Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.169
      1 /*	$NetBSD: ffs_alloc.c,v 1.169 2020/09/05 16:30:13 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Copyright (c) 1982, 1986, 1989, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.169 2020/09/05 16:30:13 riastradh Exp $");
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ffs.h"
     77 #include "opt_quota.h"
     78 #include "opt_uvm_page_trkown.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/buf.h>
     84 #include <sys/cprng.h>
     85 #include <sys/kauth.h>
     86 #include <sys/kernel.h>
     87 #include <sys/mount.h>
     88 #include <sys/proc.h>
     89 #include <sys/syslog.h>
     90 #include <sys/vnode.h>
     91 #include <sys/wapbl.h>
     92 #include <sys/cprng.h>
     93 
     94 #include <miscfs/specfs/specdev.h>
     95 #include <ufs/ufs/quota.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/inode.h>
     98 #include <ufs/ufs/ufs_extern.h>
     99 #include <ufs/ufs/ufs_bswap.h>
    100 #include <ufs/ufs/ufs_wapbl.h>
    101 
    102 #include <ufs/ffs/fs.h>
    103 #include <ufs/ffs/ffs_extern.h>
    104 
    105 #ifdef UVM_PAGE_TRKOWN
    106 #include <uvm/uvm_object.h>
    107 #include <uvm/uvm_page.h>
    108 #endif
    109 
    110 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    111 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    112 static ino_t ffs_dirpref(struct inode *);
    113 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    114 static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    116     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    117 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    118 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119 				      daddr_t, int);
    120 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121     daddr_t, long, bool);
    122 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123     int, bool);
    124 
    125 /* if 1, changes in optimalization strategy are logged */
    126 int ffs_log_changeopt = 0;
    127 
    128 /* in ffs_tables.c */
    129 extern const int inside[], around[];
    130 extern const u_char * const fragtbl[];
    131 
    132 /* Basic consistency check for block allocations */
    133 static int
    134 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135     long size, dev_t dev, ino_t inum)
    136 {
    137 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    140 		    " bsize = %d, size = %ld, fs = %s", func,
    141 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142 	}
    143 
    144 	if (bno >= fs->fs_size) {
    145 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    146 		    (unsigned long long)inum);
    147 		ffs_fserr(fs, NOCRED, "bad block");
    148 		return EINVAL;
    149 	}
    150 	return 0;
    151 }
    152 
    153 /*
    154  * Allocate a block in the file system.
    155  *
    156  * The size of the requested block is given, which must be some
    157  * multiple of fs_fsize and <= fs_bsize.
    158  * A preference may be optionally specified. If a preference is given
    159  * the following hierarchy is used to allocate a block:
    160  *   1) allocate the requested block.
    161  *   2) allocate a rotationally optimal block in the same cylinder.
    162  *   3) allocate a block in the same cylinder group.
    163  *   4) quadradically rehash into other cylinder groups, until an
    164  *      available block is located.
    165  * If no block preference is given the following hierarchy is used
    166  * to allocate a block:
    167  *   1) allocate a block in the cylinder group that contains the
    168  *      inode for the file.
    169  *   2) quadradically rehash into other cylinder groups, until an
    170  *      available block is located.
    171  *
    172  * => called with um_lock held
    173  * => releases um_lock before returning
    174  */
    175 int
    176 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    177     int flags, kauth_cred_t cred, daddr_t *bnp)
    178 {
    179 	struct ufsmount *ump;
    180 	struct fs *fs;
    181 	daddr_t bno;
    182 	int cg;
    183 #if defined(QUOTA) || defined(QUOTA2)
    184 	int error;
    185 #endif
    186 
    187 	fs = ip->i_fs;
    188 	ump = ip->i_ump;
    189 
    190 	KASSERT(mutex_owned(&ump->um_lock));
    191 
    192 #ifdef UVM_PAGE_TRKOWN
    193 
    194 	/*
    195 	 * Sanity-check that allocations within the file size
    196 	 * do not allow other threads to read the stale contents
    197 	 * of newly allocated blocks.
    198 	 * Usually pages will exist to cover the new allocation.
    199 	 * There is an optimization in ffs_write() where we skip
    200 	 * creating pages if several conditions are met:
    201 	 *  - the file must not be mapped (in any user address space).
    202 	 *  - the write must cover whole pages and whole blocks.
    203 	 * If those conditions are not met then pages must exist and
    204 	 * be locked by the current thread.
    205 	 */
    206 
    207 	struct vnode *vp = ITOV(ip);
    208 	if (vp->v_type == VREG && (flags & IO_EXT) == 0 &&
    209 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(vp->v_size) &&
    210 	    ((vp->v_vflag & VV_MAPPED) != 0 || (size & PAGE_MASK) != 0 ||
    211 	     ffs_blkoff(fs, size) != 0)) {
    212 		struct vm_page *pg __diagused;
    213 		struct uvm_object *uobj = &vp->v_uobj;
    214 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    215 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    216 
    217 		rw_enter(uobj->vmobjlock, RW_WRITER);
    218 		while (off < endoff) {
    219 			pg = uvm_pagelookup(uobj, off);
    220 			KASSERT((pg != NULL && pg->owner_tag != NULL &&
    221 				 pg->owner == curproc->p_pid &&
    222 				 pg->lowner == curlwp->l_lid));
    223 			off += PAGE_SIZE;
    224 		}
    225 		rw_exit(uobj->vmobjlock);
    226 	}
    227 #endif
    228 
    229 	*bnp = 0;
    230 
    231 	KASSERTMSG((cred != NOCRED), "missing credential");
    232 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    233 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    234 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    235 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    236 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    237 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    238 
    239 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    240 		goto nospace;
    241 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    242 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    243 	    NULL, NULL) != 0)
    244 		goto nospace;
    245 #if defined(QUOTA) || defined(QUOTA2)
    246 	mutex_exit(&ump->um_lock);
    247 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    248 		return (error);
    249 	mutex_enter(&ump->um_lock);
    250 #endif
    251 
    252 	if (bpref >= fs->fs_size)
    253 		bpref = 0;
    254 	if (bpref == 0)
    255 		cg = ino_to_cg(fs, ip->i_number);
    256 	else
    257 		cg = dtog(fs, bpref);
    258 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    259 	if (bno > 0) {
    260 		DIP_ADD(ip, blocks, btodb(size));
    261 		if (flags & IO_EXT)
    262 			ip->i_flag |= IN_CHANGE;
    263 		else
    264 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    265 		*bnp = bno;
    266 		return (0);
    267 	}
    268 #if defined(QUOTA) || defined(QUOTA2)
    269 	/*
    270 	 * Restore user's disk quota because allocation failed.
