Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.16
      1 /*	$NetBSD: ffs_alloc.c,v 1.16 1998/02/05 08:00:32 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/buf.h>
     41 #include <sys/proc.h>
     42 #include <sys/vnode.h>
     43 #include <sys/mount.h>
     44 #include <sys/kernel.h>
     45 #include <sys/syslog.h>
     46 
     47 #include <vm/vm.h>
     48 
     49 #include <ufs/ufs/quota.h>
     50 #include <ufs/ufs/inode.h>
     51 #include <ufs/ufs/ufs_extern.h>
     52 
     53 #include <ufs/ffs/fs.h>
     54 #include <ufs/ffs/ffs_extern.h>
     55 
     56 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     57 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     58 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     59 static ino_t	ffs_dirpref __P((struct fs *));
     60 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     61 static void	ffs_fserr __P((struct fs *, u_int, char *));
     62 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     63 				   daddr_t (*)(struct inode *, int, daddr_t,
     64 					       int)));
     65 static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     66 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     67 
     68 /*
     69  * Allocate a block in the file system.
     70  *
     71  * The size of the requested block is given, which must be some
     72  * multiple of fs_fsize and <= fs_bsize.
     73  * A preference may be optionally specified. If a preference is given
     74  * the following hierarchy is used to allocate a block:
     75  *   1) allocate the requested block.
     76  *   2) allocate a rotationally optimal block in the same cylinder.
     77  *   3) allocate a block in the same cylinder group.
     78  *   4) quadradically rehash into other cylinder groups, until an
     79  *      available block is located.
     80  * If no block preference is given the following heirarchy is used
     81  * to allocate a block:
     82  *   1) allocate a block in the cylinder group that contains the
     83  *      inode for the file.
     84  *   2) quadradically rehash into other cylinder groups, until an
     85  *      available block is located.
     86  */
     87 int
     88 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     89 	register struct inode *ip;
     90 	daddr_t lbn, bpref;
     91 	int size;
     92 	struct ucred *cred;
     93 	daddr_t *bnp;
     94 {
     95 	register struct fs *fs;
     96 	daddr_t bno;
     97 	int cg;
     98 #ifdef QUOTA
     99 	int error;
    100 #endif
    101 
    102 	*bnp = 0;
    103 	fs = ip->i_fs;
    104 #ifdef DIAGNOSTIC
    105 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    106 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    107 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    108 		panic("ffs_alloc: bad size");
    109 	}
    110 	if (cred == NOCRED)
    111 		panic("ffs_alloc: missing credential\n");
    112 #endif /* DIAGNOSTIC */
    113 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    114 		goto nospace;
    115 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    116 		goto nospace;
    117 #ifdef QUOTA
    118 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    119 		return (error);
    120 #endif
    121 	if (bpref >= fs->fs_size)
    122 		bpref = 0;
    123 	if (bpref == 0)
    124 		cg = ino_to_cg(fs, ip->i_number);
    125 	else
    126 		cg = dtog(fs, bpref);
    127 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    128 	    			     ffs_alloccg);
    129 	if (bno > 0) {
    130 		ip->i_ffs_blocks += btodb(size);
    131 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    132 		*bnp = bno;
    133 		return (0);
    134 	}
    135 #ifdef QUOTA
    136 	/*
    137 	 * Restore user's disk quota because allocation failed.
    138 	 */
    139 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    140 #endif
    141 nospace:
    142 	ffs_fserr(fs, cred->cr_uid, "file system full");
    143 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    144 	return (ENOSPC);
    145 }
    146 
    147 /*
    148  * Reallocate a fragment to a bigger size
    149  *
    150  * The number and size of the old block is given, and a preference
    151  * and new size is also specified. The allocator attempts to extend
    152  * the original block. Failing that, the regular block allocator is
    153  * invoked to get an appropriate block.
    154  */
    155 int
    156 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    157 	register struct inode *ip;
    158 	daddr_t lbprev;
    159 	daddr_t bpref;
    160 	int osize, nsize;
    161 	struct ucred *cred;
    162 	struct buf **bpp;
    163 {
    164 	register struct fs *fs;
    165 	struct buf *bp;
    166 	int cg, request, error;
    167 	daddr_t bprev, bno;
    168 
    169 	*bpp = 0;
    170 	fs = ip->i_fs;
    171 #ifdef DIAGNOSTIC
    172 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    173 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    174 		printf(
    175 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    176 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    177 		panic("ffs_realloccg: bad size");
    178 	}
    179 	if (cred == NOCRED)
    180 		panic("ffs_realloccg: missing credential\n");
    181 #endif /* DIAGNOSTIC */
    182 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    183 		goto nospace;
    184 	if ((bprev = ip->i_ffs_db[lbprev]) == 0) {
    185 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    186 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    187 		panic("ffs_realloccg: bad bprev");
    188 	}
    189 	/*
    190 	 * Allocate the extra space in the buffer.
    191 	 */
    192 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    193 		brelse(bp);
    194 		return (error);
    195 	}
    196 #ifdef QUOTA
    197 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    198 		brelse(bp);
    199 		return (error);
    200 	}
    201 #endif
    202 	/*
    203 	 * Check for extension in the existing location.
    204 	 */
    205 	cg = dtog(fs, bprev);
    206 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    207 		if (bp->b_blkno != fsbtodb(fs, bno))
    208 			panic("bad blockno");
    209 		ip->i_ffs_blocks += btodb(nsize - osize);
    210 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    211 		allocbuf(bp, nsize);
    212 		bp->b_flags |= B_DONE;
    213 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    214 		*bpp = bp;
    215 		return (0);
    216 	}
    217 	/*
    218 	 * Allocate a new disk location.
    219 	 */
    220 	if (bpref >= fs->fs_size)
    221 		bpref = 0;
    222 	switch ((int)fs->fs_optim) {
    223 	case FS_OPTSPACE:
    224 		/*
    225 		 * Allocate an exact sized fragment. Although this makes
    226 		 * best use of space, we will waste time relocating it if
    227 		 * the file continues to grow. If the fragmentation is
    228 		 * less than half of the minimum free reserve, we choose
    229 		 * to begin optimizing for time.
    230 		 */
    231 		request = nsize;
    232 		if (fs->fs_minfree < 5 ||
    233 		    fs->fs_cstotal.cs_nffree >
    234 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    235 			break;
    236 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    237 			fs->fs_fsmnt);
    238 		fs->fs_optim = FS_OPTTIME;
    239 		break;
    240 	case FS_OPTTIME:
    241 		/*
    242 		 * At this point we have discovered a file that is trying to
    243 		 * grow a small fragment to a larger fragment. To save time,
    244 		 * we allocate a full sized block, then free the unused portion.
