Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.154
      1 /*	$NetBSD: ffs_alloc.c,v 1.154 2016/10/30 15:01:46 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Copyright (c) 1982, 1986, 1989, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.154 2016/10/30 15:01:46 christos Exp $");
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ffs.h"
     77 #include "opt_quota.h"
     78 #include "opt_uvm_page_trkown.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/buf.h>
     84 #include <sys/cprng.h>
     85 #include <sys/fstrans.h>
     86 #include <sys/kauth.h>
     87 #include <sys/kernel.h>
     88 #include <sys/mount.h>
     89 #include <sys/proc.h>
     90 #include <sys/syslog.h>
     91 #include <sys/vnode.h>
     92 #include <sys/wapbl.h>
     93 #include <sys/cprng.h>
     94 
     95 #include <miscfs/specfs/specdev.h>
     96 #include <ufs/ufs/quota.h>
     97 #include <ufs/ufs/ufsmount.h>
     98 #include <ufs/ufs/inode.h>
     99 #include <ufs/ufs/ufs_extern.h>
    100 #include <ufs/ufs/ufs_bswap.h>
    101 #include <ufs/ufs/ufs_wapbl.h>
    102 
    103 #include <ufs/ffs/fs.h>
    104 #include <ufs/ffs/ffs_extern.h>
    105 
    106 #ifdef UVM_PAGE_TRKOWN
    107 #include <uvm/uvm.h>
    108 #endif
    109 
    110 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    111 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    112 static ino_t ffs_dirpref(struct inode *);
    113 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    114 static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    116     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    117 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    118 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119 				      daddr_t, int);
    120 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121     daddr_t, long, bool);
    122 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123     int, bool);
    124 
    125 /* if 1, changes in optimalization strategy are logged */
    126 int ffs_log_changeopt = 0;
    127 
    128 /* in ffs_tables.c */
    129 extern const int inside[], around[];
    130 extern const u_char * const fragtbl[];
    131 
    132 /* Basic consistency check for block allocations */
    133 static int
    134 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135     long size, dev_t dev, ino_t inum)
    136 {
    137 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    140 		    " bsize = %d, size = %ld, fs = %s", func,
    141 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142 	}
    143 
    144 	if (bno >= fs->fs_size) {
    145 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    146 		    (unsigned long long)inum);
    147 		ffs_fserr(fs, NOCRED, "bad block");
    148 		return EINVAL;
    149 	}
    150 	return 0;
    151 }
    152 
    153 /*
    154  * Allocate a block in the file system.
    155  *
    156  * The size of the requested block is given, which must be some
    157  * multiple of fs_fsize and <= fs_bsize.
    158  * A preference may be optionally specified. If a preference is given
    159  * the following hierarchy is used to allocate a block:
    160  *   1) allocate the requested block.
    161  *   2) allocate a rotationally optimal block in the same cylinder.
    162  *   3) allocate a block in the same cylinder group.
    163  *   4) quadradically rehash into other cylinder groups, until an
    164  *      available block is located.
    165  * If no block preference is given the following hierarchy is used
    166  * to allocate a block:
    167  *   1) allocate a block in the cylinder group that contains the
    168  *      inode for the file.
    169  *   2) quadradically rehash into other cylinder groups, until an
    170  *      available block is located.
    171  *
    172  * => called with um_lock held
    173  * => releases um_lock before returning
    174  */
    175 int
    176 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    177     int flags, kauth_cred_t cred, daddr_t *bnp)
    178 {
    179 	struct ufsmount *ump;
    180 	struct fs *fs;
    181 	daddr_t bno;
    182 	int cg;
    183 #if defined(QUOTA) || defined(QUOTA2)
    184 	int error;
    185 #endif
    186 
    187 	fs = ip->i_fs;
    188 	ump = ip->i_ump;
    189 
    190 	KASSERT(mutex_owned(&ump->um_lock));
    191 
    192 #ifdef UVM_PAGE_TRKOWN
    193 
    194 	/*
    195 	 * Sanity-check that allocations within the file size
    196 	 * do not allow other threads to read the stale contents
    197 	 * of newly allocated blocks.
    198 	 * Usually pages will exist to cover the new allocation.
    199 	 * There is an optimization in ffs_write() where we skip
    200 	 * creating pages if several conditions are met:
    201 	 *  - the file must not be mapped (in any user address space).
    202 	 *  - the write must cover whole pages and whole blocks.
    203 	 * If those conditions are not met then pages must exist and
    204 	 * be locked by the current thread.
    205 	 */
    206 
    207 	if (ITOV(ip)->v_type == VREG &&
    208 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    209 		struct vm_page *pg;
    210 		struct vnode *vp = ITOV(ip);
    211 		struct uvm_object *uobj = &vp->v_uobj;
    212 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    213 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    214 
    215 		mutex_enter(uobj->vmobjlock);
    216 		while (off < endoff) {
    217 			pg = uvm_pagelookup(uobj, off);
    218 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    219 				 (size & PAGE_MASK) == 0 &&
    220 				 ffs_blkoff(fs, size) == 0) ||
    221 				(pg != NULL && pg->owner == curproc->p_pid &&
    222 				 pg->lowner == curlwp->l_lid));
    223 			off += PAGE_SIZE;
    224 		}
    225 		mutex_exit(uobj->vmobjlock);
    226 	}
    227 #endif
    228 
    229 	*bnp = 0;
    230 #ifdef DIAGNOSTIC
    231 	if (cred == NOCRED)
    232 		panic("%s: missing credential", __func__);
    233 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
    234 		panic("%s: bad size: dev = 0x%llx, bsize = %d, size = %d, "
    235 		    "fs = %s", __func__, (unsigned long long)ip->i_dev,
    236 		    fs->fs_bsize, size, fs->fs_fsmnt);
    237 	}
    238 #endif /* DIAGNOSTIC */
    239 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    240 		goto nospace;
    241 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    242 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    243 	    NULL, NULL) != 0)
    244 		goto nospace;
    245 #if defined(QUOTA) || defined(QUOTA2)
    246 	mutex_exit(&ump->um_lock);
    247 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    248 		return (error);
    249 	mutex_enter(&ump->um_lock);
    250 #endif
    251 
    252 	if (bpref >= fs->fs_size)
    253 		bpref = 0;
    254 	if (bpref == 0)
    255 		cg = ino_to_cg(fs, ip->i_number);
    256 	else
    257 		cg = dtog(fs, bpref);
    258 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    259 	if (bno > 0) {
    260 		DIP_ADD(ip, blocks, btodb(size));
    261 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    262 		*bnp = bno;
    263 		return (0);
    264 	}
    265 #if defined(QUOTA) || defined(QUOTA2)
    266 	/*
    267 	 * Restore user's disk quota because allocation failed.
    268 	 */
    269 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    270 #endif
    271 	if (flags & B_CONTIG) {
    272 		/*
    273 		 * XXX ump->um_lock handling is "suspect" at best.
    274 		 * For the case where ffs_hashalloc() fails early
    275 		 * in the B_CONTIG case we reach here with um_lock
    276 		 * already unlocked, so we can't release it again
    277 		 * like in the normal error path.  See kern/39206.
    278 		 *
    279 		 *
    280 		 * Fail silently - it's up to our caller to report
    281 		 * errors.
    282 		 */
    283 		return (ENOSPC);
    284 	}
    285 nospace:
    286 	mutex_exit(&ump->um_lock);
    287 	ffs_fserr(fs, cred, "file system full");
    288 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    289 	return (ENOSPC);
    290 }
    291 
    292 /*
    293  * Reallocate a fragment to a bigger size
    294  *
    295  * The number and size of the old block is given, and a preference
    296  * and new size is also specified. The allocator attempts to extend
    297  * the original block. Failing that, the regular block allocator is
    298  * invoked to get an appropriate block.
    299  *
    300  * => called with um_lock held
    301  * => return with um_lock released
    302  */
    303 int
    304 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    305     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    306 {
    307 	struct ufsmount *ump;
    308 	struct fs *fs;
    309 	struct buf *bp;
    310 	int cg, request, error;
    311 	daddr_t bprev, bno;
    312 
    313 	fs = ip->i_fs;
    314 	ump = ip->i_ump;
    315 
    316 	KASSERT(mutex_owned(&ump->um_lock));
    317 
    318 #ifdef UVM_PAGE_TRKOWN
    319 
    320 	/*
    321 	 * Sanity-check that allocations within the file size
    322 	 * do not allow other threads to read the stale contents
    323 	 * of newly allocated blocks.