    271 	 */
    272 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    273 #endif
    274 	if (flags & B_CONTIG) {
    275 		/*
    276 		 * XXX ump->um_lock handling is "suspect" at best.
    277 		 * For the case where ffs_hashalloc() fails early
    278 		 * in the B_CONTIG case we reach here with um_lock
    279 		 * already unlocked, so we can't release it again
    280 		 * like in the normal error path.  See kern/39206.
    281 		 *
    282 		 *
    283 		 * Fail silently - it's up to our caller to report
    284 		 * errors.
    285 		 */
    286 		return (ENOSPC);
    287 	}
    288 nospace:
    289 	mutex_exit(&ump->um_lock);
    290 	ffs_fserr(fs, cred, "file system full");
    291 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    292 	return (ENOSPC);
    293 }
    294 
    295 /*
    296  * Reallocate a fragment to a bigger size
    297  *
    298  * The number and size of the old block is given, and a preference
    299  * and new size is also specified. The allocator attempts to extend
    300  * the original block. Failing that, the regular block allocator is
    301  * invoked to get an appropriate block.
    302  *
    303  * => called with um_lock held
    304  * => return with um_lock released
    305  */
    306 int
    307 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bprev, daddr_t bpref,
    308     int osize, int nsize, int flags, kauth_cred_t cred, struct buf **bpp,
    309     daddr_t *blknop)
    310 {
    311 	struct ufsmount *ump;
    312 	struct fs *fs;
    313 	struct buf *bp;
    314 	int cg, request, error;
    315 	daddr_t bno;
    316 
    317 	fs = ip->i_fs;
    318 	ump = ip->i_ump;
    319 
    320 	KASSERT(mutex_owned(&ump->um_lock));
    321 
    322 #ifdef UVM_PAGE_TRKOWN
    323 
    324 	/*
    325 	 * Sanity-check that allocations within the file size
    326 	 * do not allow other threads to read the stale contents
    327 	 * of newly allocated blocks.
    328 	 * Unlike in ffs_alloc(), here pages must always exist
    329 	 * for such allocations, because only the last block of a file
    330 	 * can be a fragment and ffs_write() will reallocate the
    331 	 * fragment to the new size using ufs_balloc_range(),
    332 	 * which always creates pages to cover blocks it allocates.
    333 	 */
    334 
    335 	if (ITOV(ip)->v_type == VREG) {
    336 		struct vm_page *pg __diagused;
    337 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    338 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    339 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    340 
    341 		rw_enter(uobj->vmobjlock, RW_WRITER);
    342 		while (off < endoff) {
    343 			pg = uvm_pagelookup(uobj, off);
    344 			KASSERT(pg->owner == curproc->p_pid &&
    345 				pg->lowner == curlwp->l_lid);
    346 			off += PAGE_SIZE;
    347 		}
    348 		rw_exit(uobj->vmobjlock);
    349 	}
    350 #endif
    351 
    352 	KASSERTMSG((cred != NOCRED), "missing credential");
    353 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    354 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    355 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    356 	    fs->fs_fsmnt);
    357 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    358 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    359 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    360 	    fs->fs_fsmnt);
    361 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    362 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    363 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    364 	    fs->fs_fsmnt);
    365 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    366 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    367 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    368 	    fs->fs_fsmnt);
    369 
    370 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    371 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    372 	    NULL, NULL) != 0) {
    373 		mutex_exit(&ump->um_lock);
    374 		goto nospace;
    375 	}
    376 
    377 	if (bprev == 0) {
    378 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    379 		    PRId64 ", fs = %s", __func__,
    380 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    381 		    fs->fs_fsmnt);
    382 	}
    383 	mutex_exit(&ump->um_lock);
    384 
    385 	/*
    386 	 * Allocate the extra space in the buffer.
    387 	 */
    388 	if (bpp != NULL &&
    389 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    390 		return (error);
    391 	}
    392 #if defined(QUOTA) || defined(QUOTA2)
    393 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    394 		if (bpp != NULL) {
    395 			brelse(bp, 0);
    396 		}
    397 		return (error);
    398 	}
    399 #endif
    400 	/*
    401 	 * Check for extension in the existing location.
    402 	 */
    403 	cg = dtog(fs, bprev);
    404 	mutex_enter(&ump->um_lock);
    405 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    406 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    407 		if (flags & IO_EXT)
    408 			ip->i_flag |= IN_CHANGE;
    409 		else
    410 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    411 
    412 		if (bpp != NULL) {
    413 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    414 				panic("%s: bad blockno %#llx != %#llx",
    415 				    __func__, (unsigned long long) bp->b_blkno,
    416 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    417 			}
    418 			allocbuf(bp, nsize, 1);
    419 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    420 			mutex_enter(bp->b_objlock);
    421 			KASSERT(!cv_has_waiters(&bp->b_done));
    422 			bp->b_oflags |= BO_DONE;
    423 			mutex_exit(bp->b_objlock);
    424 			*bpp = bp;
    425 		}
    426 		if (blknop != NULL) {
    427 			*blknop = bno;
    428 		}
    429 		return (0);
    430 	}
    431 	/*
    432 	 * Allocate a new disk location.
    433 	 */
    434 	if (bpref >= fs->fs_size)
    435 		bpref = 0;
    436 	switch ((int)fs->fs_optim) {
    437 	case FS_OPTSPACE:
    438 		/*
    439 		 * Allocate an exact sized fragment. Although this makes
    440 		 * best use of space, we will waste time relocating it if
    441 		 * the file continues to grow. If the fragmentation is
    442 		 * less than half of the minimum free reserve, we choose
    443 		 * to begin optimizing for time.