    245 		 * If the file continues to grow, the `ffs_fragextend' call
    246 		 * above will be able to grow it in place without further
    247 		 * copying. If aberrant programs cause disk fragmentation to
    248 		 * grow within 2% of the free reserve, we choose to begin
    249 		 * optimizing for space.
    250 		 */
    251 		request = fs->fs_bsize;
    252 		if (fs->fs_cstotal.cs_nffree <
    253 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    254 			break;
    255 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    256 			fs->fs_fsmnt);
    257 		fs->fs_optim = FS_OPTSPACE;
    258 		break;
    259 	default:
    260 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    261 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    262 		panic("ffs_realloccg: bad optim");
    263 		/* NOTREACHED */
    264 	}
    265 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    266 	    			     ffs_alloccg);
    267 	if (bno > 0) {
    268 		bp->b_blkno = fsbtodb(fs, bno);
    269 #if defined(UVM)
    270 		(void) uvm_vnp_uncache(ITOV(ip));
    271 #else
    272 		(void) vnode_pager_uncache(ITOV(ip));
    273 #endif
    274 		ffs_blkfree(ip, bprev, (long)osize);
    275 		if (nsize < request)
    276 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    277 			    (long)(request - nsize));
    278 		ip->i_ffs_blocks += btodb(nsize - osize);
    279 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    280 		allocbuf(bp, nsize);
    281 		bp->b_flags |= B_DONE;
    282 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    283 		*bpp = bp;
    284 		return (0);
    285 	}
    286 #ifdef QUOTA
    287 	/*
    288 	 * Restore user's disk quota because allocation failed.
    289 	 */
    290 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    291 #endif
    292 	brelse(bp);
    293 nospace:
    294 	/*
    295 	 * no space available
    296 	 */
    297 	ffs_fserr(fs, cred->cr_uid, "file system full");
    298 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    299 	return (ENOSPC);
    300 }
    301 
    302 /*
    303  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    304  *
    305  * The vnode and an array of buffer pointers for a range of sequential
    306  * logical blocks to be made contiguous is given. The allocator attempts
    307  * to find a range of sequential blocks starting as close as possible to
    308  * an fs_rotdelay offset from the end of the allocation for the logical
    309  * block immediately preceeding the current range. If successful, the
    310  * physical block numbers in the buffer pointers and in the inode are
    311  * changed to reflect the new allocation. If unsuccessful, the allocation
    312  * is left unchanged. The success in doing the reallocation is returned.
    313  * Note that the error return is not reflected back to the user. Rather
    314  * the previous block allocation will be used.
    315  */
    316 #ifdef DEBUG
    317 #include <sys/sysctl.h>
    318 int doasyncfree = 1;
    319 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    320 int prtrealloc = 0;
    321 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    322 #else
    323 #define doasyncfree 1
    324 #endif
    325 
    326 int
    327 ffs_reallocblks(v)
    328 	void *v;
    329 {
    330 	struct vop_reallocblks_args /* {
    331 		struct vnode *a_vp;
    332 		struct cluster_save *a_buflist;
    333 	} */ *ap = v;
    334 	struct fs *fs;
    335 	struct inode *ip;
    336 	struct vnode *vp;
    337 	struct buf *sbp, *ebp;
    338 	daddr_t *bap, *sbap, *ebap = NULL;
    339 	struct cluster_save *buflist;
    340 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    341 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    342 	int i, len, start_lvl, end_lvl, pref, ssize;
    343 	struct timespec ts;
    344 
    345 	vp = ap->a_vp;
    346 	ip = VTOI(vp);
    347 	fs = ip->i_fs;
    348 	if (fs->fs_contigsumsize <= 0)
    349 		return (ENOSPC);
    350 	buflist = ap->a_buflist;
    351 	len = buflist->bs_nchildren;
    352 	start_lbn = buflist->bs_children[0]->b_lblkno;
    353 	end_lbn = start_lbn + len - 1;
    354 #ifdef DIAGNOSTIC
    355 	for (i = 1; i < len; i++)
    356 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    357 			panic("ffs_reallocblks: non-cluster");
    358 #endif
    359 	/*
    360 	 * If the latest allocation is in a new cylinder group, assume that
    361 	 * the filesystem has decided to move and do not force it back to
    362 	 * the previous cylinder group.
    363 	 */
    364 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    365 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    366 		return (ENOSPC);
    367 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    368 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    369 		return (ENOSPC);
    370 	/*
    371 	 * Get the starting offset and block map for the first block.
    372 	 */
    373 	if (start_lvl == 0) {
    374 		sbap = &ip->i_ffs_db[0];
    375 		soff = start_lbn;
    376 	} else {
    377 		idp = &start_ap[start_lvl - 1];
    378 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    379 			brelse(sbp);
    380 			return (ENOSPC);
    381 		}
    382 		sbap = (daddr_t *)sbp->b_data;
    383 		soff = idp->in_off;
    384 	}
    385 	/*
    386 	 * Find the preferred location for the cluster.
    387 	 */
    388 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    389 	/*
    390 	 * If the block range spans two block maps, get the second map.
    391 	 */
    392 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    393 		ssize = len;
    394 	} else {
    395 #ifdef DIAGNOSTIC
    396 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    397 			panic("ffs_reallocblk: start == end");
    398 #endif
    399 		ssize = len - (idp->in_off + 1);
    400 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    401 			goto fail;
    402 		ebap = (daddr_t *)ebp->b_data;
    403 	}
    404 	/*
    405 	 * Search the block map looking for an allocation of the desired size.
    406 	 */
    407 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    408 	    len, ffs_clusteralloc)) == 0)
    409 		goto fail;
    410 	/*
    411 	 * We have found a new contiguous block.
    412 	 *
    413 	 * First we have to replace the old block pointers with the new
    414 	 * block pointers in the inode and indirect blocks associated
    415 	 * with the file.
    416 	 */
    417 #ifdef DEBUG
    418 	if (prtrealloc)
    419 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    420 		    start_lbn, end_lbn);
    421 #endif
    422 	blkno = newblk;
    423 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    424 		if (i == ssize)
    425 			bap = ebap;
    426 #ifdef DIAGNOSTIC
    427 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    428 			panic("ffs_reallocblks: alloc mismatch");
    429 #endif
    430 #ifdef DEBUG
    431 		if (prtrealloc)
    432 			printf(" %d,", *bap);
    433 #endif
    434 		*bap++ = blkno;
    435 	}
    436 	/*
    437 	 * Next we must write out the modified inode and indirect blocks.
