Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.166.4.1
      1 /*	$NetBSD: ffs_alloc.c,v 1.166.4.1 2020/04/20 11:29:14 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Copyright (c) 1982, 1986, 1989, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.166.4.1 2020/04/20 11:29:14 bouyer Exp $");
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ffs.h"
     77 #include "opt_quota.h"
     78 #include "opt_uvm_page_trkown.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/buf.h>
     84 #include <sys/cprng.h>
     85 #include <sys/kauth.h>
     86 #include <sys/kernel.h>
     87 #include <sys/mount.h>
     88 #include <sys/proc.h>
     89 #include <sys/syslog.h>
     90 #include <sys/vnode.h>
     91 #include <sys/wapbl.h>
     92 #include <sys/cprng.h>
     93 
     94 #include <miscfs/specfs/specdev.h>
     95 #include <ufs/ufs/quota.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/inode.h>
     98 #include <ufs/ufs/ufs_extern.h>
     99 #include <ufs/ufs/ufs_bswap.h>
    100 #include <ufs/ufs/ufs_wapbl.h>
    101 
    102 #include <ufs/ffs/fs.h>
    103 #include <ufs/ffs/ffs_extern.h>
    104 
    105 #ifdef UVM_PAGE_TRKOWN
    106 #include <uvm/uvm.h>
    107 #endif
    108 
    109 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    110 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    111 static ino_t ffs_dirpref(struct inode *);
    112 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    113 static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    114 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    115     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    116 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    117 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    118 				      daddr_t, int);
    119 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    120     daddr_t, long, bool);
    121 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    122     int, bool);
    123 
    124 /* if 1, changes in optimalization strategy are logged */
    125 int ffs_log_changeopt = 0;
    126 
    127 /* in ffs_tables.c */
    128 extern const int inside[], around[];
    129 extern const u_char * const fragtbl[];
    130 
    131 /* Basic consistency check for block allocations */
    132 static int
    133 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    134     long size, dev_t dev, ino_t inum)
    135 {
    136 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    137 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    138 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    139 		    " bsize = %d, size = %ld, fs = %s", func,
    140 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    141 	}
    142 
    143 	if (bno >= fs->fs_size) {
    144 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    145 		    (unsigned long long)inum);
    146 		ffs_fserr(fs, NOCRED, "bad block");
    147 		return EINVAL;
    148 	}
    149 	return 0;
    150 }
    151 
    152 /*
    153  * Allocate a block in the file system.
    154  *
    155  * The size of the requested block is given, which must be some
    156  * multiple of fs_fsize and <= fs_bsize.
    157  * A preference may be optionally specified. If a preference is given
    158  * the following hierarchy is used to allocate a block:
    159  *   1) allocate the requested block.
    160  *   2) allocate a rotationally optimal block in the same cylinder.
    161  *   3) allocate a block in the same cylinder group.
    162  *   4) quadradically rehash into other cylinder groups, until an
    163  *      available block is located.
    164  * If no block preference is given the following hierarchy is used
    165  * to allocate a block:
    166  *   1) allocate a block in the cylinder group that contains the
    167  *      inode for the file.
    168  *   2) quadradically rehash into other cylinder groups, until an
    169  *      available block is located.
    170  *
    171  * => called with um_lock held
    172  * => releases um_lock before returning
    173  */
    174 int
    175 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    176     int flags, kauth_cred_t cred, daddr_t *bnp)
    177 {
    178 	struct ufsmount *ump;
    179 	struct fs *fs;
    180 	daddr_t bno;
    181 	int cg;
    182 #if defined(QUOTA) || defined(QUOTA2)
    183 	int error;
    184 #endif
    185 
    186 	fs = ip->i_fs;
    187 	ump = ip->i_ump;
    188 
    189 	KASSERT(mutex_owned(&ump->um_lock));
    190 
    191 #ifdef UVM_PAGE_TRKOWN
    192 
    193 	/*
    194 	 * Sanity-check that allocations within the file size
    195 	 * do not allow other threads to read the stale contents
    196 	 * of newly allocated blocks.
    197 	 * Usually pages will exist to cover the new allocation.
    198 	 * There is an optimization in ffs_write() where we skip
    199 	 * creating pages if several conditions are met:
    200 	 *  - the file must not be mapped (in any user address space).
    201 	 *  - the write must cover whole pages and whole blocks.
    202 	 * If those conditions are not met then pages must exist and
    203 	 * be locked by the current thread.
    204 	 */
    205 
    206 	struct vnode *vp = ITOV(ip);
    207 	if (vp->v_type == VREG &&
    208 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(vp->v_size) &&
    209 	    ((vp->v_vflag & VV_MAPPED) != 0 || (size & PAGE_MASK) != 0 ||
    210 	     ffs_blkoff(fs, size) != 0)) {
    211 		struct vm_page *pg __diagused;
    212 		struct uvm_object *uobj = &vp->v_uobj;
    213 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    214 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    215 
    216 		rw_enter(uobj->vmobjlock, RW_WRITER);
    217 		while (off < endoff) {
    218 			pg = uvm_pagelookup(uobj, off);
    219 			KASSERT((pg != NULL && pg->owner_tag != NULL &&
    220 				 pg->owner == curproc->p_pid &&
    221 				 pg->lowner == curlwp->l_lid));
    222 			off += PAGE_SIZE;
    223 		}
    224 		rw_exit(uobj->vmobjlock);
    225 	}
    226 #endif
    227 
    228 	*bnp = 0;
    229 
    230 	KASSERTMSG((cred != NOCRED), "missing credential");
    231 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    232 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    233 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    234 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    235 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    236 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    237 
    238 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    239 		goto nospace;
    240 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    241 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    242 	    NULL, NULL) != 0)
    243 		goto nospace;
    244 #if defined(QUOTA) || defined(QUOTA2)
    245 	mutex_exit(&ump->um_lock);
    246 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    247 		return (error);
    248 	mutex_enter(&ump->um_lock);
    249 #endif
    250 
    251 	if (bpref >= fs->fs_size)
    252 		bpref = 0;
    253 	if (bpref == 0)
    254 		cg = ino_to_cg(fs, ip->i_number);
    255 	else
    256 		cg = dtog(fs, bpref);
    257 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    258 	if (bno > 0) {
    259 		DIP_ADD(ip, blocks, btodb(size));
    260 		if (flags & IO_EXT)
    261 			ip->i_flag |= IN_CHANGE;
    262 		else
    263 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264 		*bnp = bno;
    265 		return (0);
    266 	}
    267 #if defined(QUOTA) || defined(QUOTA2)
    268 	/*
    269 	 * Restore user's disk quota because allocation failed.
    270 	 */
    271 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    272 #endif
    273 	if (flags & B_CONTIG) {
    274 		/*
    275 		 * XXX ump->um_lock handling is "suspect" at best.
    276 		 * For the case where ffs_hashalloc() fails early
    277 		 * in the B_CONTIG case we reach here with um_lock
    278 		 * already unlocked, so we can't release it again
    279 		 * like in the normal error path.  See kern/39206.
    280 		 *
    281 		 *
    282 		 * Fail silently - it's up to our caller to report
    283 		 * errors.
    284 		 */
    285 		return (ENOSPC);
    286 	}
    287 nospace:
    288 	mutex_exit(&ump->um_lock);
    289 	ffs_fserr(fs, cred, "file system full");
    290 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    291 	return (ENOSPC);
    292 }
    293 
    294 /*
    295  * Reallocate a fragment to a bigger size
    296  *
    297  * The number and size of the old block is given, and a preference
    298  * and new size is also specified. The allocator attempts to extend
    299  * the original block. Failing that, the regular block allocator is
    300  * invoked to get an appropriate block.
    301  *
    302  * => called with um_lock held
    303  * => return with um_lock released
    304  */
    305 int
    306 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bprev, daddr_t bpref,
    307     int osize, int nsize, int flags, kauth_cred_t cred, struct buf **bpp,
    308     daddr_t *blknop)
    309 {
    310 	struct ufsmount *ump;
    311 	struct fs *fs;
    312 	struct buf *bp;
    313 	int cg, request, error;
    314 	daddr_t bno;
    315 
    316 	fs = ip->i_fs;
    317 	ump = ip->i_ump;
    318 
    319 	KASSERT(mutex_owned(&ump->um_lock));
    320 
    321 #ifdef UVM_PAGE_TRKOWN
    322 
    323 	/*
    324 	 * Sanity-check that allocations within the file size
    325 	 * do not allow other threads to read the stale contents
    326 	 * of newly allocated blocks.
    327 	 * Unlike in ffs_alloc(), here pages must always exist
    328 	 * for such allocations, because only the last block of a file
    329 	 * can be a fragment and ffs_write() will reallocate the
    330 	 * fragment to the new size using ufs_balloc_range(),
    331 	 * which always creates pages to cover blocks it allocates.