    324 	 * Unlike in ffs_alloc(), here pages must always exist
    325 	 * for such allocations, because only the last block of a file
    326 	 * can be a fragment and ffs_write() will reallocate the
    327 	 * fragment to the new size using ufs_balloc_range(),
    328 	 * which always creates pages to cover blocks it allocates.
    329 	 */
    330 
    331 	if (ITOV(ip)->v_type == VREG) {
    332 		struct vm_page *pg;
    333 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    334 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    335 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    336 
    337 		mutex_enter(uobj->vmobjlock);
    338 		while (off < endoff) {
    339 			pg = uvm_pagelookup(uobj, off);
    340 			KASSERT(pg->owner == curproc->p_pid &&
    341 				pg->lowner == curlwp->l_lid);
    342 			off += PAGE_SIZE;
    343 		}
    344 		mutex_exit(uobj->vmobjlock);
    345 	}
    346 #endif
    347 
    348 #ifdef DIAGNOSTIC
    349 	if (cred == NOCRED)
    350 		panic("%s: missing credential", __func__);
    351 	if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
    352 	    (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
    353 		panic("%s: bad size: dev = 0x%llx, bsize = %d, osize = %d, "
    354 		    "nsize = %d, fs = %s", __func__,
    355 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    356 		    fs->fs_fsmnt);
    357 	}
    358 #endif /* DIAGNOSTIC */
    359 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    360 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    361 	    NULL, NULL) != 0) {
    362 		mutex_exit(&ump->um_lock);
    363 		goto nospace;
    364 	}
    365 	if (fs->fs_magic == FS_UFS2_MAGIC)
    366 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    367 	else
    368 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    369 
    370 	if (bprev == 0) {
    371 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    372 		    PRId64 ", fs = %s", __func__,
    373 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    374 		    fs->fs_fsmnt);
    375 	}
    376 	mutex_exit(&ump->um_lock);
    377 
    378 	/*
    379 	 * Allocate the extra space in the buffer.
    380 	 */
    381 	if (bpp != NULL &&
    382 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    383 		return (error);
    384 	}
    385 #if defined(QUOTA) || defined(QUOTA2)
    386 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    387 		if (bpp != NULL) {
    388 			brelse(bp, 0);
    389 		}
    390 		return (error);
    391 	}
    392 #endif
    393 	/*
    394 	 * Check for extension in the existing location.
    395 	 */
    396 	cg = dtog(fs, bprev);
    397 	mutex_enter(&ump->um_lock);
    398 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    399 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    400 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    401 
    402 		if (bpp != NULL) {
    403 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    404 				panic("%s: bad blockno %#llx != %#llx",
    405 				    __func__, (unsigned long long) bp->b_blkno,
    406 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    407 			}
    408 			allocbuf(bp, nsize, 1);
    409 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    410 			mutex_enter(bp->b_objlock);
    411 			KASSERT(!cv_has_waiters(&bp->b_done));
    412 			bp->b_oflags |= BO_DONE;
    413 			mutex_exit(bp->b_objlock);
    414 			*bpp = bp;
    415 		}
    416 		if (blknop != NULL) {
    417 			*blknop = bno;
    418 		}
    419 		return (0);
    420 	}
    421 	/*
    422 	 * Allocate a new disk location.
    423 	 */
    424 	if (bpref >= fs->fs_size)
    425 		bpref = 0;
    426 	switch ((int)fs->fs_optim) {
    427 	case FS_OPTSPACE:
    428 		/*
    429 		 * Allocate an exact sized fragment. Although this makes
    430 		 * best use of space, we will waste time relocating it if
    431 		 * the file continues to grow. If the fragmentation is
    432 		 * less than half of the minimum free reserve, we choose
    433 		 * to begin optimizing for time.
    434 		 */
    435 		request = nsize;
    436 		if (fs->fs_minfree < 5 ||
    437 		    fs->fs_cstotal.cs_nffree >
    438 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    439 			break;
    440 
    441 		if (ffs_log_changeopt) {
    442 			log(LOG_NOTICE,
    443 				"%s: optimization changed from SPACE to TIME\n",
    444 				fs->fs_fsmnt);
    445 		}
    446 
    447 		fs->fs_optim = FS_OPTTIME;
    448 		break;
    449 	case FS_OPTTIME:
    450 		/*
    451 		 * At this point we have discovered a file that is trying to
    452 		 * grow a small fragment to a larger fragment. To save time,
    453 		 * we allocate a full sized block, then free the unused portion.
    454 		 * If the file continues to grow, the `ffs_fragextend' call
    455 		 * above will be able to grow it in place without further
    456 		 * copying. If aberrant programs cause disk fragmentation to
    457 		 * grow within 2% of the free reserve, we choose to begin
    458 		 * optimizing for space.
    459 		 */
    460 		request = fs->fs_bsize;
    461 		if (fs->fs_cstotal.cs_nffree <
    462 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    463 			break;
    464 
    465 		if (ffs_log_changeopt) {
    466 			log(LOG_NOTICE,
    467 				"%s: optimization changed from TIME to SPACE\n",
    468 				fs->fs_fsmnt);
    469 		}
    470 
    471 		fs->fs_optim = FS_OPTSPACE;
    472 		break;
    473 	default:
    474 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    475 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    476 		    fs->fs_fsmnt);
    477 		/* NOTREACHED */
    478 	}
    479 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    480 	if (bno > 0) {
    481 		/*
    482 		 * Use forced deallocation registration, we can't handle
    483 		 * failure here. This is safe, as this place is ever hit
    484 		 * maximum once per write operation, when fragment is extended
    485 		 * to longer fragment, or a full block.
    486 		 */
    487 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    488 		    (ITOV(ip)->v_type != VREG)) {
    489 			/* this should never fail */
    490 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    491 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    492 			    osize);
    493 			if (error)
    494 				panic("ffs_realloccg: dealloc registration failed");
    495 		} else {
    496 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    497 			    ip->i_number);
    498 		}
    499 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    500 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    501 		if (bpp != NULL) {
    502 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    503 			allocbuf(bp, nsize, 1);
    504 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    505 			mutex_enter(bp->b_objlock);
    506 			KASSERT(!cv_has_waiters(&bp->b_done));
    507 			bp->b_oflags |= BO_DONE;
    508 			mutex_exit(bp->b_objlock);
    509 			*bpp = bp;
    510 		}
    511 		if (blknop != NULL) {
    512 			*blknop = bno;
    513 		}
    514 		return (0);
    515 	}
    516 	mutex_exit(&ump->um_lock);
    517 
    518 #if defined(QUOTA) || defined(QUOTA2)
    519 	/*
    520 	 * Restore user's disk quota because allocation failed.
    521 	 */
    522 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    523 #endif
    524 	if (bpp != NULL) {
    525 		brelse(bp, 0);
    526 	}
    527 
    528 nospace:
    529 	/*
    530 	 * no space available
    531 	 */
    532 	ffs_fserr(fs, cred, "file system full");
    533 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    534 	return (ENOSPC);
    535 }
    536 
    537 /*
    538  * Allocate an inode in the file system.
    539  *
    540  * If allocating a directory, use ffs_dirpref to select the inode.
    541  * If allocating in a directory, the following hierarchy is followed:
    542  *   1) allocate the preferred inode.
    543  *   2) allocate an inode in the same cylinder group.
    544  *   3) quadradically rehash into other cylinder groups, until an
    545  *      available inode is located.
    546  * If no inode preference is given the following hierarchy is used
    547  * to allocate an inode:
    548  *   1) allocate an inode in cylinder group 0.
    549  *   2) quadradically rehash into other cylinder groups, until an
    550  *      available inode is located.
    551  *
    552  * => um_lock not held upon entry or return
    553  */
    554 int
    555 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    556 {
    557 	struct ufsmount *ump;
    558 	struct inode *pip;
    559 	struct fs *fs;
    560 	ino_t ino, ipref;
    561 	int cg, error;
    562 
    563 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    564 
    565 	pip = VTOI(pvp);
    566 	fs = pip->i_fs;
    567 	ump = pip->i_ump;
    568 
    569 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    570 	if (error) {
    571 		return error;
    572 	}
    573 	mutex_enter(&ump->um_lock);
    574 	if (fs->fs_cstotal.cs_nifree == 0)
    575 		goto noinodes;
    576 
    577 	if ((mode & IFMT) == IFDIR)
    578 		ipref = ffs_dirpref(pip);
    579 	else
    580 		ipref = pip->i_number;
    581 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    582 		ipref = 0;
    583 	cg = ino_to_cg(fs, ipref);
    584 	/*
    585 	 * Track number of dirs created one after another
    586 	 * in a same cg without intervening by files.
