1047 error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1048 (int)fs->fs_cgsize, B_MODIFY, &bp);
1049 if (error)
1050 goto fail;
1051 cgp = (struct cg *)bp->b_data;
1052 if (!cg_chkmagic(cgp, needswap) ||
1053 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1054 goto fail;
1055 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1056 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1057 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1058 cgp->cg_time = ufs_rw64(time_second, needswap);
1059 if (size == fs->fs_bsize) {
1060 mutex_enter(&ump->um_lock);
1061 blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1062 ACTIVECG_CLR(fs, cg);
1063 mutex_exit(&ump->um_lock);
1064
1065 /*
1066 * If actually needed size is lower, free the extra blocks now.
1067 * This is safe to call here, there is no outside reference
1068 * to this block yet. It is not necessary to keep um_lock
1069 * locked.
1070 */
1071 if (realsize != 0 && realsize < size) {
1072 ffs_blkfree_common(ip->i_ump, ip->i_fs,
1073 ip->i_devvp->v_rdev,
1074 bp, blkno + ffs_numfrags(fs, realsize),
1075 (long)(size - realsize), false);
1076 }
1077
1078 bdwrite(bp);
1079 return (blkno);
1080 }
1081 /*
1082 * check to see if any fragments are already available
1083 * allocsiz is the size which will be allocated, hacking
1084 * it down to a smaller size if necessary
1085 */
1086 blksfree = cg_blksfree(cgp, needswap);
1087 frags = ffs_numfrags(fs, size);
1088 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1089 if (cgp->cg_frsum[allocsiz] != 0)
1090 break;
1091 if (allocsiz == fs->fs_frag) {
1092 /*
1093 * no fragments were available, so a block will be
1094 * allocated, and hacked up
1095 */
1096 if (cgp->cg_cs.cs_nbfree == 0)
1097 goto fail;
1098 mutex_enter(&ump->um_lock);
1099 blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1100 bno = dtogd(fs, blkno);
1101 for (i = frags; i < fs->fs_frag; i++)
1102 setbit(blksfree, bno + i);
1103 i = fs->fs_frag - frags;
1104 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1105 fs->fs_cstotal.cs_nffree += i;
1106 fs->fs_cs(fs, cg).cs_nffree += i;
1107 fs->fs_fmod = 1;
1108 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1109 ACTIVECG_CLR(fs, cg);
1110 mutex_exit(&ump->um_lock);
1111 bdwrite(bp);
1112 return (blkno);
1113 }
1114 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1115 #if 0
1116 /*
1117 * XXX fvdl mapsearch will panic, and never return -1
1118 * also: returning NULL as daddr_t ?
1119 */
1120 if (bno < 0)
1121 goto fail;
1122 #endif
1123 for (i = 0; i < frags; i++)
1124 clrbit(blksfree, bno + i);
1125 mutex_enter(&ump->um_lock);
1126 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1127 fs->fs_cstotal.cs_nffree -= frags;
1128 fs->fs_cs(fs, cg).cs_nffree -= frags;
1129 fs->fs_fmod = 1;
1130 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1131 if (frags != allocsiz)
1132 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1133 blkno = cgbase(fs, cg) + bno;
1134 ACTIVECG_CLR(fs, cg);
1135 mutex_exit(&ump->um_lock);
1136 bdwrite(bp);
1137 return blkno;
1138
1139 fail:
1140 if (bp != NULL)
1141 brelse(bp, 0);
1142 mutex_enter(&ump->um_lock);
1143 return (0);
1144 }
1145
1146 /*
1147 * Allocate a block in a cylinder group.
1148 *
1149 * This algorithm implements the following policy:
1150 * 1) allocate the requested block.
1151 * 2) allocate a rotationally optimal block in the same cylinder.
1152 * 3) allocate the next available block on the block rotor for the
1153 * specified cylinder group.
1154 * Note that this routine only allocates fs_bsize blocks; these
1155 * blocks may be fragmented by the routine that allocates them.
1156 */
1157 static daddr_t
1158 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
1159 int flags)
1160 {
1161 struct fs *fs = ip->i_fs;
1162 struct cg *cgp;
1163 int cg;
1164 daddr_t blkno;
1165 int32_t bno;
1166 u_int8_t *blksfree;
1167 const int needswap = UFS_FSNEEDSWAP(fs);
1168
1169 KASSERT(mutex_owned(&ip->i_ump->um_lock));
1170
1171 cgp = (struct cg *)bp->b_data;
1172 blksfree = cg_blksfree(cgp, needswap);
1173 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1174 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1175 } else {
1176 bpref = ffs_blknum(fs, bpref);
1177 bno = dtogd(fs, bpref);
1178 /*
1179 * if the requested block is available, use it
1180 */
1181 if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
1182 goto gotit;
1183 /*
1184 * if the requested data block isn't available and we are
1185 * trying to allocate a contiguous file, return an error.