    444 		 */
    445 		request = nsize;
    446 		if (fs->fs_minfree < 5 ||
    447 		    fs->fs_cstotal.cs_nffree >
    448 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    449 			break;
    450 
    451 		if (ffs_log_changeopt) {
    452 			log(LOG_NOTICE,
    453 				"%s: optimization changed from SPACE to TIME\n",
    454 				fs->fs_fsmnt);
    455 		}
    456 
    457 		fs->fs_optim = FS_OPTTIME;
    458 		break;
    459 	case FS_OPTTIME:
    460 		/*
    461 		 * At this point we have discovered a file that is trying to
    462 		 * grow a small fragment to a larger fragment. To save time,
    463 		 * we allocate a full sized block, then free the unused portion.
    464 		 * If the file continues to grow, the `ffs_fragextend' call
    465 		 * above will be able to grow it in place without further
    466 		 * copying. If aberrant programs cause disk fragmentation to
    467 		 * grow within 2% of the free reserve, we choose to begin
    468 		 * optimizing for space.
    469 		 */
    470 		request = fs->fs_bsize;
    471 		if (fs->fs_cstotal.cs_nffree <
    472 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    473 			break;
    474 
    475 		if (ffs_log_changeopt) {
    476 			log(LOG_NOTICE,
    477 				"%s: optimization changed from TIME to SPACE\n",
    478 				fs->fs_fsmnt);
    479 		}
    480 
    481 		fs->fs_optim = FS_OPTSPACE;
    482 		break;
    483 	default:
    484 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    485 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    486 		    fs->fs_fsmnt);
    487 		/* NOTREACHED */
    488 	}
    489 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    490 	if (bno > 0) {
    491 		/*
    492 		 * Use forced deallocation registration, we can't handle
    493 		 * failure here. This is safe, as this place is ever hit
    494 		 * maximum once per write operation, when fragment is extended
    495 		 * to longer fragment, or a full block.
    496 		 */
    497 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    498 		    (ITOV(ip)->v_type != VREG)) {
    499 			/* this should never fail */
    500 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    501 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    502 			    osize);
    503 			if (error)
    504 				panic("ffs_realloccg: dealloc registration failed");
    505 		} else {
    506 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    507 			    ip->i_number);
    508 		}
    509 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    510 		if (flags & IO_EXT)
    511 			ip->i_flag |= IN_CHANGE;
    512 		else
    513 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    514 		if (bpp != NULL) {
    515 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    516 			allocbuf(bp, nsize, 1);
    517 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    518 			mutex_enter(bp->b_objlock);
    519 			KASSERT(!cv_has_waiters(&bp->b_done));
    520 			bp->b_oflags |= BO_DONE;
    521 			mutex_exit(bp->b_objlock);
    522 			*bpp = bp;
    523 		}
    524 		if (blknop != NULL) {
    525 			*blknop = bno;
    526 		}
    527 		return (0);
    528 	}
    529 	mutex_exit(&ump->um_lock);
    530 
    531 #if defined(QUOTA) || defined(QUOTA2)
    532 	/*
    533 	 * Restore user's disk quota because allocation failed.
    534 	 */
    535 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    536 #endif
    537 	if (bpp != NULL) {
    538 		brelse(bp, 0);
    539 	}
    540 
    541 nospace:
    542 	/*
    543 	 * no space available
    544 	 */
    545 	ffs_fserr(fs, cred, "file system full");
    546 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    547 	return (ENOSPC);
    548 }
    549 
    550 /*
    551  * Allocate an inode in the file system.
    552  *
    553  * If allocating a directory, use ffs_dirpref to select the inode.
    554  * If allocating in a directory, the following hierarchy is followed:
    555  *   1) allocate the preferred inode.
    556  *   2) allocate an inode in the same cylinder group.
    557  *   3) quadradically rehash into other cylinder groups, until an
    558  *      available inode is located.
    559  * If no inode preference is given the following hierarchy is used
    560  * to allocate an inode:
    561  *   1) allocate an inode in cylinder group 0.
    562  *   2) quadradically rehash into other cylinder groups, until an
    563  *      available inode is located.
    564  *
    565  * => um_lock not held upon entry or return
    566  */
    567 int
    568 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    569 {
    570 	struct ufsmount *ump;
    571 	struct inode *pip;
    572 	struct fs *fs;
    573 	ino_t ino, ipref;
    574 	int cg, error;
    575 
    576 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    577 
    578 	pip = VTOI(pvp);
    579 	fs = pip->i_fs;
    580 	ump = pip->i_ump;
    581 
    582 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    583 	if (error) {
    584 		return error;
    585 	}
    586 	mutex_enter(&ump->um_lock);
    587 	if (fs->fs_cstotal.cs_nifree == 0)
    588 		goto noinodes;
    589 
    590 	if ((mode & IFMT) == IFDIR)
    591 		ipref = ffs_dirpref(pip);
    592 	else
    593 		ipref = pip->i_number;
    594 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    595 		ipref = 0;
    596 	cg = ino_to_cg(fs, ipref);
    597 	/*
    598 	 * Track number of dirs created one after another
    599 	 * in a same cg without intervening by files.
    600 	 */
    601 	if ((mode & IFMT) == IFDIR) {
    602 		if (fs->fs_contigdirs[cg] < 255)
    603 			fs->fs_contigdirs[cg]++;
    604 	} else {
    605 		if (fs->fs_contigdirs[cg] > 0)
    606 			fs->fs_contigdirs[cg]--;
    607 	}
    608 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    609 	if (ino == 0)
    610 		goto noinodes;
    611 	UFS_WAPBL_END(pvp->v_mount);
    612 	*inop = ino;
    613 	return 0;
    614 
    615 noinodes:
    616 	mutex_exit(&ump->um_lock);
    617 	UFS_WAPBL_END(pvp->v_mount);
    618 	ffs_fserr(fs, cred, "out of inodes");
    619 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    620 	return ENOSPC;
    621 }
    622 
    623 /*
    624  * Find a cylinder group in which to place a directory.
    625  *
    626  * The policy implemented by this algorithm is to allocate a
    627  * directory inode in the same cylinder group as its parent
    628  * directory, but also to reserve space for its files inodes
    629  * and data. Restrict the number of directories which may be
    630  * allocated one after another in the same cylinder group
    631  * without intervening allocation of files.