    332 	 */
    333 
    334 	if (ITOV(ip)->v_type == VREG) {
    335 		struct vm_page *pg __diagused;
    336 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    337 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    338 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    339 
    340 		rw_enter(uobj->vmobjlock, RW_WRITER);
    341 		while (off < endoff) {
    342 			pg = uvm_pagelookup(uobj, off);
    343 			KASSERT(pg->owner == curproc->p_pid &&
    344 				pg->lowner == curlwp->l_lid);
    345 			off += PAGE_SIZE;
    346 		}
    347 		rw_exit(uobj->vmobjlock);
    348 	}
    349 #endif
    350 
    351 	KASSERTMSG((cred != NOCRED), "missing credential");
    352 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    353 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    354 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    355 	    fs->fs_fsmnt);
    356 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    357 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    358 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    359 	    fs->fs_fsmnt);
    360 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    361 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    362 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    363 	    fs->fs_fsmnt);
    364 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    365 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    366 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    367 	    fs->fs_fsmnt);
    368 
    369 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    370 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    371 	    NULL, NULL) != 0) {
    372 		mutex_exit(&ump->um_lock);
    373 		goto nospace;
    374 	}
    375 
    376 	if (bprev == 0) {
    377 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    378 		    PRId64 ", fs = %s", __func__,
    379 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    380 		    fs->fs_fsmnt);
    381 	}
    382 	mutex_exit(&ump->um_lock);
    383 
    384 	/*
    385 	 * Allocate the extra space in the buffer.
    386 	 */
    387 	if (bpp != NULL &&
    388 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    389 		return (error);
    390 	}
    391 #if defined(QUOTA) || defined(QUOTA2)
    392 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    393 		if (bpp != NULL) {
    394 			brelse(bp, 0);
    395 		}
    396 		return (error);
    397 	}
    398 #endif
    399 	/*
    400 	 * Check for extension in the existing location.
    401 	 */
    402 	cg = dtog(fs, bprev);
    403 	mutex_enter(&ump->um_lock);
    404 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    405 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    406 		if (flags & IO_EXT)
    407 			ip->i_flag |= IN_CHANGE;
    408 		else
    409 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    410 
    411 		if (bpp != NULL) {
    412 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    413 				panic("%s: bad blockno %#llx != %#llx",
    414 				    __func__, (unsigned long long) bp->b_blkno,
    415 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    416 			}
    417 			allocbuf(bp, nsize, 1);
    418 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    419 			mutex_enter(bp->b_objlock);
    420 			KASSERT(!cv_has_waiters(&bp->b_done));
    421 			bp->b_oflags |= BO_DONE;
    422 			mutex_exit(bp->b_objlock);
    423 			*bpp = bp;
    424 		}
    425 		if (blknop != NULL) {
    426 			*blknop = bno;
    427 		}
    428 		return (0);
    429 	}
    430 	/*
    431 	 * Allocate a new disk location.
    432 	 */
    433 	if (bpref >= fs->fs_size)
    434 		bpref = 0;
    435 	switch ((int)fs->fs_optim) {
    436 	case FS_OPTSPACE:
    437 		/*
    438 		 * Allocate an exact sized fragment. Although this makes
    439 		 * best use of space, we will waste time relocating it if
    440 		 * the file continues to grow. If the fragmentation is
    441 		 * less than half of the minimum free reserve, we choose
    442 		 * to begin optimizing for time.
    443 		 */
    444 		request = nsize;
    445 		if (fs->fs_minfree < 5 ||
    446 		    fs->fs_cstotal.cs_nffree >
    447 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    448 			break;
    449 
    450 		if (ffs_log_changeopt) {
    451 			log(LOG_NOTICE,
    452 				"%s: optimization changed from SPACE to TIME\n",
    453 				fs->fs_fsmnt);
    454 		}
    455 
    456 		fs->fs_optim = FS_OPTTIME;
    457 		break;
    458 	case FS_OPTTIME:
    459 		/*
    460 		 * At this point we have discovered a file that is trying to
    461 		 * grow a small fragment to a larger fragment. To save time,
    462 		 * we allocate a full sized block, then free the unused portion.
    463 		 * If the file continues to grow, the `ffs_fragextend' call
    464 		 * above will be able to grow it in place without further
    465 		 * copying. If aberrant programs cause disk fragmentation to
    466 		 * grow within 2% of the free reserve, we choose to begin
    467 		 * optimizing for space.
    468 		 */
    469 		request = fs->fs_bsize;
    470 		if (fs->fs_cstotal.cs_nffree <
    471 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    472 			break;
    473 
    474 		if (ffs_log_changeopt) {
    475 			log(LOG_NOTICE,
    476 				"%s: optimization changed from TIME to SPACE\n",
    477 				fs->fs_fsmnt);
    478 		}
    479 
    480 		fs->fs_optim = FS_OPTSPACE;
    481 		break;
    482 	default:
    483 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    484 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    485 		    fs->fs_fsmnt);
    486 		/* NOTREACHED */
    487 	}
    488 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    489 	if (bno > 0) {
    490 		/*
    491 		 * Use forced deallocation registration, we can't handle
    492 		 * failure here. This is safe, as this place is ever hit
    493 		 * maximum once per write operation, when fragment is extended
    494 		 * to longer fragment, or a full block.
    495 		 */
    496 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    497 		    (ITOV(ip)->v_type != VREG)) {
    498 			/* this should never fail */
    499 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    500 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    501 			    osize);
    502 			if (error)
    503 				panic("ffs_realloccg: dealloc registration failed");
    504 		} else {
    505 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    506 			    ip->i_number);
    507 		}
    508 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    509 		if (flags & IO_EXT)
    510 			ip->i_flag |= IN_CHANGE;
    511 		else
    512 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    513 		if (bpp != NULL) {
    514 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    515 			allocbuf(bp, nsize, 1);
    516 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    517 			mutex_enter(bp->b_objlock);
    518 			KASSERT(!cv_has_waiters(&bp->b_done));
    519 			bp->b_oflags |= BO_DONE;
    520 			mutex_exit(bp->b_objlock);
    521 			*bpp = bp;
    522 		}
    523 		if (blknop != NULL) {
    524 			*blknop = bno;
    525 		}
    526 		return (0);
    527 	}
    528 	mutex_exit(&ump->um_lock);
    529 
    530 #if defined(QUOTA) || defined(QUOTA2)
    531 	/*
    532 	 * Restore user's disk quota because allocation failed.
    533 	 */
    534 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    535 #endif
    536 	if (bpp != NULL) {
    537 		brelse(bp, 0);
    538 	}
    539 
    540 nospace:
    541 	/*
    542 	 * no space available
    543 	 */
    544 	ffs_fserr(fs, cred, "file system full");
    545 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    546 	return (ENOSPC);
    547 }
    548 
    549 /*
    550  * Allocate an inode in the file system.
    551  *
    552  * If allocating a directory, use ffs_dirpref to select the inode.
    553  * If allocating in a directory, the following hierarchy is followed:
    554  *   1) allocate the preferred inode.
    555  *   2) allocate an inode in the same cylinder group.
    556  *   3) quadradically rehash into other cylinder groups, until an
    557  *      available inode is located.
    558  * If no inode preference is given the following hierarchy is used
    559  * to allocate an inode:
    560  *   1) allocate an inode in cylinder group 0.
    561  *   2) quadradically rehash into other cylinder groups, until an
    562  *      available inode is located.
    563  *
    564  * => um_lock not held upon entry or return
    565  */
    566 int
    567 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    568 {
    569 	struct ufsmount *ump;
    570 	struct inode *pip;
    571 	struct fs *fs;
    572 	ino_t ino, ipref;
    573 	int cg, error;
    574 
    575 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    576 
    577 	pip = VTOI(pvp);
    578 	fs = pip->i_fs;
    579 	ump = pip->i_ump;
    580 
    581 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    582 	if (error) {
    583 		return error;
    584 	}
    585 	mutex_enter(&ump->um_lock);
    586 	if (fs->fs_cstotal.cs_nifree == 0)
    587 		goto noinodes;
    588 
    589 	if ((mode & IFMT) == IFDIR)
    590 		ipref = ffs_dirpref(pip);
    591 	else
    592 		ipref = pip->i_number;
    593 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    594 		ipref = 0;
    595 	cg = ino_to_cg(fs, ipref);
    596 	/*
    597 	 * Track number of dirs created one after another
    598 	 * in a same cg without intervening by files.