    587 	 */
    588 	if ((mode & IFMT) == IFDIR) {
    589 		if (fs->fs_contigdirs[cg] < 255)
    590 			fs->fs_contigdirs[cg]++;
    591 	} else {
    592 		if (fs->fs_contigdirs[cg] > 0)
    593 			fs->fs_contigdirs[cg]--;
    594 	}
    595 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    596 	if (ino == 0)
    597 		goto noinodes;
    598 	UFS_WAPBL_END(pvp->v_mount);
    599 	*inop = ino;
    600 	return 0;
    601 
    602 noinodes:
    603 	mutex_exit(&ump->um_lock);
    604 	UFS_WAPBL_END(pvp->v_mount);
    605 	ffs_fserr(fs, cred, "out of inodes");
    606 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    607 	return ENOSPC;
    608 }
    609 
    610 /*
    611  * Find a cylinder group in which to place a directory.
    612  *
    613  * The policy implemented by this algorithm is to allocate a
    614  * directory inode in the same cylinder group as its parent
    615  * directory, but also to reserve space for its files inodes
    616  * and data. Restrict the number of directories which may be
    617  * allocated one after another in the same cylinder group
    618  * without intervening allocation of files.
    619  *
    620  * If we allocate a first level directory then force allocation
    621  * in another cylinder group.
    622  */
    623 static ino_t
    624 ffs_dirpref(struct inode *pip)
    625 {
    626 	register struct fs *fs;
    627 	int cg, prefcg;
    628 	int64_t dirsize, cgsize, curdsz;
    629 	int avgifree, avgbfree, avgndir;
    630 	int minifree, minbfree, maxndir;
    631 	int mincg, minndir;
    632 	int maxcontigdirs;
    633 
    634 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    635 
    636 	fs = pip->i_fs;
    637 
    638 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    639 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    640 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    641 
    642 	/*
    643 	 * Force allocation in another cg if creating a first level dir.
    644 	 */
    645 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    646 		prefcg = cprng_fast32() % fs->fs_ncg;
    647 		mincg = prefcg;
    648 		minndir = fs->fs_ipg;
    649 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    650 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    651 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    652 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    653 				mincg = cg;
    654 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    655 			}
    656 		for (cg = 0; cg < prefcg; cg++)
    657 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    658 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    659 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    660 				mincg = cg;
    661 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    662 			}
    663 		return ((ino_t)(fs->fs_ipg * mincg));
    664 	}
    665 
    666 	/*
    667 	 * Count various limits which used for
    668 	 * optimal allocation of a directory inode.
    669 	 * Try cylinder groups with >75% avgifree and avgbfree.
    670 	 * Avoid cylinder groups with no free blocks or inodes as that
    671 	 * triggers an I/O-expensive cylinder group scan.
    672 	 */
    673 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    674 	minifree = avgifree - avgifree / 4;
    675 	if (minifree < 1)
    676 		minifree = 1;
    677 	minbfree = avgbfree - avgbfree / 4;
    678 	if (minbfree < 1)
    679 		minbfree = 1;
    680 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    681 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    682 	if (avgndir != 0) {
    683 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    684 		if (dirsize < curdsz)
    685 			dirsize = curdsz;
    686 	}
    687 	if (cgsize < dirsize * 255)
    688 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    689 	else
    690 		maxcontigdirs = 255;
    691 	if (fs->fs_avgfpdir > 0)
    692 		maxcontigdirs = min(maxcontigdirs,
    693 				    fs->fs_ipg / fs->fs_avgfpdir);
    694 	if (maxcontigdirs == 0)
    695 		maxcontigdirs = 1;
    696 
    697 	/*
    698 	 * Limit number of dirs in one cg and reserve space for
    699 	 * regular files, but only if we have no deficit in
    700 	 * inodes or space.
    701 	 */
    702 	prefcg = ino_to_cg(fs, pip->i_number);
    703 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    704 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    705 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    706 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    707 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    708 				return ((ino_t)(fs->fs_ipg * cg));
    709 		}
    710 	for (cg = 0; cg < prefcg; cg++)
    711 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    712 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    713 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    714 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    715 				return ((ino_t)(fs->fs_ipg * cg));
    716 		}
    717 	/*
    718 	 * This is a backstop when we are deficient in space.
    719 	 */
    720 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    721 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    722 			return ((ino_t)(fs->fs_ipg * cg));
    723 	for (cg = 0; cg < prefcg; cg++)
    724 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    725 			break;
    726 	return ((ino_t)(fs->fs_ipg * cg));
    727 }
    728 
    729 /*
    730  * Select the desired position for the next block in a file.  The file is
    731  * logically divided into sections. The first section is composed of the
    732  * direct blocks. Each additional section contains fs_maxbpg blocks.
    733  *
    734  * If no blocks have been allocated in the first section, the policy is to
    735  * request a block in the same cylinder group as the inode that describes
    736  * the file. If no blocks have been allocated in any other section, the
    737  * policy is to place the section in a cylinder group with a greater than
    738  * average number of free blocks.  An appropriate cylinder group is found
    739  * by using a rotor that sweeps the cylinder groups. When a new group of
    740  * blocks is needed, the sweep begins in the cylinder group following the
    741  * cylinder group from which the previous allocation was made. The sweep
    742  * continues until a cylinder group with greater than the average number
    743  * of free blocks is found. If the allocation is for the first block in an
    744  * indirect block, the information on the previous allocation is unavailable;
    745  * here a best guess is made based upon the logical block number being
    746  * allocated.
    747  *
    748  * If a section is already partially allocated, the policy is to
    749  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    750  * contiguous blocks and the beginning of the next is laid out
    751  * contigously if possible.
    752  *
    753  * => um_lock held on entry and exit
    754  */
    755 daddr_t
    756 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    757     int32_t *bap /* XXX ondisk32 */)
    758 {
    759 	struct fs *fs;
    760 	int cg;
    761 	int avgbfree, startcg;
    762 
    763 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    764 
    765 	fs = ip->i_fs;
    766 
    767 	/*
    768 	 * If allocating a contiguous file with B_CONTIG, use the hints
    769 	 * in the inode extentions to return the desired block.
    770 	 *
    771 	 * For metadata (indirect blocks) return the address of where
    772 	 * the first indirect block resides - we'll scan for the next
    773 	 * available slot if we need to allocate more than one indirect
    774 	 * block.  For data, return the address of the actual block
    775 	 * relative to the address of the first data block.
    776 	 */
    777 	if (flags & B_CONTIG) {
    778 		KASSERT(ip->i_ffs_first_data_blk != 0);
    779 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    780 		if (flags & B_METAONLY)
    781 			return ip->i_ffs_first_indir_blk;
    782 		else
    783 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    784 	}
    785 
    786 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    787 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    788 			cg = ino_to_cg(fs, ip->i_number);
    789 			return (cgbase(fs, cg) + fs->fs_frag);
    790 		}
    791 		/*
    792 		 * Find a cylinder with greater than average number of
    793 		 * unused data blocks.
    794 		 */
    795 		if (indx == 0 || bap[indx - 1] == 0)
    796 			startcg =
    797 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    798 		else
    799 			startcg = dtog(fs,
    800 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    801 		startcg %= fs->fs_ncg;
    802 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    803 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    804 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    805 				return (cgbase(fs, cg) + fs->fs_frag);
    806 			}
    807 		for (cg = 0; cg < startcg; cg++)
    808 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    809 				return (cgbase(fs, cg) + fs->fs_frag);
    810 			}
    811 		return (0);
    812 	}
    813 	/*
    814 	 * We just always try to lay things out contiguously.
    815 	 */
    816 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    817 }
    818 
    819 daddr_t
    820 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    821     int64_t *bap)
    822 {
    823 	struct fs *fs;
    824 	int cg;
    825 	int avgbfree, startcg;
    826 
    827 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    828 
    829 	fs = ip->i_fs;
    830 
    831 	/*
    832 	 * If allocating a contiguous file with B_CONTIG, use the hints
    833 	 * in the inode extentions to return the desired block.
    834 	 *
    835 	 * For metadata (indirect blocks) return the address of where
    836 	 * the first indirect block resides - we'll scan for the next
    837 	 * available slot if we need to allocate more than one indirect
    838 	 * block.  For data, return the address of the actual block
    839 	 * relative to the address of the first data block.
    840 	 */
    841 	if (flags & B_CONTIG) {
    842 		KASSERT(ip->i_ffs_first_data_blk != 0);
    843 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    844 		if (flags & B_METAONLY)
    845 			return ip->i_ffs_first_indir_blk;
    846 		else
    847 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    848 	}
    849 
    850 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    851 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    852 			cg = ino_to_cg(fs, ip->i_number);
    853 			return (cgbase(fs, cg) + fs->fs_frag);
    854 		}
    855 		/*
    856 		 * Find a cylinder with greater than average number of
    857 		 * unused data blocks.