    632  *
    633  * If we allocate a first level directory then force allocation
    634  * in another cylinder group.
    635  */
    636 static ino_t
    637 ffs_dirpref(struct inode *pip)
    638 {
    639 	register struct fs *fs;
    640 	int cg, prefcg;
    641 	int64_t dirsize, cgsize, curdsz;
    642 	int avgifree, avgbfree, avgndir;
    643 	int minifree, minbfree, maxndir;
    644 	int mincg, minndir;
    645 	int maxcontigdirs;
    646 
    647 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    648 
    649 	fs = pip->i_fs;
    650 
    651 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    652 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    653 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    654 
    655 	/*
    656 	 * Force allocation in another cg if creating a first level dir.
    657 	 */
    658 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    659 		prefcg = cprng_fast32() % fs->fs_ncg;
    660 		mincg = prefcg;
    661 		minndir = fs->fs_ipg;
    662 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    663 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    664 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    665 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    666 				mincg = cg;
    667 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    668 			}
    669 		for (cg = 0; cg < prefcg; cg++)
    670 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    671 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    672 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    673 				mincg = cg;
    674 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    675 			}
    676 		return ((ino_t)(fs->fs_ipg * mincg));
    677 	}
    678 
    679 	/*
    680 	 * Count various limits which used for
    681 	 * optimal allocation of a directory inode.
    682 	 * Try cylinder groups with >75% avgifree and avgbfree.
    683 	 * Avoid cylinder groups with no free blocks or inodes as that
    684 	 * triggers an I/O-expensive cylinder group scan.
    685 	 */
    686 	maxndir = uimin(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    687 	minifree = avgifree - avgifree / 4;
    688 	if (minifree < 1)
    689 		minifree = 1;
    690 	minbfree = avgbfree - avgbfree / 4;
    691 	if (minbfree < 1)
    692 		minbfree = 1;
    693 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    694 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    695 	if (avgndir != 0) {
    696 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    697 		if (dirsize < curdsz)
    698 			dirsize = curdsz;
    699 	}
    700 	if (cgsize < dirsize * 255)
    701 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    702 	else
    703 		maxcontigdirs = 255;
    704 	if (fs->fs_avgfpdir > 0)
    705 		maxcontigdirs = uimin(maxcontigdirs,
    706 				    fs->fs_ipg / fs->fs_avgfpdir);
    707 	if (maxcontigdirs == 0)
    708 		maxcontigdirs = 1;
    709 
    710 	/*
    711 	 * Limit number of dirs in one cg and reserve space for
    712 	 * regular files, but only if we have no deficit in
    713 	 * inodes or space.
    714 	 */
    715 	prefcg = ino_to_cg(fs, pip->i_number);
    716 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    717 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    718 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    719 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    720 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    721 				return ((ino_t)(fs->fs_ipg * cg));
    722 		}
    723 	for (cg = 0; cg < prefcg; cg++)
    724 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    725 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    726 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    727 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    728 				return ((ino_t)(fs->fs_ipg * cg));
    729 		}
    730 	/*
    731 	 * This is a backstop when we are deficient in space.
    732 	 */
    733 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    734 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    735 			return ((ino_t)(fs->fs_ipg * cg));
    736 	for (cg = 0; cg < prefcg; cg++)
    737 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    738 			break;
    739 	return ((ino_t)(fs->fs_ipg * cg));
    740 }
    741 
    742 /*
    743  * Select the desired position for the next block in a file.  The file is
    744  * logically divided into sections. The first section is composed of the
    745  * direct blocks. Each additional section contains fs_maxbpg blocks.
    746  *
    747  * If no blocks have been allocated in the first section, the policy is to
    748  * request a block in the same cylinder group as the inode that describes
    749  * the file. If no blocks have been allocated in any other section, the
    750  * policy is to place the section in a cylinder group with a greater than
    751  * average number of free blocks.  An appropriate cylinder group is found
    752  * by using a rotor that sweeps the cylinder groups. When a new group of
    753  * blocks is needed, the sweep begins in the cylinder group following the
    754  * cylinder group from which the previous allocation was made. The sweep
    755  * continues until a cylinder group with greater than the average number
    756  * of free blocks is found. If the allocation is for the first block in an
    757  * indirect block, the information on the previous allocation is unavailable;
    758  * here a best guess is made based upon the logical block number being
    759  * allocated.
    760  *
    761  * If a section is already partially allocated, the policy is to
    762  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    763  * contiguous blocks and the beginning of the next is laid out
    764  * contigously if possible.
    765  *
    766  * => um_lock held on entry and exit
    767  */
    768 daddr_t
    769 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    770     int32_t *bap /* XXX ondisk32 */)
    771 {
    772 	struct fs *fs;
    773 	int cg;
    774 	int avgbfree, startcg;
    775 
    776 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    777 
    778 	fs = ip->i_fs;
    779 
    780 	/*
    781 	 * If allocating a contiguous file with B_CONTIG, use the hints
    782 	 * in the inode extentions to return the desired block.
    783 	 *
    784 	 * For metadata (indirect blocks) return the address of where
    785 	 * the first indirect block resides - we'll scan for the next
    786 	 * available slot if we need to allocate more than one indirect
    787 	 * block.  For data, return the address of the actual block
    788 	 * relative to the address of the first data block.
    789 	 */
    790 	if (flags & B_CONTIG) {
    791 		KASSERT(ip->i_ffs_first_data_blk != 0);
    792 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    793 		if (flags & B_METAONLY)
    794 			return ip->i_ffs_first_indir_blk;
    795 		else
    796 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    797 	}
    798 
    799 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    800 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    801 			cg = ino_to_cg(fs, ip->i_number);
    802 			return (cgbase(fs, cg) + fs->fs_frag);
    803 		}
    804 		/*
    805 		 * Find a cylinder with greater than average number of
    806 		 * unused data blocks.