    599 	 */
    600 	if ((mode & IFMT) == IFDIR) {
    601 		if (fs->fs_contigdirs[cg] < 255)
    602 			fs->fs_contigdirs[cg]++;
    603 	} else {
    604 		if (fs->fs_contigdirs[cg] > 0)
    605 			fs->fs_contigdirs[cg]--;
    606 	}
    607 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    608 	if (ino == 0)
    609 		goto noinodes;
    610 	UFS_WAPBL_END(pvp->v_mount);
    611 	*inop = ino;
    612 	return 0;
    613 
    614 noinodes:
    615 	mutex_exit(&ump->um_lock);
    616 	UFS_WAPBL_END(pvp->v_mount);
    617 	ffs_fserr(fs, cred, "out of inodes");
    618 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    619 	return ENOSPC;
    620 }
    621 
    622 /*
    623  * Find a cylinder group in which to place a directory.
    624  *
    625  * The policy implemented by this algorithm is to allocate a
    626  * directory inode in the same cylinder group as its parent
    627  * directory, but also to reserve space for its files inodes
    628  * and data. Restrict the number of directories which may be
    629  * allocated one after another in the same cylinder group
    630  * without intervening allocation of files.
    631  *
    632  * If we allocate a first level directory then force allocation
    633  * in another cylinder group.
    634  */
    635 static ino_t
    636 ffs_dirpref(struct inode *pip)
    637 {
    638 	register struct fs *fs;
    639 	int cg, prefcg;
    640 	int64_t dirsize, cgsize, curdsz;
    641 	int avgifree, avgbfree, avgndir;
    642 	int minifree, minbfree, maxndir;
    643 	int mincg, minndir;
    644 	int maxcontigdirs;
    645 
    646 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    647 
    648 	fs = pip->i_fs;
    649 
    650 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    651 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    652 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    653 
    654 	/*
    655 	 * Force allocation in another cg if creating a first level dir.
    656 	 */
    657 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    658 		prefcg = cprng_fast32() % fs->fs_ncg;
    659 		mincg = prefcg;
    660 		minndir = fs->fs_ipg;
    661 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    662 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    663 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    664 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    665 				mincg = cg;
    666 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    667 			}
    668 		for (cg = 0; cg < prefcg; cg++)
    669 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    670 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    671 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    672 				mincg = cg;
    673 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    674 			}
    675 		return ((ino_t)(fs->fs_ipg * mincg));
    676 	}
    677 
    678 	/*
    679 	 * Count various limits which used for
    680 	 * optimal allocation of a directory inode.
    681 	 * Try cylinder groups with >75% avgifree and avgbfree.
    682 	 * Avoid cylinder groups with no free blocks or inodes as that
    683 	 * triggers an I/O-expensive cylinder group scan.
    684 	 */
    685 	maxndir = uimin(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    686 	minifree = avgifree - avgifree / 4;
    687 	if (minifree < 1)
    688 		minifree = 1;
    689 	minbfree = avgbfree - avgbfree / 4;
    690 	if (minbfree < 1)
    691 		minbfree = 1;
    692 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    693 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    694 	if (avgndir != 0) {
    695 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    696 		if (dirsize < curdsz)
    697 			dirsize = curdsz;
    698 	}
    699 	if (cgsize < dirsize * 255)
    700 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    701 	else
    702 		maxcontigdirs = 255;
    703 	if (fs->fs_avgfpdir > 0)
    704 		maxcontigdirs = uimin(maxcontigdirs,
    705 				    fs->fs_ipg / fs->fs_avgfpdir);
    706 	if (maxcontigdirs == 0)
    707 		maxcontigdirs = 1;
    708 
    709 	/*
    710 	 * Limit number of dirs in one cg and reserve space for
    711 	 * regular files, but only if we have no deficit in
    712 	 * inodes or space.
    713 	 */
    714 	prefcg = ino_to_cg(fs, pip->i_number);
    715 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    716 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    717 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    718 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    719 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    720 				return ((ino_t)(fs->fs_ipg * cg));
    721 		}
    722 	for (cg = 0; cg < prefcg; cg++)
    723 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    724 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    725 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    726 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    727 				return ((ino_t)(fs->fs_ipg * cg));
    728 		}
    729 	/*
    730 	 * This is a backstop when we are deficient in space.
    731 	 */
    732 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    733 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    734 			return ((ino_t)(fs->fs_ipg * cg));
    735 	for (cg = 0; cg < prefcg; cg++)
    736 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737 			break;
    738 	return ((ino_t)(fs->fs_ipg * cg));
    739 }
    740 
    741 /*
    742  * Select the desired position for the next block in a file.  The file is
    743  * logically divided into sections. The first section is composed of the
    744  * direct blocks. Each additional section contains fs_maxbpg blocks.
    745  *
    746  * If no blocks have been allocated in the first section, the policy is to
    747  * request a block in the same cylinder group as the inode that describes
    748  * the file. If no blocks have been allocated in any other section, the
    749  * policy is to place the section in a cylinder group with a greater than
    750  * average number of free blocks.  An appropriate cylinder group is found
    751  * by using a rotor that sweeps the cylinder groups. When a new group of
    752  * blocks is needed, the sweep begins in the cylinder group following the
    753  * cylinder group from which the previous allocation was made. The sweep
    754  * continues until a cylinder group with greater than the average number
    755  * of free blocks is found. If the allocation is for the first block in an
    756  * indirect block, the information on the previous allocation is unavailable;
    757  * here a best guess is made based upon the logical block number being
    758  * allocated.
    759  *
    760  * If a section is already partially allocated, the policy is to
    761  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    762  * contiguous blocks and the beginning of the next is laid out
    763  * contigously if possible.
    764  *
    765  * => um_lock held on entry and exit
    766  */
    767 daddr_t
    768 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    769     int32_t *bap /* XXX ondisk32 */)
    770 {
    771 	struct fs *fs;
    772 	int cg;
    773 	int avgbfree, startcg;
    774 
    775 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    776 
    777 	fs = ip->i_fs;
    778 
    779 	/*
    780 	 * If allocating a contiguous file with B_CONTIG, use the hints
    781 	 * in the inode extentions to return the desired block.
    782 	 *
    783 	 * For metadata (indirect blocks) return the address of where
    784 	 * the first indirect block resides - we'll scan for the next
    785 	 * available slot if we need to allocate more than one indirect
    786 	 * block.  For data, return the address of the actual block
    787 	 * relative to the address of the first data block.
    788 	 */
    789 	if (flags & B_CONTIG) {
    790 		KASSERT(ip->i_ffs_first_data_blk != 0);
    791 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    792 		if (flags & B_METAONLY)
    793 			return ip->i_ffs_first_indir_blk;
    794 		else
    795 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    796 	}
    797 
    798 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    799 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    800 			cg = ino_to_cg(fs, ip->i_number);
    801 			return (cgbase(fs, cg) + fs->fs_frag);
    802 		}
    803 		/*
    804 		 * Find a cylinder with greater than average number of
    805 		 * unused data blocks.
    806 		 */
    807 		if (indx == 0 || bap[indx - 1] == 0)
    808 			startcg =
    809 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    810 		else
    811 			startcg = dtog(fs,
    812 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    813 		startcg %= fs->fs_ncg;
    814 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    815 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    816 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    817 				return (cgbase(fs, cg) + fs->fs_frag);
    818 			}
    819 		for (cg = 0; cg < startcg; cg++)
    820 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    821 				return (cgbase(fs, cg) + fs->fs_frag);
    822 			}
    823 		return (0);
    824 	}
    825 	/*
    826 	 * We just always try to lay things out contiguously.
    827 	 */
    828 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    829 }
    830 
    831 daddr_t
    832 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    833     int64_t *bap)
    834 {
    835 	struct fs *fs;
    836 	int cg;
    837 	int avgbfree, startcg;
    838 
    839 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    840 
    841 	fs = ip->i_fs;
    842 
    843 	/*
    844 	 * If allocating a contiguous file with B_CONTIG, use the hints
    845 	 * in the inode extentions to return the desired block.
    846 	 *
    847 	 * For metadata (indirect blocks) return the address of where
    848 	 * the first indirect block resides - we'll scan for the next
    849 	 * available slot if we need to allocate more than one indirect
    850 	 * block.  For data, return the address of the actual block
    851 	 * relative to the address of the first data block.
    852 	 */
    853 	if (flags & B_CONTIG) {
    854 		KASSERT(ip->i_ffs_first_data_blk != 0);
    855 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    856 		if (flags & B_METAONLY)
    857 			return ip->i_ffs_first_indir_blk;
    858 		else
    859 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    860 	}
    861 
    862 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    863 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    864 			cg = ino_to_cg(fs, ip->i_number);
    865 			return (cgbase(fs, cg) + fs->fs_frag);
    866 		}
    867 		/*
    868 		 * Find a cylinder with greater than average number of
    869 		 * unused data blocks.