    858 		 */
    859 		if (indx == 0 || bap[indx - 1] == 0)
    860 			startcg =
    861 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    862 		else
    863 			startcg = dtog(fs,
    864 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    865 		startcg %= fs->fs_ncg;
    866 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    867 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    868 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    869 				return (cgbase(fs, cg) + fs->fs_frag);
    870 			}
    871 		for (cg = 0; cg < startcg; cg++)
    872 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    873 				return (cgbase(fs, cg) + fs->fs_frag);
    874 			}
    875 		return (0);
    876 	}
    877 	/*
    878 	 * We just always try to lay things out contiguously.
    879 	 */
    880 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    881 }
    882 
    883 
    884 /*
    885  * Implement the cylinder overflow algorithm.
    886  *
    887  * The policy implemented by this algorithm is:
    888  *   1) allocate the block in its requested cylinder group.
    889  *   2) quadradically rehash on the cylinder group number.
    890  *   3) brute force search for a free block.
    891  *
    892  * => called with um_lock held
    893  * => returns with um_lock released on success, held on failure
    894  *    (*allocator releases lock on success, retains lock on failure)
    895  */
    896 /*VARARGS5*/
    897 static daddr_t
    898 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    899     int size /* size for data blocks, mode for inodes */,
    900     int realsize,
    901     int flags,
    902     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    903 {
    904 	struct fs *fs;
    905 	daddr_t result;
    906 	int i, icg = cg;
    907 
    908 	fs = ip->i_fs;
    909 	/*
    910 	 * 1: preferred cylinder group
    911 	 */
    912 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    913 	if (result)
    914 		return (result);
    915 
    916 	if (flags & B_CONTIG)
    917 		return (result);
    918 	/*
    919 	 * 2: quadratic rehash
    920 	 */
    921 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    922 		cg += i;
    923 		if (cg >= fs->fs_ncg)
    924 			cg -= fs->fs_ncg;
    925 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    926 		if (result)
    927 			return (result);
    928 	}
    929 	/*
    930 	 * 3: brute force search
    931 	 * Note that we start at i == 2, since 0 was checked initially,
    932 	 * and 1 is always checked in the quadratic rehash.
    933 	 */
    934 	cg = (icg + 2) % fs->fs_ncg;
    935 	for (i = 2; i < fs->fs_ncg; i++) {
    936 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    937 		if (result)
    938 			return (result);
    939 		cg++;
    940 		if (cg == fs->fs_ncg)
    941 			cg = 0;
    942 	}
    943 	return (0);
    944 }
    945 
    946 /*
    947  * Determine whether a fragment can be extended.
    948  *
    949  * Check to see if the necessary fragments are available, and
    950  * if they are, allocate them.
    951  *
    952  * => called with um_lock held
    953  * => returns with um_lock released on success, held on failure
    954  */
    955 static daddr_t
    956 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    957 {
    958 	struct ufsmount *ump;
    959 	struct fs *fs;
    960 	struct cg *cgp;
    961 	struct buf *bp;
    962 	daddr_t bno;
    963 	int frags, bbase;
    964 	int i, error;
    965 	u_int8_t *blksfree;
    966 
    967 	fs = ip->i_fs;
    968 	ump = ip->i_ump;
    969 
    970 	KASSERT(mutex_owned(&ump->um_lock));
    971 
    972 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    973 		return (0);
    974 	frags = ffs_numfrags(fs, nsize);
    975 	bbase = ffs_fragnum(fs, bprev);
    976 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    977 		/* cannot extend across a block boundary */
    978 		return (0);
    979 	}
    980 	mutex_exit(&ump->um_lock);
    981 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    982 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    983 	if (error)
    984 		goto fail;
    985 	cgp = (struct cg *)bp->b_data;
    986 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    987 		goto fail;
    988 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    989 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    990 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    991 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    992 	bno = dtogd(fs, bprev);
    993 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
    994 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
    995 		if (isclr(blksfree, bno + i))
    996 			goto fail;
    997 	/*
    998 	 * the current fragment can be extended
    999 	 * deduct the count on fragment being extended into
   1000 	 * increase the count on the remaining fragment (if any)
   1001 	 * allocate the extended piece
   1002 	 */
   1003 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1004 		if (isclr(blksfree, bno + i))
   1005 			break;
   1006 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1007 	if (i != frags)
   1008 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1009 	mutex_enter(&ump->um_lock);
   1010 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1011 		clrbit(blksfree, bno + i);
   1012 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1013 		fs->fs_cstotal.cs_nffree--;
   1014 		fs->fs_cs(fs, cg).cs_nffree--;
   1015 	}
   1016 	fs->fs_fmod = 1;
   1017 	ACTIVECG_CLR(fs, cg);
   1018 	mutex_exit(&ump->um_lock);
   1019 	bdwrite(bp);
   1020 	return (bprev);
   1021 
   1022  fail:
   1023  	if (bp != NULL)
   1024 		brelse(bp, 0);
   1025  	mutex_enter(&ump->um_lock);
   1026  	return (0);
   1027 }
   1028 
   1029 /*
   1030  * Determine whether a block can be allocated.
   1031  *
   1032  * Check to see if a block of the appropriate size is available,
   1033  * and if it is, allocate it.
   1034  */
   1035 static daddr_t
   1036 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1037     int flags)
   1038 {
   1039 	struct ufsmount *ump;
   1040 	struct fs *fs = ip->i_fs;
   1041 	struct cg *cgp;
   1042 	struct buf *bp;
   1043 	int32_t bno;
   1044 	daddr_t blkno;
   1045 	int error, frags, allocsiz, i;
   1046 	u_int8_t *blksfree;
   1047 	const int needswap = UFS_FSNEEDSWAP(fs);
   1048 
   1049 	ump = ip->i_ump;
   1050 
   1051 	KASSERT(mutex_owned(&ump->um_lock));
   1052 
   1053 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1054 		return (0);
   1055 	mutex_exit(&ump->um_lock);
   1056 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1057 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1058 	if (error)
   1059 		goto fail;
   1060 	cgp = (struct cg *)bp->b_data;
   1061 	if (!cg_chkmagic(cgp, needswap) ||
   1062 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1063 		goto fail;
   1064 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1065 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1066 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1067 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1068 	if (size == fs->fs_bsize) {
   1069 		mutex_enter(&ump->um_lock);
   1070 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1071 		ACTIVECG_CLR(fs, cg);
   1072 		mutex_exit(&ump->um_lock);
   1073 
   1074 		/*
   1075 		 * If actually needed size is lower, free the extra blocks now.
   1076 		 * This is safe to call here, there is no outside reference
   1077 		 * to this block yet. It is not necessary to keep um_lock
   1078 		 * locked.
   1079 		 */
   1080 		if (realsize != 0 && realsize < size) {
   1081 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1082 			    ip->i_devvp->v_rdev,
   1083 			    bp, blkno + ffs_numfrags(fs, realsize),
   1084 			    (long)(size - realsize), false);
   1085 		}
   1086 
   1087 		bdwrite(bp);
   1088 		return (blkno);
   1089 	}
   1090 	/*
   1091 	 * check to see if any fragments are already available
   1092 	 * allocsiz is the size which will be allocated, hacking
   1093 	 * it down to a smaller size if necessary
   1094 	 */
   1095 	blksfree = cg_blksfree(cgp, needswap);
   1096 	frags = ffs_numfrags(fs, size);
   1097 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1098 		if (cgp->cg_frsum[allocsiz] != 0)
   1099 			break;
   1100 	if (allocsiz == fs->fs_frag) {
   1101 		/*
   1102 		 * no fragments were available, so a block will be
   1103 		 * allocated, and hacked up
   1104 		 */
   1105 		if (cgp->cg_cs.cs_nbfree == 0)
   1106 			goto fail;
   1107 		mutex_enter(&ump->um_lock);
   1108 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1109 		bno = dtogd(fs, blkno);
   1110 		for (i = frags; i < fs->fs_frag; i++)
   1111 			setbit(blksfree, bno + i);
   1112 		i = fs->fs_frag - frags;
   1113 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1114 		fs->fs_cstotal.cs_nffree += i;
   1115 		fs->fs_cs(fs, cg).cs_nffree += i;
   1116 		fs->fs_fmod = 1;
   1117 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1118 		ACTIVECG_CLR(fs, cg);
   1119 		mutex_exit(&ump->um_lock);
   1120 		bdwrite(bp);
   1121 		return (blkno);
   1122 	}
   1123 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1124 #if 0
   1125 	/*
   1126 	 * XXX fvdl mapsearch will panic, and never return -1
   1127 	 *          also: returning NULL as daddr_t ?