1186 */
1187 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1188 return (0);
1189 }
1190
1191 /*
1192 * Take the next available block in this cylinder group.
1193 */
1194 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1195 #if 0
1196 /*
1197 * XXX jdolecek ffs_mapsearch() succeeds or panics
1198 */
1199 if (bno < 0)
1200 return (0);
1201 #endif
1202 cgp->cg_rotor = ufs_rw32(bno, needswap);
1203 gotit:
1204 blkno = ffs_fragstoblks(fs, bno);
1205 ffs_clrblock(fs, blksfree, blkno);
1206 ffs_clusteracct(fs, cgp, blkno, -1);
1207 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1208 fs->fs_cstotal.cs_nbfree--;
1209 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1210 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1211 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1212 int cylno;
1213 cylno = old_cbtocylno(fs, bno);
1214 KASSERT(cylno >= 0);
1215 KASSERT(cylno < fs->fs_old_ncyl);
1216 KASSERT(old_cbtorpos(fs, bno) >= 0);
1217 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1218 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1219 needswap);
1220 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1221 }
1222 fs->fs_fmod = 1;
1223 cg = ufs_rw32(cgp->cg_cgx, needswap);
1224 blkno = cgbase(fs, cg) + bno;
1225 return (blkno);
1226 }
1227
1228 /*
1229 * Determine whether an inode can be allocated.
1230 *
1231 * Check to see if an inode is available, and if it is,
1232 * allocate it using the following policy:
1233 * 1) allocate the requested inode.
1234 * 2) allocate the next available inode after the requested
1235 * inode in the specified cylinder group.
1236 */
1237 static daddr_t
1238 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
1239 int flags)
1240 {
1241 struct ufsmount *ump = ip->i_ump;
1242 struct fs *fs = ip->i_fs;
1243 struct cg *cgp;
1244 struct buf *bp, *ibp;
1245 u_int8_t *inosused;
1246 int error, start, len, loc, map, i;
1247 int32_t initediblk;
1248 daddr_t nalloc;
1249 struct ufs2_dinode *dp2;
1250 const int needswap = UFS_FSNEEDSWAP(fs);
1251
1252 KASSERT(mutex_owned(&ump->um_lock));
1253 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1254
1255 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1256 return (0);
1257 mutex_exit(&ump->um_lock);
1258 ibp = NULL;
1259 initediblk = -1;
1260 retry:
1261 error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1262 (int)fs->fs_cgsize, B_MODIFY, &bp);
1263 if (error)
1264 goto fail;
1265 cgp = (struct cg *)bp->b_data;
1266 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1267 goto fail;
1268
1269 if (ibp != NULL &&
1270 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1271 /* Another thread allocated more inodes so we retry the test. */
1272 brelse(ibp, 0);
1273 ibp = NULL;
1274 }
1275 /*
1276 * Check to see if we need to initialize more inodes.
1277 */
1278 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1279 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1280 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1281 if (nalloc + FFS_INOPB(fs) > initediblk &&
1282 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1283 /*
1284 * We have to release the cg buffer here to prevent
1285 * a deadlock when reading the inode block will
1286 * run a copy-on-write that might use this cg.
1287 */
1288 brelse(bp, 0);
1289 bp = NULL;
1290 error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
1291 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1292 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1293 if (error)
1294 goto fail;
1295 goto retry;
1296 }
1297 }
1298
1299 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1300 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1301 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1302 cgp->cg_time = ufs_rw64(time_second, needswap);
1303 inosused = cg_inosused(cgp, needswap);
1304 if (ipref) {
1305 ipref %= fs->fs_ipg;
1306 if (isclr(inosused, ipref))
1307 goto gotit;
1308 }
1309 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1310 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1311 NBBY);
1312 loc = skpc(0xff, len, &inosused[start]);
1313 if (loc == 0) {
1314 len = start + 1;
1315 start = 0;
1316 loc = skpc(0xff, len, &inosused[0]);
1317 if (loc == 0) {
1318 printf("cg = %d, irotor = %d, fs = %s\n",
1319 cg, ufs_rw32(cgp->cg_irotor, needswap),
1320 fs->fs_fsmnt);
1321 panic("ffs_nodealloccg: map corrupted");
1322 /* NOTREACHED */
1323 }
1324 }
1325 i = start + len - loc;
1326 map = inosused[i] ^ 0xff;
1327 if (map == 0) {
1328 printf("fs = %s\n", fs->fs_fsmnt);
1329 panic("ffs_nodealloccg: block not in map");
1330 }
1331 ipref = i * NBBY + ffs(map) - 1;
1332 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1333 gotit:
1334 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1335 mode);
1336 /*
1337 * Check to see if we need to initialize more inodes.