    870 		 */
    871 		if (indx == 0 || bap[indx - 1] == 0)
    872 			startcg =
    873 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    874 		else
    875 			startcg = dtog(fs,
    876 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    877 		startcg %= fs->fs_ncg;
    878 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    879 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    880 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    881 				return (cgbase(fs, cg) + fs->fs_frag);
    882 			}
    883 		for (cg = 0; cg < startcg; cg++)
    884 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    885 				return (cgbase(fs, cg) + fs->fs_frag);
    886 			}
    887 		return (0);
    888 	}
    889 	/*
    890 	 * We just always try to lay things out contiguously.
    891 	 */
    892 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    893 }
    894 
    895 
    896 /*
    897  * Implement the cylinder overflow algorithm.
    898  *
    899  * The policy implemented by this algorithm is:
    900  *   1) allocate the block in its requested cylinder group.
    901  *   2) quadradically rehash on the cylinder group number.
    902  *   3) brute force search for a free block.
    903  *
    904  * => called with um_lock held
    905  * => returns with um_lock released on success, held on failure
    906  *    (*allocator releases lock on success, retains lock on failure)
    907  */
    908 /*VARARGS5*/
    909 static daddr_t
    910 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    911     int size /* size for data blocks, mode for inodes */,
    912     int realsize,
    913     int flags,
    914     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    915 {
    916 	struct fs *fs;
    917 	daddr_t result;
    918 	int i, icg = cg;
    919 
    920 	fs = ip->i_fs;
    921 	/*
    922 	 * 1: preferred cylinder group
    923 	 */
    924 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    925 	if (result)
    926 		return (result);
    927 
    928 	if (flags & B_CONTIG)
    929 		return (result);
    930 	/*
    931 	 * 2: quadratic rehash
    932 	 */
    933 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    934 		cg += i;
    935 		if (cg >= fs->fs_ncg)
    936 			cg -= fs->fs_ncg;
    937 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    938 		if (result)
    939 			return (result);
    940 	}
    941 	/*
    942 	 * 3: brute force search
    943 	 * Note that we start at i == 2, since 0 was checked initially,
    944 	 * and 1 is always checked in the quadratic rehash.
    945 	 */
    946 	cg = (icg + 2) % fs->fs_ncg;
    947 	for (i = 2; i < fs->fs_ncg; i++) {
    948 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    949 		if (result)
    950 			return (result);
    951 		cg++;
    952 		if (cg == fs->fs_ncg)
    953 			cg = 0;
    954 	}
    955 	return (0);
    956 }
    957 
    958 /*
    959  * Determine whether a fragment can be extended.
    960  *
    961  * Check to see if the necessary fragments are available, and
    962  * if they are, allocate them.
    963  *
    964  * => called with um_lock held
    965  * => returns with um_lock released on success, held on failure
    966  */
    967 static daddr_t
    968 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    969 {
    970 	struct ufsmount *ump;
    971 	struct fs *fs;
    972 	struct cg *cgp;
    973 	struct buf *bp;
    974 	daddr_t bno;
    975 	int frags, bbase;
    976 	int i, error;
    977 	u_int8_t *blksfree;
    978 
    979 	fs = ip->i_fs;
    980 	ump = ip->i_ump;
    981 
    982 	KASSERT(mutex_owned(&ump->um_lock));
    983 
    984 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    985 		return (0);
    986 	frags = ffs_numfrags(fs, nsize);
    987 	bbase = ffs_fragnum(fs, bprev);
    988 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    989 		/* cannot extend across a block boundary */
    990 		return (0);
    991 	}
    992 	mutex_exit(&ump->um_lock);
    993 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    994 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    995 	if (error)
    996 		goto fail;
    997 	cgp = (struct cg *)bp->b_data;
    998 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    999 		goto fail;
   1000 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1001 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1002 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1003 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1004 	bno = dtogd(fs, bprev);
   1005 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1006 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1007 		if (isclr(blksfree, bno + i))
   1008 			goto fail;
   1009 	/*
   1010 	 * the current fragment can be extended
   1011 	 * deduct the count on fragment being extended into
   1012 	 * increase the count on the remaining fragment (if any)
   1013 	 * allocate the extended piece
   1014 	 */
   1015 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1016 		if (isclr(blksfree, bno + i))
   1017 			break;
   1018 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1019 	if (i != frags)
   1020 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1021 	mutex_enter(&ump->um_lock);
   1022 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1023 		clrbit(blksfree, bno + i);
   1024 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1025 		fs->fs_cstotal.cs_nffree--;
   1026 		fs->fs_cs(fs, cg).cs_nffree--;
   1027 	}
   1028 	fs->fs_fmod = 1;
   1029 	ACTIVECG_CLR(fs, cg);
   1030 	mutex_exit(&ump->um_lock);
   1031 	bdwrite(bp);
   1032 	return (bprev);
   1033 
   1034  fail:
   1035  	if (bp != NULL)
   1036 		brelse(bp, 0);
   1037  	mutex_enter(&ump->um_lock);
   1038  	return (0);
   1039 }
   1040 
   1041 /*
   1042  * Determine whether a block can be allocated.
   1043  *
   1044  * Check to see if a block of the appropriate size is available,
   1045  * and if it is, allocate it.
   1046  */
   1047 static daddr_t
   1048 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1049     int flags)
   1050 {
   1051 	struct ufsmount *ump;
   1052 	struct fs *fs = ip->i_fs;
   1053 	struct cg *cgp;
   1054 	struct buf *bp;
   1055 	int32_t bno;
   1056 	daddr_t blkno;
   1057 	int error, frags, allocsiz, i;
   1058 	u_int8_t *blksfree;
   1059 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060 
   1061 	ump = ip->i_ump;
   1062 
   1063 	KASSERT(mutex_owned(&ump->um_lock));
   1064 
   1065 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1066 		return (0);
   1067 	mutex_exit(&ump->um_lock);
   1068 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1069 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1070 	if (error)
   1071 		goto fail;
   1072 	cgp = (struct cg *)bp->b_data;
   1073 	if (!cg_chkmagic(cgp, needswap) ||
   1074 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1075 		goto fail;
   1076 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1077 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1078 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1079 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1080 	if (size == fs->fs_bsize) {
   1081 		mutex_enter(&ump->um_lock);
   1082 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1083 		ACTIVECG_CLR(fs, cg);
   1084 		mutex_exit(&ump->um_lock);
   1085 
   1086 		/*
   1087 		 * If actually needed size is lower, free the extra blocks now.
   1088 		 * This is safe to call here, there is no outside reference
   1089 		 * to this block yet. It is not necessary to keep um_lock
   1090 		 * locked.
   1091 		 */
   1092 		if (realsize != 0 && realsize < size) {
   1093 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1094 			    ip->i_devvp->v_rdev,
   1095 			    bp, blkno + ffs_numfrags(fs, realsize),
   1096 			    (long)(size - realsize), false);
   1097 		}
   1098 
   1099 		bdwrite(bp);
   1100 		return (blkno);
   1101 	}
   1102 	/*
   1103 	 * check to see if any fragments are already available
   1104 	 * allocsiz is the size which will be allocated, hacking
   1105 	 * it down to a smaller size if necessary
   1106 	 */
   1107 	blksfree = cg_blksfree(cgp, needswap);
   1108 	frags = ffs_numfrags(fs, size);
   1109 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1110 		if (cgp->cg_frsum[allocsiz] != 0)
   1111 			break;
   1112 	if (allocsiz == fs->fs_frag) {
   1113 		/*
   1114 		 * no fragments were available, so a block will be
   1115 		 * allocated, and hacked up
   1116 		 */
   1117 		if (cgp->cg_cs.cs_nbfree == 0)
   1118 			goto fail;
   1119 		mutex_enter(&ump->um_lock);
   1120 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1121 		bno = dtogd(fs, blkno);
   1122 		for (i = frags; i < fs->fs_frag; i++)
   1123 			setbit(blksfree, bno + i);
   1124 		i = fs->fs_frag - frags;
   1125 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1126 		fs->fs_cstotal.cs_nffree += i;
   1127 		fs->fs_cs(fs, cg).cs_nffree += i;
   1128 		fs->fs_fmod = 1;
   1129 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1130 		ACTIVECG_CLR(fs, cg);
   1131 		mutex_exit(&ump->um_lock);
   1132 		bdwrite(bp);
   1133 		return (blkno);
   1134 	}
   1135 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1136 #if 0
   1137 	/*
   1138 	 * XXX fvdl mapsearch will panic, and never return -1
   1139 	 *          also: returning NULL as daddr_t ?