    807 		 */
    808 		if (indx == 0 || bap[indx - 1] == 0)
    809 			startcg =
    810 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    811 		else
    812 			startcg = dtog(fs,
    813 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    814 		startcg %= fs->fs_ncg;
    815 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    816 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    817 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    818 				return (cgbase(fs, cg) + fs->fs_frag);
    819 			}
    820 		for (cg = 0; cg < startcg; cg++)
    821 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    822 				return (cgbase(fs, cg) + fs->fs_frag);
    823 			}
    824 		return (0);
    825 	}
    826 	/*
    827 	 * We just always try to lay things out contiguously.
    828 	 */
    829 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    830 }
    831 
    832 daddr_t
    833 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    834     int64_t *bap)
    835 {
    836 	struct fs *fs;
    837 	int cg;
    838 	int avgbfree, startcg;
    839 
    840 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    841 
    842 	fs = ip->i_fs;
    843 
    844 	/*
    845 	 * If allocating a contiguous file with B_CONTIG, use the hints
    846 	 * in the inode extentions to return the desired block.
    847 	 *
    848 	 * For metadata (indirect blocks) return the address of where
    849 	 * the first indirect block resides - we'll scan for the next
    850 	 * available slot if we need to allocate more than one indirect
    851 	 * block.  For data, return the address of the actual block
    852 	 * relative to the address of the first data block.
    853 	 */
    854 	if (flags & B_CONTIG) {
    855 		KASSERT(ip->i_ffs_first_data_blk != 0);
    856 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    857 		if (flags & B_METAONLY)
    858 			return ip->i_ffs_first_indir_blk;
    859 		else
    860 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    861 	}
    862 
    863 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    864 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    865 			cg = ino_to_cg(fs, ip->i_number);
    866 			return (cgbase(fs, cg) + fs->fs_frag);
    867 		}
    868 		/*
    869 		 * Find a cylinder with greater than average number of
    870 		 * unused data blocks.
    871 		 */
    872 		if (indx == 0 || bap[indx - 1] == 0)
    873 			startcg =
    874 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    875 		else
    876 			startcg = dtog(fs,
    877 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    878 		startcg %= fs->fs_ncg;
    879 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    880 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    881 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    882 				return (cgbase(fs, cg) + fs->fs_frag);
    883 			}
    884 		for (cg = 0; cg < startcg; cg++)
    885 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    886 				return (cgbase(fs, cg) + fs->fs_frag);
    887 			}
    888 		return (0);
    889 	}
    890 	/*
    891 	 * We just always try to lay things out contiguously.
    892 	 */
    893 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    894 }
    895 
    896 
    897 /*
    898  * Implement the cylinder overflow algorithm.
    899  *
    900  * The policy implemented by this algorithm is:
    901  *   1) allocate the block in its requested cylinder group.
    902  *   2) quadradically rehash on the cylinder group number.
    903  *   3) brute force search for a free block.
    904  *
    905  * => called with um_lock held
    906  * => returns with um_lock released on success, held on failure
    907  *    (*allocator releases lock on success, retains lock on failure)
    908  */
    909 /*VARARGS5*/
    910 static daddr_t
    911 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    912     int size /* size for data blocks, mode for inodes */,
    913     int realsize,
    914     int flags,
    915     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    916 {
    917 	struct fs *fs;
    918 	daddr_t result;
    919 	int i, icg = cg;
    920 
    921 	fs = ip->i_fs;
    922 	/*
    923 	 * 1: preferred cylinder group
    924 	 */
    925 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    926 	if (result)
    927 		return (result);
    928 
    929 	if (flags & B_CONTIG)
    930 		return (result);
    931 	/*
    932 	 * 2: quadratic rehash
    933 	 */
    934 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    935 		cg += i;
    936 		if (cg >= fs->fs_ncg)
    937 			cg -= fs->fs_ncg;
    938 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    939 		if (result)
    940 			return (result);
    941 	}
    942 	/*
    943 	 * 3: brute force search
    944 	 * Note that we start at i == 2, since 0 was checked initially,
    945 	 * and 1 is always checked in the quadratic rehash.
    946 	 */
    947 	cg = (icg + 2) % fs->fs_ncg;
    948 	for (i = 2; i < fs->fs_ncg; i++) {
    949 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    950 		if (result)
    951 			return (result);
    952 		cg++;
    953 		if (cg == fs->fs_ncg)
    954 			cg = 0;
    955 	}
    956 	return (0);
    957 }
    958 
    959 /*
    960  * Determine whether a fragment can be extended.
    961  *
    962  * Check to see if the necessary fragments are available, and
    963  * if they are, allocate them.
    964  *
    965  * => called with um_lock held
    966  * => returns with um_lock released on success, held on failure
    967  */
    968 static daddr_t
    969 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    970 {
    971 	struct ufsmount *ump;
    972 	struct fs *fs;
    973 	struct cg *cgp;
    974 	struct buf *bp;
    975 	daddr_t bno;
    976 	int frags, bbase;
    977 	int i, error;
    978 	u_int8_t *blksfree;
    979 
    980 	fs = ip->i_fs;
    981 	ump = ip->i_ump;
    982 
    983 	KASSERT(mutex_owned(&ump->um_lock));
    984 
    985 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    986 		return (0);
    987 	frags = ffs_numfrags(fs, nsize);
    988 	bbase = ffs_fragnum(fs, bprev);
    989 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    990 		/* cannot extend across a block boundary */
    991 		return (0);
    992 	}
    993 	mutex_exit(&ump->um_lock);
    994 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    995 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    996 	if (error)
    997 		goto fail;
    998 	cgp = (struct cg *)bp->b_data;
    999 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1000 		goto fail;
   1001 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1002 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1003 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1004 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1005 	bno = dtogd(fs, bprev);
   1006 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1007 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1008 		if (isclr(blksfree, bno + i))
   1009 			goto fail;
   1010 	/*
   1011 	 * the current fragment can be extended
   1012 	 * deduct the count on fragment being extended into
   1013 	 * increase the count on the remaining fragment (if any)
   1014 	 * allocate the extended piece
   1015 	 */
   1016 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1017 		if (isclr(blksfree, bno + i))
   1018 			break;
   1019 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1020 	if (i != frags)
   1021 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1022 	mutex_enter(&ump->um_lock);
   1023 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1024 		clrbit(blksfree, bno + i);
   1025 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1026 		fs->fs_cstotal.cs_nffree--;
   1027 		fs->fs_cs(fs, cg).cs_nffree--;
   1028 	}
   1029 	fs->fs_fmod = 1;
   1030 	ACTIVECG_CLR(fs, cg);
   1031 	mutex_exit(&ump->um_lock);
   1032 	bdwrite(bp);
   1033 	return (bprev);
   1034 
   1035  fail:
   1036  	if (bp != NULL)
   1037 		brelse(bp, 0);
   1038  	mutex_enter(&ump->um_lock);
   1039  	return (0);
   1040 }
   1041 
   1042 /*
   1043  * Determine whether a block can be allocated.