1338 */
1339 if (ibp != NULL) {
1340 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1341 memset(ibp->b_data, 0, fs->fs_bsize);
1342 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1343 for (i = 0; i < FFS_INOPB(fs); i++) {
1344 /*
1345 * Don't bother to swap, it's supposed to be
1346 * random, after all.
1347 */
1348 dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1349 dp2++;
1350 }
1351 initediblk += FFS_INOPB(fs);
1352 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1353 }
1354
1355 mutex_enter(&ump->um_lock);
1356 ACTIVECG_CLR(fs, cg);
1357 setbit(inosused, ipref);
1358 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1359 fs->fs_cstotal.cs_nifree--;
1360 fs->fs_cs(fs, cg).cs_nifree--;
1361 fs->fs_fmod = 1;
1362 if ((mode & IFMT) == IFDIR) {
1363 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1364 fs->fs_cstotal.cs_ndir++;
1365 fs->fs_cs(fs, cg).cs_ndir++;
1366 }
1367 mutex_exit(&ump->um_lock);
1368 if (ibp != NULL) {
1369 bwrite(bp);
1370 bawrite(ibp);
1371 } else
1372 bdwrite(bp);
1373 return (cg * fs->fs_ipg + ipref);
1374 fail:
1375 if (bp != NULL)
1376 brelse(bp, 0);
1377 if (ibp != NULL)
1378 brelse(ibp, 0);
1379 mutex_enter(&ump->um_lock);
1380 return (0);
1381 }
1382
1383 /*
1384 * Allocate a block or fragment.
1385 *
1386 * The specified block or fragment is removed from the
1387 * free map, possibly fragmenting a block in the process.
1388 *
1389 * This implementation should mirror fs_blkfree
1390 *
1391 * => um_lock not held on entry or exit
1392 */
1393 int
1394 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1395 {
1396 int error;
1397
1398 error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1399 ip->i_dev, ip->i_uid);
1400 if (error)
1401 return error;
1402
1403 return ffs_blkalloc_ump(ip->i_ump, bno, size);
1404 }
1405
1406 int
1407 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1408 {
1409 struct fs *fs = ump->um_fs;
1410 struct cg *cgp;
1411 struct buf *bp;
1412 int32_t fragno, cgbno;
1413 int i, error, cg, blk, frags, bbase;
1414 u_int8_t *blksfree;
1415 const int needswap = UFS_FSNEEDSWAP(fs);
1416
1417 KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
1418 ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
1419 KASSERT(bno < fs->fs_size);
1420
1421 cg = dtog(fs, bno);
1422 error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1423 (int)fs->fs_cgsize, B_MODIFY, &bp);
1424 if (error) {
1425 return error;
1426 }
1427 cgp = (struct cg *)bp->b_data;
1428 if (!cg_chkmagic(cgp, needswap)) {
1429 brelse(bp, 0);
1430 return EIO;
1431 }
1432 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1433 cgp->cg_time = ufs_rw64(time_second, needswap);
1434 cgbno = dtogd(fs, bno);
1435 blksfree = cg_blksfree(cgp, needswap);
1436
1437 mutex_enter(&ump->um_lock);
1438 if (size == fs->fs_bsize) {
1439 fragno = ffs_fragstoblks(fs, cgbno);
1440 if (!ffs_isblock(fs, blksfree, fragno)) {
1441 mutex_exit(&ump->um_lock);
1442 brelse(bp, 0);
1443 return EBUSY;
1444 }
1445 ffs_clrblock(fs, blksfree, fragno);
1446 ffs_clusteracct(fs, cgp, fragno, -1);
1447 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1448 fs->fs_cstotal.cs_nbfree--;
1449 fs->fs_cs(fs, cg).cs_nbfree--;
1450 } else {
1451 bbase = cgbno - ffs_fragnum(fs, cgbno);
1452
1453 frags = ffs_numfrags(fs, size);
1454 for (i = 0; i < frags; i++) {
1455 if (isclr(blksfree, cgbno + i)) {
1456 mutex_exit(&ump->um_lock);
1457 brelse(bp, 0);
1458 return EBUSY;
1459 }
1460 }
1461 /*
1462 * if a complete block is being split, account for it
1463 */
1464 fragno = ffs_fragstoblks(fs, bbase);
1465 if (ffs_isblock(fs, blksfree, fragno)) {
1466 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1467 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1468 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1469 ffs_clusteracct(fs, cgp, fragno, -1);