    438 	 * For strict correctness, the writes should be synchronous since
    439 	 * the old block values may have been written to disk. In practise
    440 	 * they are almost never written, but if we are concerned about
    441 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    442 	 *
    443 	 * The test on `doasyncfree' should be changed to test a flag
    444 	 * that shows whether the associated buffers and inodes have
    445 	 * been written. The flag should be set when the cluster is
    446 	 * started and cleared whenever the buffer or inode is flushed.
    447 	 * We can then check below to see if it is set, and do the
    448 	 * synchronous write only when it has been cleared.
    449 	 */
    450 	if (sbap != &ip->i_ffs_db[0]) {
    451 		if (doasyncfree)
    452 			bdwrite(sbp);
    453 		else
    454 			bwrite(sbp);
    455 	} else {
    456 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    457 		if (!doasyncfree) {
    458 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    459 			VOP_UPDATE(vp, &ts, &ts, 1);
    460 		}
    461 	}
    462 	if (ssize < len)
    463 		if (doasyncfree)
    464 			bdwrite(ebp);
    465 		else
    466 			bwrite(ebp);
    467 	/*
    468 	 * Last, free the old blocks and assign the new blocks to the buffers.
    469 	 */
    470 #ifdef DEBUG
    471 	if (prtrealloc)
    472 		printf("\n\tnew:");
    473 #endif
    474 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    475 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    476 		    fs->fs_bsize);
    477 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    478 #ifdef DEBUG
    479 		if (prtrealloc)
    480 			printf(" %d,", blkno);
    481 #endif
    482 	}
    483 #ifdef DEBUG
    484 	if (prtrealloc) {
    485 		prtrealloc--;
    486 		printf("\n");
    487 	}
    488 #endif
    489 	return (0);
    490 
    491 fail:
    492 	if (ssize < len)
    493 		brelse(ebp);
    494 	if (sbap != &ip->i_ffs_db[0])
    495 		brelse(sbp);
    496 	return (ENOSPC);
    497 }
    498 
    499 /*
    500  * Allocate an inode in the file system.
    501  *
    502  * If allocating a directory, use ffs_dirpref to select the inode.
    503  * If allocating in a directory, the following hierarchy is followed:
    504  *   1) allocate the preferred inode.
    505  *   2) allocate an inode in the same cylinder group.
    506  *   3) quadradically rehash into other cylinder groups, until an
    507  *      available inode is located.
    508  * If no inode preference is given the following heirarchy is used
    509  * to allocate an inode:
    510  *   1) allocate an inode in cylinder group 0.
    511  *   2) quadradically rehash into other cylinder groups, until an
    512  *      available inode is located.
    513  */
    514 int
    515 ffs_valloc(v)
    516 	void *v;
    517 {
    518 	struct vop_valloc_args /* {
    519 		struct vnode *a_pvp;
    520 		int a_mode;
    521 		struct ucred *a_cred;
    522 		struct vnode **a_vpp;
    523 	} */ *ap = v;
    524 	register struct vnode *pvp = ap->a_pvp;
    525 	register struct inode *pip;
    526 	register struct fs *fs;
    527 	register struct inode *ip;
    528 	mode_t mode = ap->a_mode;
    529 	ino_t ino, ipref;
    530 	int cg, error;
    531 
    532 	*ap->a_vpp = NULL;
    533 	pip = VTOI(pvp);
    534 	fs = pip->i_fs;
    535 	if (fs->fs_cstotal.cs_nifree == 0)
    536 		goto noinodes;
    537 
    538 	if ((mode & IFMT) == IFDIR)
    539 		ipref = ffs_dirpref(fs);
    540 	else
    541 		ipref = pip->i_number;
    542 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    543 		ipref = 0;
    544 	cg = ino_to_cg(fs, ipref);
    545 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    546 	if (ino == 0)
    547 		goto noinodes;
    548 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    549 	if (error) {
    550 		VOP_VFREE(pvp, ino, mode);
    551 		return (error);
    552 	}
    553 	ip = VTOI(*ap->a_vpp);
    554 	if (ip->i_ffs_mode) {
    555 		printf("mode = 0%o, inum = %d, fs = %s\n",
    556 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    557 		panic("ffs_valloc: dup alloc");
    558 	}
    559 	if (ip->i_ffs_blocks) {				/* XXX */
    560 		printf("free inode %s/%d had %d blocks\n",
    561 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    562 		ip->i_ffs_blocks = 0;
    563 	}
    564 	ip->i_ffs_flags = 0;
    565 	/*
    566 	 * Set up a new generation number for this inode.
    567 	 */
    568 	ip->i_ffs_gen++;
    569 	return (0);
    570 noinodes:
    571 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    572 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    573 	return (ENOSPC);
    574 }
    575 
    576 /*
    577  * Find a cylinder to place a directory.
    578  *
    579  * The policy implemented by this algorithm is to select from
    580  * among those cylinder groups with above the average number of
    581  * free inodes, the one with the smallest number of directories.
    582  */
    583 static ino_t
    584 ffs_dirpref(fs)
    585 	register struct fs *fs;
    586 {
    587 	int cg, minndir, mincg, avgifree;
    588 
    589 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    590 	minndir = fs->fs_ipg;
    591 	mincg = 0;
    592 	for (cg = 0; cg < fs->fs_ncg; cg++)
    593 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    594 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    595 			mincg = cg;
    596 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    597 		}
    598 	return ((ino_t)(fs->fs_ipg * mincg));
    599 }
    600 
    601 /*
    602  * Select the desired position for the next block in a file.  The file is
    603  * logically divided into sections. The first section is composed of the
    604  * direct blocks. Each additional section contains fs_maxbpg blocks.
    605  *
    606  * If no blocks have been allocated in the first section, the policy is to
    607  * request a block in the same cylinder group as the inode that describes
    608  * the file. If no blocks have been allocated in any other section, the
    609  * policy is to place the section in a cylinder group with a greater than
    610  * average number of free blocks.  An appropriate cylinder group is found
    611  * by using a rotor that sweeps the cylinder groups. When a new group of
    612  * blocks is needed, the sweep begins in the cylinder group following the
    613  * cylinder group from which the previous allocation was made. The sweep
    614  * continues until a cylinder group with greater than the average number
    615  * of free blocks is found. If the allocation is for the first block in an
    616  * indirect block, the information on the previous allocation is unavailable;
    617  * here a best guess is made based upon the logical block number being
    618  * allocated.
    619  *
    620  * If a section is already partially allocated, the policy is to
    621  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    622  * contiguous blocks and the beginning of the next is physically separated
    623  * so that the disk head will be in transit between them for at least
    624  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    625  * schedule another I/O transfer.