   1044  *
   1045  * Check to see if a block of the appropriate size is available,
   1046  * and if it is, allocate it.
   1047  */
   1048 static daddr_t
   1049 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1050     int flags)
   1051 {
   1052 	struct ufsmount *ump;
   1053 	struct fs *fs = ip->i_fs;
   1054 	struct cg *cgp;
   1055 	struct buf *bp;
   1056 	int32_t bno;
   1057 	daddr_t blkno;
   1058 	int error, frags, allocsiz, i;
   1059 	u_int8_t *blksfree;
   1060 	const int needswap = UFS_FSNEEDSWAP(fs);
   1061 
   1062 	ump = ip->i_ump;
   1063 
   1064 	KASSERT(mutex_owned(&ump->um_lock));
   1065 
   1066 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1067 		return (0);
   1068 	mutex_exit(&ump->um_lock);
   1069 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1070 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1071 	if (error)
   1072 		goto fail;
   1073 	cgp = (struct cg *)bp->b_data;
   1074 	if (!cg_chkmagic(cgp, needswap) ||
   1075 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1076 		goto fail;
   1077 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1078 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1079 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1080 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1081 	if (size == fs->fs_bsize) {
   1082 		mutex_enter(&ump->um_lock);
   1083 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1084 		ACTIVECG_CLR(fs, cg);
   1085 		mutex_exit(&ump->um_lock);
   1086 
   1087 		/*
   1088 		 * If actually needed size is lower, free the extra blocks now.
   1089 		 * This is safe to call here, there is no outside reference
   1090 		 * to this block yet. It is not necessary to keep um_lock
   1091 		 * locked.
   1092 		 */
   1093 		if (realsize != 0 && realsize < size) {
   1094 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1095 			    ip->i_devvp->v_rdev,
   1096 			    bp, blkno + ffs_numfrags(fs, realsize),
   1097 			    (long)(size - realsize), false);
   1098 		}
   1099 
   1100 		bdwrite(bp);
   1101 		return (blkno);
   1102 	}
   1103 	/*
   1104 	 * check to see if any fragments are already available
   1105 	 * allocsiz is the size which will be allocated, hacking
   1106 	 * it down to a smaller size if necessary
   1107 	 */
   1108 	blksfree = cg_blksfree(cgp, needswap);
   1109 	frags = ffs_numfrags(fs, size);
   1110 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1111 		if (cgp->cg_frsum[allocsiz] != 0)
   1112 			break;
   1113 	if (allocsiz == fs->fs_frag) {
   1114 		/*
   1115 		 * no fragments were available, so a block will be
   1116 		 * allocated, and hacked up
   1117 		 */
   1118 		if (cgp->cg_cs.cs_nbfree == 0)
   1119 			goto fail;
   1120 		mutex_enter(&ump->um_lock);
   1121 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1122 		bno = dtogd(fs, blkno);
   1123 		for (i = frags; i < fs->fs_frag; i++)
   1124 			setbit(blksfree, bno + i);
   1125 		i = fs->fs_frag - frags;
   1126 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1127 		fs->fs_cstotal.cs_nffree += i;
   1128 		fs->fs_cs(fs, cg).cs_nffree += i;
   1129 		fs->fs_fmod = 1;
   1130 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1131 		ACTIVECG_CLR(fs, cg);
   1132 		mutex_exit(&ump->um_lock);
   1133 		bdwrite(bp);
   1134 		return (blkno);
   1135 	}
   1136 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1137 #if 0
   1138 	/*
   1139 	 * XXX fvdl mapsearch will panic, and never return -1
   1140 	 *          also: returning NULL as daddr_t ?
   1141 	 */
   1142 	if (bno < 0)
   1143 		goto fail;
   1144 #endif
   1145 	for (i = 0; i < frags; i++)
   1146 		clrbit(blksfree, bno + i);
   1147 	mutex_enter(&ump->um_lock);
   1148 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1149 	fs->fs_cstotal.cs_nffree -= frags;
   1150 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1151 	fs->fs_fmod = 1;
   1152 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1153 	if (frags != allocsiz)
   1154 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1155 	blkno = cgbase(fs, cg) + bno;
   1156 	ACTIVECG_CLR(fs, cg);
   1157 	mutex_exit(&ump->um_lock);
   1158 	bdwrite(bp);
   1159 	return blkno;
   1160 
   1161  fail:
   1162  	if (bp != NULL)
   1163 		brelse(bp, 0);
   1164  	mutex_enter(&ump->um_lock);
   1165  	return (0);
   1166 }
   1167 
   1168 /*
   1169  * Allocate a block in a cylinder group.
   1170  *
   1171  * This algorithm implements the following policy:
   1172  *   1) allocate the requested block.
   1173  *   2) allocate a rotationally optimal block in the same cylinder.
   1174  *   3) allocate the next available block on the block rotor for the
   1175  *      specified cylinder group.
   1176  * Note that this routine only allocates fs_bsize blocks; these
   1177  * blocks may be fragmented by the routine that allocates them.
   1178  */
   1179 static daddr_t
   1180 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1181     int flags)
   1182 {
   1183 	struct fs *fs = ip->i_fs;
   1184 	struct cg *cgp;
   1185 	int cg;
   1186 	daddr_t blkno;
   1187 	int32_t bno;
   1188 	u_int8_t *blksfree;
   1189 	const int needswap = UFS_FSNEEDSWAP(fs);
   1190 
   1191 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1192 
   1193 	cgp = (struct cg *)bp->b_data;
   1194 	blksfree = cg_blksfree(cgp, needswap);
   1195 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1196 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1197 	} else {
   1198 		bpref = ffs_blknum(fs, bpref);
   1199 		bno = dtogd(fs, bpref);
   1200 		/*
   1201 		 * if the requested block is available, use it
   1202 		 */
   1203 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1204 			goto gotit;
   1205 		/*
   1206 		 * if the requested data block isn't available and we are
   1207 		 * trying to allocate a contiguous file, return an error.