1470 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1471 fs->fs_cstotal.cs_nbfree--;
1472 fs->fs_cs(fs, cg).cs_nbfree--;
1473 }
1474 /*
1475 * decrement the counts associated with the old frags
1476 */
1477 blk = blkmap(fs, blksfree, bbase);
1478 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1479 /*
1480 * allocate the fragment
1481 */
1482 for (i = 0; i < frags; i++) {
1483 clrbit(blksfree, cgbno + i);
1484 }
1485 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1486 fs->fs_cstotal.cs_nffree -= i;
1487 fs->fs_cs(fs, cg).cs_nffree -= i;
1488 /*
1489 * add back in counts associated with the new frags
1490 */
1491 blk = blkmap(fs, blksfree, bbase);
1492 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1493 }
1494 fs->fs_fmod = 1;
1495 ACTIVECG_CLR(fs, cg);
1496 mutex_exit(&ump->um_lock);
1497 bdwrite(bp);
1498 return 0;
1499 }
1500
1501 /*
1502 * Free a block or fragment.
1503 *
1504 * The specified block or fragment is placed back in the
1505 * free map. If a fragment is deallocated, a possible
1506 * block reassembly is checked.
1507 *
1508 * => um_lock not held on entry or exit
1509 */
1510 static void
1511 ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
1512 {
1513 struct cg *cgp;
1514 struct buf *bp;
1515 struct ufsmount *ump;
1516 daddr_t cgblkno;
1517 int error, cg;
1518 dev_t dev;
1519 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1520 const int needswap = UFS_FSNEEDSWAP(fs);
1521
1522 KASSERT(!devvp_is_snapshot);
1523
1524 cg = dtog(fs, bno);
1525 dev = devvp->v_rdev;
1526 ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1527 KASSERT(fs == ump->um_fs);
1528 cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
1529
1530 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1531 B_MODIFY, &bp);
1532 if (error) {
1533 return;
1534 }
1535 cgp = (struct cg *)bp->b_data;
1536 if (!cg_chkmagic(cgp, needswap)) {
1537 brelse(bp, 0);
1538 return;
1539 }
1540
1541 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1542
1543 bdwrite(bp);
1544 }
1545
1546 struct discardopdata {
1547 struct work wk; /* must be first */
1548 struct vnode *devvp;
1549 daddr_t bno;
1550 long size;
1551 };
1552
1553 struct discarddata {
1554 struct fs *fs;
1555 struct discardopdata *entry;
1556 long maxsize;
1557 kmutex_t entrylk;
1558 struct workqueue *wq;
1559 int wqcnt, wqdraining;
1560 kmutex_t wqlk;
1561 kcondvar_t wqcv;
1562 /* timer for flush? */
1563 };
1564
1565 static void
1566 ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
1567 {
1568 struct mount *mp = spec_node_getmountedfs(td->devvp);
1569 long todo;
1570 int error;
1571
1572 while (td->size) {
1573 todo = min(td->size,
1574 ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
1575 error = UFS_WAPBL_BEGIN(mp);
1576 if (error) {
1577 printf("ffs: failed to begin wapbl transaction"
1578 " for discard: %d\n", error);
1579 break;
1580 }
1581 ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
1582 UFS_WAPBL_END(mp);
1583 td->bno += ffs_numfrags(fs, todo);
1584 td->size -= todo;
1585 }
1586 }
1587
1588 static void
1589 ffs_discardcb(struct work *wk, void *arg)
1590 {
1591 struct discardopdata *td = (void *)wk;
1592 struct discarddata *ts = arg;
1593 struct fs *fs = ts->fs;
1594 off_t start, len;
1595 #ifdef TRIMDEBUG
1596 int error;
1597 #endif
1598
1599 /* like FSBTODB but emits bytes; XXX move to fs.h */
1600 #ifndef FFS_FSBTOBYTES
1601 #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
1602 #endif
1603
1604 start = FFS_FSBTOBYTES(fs, td->bno);
1605 len = td->size;
1606 #ifdef TRIMDEBUG
1607 error =
1608 #endif
1609 VOP_FDISCARD(td->devvp, start, len);
1610 #ifdef TRIMDEBUG
1611 printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
1612 #endif
1613
1614 ffs_blkfree_td(fs, td);
1615 kmem_free(td, sizeof(*td));
1616 mutex_enter(&ts->wqlk);
1617 ts->wqcnt--;
1618 if (ts->wqdraining && !ts->wqcnt)
1619 cv_signal(&ts->wqcv);
1620 mutex_exit(&ts->wqlk);
1621 }