    626  */
    627 daddr_t
    628 ffs_blkpref(ip, lbn, indx, bap)
    629 	struct inode *ip;
    630 	daddr_t lbn;
    631 	int indx;
    632 	daddr_t *bap;
    633 {
    634 	register struct fs *fs;
    635 	register int cg;
    636 	int avgbfree, startcg;
    637 	daddr_t nextblk;
    638 
    639 	fs = ip->i_fs;
    640 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    641 		if (lbn < NDADDR) {
    642 			cg = ino_to_cg(fs, ip->i_number);
    643 			return (fs->fs_fpg * cg + fs->fs_frag);
    644 		}
    645 		/*
    646 		 * Find a cylinder with greater than average number of
    647 		 * unused data blocks.
    648 		 */
    649 		if (indx == 0 || bap[indx - 1] == 0)
    650 			startcg =
    651 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    652 		else
    653 			startcg = dtog(fs, bap[indx - 1]) + 1;
    654 		startcg %= fs->fs_ncg;
    655 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    656 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    657 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    658 				fs->fs_cgrotor = cg;
    659 				return (fs->fs_fpg * cg + fs->fs_frag);
    660 			}
    661 		for (cg = 0; cg <= startcg; cg++)
    662 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    663 				fs->fs_cgrotor = cg;
    664 				return (fs->fs_fpg * cg + fs->fs_frag);
    665 			}
    666 		return (NULL);
    667 	}
    668 	/*
    669 	 * One or more previous blocks have been laid out. If less
    670 	 * than fs_maxcontig previous blocks are contiguous, the
    671 	 * next block is requested contiguously, otherwise it is
    672 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    673 	 */
    674 	nextblk = bap[indx - 1] + fs->fs_frag;
    675 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    676 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    677 		return (nextblk);
    678 	if (fs->fs_rotdelay != 0)
    679 		/*
    680 		 * Here we convert ms of delay to frags as:
    681 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    682 		 *	((sect/frag) * (ms/sec))
    683 		 * then round up to the next block.
    684 		 */
    685 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    686 		    (NSPF(fs) * 1000), fs->fs_frag);
    687 	return (nextblk);
    688 }
    689 
    690 /*
    691  * Implement the cylinder overflow algorithm.
    692  *
    693  * The policy implemented by this algorithm is:
    694  *   1) allocate the block in its requested cylinder group.
    695  *   2) quadradically rehash on the cylinder group number.
    696  *   3) brute force search for a free block.
    697  */
    698 /*VARARGS5*/
    699 static u_long
    700 ffs_hashalloc(ip, cg, pref, size, allocator)
    701 	struct inode *ip;
    702 	int cg;
    703 	long pref;
    704 	int size;	/* size for data blocks, mode for inodes */
    705 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    706 {
    707 	register struct fs *fs;
    708 	long result;
    709 	int i, icg = cg;
    710 
    711 	fs = ip->i_fs;
    712 	/*
    713 	 * 1: preferred cylinder group
    714 	 */
    715 	result = (*allocator)(ip, cg, pref, size);
    716 	if (result)
    717 		return (result);
    718 	/*
    719 	 * 2: quadratic rehash
    720 	 */
    721 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    722 		cg += i;
    723 		if (cg >= fs->fs_ncg)
    724 			cg -= fs->fs_ncg;
    725 		result = (*allocator)(ip, cg, 0, size);
    726 		if (result)
    727 			return (result);
    728 	}
    729 	/*
    730 	 * 3: brute force search
    731 	 * Note that we start at i == 2, since 0 was checked initially,
    732 	 * and 1 is always checked in the quadratic rehash.
    733 	 */
    734 	cg = (icg + 2) % fs->fs_ncg;
    735 	for (i = 2; i < fs->fs_ncg; i++) {
    736 		result = (*allocator)(ip, cg, 0, size);
    737 		if (result)
    738 			return (result);
    739 		cg++;
    740 		if (cg == fs->fs_ncg)
    741 			cg = 0;
    742 	}
    743 	return (NULL);
    744 }
    745 
    746 /*
    747  * Determine whether a fragment can be extended.
    748  *
    749  * Check to see if the necessary fragments are available, and
    750  * if they are, allocate them.
    751  */
    752 static daddr_t
    753 ffs_fragextend(ip, cg, bprev, osize, nsize)
    754 	struct inode *ip;
    755 	int cg;
    756 	long bprev;
    757 	int osize, nsize;
    758 {
    759 	register struct fs *fs;
    760 	register struct cg *cgp;
    761 	struct buf *bp;
    762 	long bno;
    763 	int frags, bbase;
    764 	int i, error;
    765 
    766 	fs = ip->i_fs;
    767 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    768 		return (NULL);
    769 	frags = numfrags(fs, nsize);
    770 	bbase = fragnum(fs, bprev);
    771 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    772 		/* cannot extend across a block boundary */
    773 		return (NULL);
    774 	}
    775 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    776 		(int)fs->fs_cgsize, NOCRED, &bp);
    777 	if (error) {
    778 		brelse(bp);
    779 		return (NULL);
    780 	}
    781 	cgp = (struct cg *)bp->b_data;
    782 	if (!cg_chkmagic(cgp)) {
    783 		brelse(bp);
    784 		return (NULL);
    785 	}
    786 	cgp->cg_time = time.tv_sec;
    787 	bno = dtogd(fs, bprev);
    788 	for (i = numfrags(fs, osize); i < frags; i++)
    789 		if (isclr(cg_blksfree(cgp), bno + i)) {
    790 			brelse(bp);
    791 			return (NULL);
    792 		}
    793 	/*
    794 	 * the current fragment can be extended
    795 	 * deduct the count on fragment being extended into
    796 	 * increase the count on the remaining fragment (if any)
    797 	 * allocate the extended piece
    798 	 */
    799 	for (i = frags; i < fs->fs_frag - bbase; i++)
    800 		if (isclr(cg_blksfree(cgp), bno + i))
    801 			break;
    802 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    803 	if (i != frags)
    804 		cgp->cg_frsum[i - frags]++;
    805 	for (i = numfrags(fs, osize); i < frags; i++) {
    806 		clrbit(cg_blksfree(cgp), bno + i);
    807 		cgp->cg_cs.cs_nffree--;
    808 		fs->fs_cstotal.cs_nffree--;
    809 		fs->fs_cs(fs, cg).cs_nffree--;
    810 	}
    811 	fs->fs_fmod = 1;
    812 	bdwrite(bp);
    813 	return (bprev);
    814 }
    815 
    816 /*
    817  * Determine whether a block can be allocated.