   1140 	 */
   1141 	if (bno < 0)
   1142 		goto fail;
   1143 #endif
   1144 	for (i = 0; i < frags; i++)
   1145 		clrbit(blksfree, bno + i);
   1146 	mutex_enter(&ump->um_lock);
   1147 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1148 	fs->fs_cstotal.cs_nffree -= frags;
   1149 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1150 	fs->fs_fmod = 1;
   1151 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1152 	if (frags != allocsiz)
   1153 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1154 	blkno = cgbase(fs, cg) + bno;
   1155 	ACTIVECG_CLR(fs, cg);
   1156 	mutex_exit(&ump->um_lock);
   1157 	bdwrite(bp);
   1158 	return blkno;
   1159 
   1160  fail:
   1161  	if (bp != NULL)
   1162 		brelse(bp, 0);
   1163  	mutex_enter(&ump->um_lock);
   1164  	return (0);
   1165 }
   1166 
   1167 /*
   1168  * Allocate a block in a cylinder group.
   1169  *
   1170  * This algorithm implements the following policy:
   1171  *   1) allocate the requested block.
   1172  *   2) allocate a rotationally optimal block in the same cylinder.
   1173  *   3) allocate the next available block on the block rotor for the
   1174  *      specified cylinder group.
   1175  * Note that this routine only allocates fs_bsize blocks; these
   1176  * blocks may be fragmented by the routine that allocates them.
   1177  */
   1178 static daddr_t
   1179 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1180     int flags)
   1181 {
   1182 	struct fs *fs = ip->i_fs;
   1183 	struct cg *cgp;
   1184 	int cg;
   1185 	daddr_t blkno;
   1186 	int32_t bno;
   1187 	u_int8_t *blksfree;
   1188 	const int needswap = UFS_FSNEEDSWAP(fs);
   1189 
   1190 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1191 
   1192 	cgp = (struct cg *)bp->b_data;
   1193 	blksfree = cg_blksfree(cgp, needswap);
   1194 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1195 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1196 	} else {
   1197 		bpref = ffs_blknum(fs, bpref);
   1198 		bno = dtogd(fs, bpref);
   1199 		/*
   1200 		 * if the requested block is available, use it
   1201 		 */
   1202 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1203 			goto gotit;
   1204 		/*
   1205 		 * if the requested data block isn't available and we are
   1206 		 * trying to allocate a contiguous file, return an error.
   1207 		 */
   1208 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1209 			return (0);
   1210 	}
   1211 
   1212 	/*
   1213 	 * Take the next available block in this cylinder group.
   1214 	 */
   1215 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1216 #if 0
   1217 	/*
   1218 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1219 	 */
   1220 	if (bno < 0)
   1221 		return (0);
   1222 #endif
   1223 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1224 gotit:
   1225 	blkno = ffs_fragstoblks(fs, bno);
   1226 	ffs_clrblock(fs, blksfree, blkno);
   1227 	ffs_clusteracct(fs, cgp, blkno, -1);
   1228 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1229 	fs->fs_cstotal.cs_nbfree--;
   1230 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1231 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1232 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1233 		int cylno;
   1234 		cylno = old_cbtocylno(fs, bno);
   1235 		KASSERT(cylno >= 0);
   1236 		KASSERT(cylno < fs->fs_old_ncyl);
   1237 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1238 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1239 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1240 		    needswap);
   1241 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1242 	}
   1243 	fs->fs_fmod = 1;
   1244 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1245 	blkno = cgbase(fs, cg) + bno;
   1246 	return (blkno);
   1247 }
   1248 
   1249 /*
   1250  * Determine whether an inode can be allocated.
   1251  *
   1252  * Check to see if an inode is available, and if it is,
   1253  * allocate it using the following policy:
   1254  *   1) allocate the requested inode.
   1255  *   2) allocate the next available inode after the requested
   1256  *      inode in the specified cylinder group.
   1257  */
   1258 static daddr_t
   1259 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1260     int flags)
   1261 {
   1262 	struct ufsmount *ump = ip->i_ump;
   1263 	struct fs *fs = ip->i_fs;
   1264 	struct cg *cgp;
   1265 	struct buf *bp, *ibp;
   1266 	u_int8_t *inosused;
   1267 	int error, start, len, loc, map, i;
   1268 	int32_t initediblk, maxiblk, irotor;
   1269 	daddr_t nalloc;
   1270 	struct ufs2_dinode *dp2;
   1271 	const int needswap = UFS_FSNEEDSWAP(fs);
   1272 
   1273 	KASSERT(mutex_owned(&ump->um_lock));
   1274 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1275 
   1276 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1277 		return (0);
   1278 	mutex_exit(&ump->um_lock);
   1279 	ibp = NULL;
   1280 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1281 		initediblk = -1;
   1282 	} else {
   1283 		initediblk = fs->fs_ipg;
   1284 	}
   1285 	maxiblk = initediblk;
   1286 
   1287 retry:
   1288 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1289 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1290 	if (error)
   1291 		goto fail;
   1292 	cgp = (struct cg *)bp->b_data;
   1293 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1294 		goto fail;
   1295 
   1296 	if (ibp != NULL &&
   1297 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1298 		/* Another thread allocated more inodes so we retry the test. */
   1299 		brelse(ibp, 0);
   1300 		ibp = NULL;
   1301 	}
   1302 	/*
   1303 	 * Check to see if we need to initialize more inodes.
   1304 	 */
   1305 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1306 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1307 		maxiblk = initediblk;
   1308 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1309 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1310 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1311 			/*
   1312 			 * We have to release the cg buffer here to prevent
   1313 			 * a deadlock when reading the inode block will
   1314 			 * run a copy-on-write that might use this cg.
   1315 			 */
   1316 			brelse(bp, 0);
   1317 			bp = NULL;
   1318 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1319 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1320 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1321 			if (error)
   1322 				goto fail;
   1323 
   1324 			maxiblk += FFS_INOPB(fs);
   1325 
   1326 			goto retry;
   1327 		}
   1328 	}
   1329 
   1330 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1331 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1332 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1333 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1334 	inosused = cg_inosused(cgp, needswap);
   1335 
   1336 	if (ipref) {
   1337 		ipref %= fs->fs_ipg;
   1338 		/* safeguard to stay in (to be) allocated range */
   1339 		if (ipref < maxiblk && isclr(inosused, ipref))
   1340 			goto gotit;
   1341 	}
   1342 
   1343 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1344 
   1345 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1346 		   " out of bounds, initediblk=%d",
   1347 		   __func__, cg, irotor, initediblk);
   1348 
   1349 	start = irotor / NBBY;
   1350 	len = howmany(maxiblk - irotor, NBBY);
   1351 	loc = skpc(0xff, len, &inosused[start]);
   1352 	if (loc == 0) {
   1353 		len = start + 1;
   1354 		start = 0;
   1355 		loc = skpc(0xff, len, &inosused[0]);
   1356 		if (loc == 0) {
   1357 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1358 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1359 			    fs->fs_fsmnt);
   1360 			/* NOTREACHED */
   1361 		}
   1362 	}
   1363 	i = start + len - loc;
   1364 	map = inosused[i] ^ 0xff;
   1365 	if (map == 0) {
   1366 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1367 	}
   1368 
   1369 	ipref = i * NBBY + ffs(map) - 1;
   1370 
   1371 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1372 
   1373 gotit:
   1374 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1375 		   "allocate inode index %d beyond max allocated index %d"
   1376 		   " of %d inodes/cg",
   1377 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1378 
   1379 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1380 	    mode);
   1381 	/*
   1382 	 * Check to see if we need to initialize more inodes.
   1383 	 */
   1384 	if (ibp != NULL) {
   1385 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1386 		memset(ibp->b_data, 0, fs->fs_bsize);
   1387 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1388 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1389 			/*
   1390 			 * Don't bother to swap, it's supposed to be
   1391 			 * random, after all.
   1392 			 */
   1393 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1394 			dp2++;
   1395 		}
   1396 		initediblk += FFS_INOPB(fs);
   1397 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1398 	}
   1399 
   1400 	mutex_enter(&ump->um_lock);
   1401 	ACTIVECG_CLR(fs, cg);
   1402 	setbit(inosused, ipref);
   1403 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1404 	fs->fs_cstotal.cs_nifree--;
   1405 	fs->fs_cs(fs, cg).cs_nifree--;
   1406 	fs->fs_fmod = 1;
   1407 	if ((mode & IFMT) == IFDIR) {
   1408 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1409 		fs->fs_cstotal.cs_ndir++;
   1410 		fs->fs_cs(fs, cg).cs_ndir++;
   1411 	}
   1412 	mutex_exit(&ump->um_lock);
   1413 	if (ibp != NULL) {
   1414 		bwrite(ibp);
   1415 		bwrite(bp);
   1416 	} else
   1417 		bdwrite(bp);
   1418 	return (cg * fs->fs_ipg + ipref);
   1419  fail:
   1420 	if (bp != NULL)
   1421 		brelse(bp, 0);
   1422 	if (ibp != NULL)
   1423 		brelse(ibp, 0);
   1424 	mutex_enter(&ump->um_lock);
   1425 	return (0);
   1426 }
   1427 
   1428 /*
   1429  * Allocate a block or fragment.