   1128 	 */
   1129 	if (bno < 0)
   1130 		goto fail;
   1131 #endif
   1132 	for (i = 0; i < frags; i++)
   1133 		clrbit(blksfree, bno + i);
   1134 	mutex_enter(&ump->um_lock);
   1135 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1136 	fs->fs_cstotal.cs_nffree -= frags;
   1137 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1138 	fs->fs_fmod = 1;
   1139 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1140 	if (frags != allocsiz)
   1141 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1142 	blkno = cgbase(fs, cg) + bno;
   1143 	ACTIVECG_CLR(fs, cg);
   1144 	mutex_exit(&ump->um_lock);
   1145 	bdwrite(bp);
   1146 	return blkno;
   1147 
   1148  fail:
   1149  	if (bp != NULL)
   1150 		brelse(bp, 0);
   1151  	mutex_enter(&ump->um_lock);
   1152  	return (0);
   1153 }
   1154 
   1155 /*
   1156  * Allocate a block in a cylinder group.
   1157  *
   1158  * This algorithm implements the following policy:
   1159  *   1) allocate the requested block.
   1160  *   2) allocate a rotationally optimal block in the same cylinder.
   1161  *   3) allocate the next available block on the block rotor for the
   1162  *      specified cylinder group.
   1163  * Note that this routine only allocates fs_bsize blocks; these
   1164  * blocks may be fragmented by the routine that allocates them.
   1165  */
   1166 static daddr_t
   1167 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1168     int flags)
   1169 {
   1170 	struct fs *fs = ip->i_fs;
   1171 	struct cg *cgp;
   1172 	int cg;
   1173 	daddr_t blkno;
   1174 	int32_t bno;
   1175 	u_int8_t *blksfree;
   1176 	const int needswap = UFS_FSNEEDSWAP(fs);
   1177 
   1178 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1179 
   1180 	cgp = (struct cg *)bp->b_data;
   1181 	blksfree = cg_blksfree(cgp, needswap);
   1182 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1183 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1184 	} else {
   1185 		bpref = ffs_blknum(fs, bpref);
   1186 		bno = dtogd(fs, bpref);
   1187 		/*
   1188 		 * if the requested block is available, use it
   1189 		 */
   1190 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1191 			goto gotit;
   1192 		/*
   1193 		 * if the requested data block isn't available and we are
   1194 		 * trying to allocate a contiguous file, return an error.
   1195 		 */
   1196 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1197 			return (0);
   1198 	}
   1199 
   1200 	/*
   1201 	 * Take the next available block in this cylinder group.
   1202 	 */
   1203 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1204 #if 0
   1205 	/*
   1206 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1207 	 */
   1208 	if (bno < 0)
   1209 		return (0);
   1210 #endif
   1211 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1212 gotit:
   1213 	blkno = ffs_fragstoblks(fs, bno);
   1214 	ffs_clrblock(fs, blksfree, blkno);
   1215 	ffs_clusteracct(fs, cgp, blkno, -1);
   1216 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1217 	fs->fs_cstotal.cs_nbfree--;
   1218 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1219 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1220 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1221 		int cylno;
   1222 		cylno = old_cbtocylno(fs, bno);
   1223 		KASSERT(cylno >= 0);
   1224 		KASSERT(cylno < fs->fs_old_ncyl);
   1225 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1226 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1227 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1228 		    needswap);
   1229 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1230 	}
   1231 	fs->fs_fmod = 1;
   1232 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1233 	blkno = cgbase(fs, cg) + bno;
   1234 	return (blkno);
   1235 }
   1236 
   1237 /*
   1238  * Determine whether an inode can be allocated.
   1239  *
   1240  * Check to see if an inode is available, and if it is,
   1241  * allocate it using the following policy:
   1242  *   1) allocate the requested inode.
   1243  *   2) allocate the next available inode after the requested
   1244  *      inode in the specified cylinder group.
   1245  */
   1246 static daddr_t
   1247 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1248     int flags)
   1249 {
   1250 	struct ufsmount *ump = ip->i_ump;
   1251 	struct fs *fs = ip->i_fs;
   1252 	struct cg *cgp;
   1253 	struct buf *bp, *ibp;
   1254 	u_int8_t *inosused;
   1255 	int error, start, len, loc, map, i;
   1256 	int32_t initediblk;
   1257 	daddr_t nalloc;
   1258 	struct ufs2_dinode *dp2;
   1259 	const int needswap = UFS_FSNEEDSWAP(fs);
   1260 
   1261 	KASSERT(mutex_owned(&ump->um_lock));
   1262 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1263 
   1264 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1265 		return (0);
   1266 	mutex_exit(&ump->um_lock);
   1267 	ibp = NULL;
   1268 	initediblk = -1;
   1269 retry:
   1270 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1271 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1272 	if (error)
   1273 		goto fail;
   1274 	cgp = (struct cg *)bp->b_data;
   1275 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1276 		goto fail;
   1277 
   1278 	if (ibp != NULL &&
   1279 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1280 		/* Another thread allocated more inodes so we retry the test. */
   1281 		brelse(ibp, 0);
   1282 		ibp = NULL;
   1283 	}
   1284 	/*
   1285 	 * Check to see if we need to initialize more inodes.
   1286 	 */
   1287 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1288 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1289 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1290 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1291 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1292 			/*
   1293 			 * We have to release the cg buffer here to prevent
   1294 			 * a deadlock when reading the inode block will
   1295 			 * run a copy-on-write that might use this cg.
   1296 			 */
   1297 			brelse(bp, 0);
   1298 			bp = NULL;
   1299 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1300 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1301 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1302 			if (error)
   1303 				goto fail;
   1304 			goto retry;
   1305 		}
   1306 	}
   1307 
   1308 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1309 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1310 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1311 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1312 	inosused = cg_inosused(cgp, needswap);
   1313 	if (ipref) {
   1314 		ipref %= fs->fs_ipg;
   1315 		if (isclr(inosused, ipref))
   1316 			goto gotit;
   1317 	}
   1318 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1319 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1320 		NBBY);
   1321 	loc = skpc(0xff, len, &inosused[start]);
   1322 	if (loc == 0) {
   1323 		len = start + 1;
   1324 		start = 0;
   1325 		loc = skpc(0xff, len, &inosused[0]);
   1326 		if (loc == 0) {
   1327 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1328 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1329 			    fs->fs_fsmnt);
   1330 			/* NOTREACHED */
   1331 		}
   1332 	}
   1333 	i = start + len - loc;
   1334 	map = inosused[i] ^ 0xff;
   1335 	if (map == 0) {
   1336 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1337 	}
   1338 	ipref = i * NBBY + ffs(map) - 1;
   1339 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1340 gotit:
   1341 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1342 	    mode);
   1343 	/*
   1344 	 * Check to see if we need to initialize more inodes.
   1345 	 */
   1346 	if (ibp != NULL) {
   1347 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1348 		memset(ibp->b_data, 0, fs->fs_bsize);
   1349 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1350 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1351 			/*
   1352 			 * Don't bother to swap, it's supposed to be
   1353 			 * random, after all.
   1354 			 */
   1355 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1356 			dp2++;
   1357 		}
   1358 		initediblk += FFS_INOPB(fs);
   1359 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1360 	}
   1361 
   1362 	mutex_enter(&ump->um_lock);
   1363 	ACTIVECG_CLR(fs, cg);
   1364 	setbit(inosused, ipref);
   1365 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1366 	fs->fs_cstotal.cs_nifree--;
   1367 	fs->fs_cs(fs, cg).cs_nifree--;
   1368 	fs->fs_fmod = 1;
   1369 	if ((mode & IFMT) == IFDIR) {
   1370 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1371 		fs->fs_cstotal.cs_ndir++;
   1372 		fs->fs_cs(fs, cg).cs_ndir++;
   1373 	}
   1374 	mutex_exit(&ump->um_lock);
   1375 	if (ibp != NULL) {
   1376 		bwrite(bp);
   1377 		bawrite(ibp);
   1378 	} else
   1379 		bdwrite(bp);
   1380 	return (cg * fs->fs_ipg + ipref);
   1381  fail:
   1382 	if (bp != NULL)
   1383 		brelse(bp, 0);
   1384 	if (ibp != NULL)
   1385 		brelse(ibp, 0);
   1386 	mutex_enter(&ump->um_lock);
   1387 	return (0);
   1388 }
   1389 
   1390 /*
   1391  * Allocate a block or fragment.
   1392  *
   1393  * The specified block or fragment is removed from the
   1394  * free map, possibly fragmenting a block in the process.