    818  *
    819  * Check to see if a block of the appropriate size is available,
    820  * and if it is, allocate it.
    821  */
    822 static daddr_t
    823 ffs_alloccg(ip, cg, bpref, size)
    824 	struct inode *ip;
    825 	int cg;
    826 	daddr_t bpref;
    827 	int size;
    828 {
    829 	register struct fs *fs;
    830 	register struct cg *cgp;
    831 	struct buf *bp;
    832 	register int i;
    833 	int error, bno, frags, allocsiz;
    834 
    835 	fs = ip->i_fs;
    836 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    837 		return (NULL);
    838 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    839 		(int)fs->fs_cgsize, NOCRED, &bp);
    840 	if (error) {
    841 		brelse(bp);
    842 		return (NULL);
    843 	}
    844 	cgp = (struct cg *)bp->b_data;
    845 	if (!cg_chkmagic(cgp) ||
    846 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    847 		brelse(bp);
    848 		return (NULL);
    849 	}
    850 	cgp->cg_time = time.tv_sec;
    851 	if (size == fs->fs_bsize) {
    852 		bno = ffs_alloccgblk(fs, cgp, bpref);
    853 		bdwrite(bp);
    854 		return (bno);
    855 	}
    856 	/*
    857 	 * check to see if any fragments are already available
    858 	 * allocsiz is the size which will be allocated, hacking
    859 	 * it down to a smaller size if necessary
    860 	 */
    861 	frags = numfrags(fs, size);
    862 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    863 		if (cgp->cg_frsum[allocsiz] != 0)
    864 			break;
    865 	if (allocsiz == fs->fs_frag) {
    866 		/*
    867 		 * no fragments were available, so a block will be
    868 		 * allocated, and hacked up
    869 		 */
    870 		if (cgp->cg_cs.cs_nbfree == 0) {
    871 			brelse(bp);
    872 			return (NULL);
    873 		}
    874 		bno = ffs_alloccgblk(fs, cgp, bpref);
    875 		bpref = dtogd(fs, bno);
    876 		for (i = frags; i < fs->fs_frag; i++)
    877 			setbit(cg_blksfree(cgp), bpref + i);
    878 		i = fs->fs_frag - frags;
    879 		cgp->cg_cs.cs_nffree += i;
    880 		fs->fs_cstotal.cs_nffree += i;
    881 		fs->fs_cs(fs, cg).cs_nffree += i;
    882 		fs->fs_fmod = 1;
    883 		cgp->cg_frsum[i]++;
    884 		bdwrite(bp);
    885 		return (bno);
    886 	}
    887 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    888 	if (bno < 0) {
    889 		brelse(bp);
    890 		return (NULL);
    891 	}
    892 	for (i = 0; i < frags; i++)
    893 		clrbit(cg_blksfree(cgp), bno + i);
    894 	cgp->cg_cs.cs_nffree -= frags;
    895 	fs->fs_cstotal.cs_nffree -= frags;
    896 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    897 	fs->fs_fmod = 1;
    898 	cgp->cg_frsum[allocsiz]--;
    899 	if (frags != allocsiz)
    900 		cgp->cg_frsum[allocsiz - frags]++;
    901 	bdwrite(bp);
    902 	return (cg * fs->fs_fpg + bno);
    903 }
    904 
    905 /*
    906  * Allocate a block in a cylinder group.
    907  *
    908  * This algorithm implements the following policy:
    909  *   1) allocate the requested block.
    910  *   2) allocate a rotationally optimal block in the same cylinder.
    911  *   3) allocate the next available block on the block rotor for the
    912  *      specified cylinder group.
    913  * Note that this routine only allocates fs_bsize blocks; these
    914  * blocks may be fragmented by the routine that allocates them.
    915  */
    916 static daddr_t
    917 ffs_alloccgblk(fs, cgp, bpref)
    918 	register struct fs *fs;
    919 	register struct cg *cgp;
    920 	daddr_t bpref;
    921 {
    922 	daddr_t bno, blkno;
    923 	int cylno, pos, delta;
    924 	short *cylbp;
    925 	register int i;
    926 
    927 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    928 		bpref = cgp->cg_rotor;
    929 		goto norot;
    930 	}
    931 	bpref = blknum(fs, bpref);
    932 	bpref = dtogd(fs, bpref);
    933 	/*
    934 	 * if the requested block is available, use it
    935 	 */
    936 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    937 		bno = bpref;
    938 		goto gotit;
    939 	}
    940 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
    941 		/*
    942 		 * Block layout information is not available.
    943 		 * Leaving bpref unchanged means we take the
    944 		 * next available free block following the one
    945 		 * we just allocated. Hopefully this will at
    946 		 * least hit a track cache on drives of unknown
    947 		 * geometry (e.g. SCSI).
    948 		 */
    949 		goto norot;
    950 	}
    951 	/*
    952 	 * check for a block available on the same cylinder
    953 	 */
    954 	cylno = cbtocylno(fs, bpref);
    955 	if (cg_blktot(cgp)[cylno] == 0)
    956 		goto norot;
    957 	/*
    958 	 * check the summary information to see if a block is
    959 	 * available in the requested cylinder starting at the
    960 	 * requested rotational position and proceeding around.
    961 	 */
    962 	cylbp = cg_blks(fs, cgp, cylno);
    963 	pos = cbtorpos(fs, bpref);
    964 	for (i = pos; i < fs->fs_nrpos; i++)
    965 		if (cylbp[i] > 0)
    966 			break;
    967 	if (i == fs->fs_nrpos)
    968 		for (i = 0; i < pos; i++)
    969 			if (cylbp[i] > 0)
    970 				break;
    971 	if (cylbp[i] > 0) {
    972 		/*
    973 		 * found a rotational position, now find the actual
    974 		 * block. A panic if none is actually there.
    975 		 */
    976 		pos = cylno % fs->fs_cpc;
    977 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    978 		if (fs_postbl(fs, pos)[i] == -1) {
    979 			printf("pos = %d, i = %d, fs = %s\n",
    980 			    pos, i, fs->fs_fsmnt);
    981 			panic("ffs_alloccgblk: cyl groups corrupted");
    982 		}
    983 		for (i = fs_postbl(fs, pos)[i];; ) {
    984 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    985 				bno = blkstofrags(fs, (bno + i));
    986 				goto gotit;
    987 			}
    988 			delta = fs_rotbl(fs)[i];
    989 			if (delta <= 0 ||
    990 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    991 				break;
    992 			i += delta;
    993 		}
    994 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    995 		panic("ffs_alloccgblk: can't find blk in cyl");
    996 	}
    997 norot:
    998 	/*
    999 	 * no blocks in the requested cylinder, so take next
   1000 	 * available one in this cylinder group.