1622
1623 void *
1624 ffs_discard_init(struct vnode *devvp, struct fs *fs)
1625 {
1626 struct discarddata *ts;
1627 int error;
1628
1629 ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
1630 error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
1631 0, 0, 0);
1632 if (error) {
1633 kmem_free(ts, sizeof (*ts));
1634 return NULL;
1635 }
1636 mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
1637 mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
1638 cv_init(&ts->wqcv, "trimwqcv");
1639 ts->maxsize = 100*1024; /* XXX */
1640 ts->fs = fs;
1641 return ts;
1642 }
1643
1644 void
1645 ffs_discard_finish(void *vts, int flags)
1646 {
1647 struct discarddata *ts = vts;
1648 struct discardopdata *td = NULL;
1649 int res = 0;
1650
1651 /* wait for workqueue to drain */
1652 mutex_enter(&ts->wqlk);
1653 if (ts->wqcnt) {
1654 ts->wqdraining = 1;
1655 res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
1656 }
1657 mutex_exit(&ts->wqlk);
1658 if (res)
1659 printf("ffs_discarddata drain timeout\n");
1660
1661 mutex_enter(&ts->entrylk);
1662 if (ts->entry) {
1663 td = ts->entry;
1664 ts->entry = NULL;
1665 }
1666 mutex_exit(&ts->entrylk);
1667 if (td) {
1668 /* XXX don't tell disk, its optional */
1669 ffs_blkfree_td(ts->fs, td);
1670 #ifdef TRIMDEBUG
1671 printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
1672 #endif
1673 kmem_free(td, sizeof(*td));
1674 }
1675
1676 cv_destroy(&ts->wqcv);
1677 mutex_destroy(&ts->entrylk);
1678 mutex_destroy(&ts->wqlk);
1679 workqueue_destroy(ts->wq);
1680 kmem_free(ts, sizeof(*ts));
1681 }
1682
1683 void
1684 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1685 ino_t inum)
1686 {
1687 struct ufsmount *ump;
1688 int error;
1689 dev_t dev;
1690 struct discarddata *ts;
1691 struct discardopdata *td;
1692
1693 dev = devvp->v_rdev;
1694 ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1695 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1696 return;
1697
1698 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1699 if (error)
1700 return;
1701
1702 if (!ump->um_discarddata) {
1703 ffs_blkfree_cg(fs, devvp, bno, size);
1704 return;
1705 }
1706
1707 #ifdef TRIMDEBUG
1708 printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
1709 #endif
1710 ts = ump->um_discarddata;
1711 td = NULL;
1712
1713 mutex_enter(&ts->entrylk);
1714 if (ts->entry) {
1715 td = ts->entry;
1716 /* ffs deallocs backwards, check for prepend only */
1717 if (td->bno == bno + ffs_numfrags(fs, size)
1718 && td->size + size <= ts->maxsize) {
1719 td->bno = bno;
1720 td->size += size;
1721 if (td->size < ts->maxsize) {
1722 #ifdef TRIMDEBUG
1723 printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1724 #endif
1725 mutex_exit(&ts->entrylk);
1726 return;
1727 }
1728 size = 0; /* mark done */
1729 }
1730 ts->entry = NULL;
1731 }
1732 mutex_exit(&ts->entrylk);
1733
1734 if (td) {
1735 #ifdef TRIMDEBUG
1736 printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
1737 #endif
1738 mutex_enter(&ts->wqlk);
1739 ts->wqcnt++;
1740 mutex_exit(&ts->wqlk);
1741 workqueue_enqueue(ts->wq, &td->wk, NULL);
1742 }
1743 if (!size)
1744 return;
1745
1746 td = kmem_alloc(sizeof(*td), KM_SLEEP);
1747 td->devvp = devvp;
1748 td->bno = bno;
1749 td->size = size;
1750
1751 if (td->size < ts->maxsize) { /* XXX always the case */
1752 mutex_enter(&ts->entrylk);
1753 if (!ts->entry) { /* possible race? */
1754 #ifdef TRIMDEBUG
1755 printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1756 #endif
1757 ts->entry = td;
1758 td = NULL;
1759 }
1760 mutex_exit(&ts->entrylk);
1761 }
1762 if (td) {
1763 #ifdef TRIMDEBUG
1764 printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
1765 #endif
1766 mutex_enter(&ts->wqlk);
1767 ts->wqcnt++;
1768 mutex_exit(&ts->wqlk);
1769 workqueue_enqueue(ts->wq, &td->wk, NULL);
1770 }
1771 }
1772
1773 /*
1774 * Free a block or fragment from a snapshot cg copy.