   1430  *
   1431  * The specified block or fragment is removed from the
   1432  * free map, possibly fragmenting a block in the process.
   1433  *
   1434  * This implementation should mirror fs_blkfree
   1435  *
   1436  * => um_lock not held on entry or exit
   1437  */
   1438 int
   1439 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1440 {
   1441 	int error;
   1442 
   1443 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1444 	    ip->i_dev, ip->i_uid);
   1445 	if (error)
   1446 		return error;
   1447 
   1448 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1449 }
   1450 
   1451 int
   1452 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1453 {
   1454 	struct fs *fs = ump->um_fs;
   1455 	struct cg *cgp;
   1456 	struct buf *bp;
   1457 	int32_t fragno, cgbno;
   1458 	int i, error, cg, blk, frags, bbase;
   1459 	u_int8_t *blksfree;
   1460 	const int needswap = UFS_FSNEEDSWAP(fs);
   1461 
   1462 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1463 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1464 	KASSERT(bno < fs->fs_size);
   1465 
   1466 	cg = dtog(fs, bno);
   1467 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1468 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1469 	if (error) {
   1470 		return error;
   1471 	}
   1472 	cgp = (struct cg *)bp->b_data;
   1473 	if (!cg_chkmagic(cgp, needswap)) {
   1474 		brelse(bp, 0);
   1475 		return EIO;
   1476 	}
   1477 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1478 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1479 	cgbno = dtogd(fs, bno);
   1480 	blksfree = cg_blksfree(cgp, needswap);
   1481 
   1482 	mutex_enter(&ump->um_lock);
   1483 	if (size == fs->fs_bsize) {
   1484 		fragno = ffs_fragstoblks(fs, cgbno);
   1485 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1486 			mutex_exit(&ump->um_lock);
   1487 			brelse(bp, 0);
   1488 			return EBUSY;
   1489 		}
   1490 		ffs_clrblock(fs, blksfree, fragno);
   1491 		ffs_clusteracct(fs, cgp, fragno, -1);
   1492 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1493 		fs->fs_cstotal.cs_nbfree--;
   1494 		fs->fs_cs(fs, cg).cs_nbfree--;
   1495 	} else {
   1496 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1497 
   1498 		frags = ffs_numfrags(fs, size);
   1499 		for (i = 0; i < frags; i++) {
   1500 			if (isclr(blksfree, cgbno + i)) {
   1501 				mutex_exit(&ump->um_lock);
   1502 				brelse(bp, 0);
   1503 				return EBUSY;
   1504 			}
   1505 		}
   1506 		/*
   1507 		 * if a complete block is being split, account for it
   1508 		 */
   1509 		fragno = ffs_fragstoblks(fs, bbase);
   1510 		if (ffs_isblock(fs, blksfree, fragno)) {
   1511 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1512 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1513 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1514 			ffs_clusteracct(fs, cgp, fragno, -1);
   1515 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1516 			fs->fs_cstotal.cs_nbfree--;
   1517 			fs->fs_cs(fs, cg).cs_nbfree--;
   1518 		}
   1519 		/*
   1520 		 * decrement the counts associated with the old frags
   1521 		 */
   1522 		blk = blkmap(fs, blksfree, bbase);
   1523 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1524 		/*
   1525 		 * allocate the fragment
   1526 		 */
   1527 		for (i = 0; i < frags; i++) {
   1528 			clrbit(blksfree, cgbno + i);
   1529 		}
   1530 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1531 		fs->fs_cstotal.cs_nffree -= i;
   1532 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1533 		/*
   1534 		 * add back in counts associated with the new frags
   1535 		 */
   1536 		blk = blkmap(fs, blksfree, bbase);
   1537 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1538 	}
   1539 	fs->fs_fmod = 1;
   1540 	ACTIVECG_CLR(fs, cg);
   1541 	mutex_exit(&ump->um_lock);
   1542 	bdwrite(bp);
   1543 	return 0;
   1544 }
   1545 
   1546 /*
   1547  * Free a block or fragment.
   1548  *
   1549  * The specified block or fragment is placed back in the
   1550  * free map. If a fragment is deallocated, a possible
   1551  * block reassembly is checked.
   1552  *
   1553  * => um_lock not held on entry or exit
   1554  */
   1555 static void
   1556 ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1557 {
   1558 	struct cg *cgp;
   1559 	struct buf *bp;
   1560 	struct ufsmount *ump;
   1561 	daddr_t cgblkno;
   1562 	int error, cg;
   1563 	dev_t dev;
   1564 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1565 	const int needswap = UFS_FSNEEDSWAP(fs);
   1566 
   1567 	KASSERT(!devvp_is_snapshot);
   1568 
   1569 	cg = dtog(fs, bno);
   1570 	dev = devvp->v_rdev;
   1571 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1572 	KASSERT(fs == ump->um_fs);
   1573 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1574 
   1575 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1576 	    B_MODIFY, &bp);
   1577 	if (error) {
   1578 		return;
   1579 	}
   1580 	cgp = (struct cg *)bp->b_data;
   1581 	if (!cg_chkmagic(cgp, needswap)) {
   1582 		brelse(bp, 0);
   1583 		return;
   1584 	}
   1585 
   1586 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1587 
   1588 	bdwrite(bp);
   1589 }
   1590 
   1591 struct discardopdata {
   1592 	struct work wk; /* must be first */
   1593 	struct vnode *devvp;
   1594 	daddr_t bno;
   1595 	long size;
   1596 };
   1597 
   1598 struct discarddata {
   1599 	struct fs *fs;
   1600 	struct discardopdata *entry;
   1601 	long maxsize;
   1602 	kmutex_t entrylk;
   1603 	struct workqueue *wq;
   1604 	int wqcnt, wqdraining;
   1605 	kmutex_t wqlk;
   1606 	kcondvar_t wqcv;
   1607 	/* timer for flush? */
   1608 };
   1609 
   1610 static void
   1611 ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1612 {
   1613 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1614 	long todo;
   1615 	int error;
   1616 
   1617 	while (td->size) {
   1618 		todo = uimin(td->size,
   1619 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1620 		error = UFS_WAPBL_BEGIN(mp);
   1621 		if (error) {
   1622 			printf("ffs: failed to begin wapbl transaction"
   1623 			    " for discard: %d\n", error);
   1624 			break;
   1625 		}
   1626 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1627 		UFS_WAPBL_END(mp);
   1628 		td->bno += ffs_numfrags(fs, todo);
   1629 		td->size -= todo;
   1630 	}
   1631 }
   1632 
   1633 static void
   1634 ffs_discardcb(struct work *wk, void *arg)
   1635 {
   1636 	struct discardopdata *td = (void *)wk;
   1637 	struct discarddata *ts = arg;
   1638 	struct fs *fs = ts->fs;
   1639 	off_t start, len;
   1640 #ifdef TRIMDEBUG
   1641 	int error;
   1642 #endif
   1643 
   1644 /* like FSBTODB but emits bytes; XXX move to fs.h */
   1645 #ifndef FFS_FSBTOBYTES
   1646 #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1647 #endif
   1648 
   1649 	start = FFS_FSBTOBYTES(fs, td->bno);
   1650 	len = td->size;
   1651 #ifdef TRIMDEBUG
   1652 	error =
   1653 #endif
   1654 		VOP_FDISCARD(td->devvp, start, len);
   1655 #ifdef TRIMDEBUG
   1656 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1657 #endif
   1658 
   1659 	ffs_blkfree_td(fs, td);
   1660 	kmem_free(td, sizeof(*td));
   1661 	mutex_enter(&ts->wqlk);
   1662 	ts->wqcnt--;
   1663 	if (ts->wqdraining && !ts->wqcnt)
   1664 		cv_signal(&ts->wqcv);
   1665 	mutex_exit(&ts->wqlk);
   1666 }
   1667 
   1668 void *
   1669 ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1670 {
   1671 	struct discarddata *ts;
   1672 	int error;
   1673 
   1674 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1675 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1676 				 PRI_USER, IPL_NONE, 0);
   1677 	if (error) {
   1678 		kmem_free(ts, sizeof (*ts));
   1679 		return NULL;
   1680 	}
   1681 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1682 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1683 	cv_init(&ts->wqcv, "trimwqcv");
   1684 	ts->maxsize = 100*1024; /* XXX */
   1685 	ts->fs = fs;
   1686 	return ts;
   1687 }
   1688 
   1689 void
   1690 ffs_discard_finish(void *vts, int flags)
   1691 {
   1692 	struct discarddata *ts = vts;
   1693 	struct discardopdata *td = NULL;
   1694 
   1695 	/* wait for workqueue to drain */
   1696 	mutex_enter(&ts->wqlk);
   1697 	if (ts->wqcnt) {
   1698 		ts->wqdraining = 1;
   1699 		cv_wait(&ts->wqcv, &ts->wqlk);
   1700 	}
   1701 	mutex_exit(&ts->wqlk);
   1702 
   1703 	mutex_enter(&ts->entrylk);
   1704 	if (ts->entry) {
   1705 		td = ts->entry;
   1706 		ts->entry = NULL;
   1707 	}
   1708 	mutex_exit(&ts->entrylk);
   1709 	if (td) {