   1001 	 */
   1002 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1003 	if (bno < 0)
   1004 		return (NULL);
   1005 	cgp->cg_rotor = bno;
   1006 gotit:
   1007 	blkno = fragstoblks(fs, bno);
   1008 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1009 	ffs_clusteracct(fs, cgp, blkno, -1);
   1010 	cgp->cg_cs.cs_nbfree--;
   1011 	fs->fs_cstotal.cs_nbfree--;
   1012 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1013 	cylno = cbtocylno(fs, bno);
   1014 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1015 	cg_blktot(cgp)[cylno]--;
   1016 	fs->fs_fmod = 1;
   1017 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1018 }
   1019 
   1020 /*
   1021  * Determine whether a cluster can be allocated.
   1022  *
   1023  * We do not currently check for optimal rotational layout if there
   1024  * are multiple choices in the same cylinder group. Instead we just
   1025  * take the first one that we find following bpref.
   1026  */
   1027 static daddr_t
   1028 ffs_clusteralloc(ip, cg, bpref, len)
   1029 	struct inode *ip;
   1030 	int cg;
   1031 	daddr_t bpref;
   1032 	int len;
   1033 {
   1034 	register struct fs *fs;
   1035 	register struct cg *cgp;
   1036 	struct buf *bp;
   1037 	int i, run, bno, bit, map;
   1038 	u_char *mapp;
   1039 	int32_t *lp;
   1040 
   1041 	fs = ip->i_fs;
   1042 	if (fs->fs_maxcluster[cg] < len)
   1043 		return (NULL);
   1044 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1045 	    NOCRED, &bp))
   1046 		goto fail;
   1047 	cgp = (struct cg *)bp->b_data;
   1048 	if (!cg_chkmagic(cgp))
   1049 		goto fail;
   1050 	/*
   1051 	 * Check to see if a cluster of the needed size (or bigger) is
   1052 	 * available in this cylinder group.
   1053 	 */
   1054 	lp = &cg_clustersum(cgp)[len];
   1055 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1056 		if (*lp++ > 0)
   1057 			break;
   1058 	if (i > fs->fs_contigsumsize) {
   1059 		/*
   1060 		 * This is the first time looking for a cluster in this
   1061 		 * cylinder group. Update the cluster summary information
   1062 		 * to reflect the true maximum sized cluster so that
   1063 		 * future cluster allocation requests can avoid reading
   1064 		 * the cylinder group map only to find no clusters.
   1065 		 */
   1066 		lp = &cg_clustersum(cgp)[len - 1];
   1067 		for (i = len - 1; i > 0; i--)
   1068 			if (*lp-- > 0)
   1069 				break;
   1070 		fs->fs_maxcluster[cg] = i;
   1071 		goto fail;
   1072 	}
   1073 	/*
   1074 	 * Search the cluster map to find a big enough cluster.
   1075 	 * We take the first one that we find, even if it is larger
   1076 	 * than we need as we prefer to get one close to the previous
   1077 	 * block allocation. We do not search before the current
   1078 	 * preference point as we do not want to allocate a block
   1079 	 * that is allocated before the previous one (as we will
   1080 	 * then have to wait for another pass of the elevator
   1081 	 * algorithm before it will be read). We prefer to fail and
   1082 	 * be recalled to try an allocation in the next cylinder group.
   1083 	 */
   1084 	if (dtog(fs, bpref) != cg)
   1085 		bpref = 0;
   1086 	else
   1087 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1088 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1089 	map = *mapp++;
   1090 	bit = 1 << (bpref % NBBY);
   1091 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1092 		if ((map & bit) == 0) {
   1093 			run = 0;
   1094 		} else {
   1095 			run++;
   1096 			if (run == len)
   1097 				break;
   1098 		}
   1099 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1100 			bit <<= 1;
   1101 		} else {
   1102 			map = *mapp++;
   1103 			bit = 1;
   1104 		}
   1105 	}
   1106 	if (i == cgp->cg_nclusterblks)
   1107 		goto fail;
   1108 	/*
   1109 	 * Allocate the cluster that we have found.
   1110 	 */
   1111 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1112 	len = blkstofrags(fs, len);
   1113 	for (i = 0; i < len; i += fs->fs_frag)
   1114 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1115 			panic("ffs_clusteralloc: lost block");
   1116 	bdwrite(bp);
   1117 	return (bno);
   1118 
   1119 fail:
   1120 	brelse(bp);
   1121 	return (0);
   1122 }
   1123 
   1124 /*
   1125  * Determine whether an inode can be allocated.
   1126  *
   1127  * Check to see if an inode is available, and if it is,
   1128  * allocate it using the following policy:
   1129  *   1) allocate the requested inode.
   1130  *   2) allocate the next available inode after the requested
   1131  *      inode in the specified cylinder group.
   1132  */
   1133 static daddr_t
   1134 ffs_nodealloccg(ip, cg, ipref, mode)
   1135 	struct inode *ip;
   1136 	int cg;
   1137 	daddr_t ipref;
   1138 	int mode;
   1139 {
   1140 	register struct fs *fs;
   1141 	register struct cg *cgp;
   1142 	struct buf *bp;
   1143 	int error, start, len, loc, map, i;
   1144 
   1145 	fs = ip->i_fs;
   1146 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1147 		return (NULL);
   1148 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1149 		(int)fs->fs_cgsize, NOCRED, &bp);
   1150 	if (error) {
   1151 		brelse(bp);
   1152 		return (NULL);
   1153 	}
   1154 	cgp = (struct cg *)bp->b_data;
   1155 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1156 		brelse(bp);
   1157 		return (NULL);
   1158 	}
   1159 	cgp->cg_time = time.tv_sec;
   1160 	if (ipref) {
   1161 		ipref %= fs->fs_ipg;
   1162 		if (isclr(cg_inosused(cgp), ipref))
   1163 			goto gotit;
   1164 	}
   1165 	start = cgp->cg_irotor / NBBY;
   1166 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1167 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1168 	if (loc == 0) {
   1169 		len = start + 1;
   1170 		start = 0;
   1171 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1172 		if (loc == 0) {
   1173 			printf("cg = %d, irotor = %d, fs = %s\n",
   1174 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1175 			panic("ffs_nodealloccg: map corrupted");
   1176 			/* NOTREACHED */
   1177 		}
   1178 	}
   1179 	i = start + len - loc;
   1180 	map = cg_inosused(cgp)[i];
   1181 	ipref = i * NBBY;
   1182 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1183 		if ((map & i) == 0) {
   1184 			cgp->cg_irotor = ipref;
   1185 			goto gotit;
   1186 		}
   1187 	}
   1188 	printf("fs = %s\n", fs->fs_fsmnt);
   1189 	panic("ffs_nodealloccg: block not in map");
   1190 	/* NOTREACHED */
   1191 gotit:
   1192 	setbit(cg_inosused(cgp), ipref);
   1193 	cgp->cg_cs.cs_nifree--;
   1194 	fs->fs_cstotal.cs_nifree--;
   1195 	fs->fs_cs(fs, cg).cs_nifree--;
   1196 	fs->fs_fmod = 1;
   1197 	if ((mode & IFMT) == IFDIR) {
   1198 		cgp->cg_cs.cs_ndir++;
   1199 		fs->fs_cstotal.cs_ndir++;
   1200 		fs->fs_cs(fs, cg).cs_ndir++;
   1201 	}
   1202 	bdwrite(bp);
   1203 	return (cg * fs->fs_ipg + ipref);
   1204 }
   1205 
   1206 /*
   1207  * Free a block or fragment.