1775 *
1776 * The specified block or fragment is placed back in the
1777 * free map. If a fragment is deallocated, a possible
1778 * block reassembly is checked.
1779 *
1780 * => um_lock not held on entry or exit
1781 */
1782 void
1783 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1784 ino_t inum)
1785 {
1786 struct cg *cgp;
1787 struct buf *bp;
1788 struct ufsmount *ump;
1789 daddr_t cgblkno;
1790 int error, cg;
1791 dev_t dev;
1792 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1793 const int needswap = UFS_FSNEEDSWAP(fs);
1794
1795 KASSERT(devvp_is_snapshot);
1796
1797 cg = dtog(fs, bno);
1798 dev = VTOI(devvp)->i_devvp->v_rdev;
1799 ump = VFSTOUFS(devvp->v_mount);
1800 cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
1801
1802 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1803 if (error)
1804 return;
1805
1806 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1807 B_MODIFY, &bp);
1808 if (error) {
1809 return;
1810 }
1811 cgp = (struct cg *)bp->b_data;
1812 if (!cg_chkmagic(cgp, needswap)) {
1813 brelse(bp, 0);
1814 return;
1815 }
1816
1817 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1818
1819 bdwrite(bp);
1820 }
1821
1822 static void
1823 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1824 struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1825 {
1826 struct cg *cgp;
1827 int32_t fragno, cgbno;
1828 int i, cg, blk, frags, bbase;
1829 u_int8_t *blksfree;
1830 const int needswap = UFS_FSNEEDSWAP(fs);
1831
1832 cg = dtog(fs, bno);
1833 cgp = (struct cg *)bp->b_data;
1834 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1835 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1836 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1837 cgp->cg_time = ufs_rw64(time_second, needswap);
1838 cgbno = dtogd(fs, bno);
1839 blksfree = cg_blksfree(cgp, needswap);
1840 mutex_enter(&ump->um_lock);
1841 if (size == fs->fs_bsize) {
1842 fragno = ffs_fragstoblks(fs, cgbno);
1843 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1844 if (devvp_is_snapshot) {
1845 mutex_exit(&ump->um_lock);
1846 return;
1847 }
1848 printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1849 (unsigned long long)dev, bno, fs->fs_fsmnt);
1850 panic("blkfree: freeing free block");
1851 }
1852 ffs_setblock(fs, blksfree, fragno);
1853 ffs_clusteracct(fs, cgp, fragno, 1);
1854 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1855 fs->fs_cstotal.cs_nbfree++;
1856 fs->fs_cs(fs, cg).cs_nbfree++;
1857 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1858 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1859 i = old_cbtocylno(fs, cgbno);
1860 KASSERT(i >= 0);
1861 KASSERT(i < fs->fs_old_ncyl);
1862 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1863 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1864 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1865 needswap);
1866 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1867 }
1868 } else {
1869 bbase = cgbno - ffs_fragnum(fs, cgbno);
1870 /*
1871 * decrement the counts associated with the old frags
1872 */
1873 blk = blkmap(fs, blksfree, bbase);
1874 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1875 /*
1876 * deallocate the fragment
1877 */
1878 frags = ffs_numfrags(fs, size);
1879 for (i = 0; i < frags; i++) {
1880 if (isset(blksfree, cgbno + i)) {
1881 printf("dev = 0x%llx, block = %" PRId64
1882 ", fs = %s\n",
1883 (unsigned long long)dev, bno + i,
1884 fs->fs_fsmnt);
1885 panic("blkfree: freeing free frag");
1886 }
1887 setbit(blksfree, cgbno + i);
1888 }
1889 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1890 fs->fs_cstotal.cs_nffree += i;
1891 fs->fs_cs(fs, cg).cs_nffree += i;
1892 /*
1893 * add back in counts associated with the new frags
1894 */
1895 blk = blkmap(fs, blksfree, bbase);
1896 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1897 /*
1898 * if a complete block has been reassembled, account for it
1899 */
1900 fragno = ffs_fragstoblks(fs, bbase);
1901 if (ffs_isblock(fs, blksfree, fragno)) {
1902 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1903 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1904 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1905 ffs_clusteracct(fs, cgp, fragno, 1);
1906 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1907 fs->fs_cstotal.cs_nbfree++;
1908 fs->fs_cs(fs, cg).cs_nbfree++;
1909 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1910 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1911 i = old_cbtocylno(fs, bbase);
1912 KASSERT(i >= 0);
1913 KASSERT(i < fs->fs_old_ncyl);
1914 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1915 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1916 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1917 bbase)], 1, needswap);
1918 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1919 }
1920 }
1921 }
1922 fs->fs_fmod = 1;
1923 ACTIVECG_CLR(fs, cg);
1924 mutex_exit(&ump->um_lock);
1925 }
1926
1927 /*
1928 * Free an inode.