   1710 		/* XXX don't tell disk, its optional */
   1711 		ffs_blkfree_td(ts->fs, td);
   1712 #ifdef TRIMDEBUG
   1713 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1714 #endif
   1715 		kmem_free(td, sizeof(*td));
   1716 	}
   1717 
   1718 	cv_destroy(&ts->wqcv);
   1719 	mutex_destroy(&ts->entrylk);
   1720 	mutex_destroy(&ts->wqlk);
   1721 	workqueue_destroy(ts->wq);
   1722 	kmem_free(ts, sizeof(*ts));
   1723 }
   1724 
   1725 void
   1726 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1727     ino_t inum)
   1728 {
   1729 	struct ufsmount *ump;
   1730 	int error;
   1731 	dev_t dev;
   1732 	struct discarddata *ts;
   1733 	struct discardopdata *td;
   1734 
   1735 	dev = devvp->v_rdev;
   1736 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1737 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1738 		return;
   1739 
   1740 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1741 	if (error)
   1742 		return;
   1743 
   1744 	if (!ump->um_discarddata) {
   1745 		ffs_blkfree_cg(fs, devvp, bno, size);
   1746 		return;
   1747 	}
   1748 
   1749 #ifdef TRIMDEBUG
   1750 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1751 #endif
   1752 	ts = ump->um_discarddata;
   1753 	td = NULL;
   1754 
   1755 	mutex_enter(&ts->entrylk);
   1756 	if (ts->entry) {
   1757 		td = ts->entry;
   1758 		/* ffs deallocs backwards, check for prepend only */
   1759 		if (td->bno == bno + ffs_numfrags(fs, size)
   1760 		    && td->size + size <= ts->maxsize) {
   1761 			td->bno = bno;
   1762 			td->size += size;
   1763 			if (td->size < ts->maxsize) {
   1764 #ifdef TRIMDEBUG
   1765 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1766 #endif
   1767 				mutex_exit(&ts->entrylk);
   1768 				return;
   1769 			}
   1770 			size = 0; /* mark done */
   1771 		}
   1772 		ts->entry = NULL;
   1773 	}
   1774 	mutex_exit(&ts->entrylk);
   1775 
   1776 	if (td) {
   1777 #ifdef TRIMDEBUG
   1778 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1779 #endif
   1780 		mutex_enter(&ts->wqlk);
   1781 		ts->wqcnt++;
   1782 		mutex_exit(&ts->wqlk);
   1783 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1784 	}
   1785 	if (!size)
   1786 		return;
   1787 
   1788 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1789 	td->devvp = devvp;
   1790 	td->bno = bno;
   1791 	td->size = size;
   1792 
   1793 	if (td->size < ts->maxsize) { /* XXX always the case */
   1794 		mutex_enter(&ts->entrylk);
   1795 		if (!ts->entry) { /* possible race? */
   1796 #ifdef TRIMDEBUG
   1797 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1798 #endif
   1799 			ts->entry = td;
   1800 			td = NULL;
   1801 		}
   1802 		mutex_exit(&ts->entrylk);
   1803 	}
   1804 	if (td) {
   1805 #ifdef TRIMDEBUG
   1806 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1807 #endif
   1808 		mutex_enter(&ts->wqlk);
   1809 		ts->wqcnt++;
   1810 		mutex_exit(&ts->wqlk);
   1811 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1812 	}
   1813 }
   1814 
   1815 /*
   1816  * Free a block or fragment from a snapshot cg copy.
   1817  *
   1818  * The specified block or fragment is placed back in the
   1819  * free map. If a fragment is deallocated, a possible
   1820  * block reassembly is checked.
   1821  *
   1822  * => um_lock not held on entry or exit
   1823  */
   1824 void
   1825 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1826     ino_t inum)
   1827 {
   1828 	struct cg *cgp;
   1829 	struct buf *bp;
   1830 	struct ufsmount *ump;
   1831 	daddr_t cgblkno;
   1832 	int error, cg;
   1833 	dev_t dev;
   1834 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1835 	const int needswap = UFS_FSNEEDSWAP(fs);
   1836 
   1837 	KASSERT(devvp_is_snapshot);
   1838 
   1839 	cg = dtog(fs, bno);
   1840 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1841 	ump = VFSTOUFS(devvp->v_mount);
   1842 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1843 
   1844 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1845 	if (error)
   1846 		return;
   1847 
   1848 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1849 	    B_MODIFY, &bp);
   1850 	if (error) {
   1851 		return;
   1852 	}
   1853 	cgp = (struct cg *)bp->b_data;
   1854 	if (!cg_chkmagic(cgp, needswap)) {
   1855 		brelse(bp, 0);
   1856 		return;
   1857 	}
   1858 
   1859 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1860 
   1861 	bdwrite(bp);
   1862 }
   1863 
   1864 static void
   1865 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1866     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1867 {
   1868 	struct cg *cgp;
   1869 	int32_t fragno, cgbno;
   1870 	int i, cg, blk, frags, bbase;
   1871 	u_int8_t *blksfree;
   1872 	const int needswap = UFS_FSNEEDSWAP(fs);
   1873 
   1874 	cg = dtog(fs, bno);
   1875 	cgp = (struct cg *)bp->b_data;
   1876 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1877 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1878 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1879 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1880 	cgbno = dtogd(fs, bno);
   1881 	blksfree = cg_blksfree(cgp, needswap);
   1882 	mutex_enter(&ump->um_lock);
   1883 	if (size == fs->fs_bsize) {
   1884 		fragno = ffs_fragstoblks(fs, cgbno);
   1885 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1886 			if (devvp_is_snapshot) {
   1887 				mutex_exit(&ump->um_lock);
   1888 				return;
   1889 			}
   1890 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1891 			    PRId64 ", fs = %s", __func__,
   1892 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1893 		}
   1894 		ffs_setblock(fs, blksfree, fragno);
   1895 		ffs_clusteracct(fs, cgp, fragno, 1);
   1896 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1897 		fs->fs_cstotal.cs_nbfree++;
   1898 		fs->fs_cs(fs, cg).cs_nbfree++;
   1899 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1900 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1901 			i = old_cbtocylno(fs, cgbno);
   1902 			KASSERT(i >= 0);
   1903 			KASSERT(i < fs->fs_old_ncyl);
   1904 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1905 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1906 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1907 			    needswap);
   1908 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1909 		}
   1910 	} else {
   1911 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1912 		/*
   1913 		 * decrement the counts associated with the old frags
   1914 		 */
   1915 		blk = blkmap(fs, blksfree, bbase);
   1916 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1917 		/*
   1918 		 * deallocate the fragment
   1919 		 */
   1920 		frags = ffs_numfrags(fs, size);
   1921 		for (i = 0; i < frags; i++) {
   1922 			if (isset(blksfree, cgbno + i)) {
   1923 				panic("%s: freeing free frag: "
   1924 				    "dev = 0x%llx, block = %" PRId64
   1925 				    ", fs = %s", __func__,
   1926 				    (unsigned long long)dev, bno + i,
   1927 				    fs->fs_fsmnt);
   1928 			}
   1929 			setbit(blksfree, cgbno + i);
   1930 		}
   1931 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1932 		fs->fs_cstotal.cs_nffree += i;
   1933 		fs->fs_cs(fs, cg).cs_nffree += i;
   1934 		/*
   1935 		 * add back in counts associated with the new frags
   1936 		 */
   1937 		blk = blkmap(fs, blksfree, bbase);
   1938 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1939 		/*
   1940 		 * if a complete block has been reassembled, account for it
   1941 		 */
   1942 		fragno = ffs_fragstoblks(fs, bbase);
   1943 		if (ffs_isblock(fs, blksfree, fragno)) {
   1944 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1945 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1946 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1947 			ffs_clusteracct(fs, cgp, fragno, 1);
   1948 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1949 			fs->fs_cstotal.cs_nbfree++;
   1950 			fs->fs_cs(fs, cg).cs_nbfree++;
   1951 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1952 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1953 				i = old_cbtocylno(fs, bbase);
   1954 				KASSERT(i >= 0);
   1955 				KASSERT(i < fs->fs_old_ncyl);
   1956 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1957 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1958 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1959 				    bbase)], 1, needswap);
   1960 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1961 			}
   1962 		}
   1963 	}
   1964 	fs->fs_fmod = 1;
   1965 	ACTIVECG_CLR(fs, cg);
   1966 	mutex_exit(&ump->um_lock);
   1967 }
   1968 
   1969 /*
   1970  * Free an inode.