   1208 		 */
   1209 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1210 			return (0);
   1211 	}
   1212 
   1213 	/*
   1214 	 * Take the next available block in this cylinder group.
   1215 	 */
   1216 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1217 #if 0
   1218 	/*
   1219 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1220 	 */
   1221 	if (bno < 0)
   1222 		return (0);
   1223 #endif
   1224 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1225 gotit:
   1226 	blkno = ffs_fragstoblks(fs, bno);
   1227 	ffs_clrblock(fs, blksfree, blkno);
   1228 	ffs_clusteracct(fs, cgp, blkno, -1);
   1229 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1230 	fs->fs_cstotal.cs_nbfree--;
   1231 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1232 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1233 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1234 		int cylno;
   1235 		cylno = old_cbtocylno(fs, bno);
   1236 		KASSERT(cylno >= 0);
   1237 		KASSERT(cylno < fs->fs_old_ncyl);
   1238 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1239 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1240 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1241 		    needswap);
   1242 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1243 	}
   1244 	fs->fs_fmod = 1;
   1245 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1246 	blkno = cgbase(fs, cg) + bno;
   1247 	return (blkno);
   1248 }
   1249 
   1250 /*
   1251  * Determine whether an inode can be allocated.
   1252  *
   1253  * Check to see if an inode is available, and if it is,
   1254  * allocate it using the following policy:
   1255  *   1) allocate the requested inode.
   1256  *   2) allocate the next available inode after the requested
   1257  *      inode in the specified cylinder group.
   1258  */
   1259 static daddr_t
   1260 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1261     int flags)
   1262 {
   1263 	struct ufsmount *ump = ip->i_ump;
   1264 	struct fs *fs = ip->i_fs;
   1265 	struct cg *cgp;
   1266 	struct buf *bp, *ibp;
   1267 	u_int8_t *inosused;
   1268 	int error, start, len, loc, map, i;
   1269 	int32_t initediblk, maxiblk, irotor;
   1270 	daddr_t nalloc;
   1271 	struct ufs2_dinode *dp2;
   1272 	const int needswap = UFS_FSNEEDSWAP(fs);
   1273 
   1274 	KASSERT(mutex_owned(&ump->um_lock));
   1275 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1276 
   1277 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1278 		return (0);
   1279 	mutex_exit(&ump->um_lock);
   1280 	ibp = NULL;
   1281 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1282 		initediblk = -1;
   1283 	} else {
   1284 		initediblk = fs->fs_ipg;
   1285 	}
   1286 	maxiblk = initediblk;
   1287 
   1288 retry:
   1289 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1290 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1291 	if (error)
   1292 		goto fail;
   1293 	cgp = (struct cg *)bp->b_data;
   1294 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1295 		goto fail;
   1296 
   1297 	if (ibp != NULL &&
   1298 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1299 		/* Another thread allocated more inodes so we retry the test. */
   1300 		brelse(ibp, 0);
   1301 		ibp = NULL;
   1302 	}
   1303 	/*
   1304 	 * Check to see if we need to initialize more inodes.
   1305 	 */
   1306 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1307 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1308 		maxiblk = initediblk;
   1309 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1310 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1311 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1312 			/*
   1313 			 * We have to release the cg buffer here to prevent
   1314 			 * a deadlock when reading the inode block will
   1315 			 * run a copy-on-write that might use this cg.
   1316 			 */
   1317 			brelse(bp, 0);
   1318 			bp = NULL;
   1319 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1320 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1321 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1322 			if (error)
   1323 				goto fail;
   1324 
   1325 			maxiblk += FFS_INOPB(fs);
   1326 
   1327 			goto retry;
   1328 		}
   1329 	}
   1330 
   1331 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1332 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1333 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1334 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1335 	inosused = cg_inosused(cgp, needswap);
   1336 
   1337 	if (ipref) {
   1338 		ipref %= fs->fs_ipg;
   1339 		/* safeguard to stay in (to be) allocated range */
   1340 		if (ipref < maxiblk && isclr(inosused, ipref))
   1341 			goto gotit;
   1342 	}
   1343 
   1344 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1345 
   1346 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1347 		   " out of bounds, initediblk=%d",
   1348 		   __func__, cg, irotor, initediblk);
   1349 
   1350 	start = irotor / NBBY;
   1351 	len = howmany(maxiblk - irotor, NBBY);
   1352 	loc = skpc(0xff, len, &inosused[start]);
   1353 	if (loc == 0) {
   1354 		len = start + 1;
   1355 		start = 0;
   1356 		loc = skpc(0xff, len, &inosused[0]);
   1357 		if (loc == 0) {
   1358 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1359 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1360 			    fs->fs_fsmnt);
   1361 			/* NOTREACHED */
   1362 		}
   1363 	}
   1364 	i = start + len - loc;
   1365 	map = inosused[i] ^ 0xff;
   1366 	if (map == 0) {
   1367 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1368 	}
   1369 
   1370 	ipref = i * NBBY + ffs(map) - 1;
   1371 
   1372 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1373 
   1374 gotit:
   1375 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1376 		   "allocate inode index %d beyond max allocated index %d"
   1377 		   " of %d inodes/cg",
   1378 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1379 
   1380 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1381 	    mode);
   1382 	/*
   1383 	 * Check to see if we need to initialize more inodes.
   1384 	 */
   1385 	if (ibp != NULL) {
   1386 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1387 		memset(ibp->b_data, 0, fs->fs_bsize);
   1388 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1389 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1390 			/*
   1391 			 * Don't bother to swap, it's supposed to be
   1392 			 * random, after all.