1929 */
1930 int
1931 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1932 {
1933
1934 return ffs_freefile(vp->v_mount, ino, mode);
1935 }
1936
1937 /*
1938 * Do the actual free operation.
1939 * The specified inode is placed back in the free map.
1940 *
1941 * => um_lock not held on entry or exit
1942 */
1943 int
1944 ffs_freefile(struct mount *mp, ino_t ino, int mode)
1945 {
1946 struct ufsmount *ump = VFSTOUFS(mp);
1947 struct fs *fs = ump->um_fs;
1948 struct vnode *devvp;
1949 struct cg *cgp;
1950 struct buf *bp;
1951 int error, cg;
1952 daddr_t cgbno;
1953 dev_t dev;
1954 const int needswap = UFS_FSNEEDSWAP(fs);
1955
1956 cg = ino_to_cg(fs, ino);
1957 devvp = ump->um_devvp;
1958 dev = devvp->v_rdev;
1959 cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
1960
1961 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1962 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1963 (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1964 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1965 B_MODIFY, &bp);
1966 if (error) {
1967 return (error);
1968 }
1969 cgp = (struct cg *)bp->b_data;
1970 if (!cg_chkmagic(cgp, needswap)) {
1971 brelse(bp, 0);
1972 return (0);
1973 }
1974
1975 ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1976
1977 bdwrite(bp);
1978
1979 return 0;
1980 }
1981
1982 int
1983 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1984 {
1985 struct ufsmount *ump;
1986 struct cg *cgp;
1987 struct buf *bp;
1988 int error, cg;
1989 daddr_t cgbno;
1990 dev_t dev;
1991 const int needswap = UFS_FSNEEDSWAP(fs);
1992
1993 KASSERT(devvp->v_type != VBLK);
1994
1995 cg = ino_to_cg(fs, ino);
1996 dev = VTOI(devvp)->i_devvp->v_rdev;
1997 ump = VFSTOUFS(devvp->v_mount);
1998 cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
1999 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2000 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
2001 (unsigned long long)dev, (unsigned long long)ino,
2002 fs->fs_fsmnt);
2003 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2004 B_MODIFY, &bp);
2005 if (error) {
2006 return (error);
2007 }
2008 cgp = (struct cg *)bp->b_data;
2009 if (!cg_chkmagic(cgp, needswap)) {
2010 brelse(bp, 0);
2011 return (0);
2012 }
2013 ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
2014
2015 bdwrite(bp);
2016
2017 return 0;
2018 }
2019
2020 static void
2021 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
2022 struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
2023 {
2024 int cg;
2025 struct cg *cgp;
2026 u_int8_t *inosused;
2027 const int needswap = UFS_FSNEEDSWAP(fs);
2028
2029 cg = ino_to_cg(fs, ino);
2030 cgp = (struct cg *)bp->b_data;
2031 cgp->cg_old_time = ufs_rw32(time_second, needswap);
2032 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2033 (fs->fs_old_flags & FS_FLAGS_UPDATED))
2034 cgp->cg_time = ufs_rw64(time_second, needswap);
2035 inosused = cg_inosused(cgp, needswap);
2036 ino %= fs->fs_ipg;
2037 if (isclr(inosused, ino)) {
2038 printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
2039 (unsigned long long)dev, (unsigned long long)ino +
2040 cg * fs->fs_ipg, fs->fs_fsmnt);
2041 if (fs->fs_ronly == 0)
2042 panic("ifree: freeing free inode");
2043 }
2044 clrbit(inosused, ino);
2045 if (!devvp_is_snapshot)
2046 UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
2047 ino + cg * fs->fs_ipg, mode);
2048 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2049 cgp->cg_irotor = ufs_rw32(ino, needswap);
2050 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2051 mutex_enter(&ump->um_lock);
2052 fs->fs_cstotal.cs_nifree++;
2053 fs->fs_cs(fs, cg).cs_nifree++;
2054 if ((mode & IFMT) == IFDIR) {
2055 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2056 fs->fs_cstotal.cs_ndir--;
2057 fs->fs_cs(fs, cg).cs_ndir--;
2058 }
2059 fs->fs_fmod = 1;
2060 ACTIVECG_CLR(fs, cg);
2061 mutex_exit(&ump->um_lock);
2062 }
2063
2064 /*
2065 * Check to see if a file is free.