   1971  */
   1972 int
   1973 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1974 {
   1975 
   1976 	return ffs_freefile(vp->v_mount, ino, mode);
   1977 }
   1978 
   1979 /*
   1980  * Do the actual free operation.
   1981  * The specified inode is placed back in the free map.
   1982  *
   1983  * => um_lock not held on entry or exit
   1984  */
   1985 int
   1986 ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1987 {
   1988 	struct ufsmount *ump = VFSTOUFS(mp);
   1989 	struct fs *fs = ump->um_fs;
   1990 	struct vnode *devvp;
   1991 	struct cg *cgp;
   1992 	struct buf *bp;
   1993 	int error, cg;
   1994 	daddr_t cgbno;
   1995 	dev_t dev;
   1996 	const int needswap = UFS_FSNEEDSWAP(fs);
   1997 
   1998 	cg = ino_to_cg(fs, ino);
   1999 	devvp = ump->um_devvp;
   2000 	dev = devvp->v_rdev;
   2001 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2002 
   2003 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2004 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2005 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2006 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2007 	    B_MODIFY, &bp);
   2008 	if (error) {
   2009 		return (error);
   2010 	}
   2011 	cgp = (struct cg *)bp->b_data;
   2012 	if (!cg_chkmagic(cgp, needswap)) {
   2013 		brelse(bp, 0);
   2014 		return (0);
   2015 	}
   2016 
   2017 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2018 
   2019 	bdwrite(bp);
   2020 
   2021 	return 0;
   2022 }
   2023 
   2024 int
   2025 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2026 {
   2027 	struct ufsmount *ump;
   2028 	struct cg *cgp;
   2029 	struct buf *bp;
   2030 	int error, cg;
   2031 	daddr_t cgbno;
   2032 	dev_t dev;
   2033 	const int needswap = UFS_FSNEEDSWAP(fs);
   2034 
   2035 	KASSERT(devvp->v_type != VBLK);
   2036 
   2037 	cg = ino_to_cg(fs, ino);
   2038 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2039 	ump = VFSTOUFS(devvp->v_mount);
   2040 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2041 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2042 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2043 		    (unsigned long long)dev, (unsigned long long)ino,
   2044 		    fs->fs_fsmnt);
   2045 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2046 	    B_MODIFY, &bp);
   2047 	if (error) {
   2048 		return (error);
   2049 	}
   2050 	cgp = (struct cg *)bp->b_data;
   2051 	if (!cg_chkmagic(cgp, needswap)) {
   2052 		brelse(bp, 0);
   2053 		return (0);
   2054 	}
   2055 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2056 
   2057 	bdwrite(bp);
   2058 
   2059 	return 0;
   2060 }
   2061 
   2062 static void
   2063 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2064     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2065 {
   2066 	int cg;
   2067 	struct cg *cgp;
   2068 	u_int8_t *inosused;
   2069 	const int needswap = UFS_FSNEEDSWAP(fs);
   2070 
   2071 	cg = ino_to_cg(fs, ino);
   2072 	cgp = (struct cg *)bp->b_data;
   2073 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2074 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2075 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2076 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2077 	inosused = cg_inosused(cgp, needswap);
   2078 	ino %= fs->fs_ipg;
   2079 	if (isclr(inosused, ino)) {
   2080 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2081 		    (unsigned long long)dev, (unsigned long long)ino +
   2082 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2083 		if (fs->fs_ronly == 0)
   2084 			panic("%s: freeing free inode", __func__);
   2085 	}
   2086 	clrbit(inosused, ino);
   2087 	if (!devvp_is_snapshot)
   2088 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2089 		    ino + cg * fs->fs_ipg, mode);
   2090 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2091 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2092 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2093 	mutex_enter(&ump->um_lock);
   2094 	fs->fs_cstotal.cs_nifree++;
   2095 	fs->fs_cs(fs, cg).cs_nifree++;
   2096 	if ((mode & IFMT) == IFDIR) {
   2097 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2098 		fs->fs_cstotal.cs_ndir--;
   2099 		fs->fs_cs(fs, cg).cs_ndir--;
   2100 	}
   2101 	fs->fs_fmod = 1;
   2102 	ACTIVECG_CLR(fs, cg);
   2103 	mutex_exit(&ump->um_lock);
   2104 }
   2105 
   2106 /*
   2107  * Check to see if a file is free.
   2108  */
   2109 int
   2110 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2111 {
   2112 	struct cg *cgp;
   2113 	struct buf *bp;
   2114 	daddr_t cgbno;
   2115 	int ret, cg;
   2116 	u_int8_t *inosused;
   2117 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2118 
   2119 	KASSERT(devvp_is_snapshot);
   2120 
   2121 	cg = ino_to_cg(fs, ino);
   2122 	if (devvp_is_snapshot)
   2123 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2124 	else
   2125 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2126 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2127 		return 1;
   2128 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2129 		return 1;
   2130 	}
   2131 	cgp = (struct cg *)bp->b_data;
   2132 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2133 		brelse(bp, 0);
   2134 		return 1;
   2135 	}
   2136 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2137 	ino %= fs->fs_ipg;
   2138 	ret = isclr(inosused, ino);
   2139 	brelse(bp, 0);
   2140 	return ret;
   2141 }
   2142 
   2143 /*
   2144  * Find a block of the specified size in the specified cylinder group.
   2145  *
   2146  * It is a panic if a request is made to find a block if none are
   2147  * available.
   2148  */
   2149 static int32_t
   2150 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2151 {
   2152 	int32_t bno;
   2153 	int start, len, loc, i;
   2154 	int blk, field, subfield, pos;
   2155 	int ostart, olen;
   2156 	u_int8_t *blksfree;
   2157 	const int needswap = UFS_FSNEEDSWAP(fs);
   2158 
   2159 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2160 
   2161 	/*
   2162 	 * find the fragment by searching through the free block
   2163 	 * map for an appropriate bit pattern
   2164 	 */
   2165 	if (bpref)
   2166 		start = dtogd(fs, bpref) / NBBY;
   2167 	else
   2168 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2169 	blksfree = cg_blksfree(cgp, needswap);
   2170 	len = howmany(fs->fs_fpg, NBBY) - start;
   2171 	ostart = start;
   2172 	olen = len;
   2173 	loc = scanc((u_int)len,
   2174 		(const u_char *)&blksfree[start],
   2175 		(const u_char *)fragtbl[fs->fs_frag],
   2176 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2177 	if (loc == 0) {
   2178 		len = start + 1;
   2179 		start = 0;
   2180 		loc = scanc((u_int)len,
   2181 			(const u_char *)&blksfree[0],
   2182 			(const u_char *)fragtbl[fs->fs_frag],
   2183 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2184 		if (loc == 0) {
   2185 			panic("%s: map corrupted: start=%d, len=%d, "
   2186 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2187 			    ostart, olen, fs->fs_fsmnt,
   2188 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2189 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2190 			/* NOTREACHED */
   2191 		}
   2192 	}
   2193 	bno = (start + len - loc) * NBBY;
   2194 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2195 	/*
   2196 	 * found the byte in the map
   2197 	 * sift through the bits to find the selected frag
   2198 	 */
   2199 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2200 		blk = blkmap(fs, blksfree, bno);
   2201 		blk <<= 1;
   2202 		field = around[allocsiz];
   2203 		subfield = inside[allocsiz];
   2204 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2205 			if ((blk & field) == subfield)
   2206 				return (bno + pos);
   2207 			field <<= 1;
   2208 			subfield <<= 1;
   2209 		}
   2210 	}
   2211 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2212 	    bno, fs->fs_fsmnt);
   2213 	/* return (-1); */
   2214 }
   2215 
   2216 /*
   2217  * Fserr prints the name of a file system with an error diagnostic.
   2218  *
   2219  * The form of the error message is:
   2220  *	fs: error message
   2221  */
   2222 static void
   2223 ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2224 {
   2225 	KASSERT(cred != NULL);
   2226 
   2227 	if (cred == NOCRED || cred == FSCRED) {
   2228 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2229 		    curproc->p_pid, curproc->p_comm,
   2230 		    fs->fs_fsmnt, cp);
   2231 	} else {
   2232 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2233 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2234 		    fs->fs_fsmnt, cp);
   2235 	}
   2236 }
   2237