   1208  *
   1209  * The specified block or fragment is placed back in the
   1210  * free map. If a fragment is deallocated, a possible
   1211  * block reassembly is checked.
   1212  */
   1213 void
   1214 ffs_blkfree(ip, bno, size)
   1215 	register struct inode *ip;
   1216 	daddr_t bno;
   1217 	long size;
   1218 {
   1219 	register struct fs *fs;
   1220 	register struct cg *cgp;
   1221 	struct buf *bp;
   1222 	daddr_t blkno;
   1223 	int i, error, cg, blk, frags, bbase;
   1224 
   1225 	fs = ip->i_fs;
   1226 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1227 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1228 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1229 		panic("blkfree: bad size");
   1230 	}
   1231 	cg = dtog(fs, bno);
   1232 	if ((u_int)bno >= fs->fs_size) {
   1233 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1234 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1235 		return;
   1236 	}
   1237 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1238 		(int)fs->fs_cgsize, NOCRED, &bp);
   1239 	if (error) {
   1240 		brelse(bp);
   1241 		return;
   1242 	}
   1243 	cgp = (struct cg *)bp->b_data;
   1244 	if (!cg_chkmagic(cgp)) {
   1245 		brelse(bp);
   1246 		return;
   1247 	}
   1248 	cgp->cg_time = time.tv_sec;
   1249 	bno = dtogd(fs, bno);
   1250 	if (size == fs->fs_bsize) {
   1251 		blkno = fragstoblks(fs, bno);
   1252 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1253 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1254 			    ip->i_dev, bno, fs->fs_fsmnt);
   1255 			panic("blkfree: freeing free block");
   1256 		}
   1257 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1258 		ffs_clusteracct(fs, cgp, blkno, 1);
   1259 		cgp->cg_cs.cs_nbfree++;
   1260 		fs->fs_cstotal.cs_nbfree++;
   1261 		fs->fs_cs(fs, cg).cs_nbfree++;
   1262 		i = cbtocylno(fs, bno);
   1263 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1264 		cg_blktot(cgp)[i]++;
   1265 	} else {
   1266 		bbase = bno - fragnum(fs, bno);
   1267 		/*
   1268 		 * decrement the counts associated with the old frags
   1269 		 */
   1270 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1271 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1272 		/*
   1273 		 * deallocate the fragment
   1274 		 */
   1275 		frags = numfrags(fs, size);
   1276 		for (i = 0; i < frags; i++) {
   1277 			if (isset(cg_blksfree(cgp), bno + i)) {
   1278 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1279 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1280 				panic("blkfree: freeing free frag");
   1281 			}
   1282 			setbit(cg_blksfree(cgp), bno + i);
   1283 		}
   1284 		cgp->cg_cs.cs_nffree += i;
   1285 		fs->fs_cstotal.cs_nffree += i;
   1286 		fs->fs_cs(fs, cg).cs_nffree += i;
   1287 		/*
   1288 		 * add back in counts associated with the new frags
   1289 		 */
   1290 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1291 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1292 		/*
   1293 		 * if a complete block has been reassembled, account for it
   1294 		 */
   1295 		blkno = fragstoblks(fs, bbase);
   1296 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1297 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1298 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1299 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1300 			ffs_clusteracct(fs, cgp, blkno, 1);
   1301 			cgp->cg_cs.cs_nbfree++;
   1302 			fs->fs_cstotal.cs_nbfree++;
   1303 			fs->fs_cs(fs, cg).cs_nbfree++;
   1304 			i = cbtocylno(fs, bbase);
   1305 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1306 			cg_blktot(cgp)[i]++;
   1307 		}
   1308 	}
   1309 	fs->fs_fmod = 1;
   1310 	bdwrite(bp);
   1311 }
   1312 
   1313 /*
   1314  * Free an inode.
   1315  *
   1316  * The specified inode is placed back in the free map.
   1317  */
   1318 int
   1319 ffs_vfree(v)
   1320 	void *v;
   1321 {
   1322 	struct vop_vfree_args /* {
   1323 		struct vnode *a_pvp;
   1324 		ino_t a_ino;
   1325 		int a_mode;
   1326 	} */ *ap = v;
   1327 	register struct fs *fs;
   1328 	register struct cg *cgp;
   1329 	register struct inode *pip;
   1330 	ino_t ino = ap->a_ino;
   1331 	struct buf *bp;
   1332 	int error, cg;
   1333 
   1334 	pip = VTOI(ap->a_pvp);
   1335 	fs = pip->i_fs;
   1336 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1337 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1338 		    pip->i_dev, ino, fs->fs_fsmnt);
   1339 	cg = ino_to_cg(fs, ino);
   1340 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1341 		(int)fs->fs_cgsize, NOCRED, &bp);
   1342 	if (error) {
   1343 		brelse(bp);
   1344 		return (0);
   1345 	}
   1346 	cgp = (struct cg *)bp->b_data;
   1347 	if (!cg_chkmagic(cgp)) {
   1348 		brelse(bp);
   1349 		return (0);
   1350 	}
   1351 	cgp->cg_time = time.tv_sec;
   1352 	ino %= fs->fs_ipg;
   1353 	if (isclr(cg_inosused(cgp), ino)) {
   1354 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1355 		    pip->i_dev, ino, fs->fs_fsmnt);
   1356 		if (fs->fs_ronly == 0)
   1357 			panic("ifree: freeing free inode");
   1358 	}
   1359 	clrbit(cg_inosused(cgp), ino);
   1360 	if (ino < cgp->cg_irotor)
   1361 		cgp->cg_irotor = ino;
   1362 	cgp->cg_cs.cs_nifree++;
   1363 	fs->fs_cstotal.cs_nifree++;
   1364 	fs->fs_cs(fs, cg).cs_nifree++;
   1365 	if ((ap->a_mode & IFMT) == IFDIR) {
   1366 		cgp->cg_cs.cs_ndir--;
   1367 		fs->fs_cstotal.cs_ndir--;
   1368 		fs->fs_cs(fs, cg).cs_ndir--;
   1369 	}
   1370 	fs->fs_fmod = 1;
   1371 	bdwrite(bp);
   1372 	return (0);
   1373 }
   1374 
   1375 /*
   1376  * Find a block of the specified size in the specified cylinder group.