2066 */
2067 int
2068 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2069 {
2070 struct cg *cgp;
2071 struct buf *bp;
2072 daddr_t cgbno;
2073 int ret, cg;
2074 u_int8_t *inosused;
2075 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
2076
2077 KASSERT(devvp_is_snapshot);
2078
2079 cg = ino_to_cg(fs, ino);
2080 if (devvp_is_snapshot)
2081 cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
2082 else
2083 cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
2084 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2085 return 1;
2086 if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
2087 return 1;
2088 }
2089 cgp = (struct cg *)bp->b_data;
2090 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2091 brelse(bp, 0);
2092 return 1;
2093 }
2094 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2095 ino %= fs->fs_ipg;
2096 ret = isclr(inosused, ino);
2097 brelse(bp, 0);
2098 return ret;
2099 }
2100
2101 /*
2102 * Find a block of the specified size in the specified cylinder group.
2103 *
2104 * It is a panic if a request is made to find a block if none are
2105 * available.
2106 */
2107 static int32_t
2108 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2109 {
2110 int32_t bno;
2111 int start, len, loc, i;
2112 int blk, field, subfield, pos;
2113 int ostart, olen;
2114 u_int8_t *blksfree;
2115 const int needswap = UFS_FSNEEDSWAP(fs);
2116
2117 /* KASSERT(mutex_owned(&ump->um_lock)); */
2118
2119 /*
2120 * find the fragment by searching through the free block
2121 * map for an appropriate bit pattern
2122 */
2123 if (bpref)
2124 start = dtogd(fs, bpref) / NBBY;
2125 else
2126 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2127 blksfree = cg_blksfree(cgp, needswap);
2128 len = howmany(fs->fs_fpg, NBBY) - start;
2129 ostart = start;
2130 olen = len;
2131 loc = scanc((u_int)len,
2132 (const u_char *)&blksfree[start],
2133 (const u_char *)fragtbl[fs->fs_frag],
2134 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2135 if (loc == 0) {
2136 len = start + 1;
2137 start = 0;
2138 loc = scanc((u_int)len,
2139 (const u_char *)&blksfree[0],
2140 (const u_char *)fragtbl[fs->fs_frag],
2141 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2142 if (loc == 0) {
2143 printf("start = %d, len = %d, fs = %s\n",
2144 ostart, olen, fs->fs_fsmnt);
2145 printf("offset=%d %ld\n",
2146 ufs_rw32(cgp->cg_freeoff, needswap),
2147 (long)blksfree - (long)cgp);
2148 printf("cg %d\n", cgp->cg_cgx);
2149 panic("ffs_alloccg: map corrupted");
2150 /* NOTREACHED */
2151 }
2152 }
2153 bno = (start + len - loc) * NBBY;
2154 cgp->cg_frotor = ufs_rw32(bno, needswap);
2155 /*
2156 * found the byte in the map
2157 * sift through the bits to find the selected frag
2158 */
2159 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2160 blk = blkmap(fs, blksfree, bno);
2161 blk <<= 1;
2162 field = around[allocsiz];
2163 subfield = inside[allocsiz];
2164 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2165 if ((blk & field) == subfield)
2166 return (bno + pos);
2167 field <<= 1;
2168 subfield <<= 1;
2169 }
2170 }
2171 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2172 panic("ffs_alloccg: block not in map");
2173 /* return (-1); */
2174 }
2175
2176 /*
2177 * Fserr prints the name of a file system with an error diagnostic.
2178 *
2179 * The form of the error message is:
2180 * fs: error message
2181 */
2182 static void
2183 ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
2184 {
2185 KASSERT(cred != NULL);
2186
2187 if (cred == NOCRED || cred == FSCRED) {
2188 log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
2189 curproc->p_pid, curproc->p_comm,
2190 fs->fs_fsmnt, cp);
2191 } else {
2192 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2193 kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
2194 fs->fs_fsmnt, cp);
2195 }
2196 }
2197