   1395  *
   1396  * This implementation should mirror fs_blkfree
   1397  *
   1398  * => um_lock not held on entry or exit
   1399  */
   1400 int
   1401 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1402 {
   1403 	int error;
   1404 
   1405 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1406 	    ip->i_dev, ip->i_uid);
   1407 	if (error)
   1408 		return error;
   1409 
   1410 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1411 }
   1412 
   1413 int
   1414 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1415 {
   1416 	struct fs *fs = ump->um_fs;
   1417 	struct cg *cgp;
   1418 	struct buf *bp;
   1419 	int32_t fragno, cgbno;
   1420 	int i, error, cg, blk, frags, bbase;
   1421 	u_int8_t *blksfree;
   1422 	const int needswap = UFS_FSNEEDSWAP(fs);
   1423 
   1424 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1425 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1426 	KASSERT(bno < fs->fs_size);
   1427 
   1428 	cg = dtog(fs, bno);
   1429 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1430 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1431 	if (error) {
   1432 		return error;
   1433 	}
   1434 	cgp = (struct cg *)bp->b_data;
   1435 	if (!cg_chkmagic(cgp, needswap)) {
   1436 		brelse(bp, 0);
   1437 		return EIO;
   1438 	}
   1439 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1440 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1441 	cgbno = dtogd(fs, bno);
   1442 	blksfree = cg_blksfree(cgp, needswap);
   1443 
   1444 	mutex_enter(&ump->um_lock);
   1445 	if (size == fs->fs_bsize) {
   1446 		fragno = ffs_fragstoblks(fs, cgbno);
   1447 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1448 			mutex_exit(&ump->um_lock);
   1449 			brelse(bp, 0);
   1450 			return EBUSY;
   1451 		}
   1452 		ffs_clrblock(fs, blksfree, fragno);
   1453 		ffs_clusteracct(fs, cgp, fragno, -1);
   1454 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1455 		fs->fs_cstotal.cs_nbfree--;
   1456 		fs->fs_cs(fs, cg).cs_nbfree--;
   1457 	} else {
   1458 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1459 
   1460 		frags = ffs_numfrags(fs, size);
   1461 		for (i = 0; i < frags; i++) {
   1462 			if (isclr(blksfree, cgbno + i)) {
   1463 				mutex_exit(&ump->um_lock);
   1464 				brelse(bp, 0);
   1465 				return EBUSY;
   1466 			}
   1467 		}
   1468 		/*
   1469 		 * if a complete block is being split, account for it
   1470 		 */
   1471 		fragno = ffs_fragstoblks(fs, bbase);
   1472 		if (ffs_isblock(fs, blksfree, fragno)) {
   1473 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1474 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1475 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1476 			ffs_clusteracct(fs, cgp, fragno, -1);
   1477 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1478 			fs->fs_cstotal.cs_nbfree--;
   1479 			fs->fs_cs(fs, cg).cs_nbfree--;
   1480 		}
   1481 		/*
   1482 		 * decrement the counts associated with the old frags
   1483 		 */
   1484 		blk = blkmap(fs, blksfree, bbase);
   1485 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1486 		/*
   1487 		 * allocate the fragment
   1488 		 */
   1489 		for (i = 0; i < frags; i++) {
   1490 			clrbit(blksfree, cgbno + i);
   1491 		}
   1492 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1493 		fs->fs_cstotal.cs_nffree -= i;
   1494 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1495 		/*
   1496 		 * add back in counts associated with the new frags
   1497 		 */
   1498 		blk = blkmap(fs, blksfree, bbase);
   1499 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1500 	}
   1501 	fs->fs_fmod = 1;
   1502 	ACTIVECG_CLR(fs, cg);
   1503 	mutex_exit(&ump->um_lock);
   1504 	bdwrite(bp);
   1505 	return 0;
   1506 }
   1507 
   1508 /*
   1509  * Free a block or fragment.
   1510  *
   1511  * The specified block or fragment is placed back in the
   1512  * free map. If a fragment is deallocated, a possible
   1513  * block reassembly is checked.
   1514  *
   1515  * => um_lock not held on entry or exit
   1516  */
   1517 static void
   1518 ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1519 {
   1520 	struct cg *cgp;
   1521 	struct buf *bp;
   1522 	struct ufsmount *ump;
   1523 	daddr_t cgblkno;
   1524 	int error, cg;
   1525 	dev_t dev;
   1526 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1527 	const int needswap = UFS_FSNEEDSWAP(fs);
   1528 
   1529 	KASSERT(!devvp_is_snapshot);
   1530 
   1531 	cg = dtog(fs, bno);
   1532 	dev = devvp->v_rdev;
   1533 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1534 	KASSERT(fs == ump->um_fs);
   1535 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1536 
   1537 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1538 	    B_MODIFY, &bp);
   1539 	if (error) {
   1540 		return;
   1541 	}
   1542 	cgp = (struct cg *)bp->b_data;
   1543 	if (!cg_chkmagic(cgp, needswap)) {
   1544 		brelse(bp, 0);
   1545 		return;
   1546 	}
   1547 
   1548 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1549 
   1550 	bdwrite(bp);
   1551 }
   1552 
   1553 struct discardopdata {
   1554 	struct work wk; /* must be first */
   1555 	struct vnode *devvp;
   1556 	daddr_t bno;
   1557 	long size;
   1558 };
   1559 
   1560 struct discarddata {
   1561 	struct fs *fs;
   1562 	struct discardopdata *entry;
   1563 	long maxsize;
   1564 	kmutex_t entrylk;
   1565 	struct workqueue *wq;
   1566 	int wqcnt, wqdraining;
   1567 	kmutex_t wqlk;
   1568 	kcondvar_t wqcv;
   1569 	/* timer for flush? */
   1570 };
   1571 
   1572 static void
   1573 ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1574 {
   1575 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1576 	long todo;
   1577 	int error;
   1578 
   1579 	while (td->size) {
   1580 		todo = min(td->size,
   1581 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1582 		error = UFS_WAPBL_BEGIN(mp);
   1583 		if (error) {
   1584 			printf("ffs: failed to begin wapbl transaction"
   1585 			    " for discard: %d\n", error);
   1586 			break;
   1587 		}
   1588 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1589 		UFS_WAPBL_END(mp);
   1590 		td->bno += ffs_numfrags(fs, todo);
   1591 		td->size -= todo;
   1592 	}
   1593 }
   1594 
   1595 static void
   1596 ffs_discardcb(struct work *wk, void *arg)
   1597 {
   1598 	struct discardopdata *td = (void *)wk;
   1599 	struct discarddata *ts = arg;
   1600 	struct fs *fs = ts->fs;
   1601 	off_t start, len;
   1602 #ifdef TRIMDEBUG
   1603 	int error;
   1604 #endif
   1605 
   1606 /* like FSBTODB but emits bytes; XXX move to fs.h */
   1607 #ifndef FFS_FSBTOBYTES
   1608 #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1609 #endif
   1610 
   1611 	start = FFS_FSBTOBYTES(fs, td->bno);
   1612 	len = td->size;
   1613 #ifdef TRIMDEBUG
   1614 	error =
   1615 #endif
   1616 		VOP_FDISCARD(td->devvp, start, len);
   1617 #ifdef TRIMDEBUG
   1618 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1619 #endif
   1620 
   1621 	ffs_blkfree_td(fs, td);
   1622 	kmem_free(td, sizeof(*td));
   1623 	mutex_enter(&ts->wqlk);
   1624 	ts->wqcnt--;
   1625 	if (ts->wqdraining && !ts->wqcnt)
   1626 		cv_signal(&ts->wqcv);
   1627 	mutex_exit(&ts->wqlk);
   1628 }
   1629 
   1630 void *
   1631 ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1632 {
   1633 	struct discarddata *ts;
   1634 	int error;
   1635 
   1636 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1637 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1638 				 0, 0, 0);
   1639 	if (error) {
   1640 		kmem_free(ts, sizeof (*ts));
   1641 		return NULL;
   1642 	}
   1643 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1644 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1645 	cv_init(&ts->wqcv, "trimwqcv");
   1646 	ts->maxsize = 100*1024; /* XXX */
   1647 	ts->fs = fs;
   1648 	return ts;
   1649 }
   1650 
   1651 void
   1652 ffs_discard_finish(void *vts, int flags)
   1653 {
   1654 	struct discarddata *ts = vts;
   1655 	struct discardopdata *td = NULL;
   1656 	int res = 0;
   1657 
   1658 	/* wait for workqueue to drain */
   1659 	mutex_enter(&ts->wqlk);
   1660 	if (ts->wqcnt) {
   1661 		ts->wqdraining = 1;
   1662 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1663 	}
   1664 	mutex_exit(&ts->wqlk);
   1665 	if (res)
   1666 		printf("ffs_discarddata drain timeout\n");
   1667 
   1668 	mutex_enter(&ts->entrylk);
   1669 	if (ts->entry) {
   1670 		td = ts->entry;
   1671 		ts->entry = NULL;
   1672 	}
   1673 	mutex_exit(&ts->entrylk);
   1674 	if (td) {
   1675 		/* XXX don't tell disk, its optional */