   1377  *
   1378  * It is a panic if a request is made to find a block if none are
   1379  * available.
   1380  */
   1381 static daddr_t
   1382 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1383 	register struct fs *fs;
   1384 	register struct cg *cgp;
   1385 	daddr_t bpref;
   1386 	int allocsiz;
   1387 {
   1388 	daddr_t bno;
   1389 	int start, len, loc, i;
   1390 	int blk, field, subfield, pos;
   1391 
   1392 	/*
   1393 	 * find the fragment by searching through the free block
   1394 	 * map for an appropriate bit pattern
   1395 	 */
   1396 	if (bpref)
   1397 		start = dtogd(fs, bpref) / NBBY;
   1398 	else
   1399 		start = cgp->cg_frotor / NBBY;
   1400 	len = howmany(fs->fs_fpg, NBBY) - start;
   1401 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1402 		(u_char *)fragtbl[fs->fs_frag],
   1403 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1404 	if (loc == 0) {
   1405 		len = start + 1;
   1406 		start = 0;
   1407 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1408 			(u_char *)fragtbl[fs->fs_frag],
   1409 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1410 		if (loc == 0) {
   1411 			printf("start = %d, len = %d, fs = %s\n",
   1412 			    start, len, fs->fs_fsmnt);
   1413 			panic("ffs_alloccg: map corrupted");
   1414 			/* NOTREACHED */
   1415 		}
   1416 	}
   1417 	bno = (start + len - loc) * NBBY;
   1418 	cgp->cg_frotor = bno;
   1419 	/*
   1420 	 * found the byte in the map
   1421 	 * sift through the bits to find the selected frag
   1422 	 */
   1423 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1424 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1425 		blk <<= 1;
   1426 		field = around[allocsiz];
   1427 		subfield = inside[allocsiz];
   1428 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1429 			if ((blk & field) == subfield)
   1430 				return (bno + pos);
   1431 			field <<= 1;
   1432 			subfield <<= 1;
   1433 		}
   1434 	}
   1435 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1436 	panic("ffs_alloccg: block not in map");
   1437 	return (-1);
   1438 }
   1439 
   1440 /*
   1441  * Update the cluster map because of an allocation or free.
   1442  *
   1443  * Cnt == 1 means free; cnt == -1 means allocating.
   1444  */
   1445 void
   1446 ffs_clusteracct(fs, cgp, blkno, cnt)
   1447 	struct fs *fs;
   1448 	struct cg *cgp;
   1449 	daddr_t blkno;
   1450 	int cnt;
   1451 {
   1452 	int32_t *sump;
   1453 	int32_t *lp;
   1454 	u_char *freemapp, *mapp;
   1455 	int i, start, end, forw, back, map, bit;
   1456 
   1457 	if (fs->fs_contigsumsize <= 0)
   1458 		return;
   1459 	freemapp = cg_clustersfree(cgp);
   1460 	sump = cg_clustersum(cgp);
   1461 	/*
   1462 	 * Allocate or clear the actual block.
   1463 	 */
   1464 	if (cnt > 0)
   1465 		setbit(freemapp, blkno);
   1466 	else
   1467 		clrbit(freemapp, blkno);
   1468 	/*
   1469 	 * Find the size of the cluster going forward.
   1470 	 */
   1471 	start = blkno + 1;
   1472 	end = start + fs->fs_contigsumsize;
   1473 	if (end >= cgp->cg_nclusterblks)
   1474 		end = cgp->cg_nclusterblks;
   1475 	mapp = &freemapp[start / NBBY];
   1476 	map = *mapp++;
   1477 	bit = 1 << (start % NBBY);
   1478 	for (i = start; i < end; i++) {
   1479 		if ((map & bit) == 0)
   1480 			break;
   1481 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1482 			bit <<= 1;
   1483 		} else {
   1484 			map = *mapp++;
   1485 			bit = 1;
   1486 		}
   1487 	}
   1488 	forw = i - start;
   1489 	/*
   1490 	 * Find the size of the cluster going backward.
   1491 	 */
   1492 	start = blkno - 1;
   1493 	end = start - fs->fs_contigsumsize;
   1494 	if (end < 0)
   1495 		end = -1;
   1496 	mapp = &freemapp[start / NBBY];
   1497 	map = *mapp--;
   1498 	bit = 1 << (start % NBBY);
   1499 	for (i = start; i > end; i--) {
   1500 		if ((map & bit) == 0)
   1501 			break;
   1502 		if ((i & (NBBY - 1)) != 0) {
   1503 			bit >>= 1;
   1504 		} else {
   1505 			map = *mapp--;
   1506 			bit = 1 << (NBBY - 1);
   1507 		}
   1508 	}
   1509 	back = start - i;
   1510 	/*
   1511 	 * Account for old cluster and the possibly new forward and
   1512 	 * back clusters.
   1513 	 */
   1514 	i = back + forw + 1;
   1515 	if (i > fs->fs_contigsumsize)
   1516 		i = fs->fs_contigsumsize;
   1517 	sump[i] += cnt;
   1518 	if (back > 0)
   1519 		sump[back] -= cnt;
   1520 	if (forw > 0)
   1521 		sump[forw] -= cnt;
   1522 	/*
   1523 	 * Update cluster summary information.
   1524 	 */
   1525 	lp = &sump[fs->fs_contigsumsize];
   1526 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1527 		if (*lp-- > 0)
   1528 			break;
   1529 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1530 }
   1531 
   1532 /*
   1533  * Fserr prints the name of a file system with an error diagnostic.
   1534  *
   1535  * The form of the error message is:
   1536  *	fs: error message
   1537  */
   1538 static void
   1539 ffs_fserr(fs, uid, cp)
   1540 	struct fs *fs;
   1541 	u_int uid;
   1542 	char *cp;
   1543 {
   1544 
   1545 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1546 }
   1547