   1676 		ffs_blkfree_td(ts->fs, td);
   1677 #ifdef TRIMDEBUG
   1678 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1679 #endif
   1680 		kmem_free(td, sizeof(*td));
   1681 	}
   1682 
   1683 	cv_destroy(&ts->wqcv);
   1684 	mutex_destroy(&ts->entrylk);
   1685 	mutex_destroy(&ts->wqlk);
   1686 	workqueue_destroy(ts->wq);
   1687 	kmem_free(ts, sizeof(*ts));
   1688 }
   1689 
   1690 void
   1691 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1692     ino_t inum)
   1693 {
   1694 	struct ufsmount *ump;
   1695 	int error;
   1696 	dev_t dev;
   1697 	struct discarddata *ts;
   1698 	struct discardopdata *td;
   1699 
   1700 	dev = devvp->v_rdev;
   1701 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1702 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1703 		return;
   1704 
   1705 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1706 	if (error)
   1707 		return;
   1708 
   1709 	if (!ump->um_discarddata) {
   1710 		ffs_blkfree_cg(fs, devvp, bno, size);
   1711 		return;
   1712 	}
   1713 
   1714 #ifdef TRIMDEBUG
   1715 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1716 #endif
   1717 	ts = ump->um_discarddata;
   1718 	td = NULL;
   1719 
   1720 	mutex_enter(&ts->entrylk);
   1721 	if (ts->entry) {
   1722 		td = ts->entry;
   1723 		/* ffs deallocs backwards, check for prepend only */
   1724 		if (td->bno == bno + ffs_numfrags(fs, size)
   1725 		    && td->size + size <= ts->maxsize) {
   1726 			td->bno = bno;
   1727 			td->size += size;
   1728 			if (td->size < ts->maxsize) {
   1729 #ifdef TRIMDEBUG
   1730 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1731 #endif
   1732 				mutex_exit(&ts->entrylk);
   1733 				return;
   1734 			}
   1735 			size = 0; /* mark done */
   1736 		}
   1737 		ts->entry = NULL;
   1738 	}
   1739 	mutex_exit(&ts->entrylk);
   1740 
   1741 	if (td) {
   1742 #ifdef TRIMDEBUG
   1743 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1744 #endif
   1745 		mutex_enter(&ts->wqlk);
   1746 		ts->wqcnt++;
   1747 		mutex_exit(&ts->wqlk);
   1748 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1749 	}
   1750 	if (!size)
   1751 		return;
   1752 
   1753 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1754 	td->devvp = devvp;
   1755 	td->bno = bno;
   1756 	td->size = size;
   1757 
   1758 	if (td->size < ts->maxsize) { /* XXX always the case */
   1759 		mutex_enter(&ts->entrylk);
   1760 		if (!ts->entry) { /* possible race? */
   1761 #ifdef TRIMDEBUG
   1762 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1763 #endif
   1764 			ts->entry = td;
   1765 			td = NULL;
   1766 		}
   1767 		mutex_exit(&ts->entrylk);
   1768 	}
   1769 	if (td) {
   1770 #ifdef TRIMDEBUG
   1771 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1772 #endif
   1773 		mutex_enter(&ts->wqlk);
   1774 		ts->wqcnt++;
   1775 		mutex_exit(&ts->wqlk);
   1776 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1777 	}
   1778 }
   1779 
   1780 /*
   1781  * Free a block or fragment from a snapshot cg copy.
   1782  *
   1783  * The specified block or fragment is placed back in the
   1784  * free map. If a fragment is deallocated, a possible
   1785  * block reassembly is checked.
   1786  *
   1787  * => um_lock not held on entry or exit
   1788  */
   1789 void
   1790 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1791     ino_t inum)
   1792 {
   1793 	struct cg *cgp;
   1794 	struct buf *bp;
   1795 	struct ufsmount *ump;
   1796 	daddr_t cgblkno;
   1797 	int error, cg;
   1798 	dev_t dev;
   1799 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1800 	const int needswap = UFS_FSNEEDSWAP(fs);
   1801 
   1802 	KASSERT(devvp_is_snapshot);
   1803 
   1804 	cg = dtog(fs, bno);
   1805 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1806 	ump = VFSTOUFS(devvp->v_mount);
   1807 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1808 
   1809 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1810 	if (error)
   1811 		return;
   1812 
   1813 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1814 	    B_MODIFY, &bp);
   1815 	if (error) {
   1816 		return;
   1817 	}
   1818 	cgp = (struct cg *)bp->b_data;
   1819 	if (!cg_chkmagic(cgp, needswap)) {
   1820 		brelse(bp, 0);
   1821 		return;
   1822 	}
   1823 
   1824 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1825 
   1826 	bdwrite(bp);
   1827 }
   1828 
   1829 static void
   1830 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1831     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1832 {
   1833 	struct cg *cgp;
   1834 	int32_t fragno, cgbno;
   1835 	int i, cg, blk, frags, bbase;
   1836 	u_int8_t *blksfree;
   1837 	const int needswap = UFS_FSNEEDSWAP(fs);
   1838 
   1839 	cg = dtog(fs, bno);
   1840 	cgp = (struct cg *)bp->b_data;
   1841 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1842 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1843 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1844 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1845 	cgbno = dtogd(fs, bno);
   1846 	blksfree = cg_blksfree(cgp, needswap);
   1847 	mutex_enter(&ump->um_lock);
   1848 	if (size == fs->fs_bsize) {
   1849 		fragno = ffs_fragstoblks(fs, cgbno);
   1850 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1851 			if (devvp_is_snapshot) {
   1852 				mutex_exit(&ump->um_lock);
   1853 				return;
   1854 			}
   1855 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1856 			    PRId64 ", fs = %s", __func__,
   1857 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1858 		}
   1859 		ffs_setblock(fs, blksfree, fragno);
   1860 		ffs_clusteracct(fs, cgp, fragno, 1);
   1861 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1862 		fs->fs_cstotal.cs_nbfree++;
   1863 		fs->fs_cs(fs, cg).cs_nbfree++;
   1864 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1865 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1866 			i = old_cbtocylno(fs, cgbno);
   1867 			KASSERT(i >= 0);
   1868 			KASSERT(i < fs->fs_old_ncyl);
   1869 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1870 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1871 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1872 			    needswap);
   1873 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1874 		}
   1875 	} else {
   1876 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1877 		/*
   1878 		 * decrement the counts associated with the old frags
   1879 		 */
   1880 		blk = blkmap(fs, blksfree, bbase);
   1881 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1882 		/*
   1883 		 * deallocate the fragment
   1884 		 */
   1885 		frags = ffs_numfrags(fs, size);
   1886 		for (i = 0; i < frags; i++) {
   1887 			if (isset(blksfree, cgbno + i)) {
   1888 				panic("%s: freeing free frag: "
   1889 				    "dev = 0x%llx, block = %" PRId64
   1890 				    ", fs = %s", __func__,
   1891 				    (unsigned long long)dev, bno + i,
   1892 				    fs->fs_fsmnt);
   1893 			}
   1894 			setbit(blksfree, cgbno + i);
   1895 		}
   1896 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1897 		fs->fs_cstotal.cs_nffree += i;
   1898 		fs->fs_cs(fs, cg).cs_nffree += i;
   1899 		/*
   1900 		 * add back in counts associated with the new frags
   1901 		 */
   1902 		blk = blkmap(fs, blksfree, bbase);
   1903 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1904 		/*
   1905 		 * if a complete block has been reassembled, account for it
   1906 		 */
   1907 		fragno = ffs_fragstoblks(fs, bbase);
   1908 		if (ffs_isblock(fs, blksfree, fragno)) {
   1909 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1910 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1911 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1912 			ffs_clusteracct(fs, cgp, fragno, 1);
   1913 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1914 			fs->fs_cstotal.cs_nbfree++;
   1915 			fs->fs_cs(fs, cg).cs_nbfree++;
   1916 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1917 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1918 				i = old_cbtocylno(fs, bbase);
   1919 				KASSERT(i >= 0);
   1920 				KASSERT(i < fs->fs_old_ncyl);
   1921 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1922 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1923 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1924 				    bbase)], 1, needswap);
   1925 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1926 			}
   1927 		}
   1928 	}
   1929 	fs->fs_fmod = 1;
   1930 	ACTIVECG_CLR(fs, cg);
   1931 	mutex_exit(&ump->um_lock);
   1932 }
   1933 
   1934 /*
   1935  * Free an inode.
   1936  */
   1937 int
   1938 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1939 {
   1940 
   1941 	return ffs_freefile(vp->v_mount, ino, mode);
   1942 }
   1943 
   1944 /*
   1945  * Do the actual free operation.
   1946  * The specified inode is placed back in the free map.
   1947  *
   1948  * => um_lock not held on entry or exit
   1949  */
   1950 int
   1951 ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1952 {
   1953 	struct ufsmount *ump = VFSTOUFS(mp);
   1954 	struct fs *fs = ump->um_fs;
   1955 	struct vnode *devvp;
   1956 	struct cg *cgp;
   1957 	struct buf *bp;
   1958 	int error, cg;
   1959 	daddr_t cgbno;
   1960 	dev_t dev;
   1961 	const int needswap = UFS_FSNEEDSWAP(fs);
   1962 
   1963 	cg = ino_to_cg(fs, ino);
   1964 	devvp = ump->um_devvp;
   1965 	dev = devvp->v_rdev;
   1966 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1967 
   1968 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1969 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   1970 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1971 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1972 	    B_MODIFY, &bp);
   1973 	if (error) {
   1974 		return (error);
   1975 	}
   1976 	cgp = (struct cg *)bp->b_data;
   1977 	if (!cg_chkmagic(cgp, needswap)) {
   1978 		brelse(bp, 0);
   1979 		return (0);
   1980 	}
   1981 
   1982 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1983 
   1984 	bdwrite(bp);
   1985 
   1986 	return 0;
   1987 }
   1988 
   1989 int
   1990 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1991 {
   1992 	struct ufsmount *ump;
   1993 	struct cg *cgp;
   1994 	struct buf *bp;
   1995 	int error, cg;
   1996 	daddr_t cgbno;
   1997 	dev_t dev;
   1998 	const int needswap = UFS_FSNEEDSWAP(fs);
   1999 
   2000 	KASSERT(devvp->v_type != VBLK);
   2001 
   2002 	cg = ino_to_cg(fs, ino);
   2003 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2004 	ump = VFSTOUFS(devvp->v_mount);
   2005 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2006 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2007 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2008 		    (unsigned long long)dev, (unsigned long long)ino,
   2009 		    fs->fs_fsmnt);
   2010 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2011 	    B_MODIFY, &bp);
   2012 	if (error) {
   2013 		return (error);
   2014 	}
   2015 	cgp = (struct cg *)bp->b_data;
   2016 	if (!cg_chkmagic(cgp, needswap)) {
   2017 		brelse(bp, 0);
   2018 		return (0);
   2019 	}
   2020 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2021 
   2022 	bdwrite(bp);
   2023 
   2024 	return 0;
   2025 }
   2026 
   2027 static void
   2028 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2029     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2030 {
   2031 	int cg;
   2032 	struct cg *cgp;
   2033 	u_int8_t *inosused;
   2034 	const int needswap = UFS_FSNEEDSWAP(fs);
   2035 
   2036 	cg = ino_to_cg(fs, ino);
   2037 	cgp = (struct cg *)bp->b_data;
   2038 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2039 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2040 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2041 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2042 	inosused = cg_inosused(cgp, needswap);
   2043 	ino %= fs->fs_ipg;
   2044 	if (isclr(inosused, ino)) {
   2045 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2046 		    (unsigned long long)dev, (unsigned long long)ino +
   2047 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2048 		if (fs->fs_ronly == 0)
   2049 			panic("%s: freeing free inode", __func__);
   2050 	}
   2051 	clrbit(inosused, ino);
   2052 	if (!devvp_is_snapshot)
   2053 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2054 		    ino + cg * fs->fs_ipg, mode);
   2055 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2056 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2057 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2058 	mutex_enter(&ump->um_lock);
   2059 	fs->fs_cstotal.cs_nifree++;
   2060 	fs->fs_cs(fs, cg).cs_nifree++;
   2061 	if ((mode & IFMT) == IFDIR) {
   2062 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2063 		fs->fs_cstotal.cs_ndir--;
   2064 		fs->fs_cs(fs, cg).cs_ndir--;
   2065 	}
   2066 	fs->fs_fmod = 1;
   2067 	ACTIVECG_CLR(fs, cg);
   2068 	mutex_exit(&ump->um_lock);
   2069 }
   2070 
   2071 /*
   2072  * Check to see if a file is free.
   2073  */
   2074 int
   2075 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2076 {
   2077 	struct cg *cgp;
   2078 	struct buf *bp;
   2079 	daddr_t cgbno;
   2080 	int ret, cg;
   2081 	u_int8_t *inosused;
   2082 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2083 
   2084 	KASSERT(devvp_is_snapshot);
   2085 
   2086 	cg = ino_to_cg(fs, ino);
   2087 	if (devvp_is_snapshot)
   2088 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2089 	else
   2090 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2091 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2092 		return 1;
   2093 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2094 		return 1;
   2095 	}
   2096 	cgp = (struct cg *)bp->b_data;
   2097 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2098 		brelse(bp, 0);
   2099 		return 1;
   2100 	}
   2101 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2102 	ino %= fs->fs_ipg;
   2103 	ret = isclr(inosused, ino);
   2104 	brelse(bp, 0);
   2105 	return ret;
   2106 }
   2107 
   2108 /*
   2109  * Find a block of the specified size in the specified cylinder group.
   2110  *
   2111  * It is a panic if a request is made to find a block if none are
   2112  * available.
   2113  */
   2114 static int32_t
   2115 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2116 {
   2117 	int32_t bno;
   2118 	int start, len, loc, i;
   2119 	int blk, field, subfield, pos;
   2120 	int ostart, olen;
   2121 	u_int8_t *blksfree;
   2122 	const int needswap = UFS_FSNEEDSWAP(fs);
   2123 
   2124 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2125 
   2126 	/*
   2127 	 * find the fragment by searching through the free block
   2128 	 * map for an appropriate bit pattern
   2129 	 */
   2130 	if (bpref)
   2131 		start = dtogd(fs, bpref) / NBBY;
   2132 	else
   2133 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2134 	blksfree = cg_blksfree(cgp, needswap);
   2135 	len = howmany(fs->fs_fpg, NBBY) - start;
   2136 	ostart = start;
   2137 	olen = len;
   2138 	loc = scanc((u_int)len,
   2139 		(const u_char *)&blksfree[start],
   2140 		(const u_char *)fragtbl[fs->fs_frag],
   2141 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2142 	if (loc == 0) {
   2143 		len = start + 1;
   2144 		start = 0;
   2145 		loc = scanc((u_int)len,
   2146 			(const u_char *)&blksfree[0],
   2147 			(const u_char *)fragtbl[fs->fs_frag],
   2148 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2149 		if (loc == 0) {
   2150 			panic("%s: map corrupted: start=%d, len=%d, "
   2151 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2152 			    ostart, olen, fs->fs_fsmnt,
   2153 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2154 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2155 			/* NOTREACHED */
   2156 		}
   2157 	}
   2158 	bno = (start + len - loc) * NBBY;
   2159 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2160 	/*
   2161 	 * found the byte in the map
   2162 	 * sift through the bits to find the selected frag
   2163 	 */
   2164 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2165 		blk = blkmap(fs, blksfree, bno);
   2166 		blk <<= 1;
   2167 		field = around[allocsiz];
   2168 		subfield = inside[allocsiz];
   2169 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2170 			if ((blk & field) == subfield)
   2171 				return (bno + pos);
   2172 			field <<= 1;
   2173 			subfield <<= 1;
   2174 		}
   2175 	}
   2176 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2177 	    bno, fs->fs_fsmnt);
   2178 	/* return (-1); */
   2179 }
   2180 
   2181 /*
   2182  * Fserr prints the name of a file system with an error diagnostic.
   2183  *
   2184  * The form of the error message is:
   2185  *	fs: error message
   2186  */
   2187 static void
   2188 ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2189 {
   2190 	KASSERT(cred != NULL);
   2191 
   2192 	if (cred == NOCRED || cred == FSCRED) {
   2193 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2194 		    curproc->p_pid, curproc->p_comm,
   2195 		    fs->fs_fsmnt, cp);
   2196 	} else {
   2197 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2198 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2199 		    fs->fs_fsmnt, cp);
   2200 	}
   2201 }
   2202