   1393 			 */
   1394 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1395 			dp2++;
   1396 		}
   1397 		initediblk += FFS_INOPB(fs);
   1398 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1399 	}
   1400 
   1401 	mutex_enter(&ump->um_lock);
   1402 	ACTIVECG_CLR(fs, cg);
   1403 	setbit(inosused, ipref);
   1404 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1405 	fs->fs_cstotal.cs_nifree--;
   1406 	fs->fs_cs(fs, cg).cs_nifree--;
   1407 	fs->fs_fmod = 1;
   1408 	if ((mode & IFMT) == IFDIR) {
   1409 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1410 		fs->fs_cstotal.cs_ndir++;
   1411 		fs->fs_cs(fs, cg).cs_ndir++;
   1412 	}
   1413 	mutex_exit(&ump->um_lock);
   1414 	if (ibp != NULL) {
   1415 		bwrite(ibp);
   1416 		bwrite(bp);
   1417 	} else
   1418 		bdwrite(bp);
   1419 	return (cg * fs->fs_ipg + ipref);
   1420  fail:
   1421 	if (bp != NULL)
   1422 		brelse(bp, 0);
   1423 	if (ibp != NULL)
   1424 		brelse(ibp, 0);
   1425 	mutex_enter(&ump->um_lock);
   1426 	return (0);
   1427 }
   1428 
   1429 /*
   1430  * Allocate a block or fragment.
   1431  *
   1432  * The specified block or fragment is removed from the
   1433  * free map, possibly fragmenting a block in the process.
   1434  *
   1435  * This implementation should mirror fs_blkfree
   1436  *
   1437  * => um_lock not held on entry or exit
   1438  */
   1439 int
   1440 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1441 {
   1442 	int error;
   1443 
   1444 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1445 	    ip->i_dev, ip->i_uid);
   1446 	if (error)
   1447 		return error;
   1448 
   1449 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1450 }
   1451 
   1452 int
   1453 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1454 {
   1455 	struct fs *fs = ump->um_fs;
   1456 	struct cg *cgp;
   1457 	struct buf *bp;
   1458 	int32_t fragno, cgbno;
   1459 	int i, error, cg, blk, frags, bbase;
   1460 	u_int8_t *blksfree;
   1461 	const int needswap = UFS_FSNEEDSWAP(fs);
   1462 
   1463 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1464 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1465 	KASSERT(bno < fs->fs_size);
   1466 
   1467 	cg = dtog(fs, bno);
   1468 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1469 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1470 	if (error) {
   1471 		return error;
   1472 	}
   1473 	cgp = (struct cg *)bp->b_data;
   1474 	if (!cg_chkmagic(cgp, needswap)) {
   1475 		brelse(bp, 0);
   1476 		return EIO;
   1477 	}
   1478 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1479 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1480 	cgbno = dtogd(fs, bno);
   1481 	blksfree = cg_blksfree(cgp, needswap);
   1482 
   1483 	mutex_enter(&ump->um_lock);
   1484 	if (size == fs->fs_bsize) {
   1485 		fragno = ffs_fragstoblks(fs, cgbno);
   1486 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1487 			mutex_exit(&ump->um_lock);
   1488 			brelse(bp, 0);
   1489 			return EBUSY;
   1490 		}
   1491 		ffs_clrblock(fs, blksfree, fragno);
   1492 		ffs_clusteracct(fs, cgp, fragno, -1);
   1493 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1494 		fs->fs_cstotal.cs_nbfree--;
   1495 		fs->fs_cs(fs, cg).cs_nbfree--;
   1496 	} else {
   1497 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1498 
   1499 		frags = ffs_numfrags(fs, size);
   1500 		for (i = 0; i < frags; i++) {
   1501 			if (isclr(blksfree, cgbno + i)) {
   1502 				mutex_exit(&ump->um_lock);
   1503 				brelse(bp, 0);
   1504 				return EBUSY;
   1505 			}
   1506 		}
   1507 		/*
   1508 		 * if a complete block is being split, account for it
   1509 		 */
   1510 		fragno = ffs_fragstoblks(fs, bbase);
   1511 		if (ffs_isblock(fs, blksfree, fragno)) {
   1512 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1513 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1514 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1515 			ffs_clusteracct(fs, cgp, fragno, -1);
   1516 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1517 			fs->fs_cstotal.cs_nbfree--;
   1518 			fs->fs_cs(fs, cg).cs_nbfree--;
   1519 		}
   1520 		/*
   1521 		 * decrement the counts associated with the old frags
   1522 		 */
   1523 		blk = blkmap(fs, blksfree, bbase);
   1524 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1525 		/*
   1526 		 * allocate the fragment
   1527 		 */
   1528 		for (i = 0; i < frags; i++) {
   1529 			clrbit(blksfree, cgbno + i);
   1530 		}
   1531 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1532 		fs->fs_cstotal.cs_nffree -= i;
   1533 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1534 		/*
   1535 		 * add back in counts associated with the new frags
   1536 		 */
   1537 		blk = blkmap(fs, blksfree, bbase);
   1538 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1539 	}
   1540 	fs->fs_fmod = 1;
   1541 	ACTIVECG_CLR(fs, cg);
   1542 	mutex_exit(&ump->um_lock);
   1543 	bdwrite(bp);
   1544 	return 0;
   1545 }
   1546 
   1547 /*
   1548  * Free a block or fragment.
   1549  *
   1550  * The specified block or fragment is placed back in the
   1551  * free map. If a fragment is deallocated, a possible
   1552  * block reassembly is checked.
   1553  *
   1554  * => um_lock not held on entry or exit
   1555  */
   1556 static void
   1557 ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1558 {
   1559 	struct cg *cgp;
   1560 	struct buf *bp;
   1561 	struct ufsmount *ump;
   1562 	daddr_t cgblkno;
   1563 	int error, cg;
   1564 	dev_t dev;
   1565 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1566 	const int needswap = UFS_FSNEEDSWAP(fs);
   1567 
   1568 	KASSERT(!devvp_is_snapshot);
   1569 
   1570 	cg = dtog(fs, bno);
   1571 	dev = devvp->v_rdev;
   1572 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1573 	KASSERT(fs == ump->um_fs);
   1574 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1575 
   1576 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1577 	    B_MODIFY, &bp);
   1578 	if (error) {
   1579 		return;
   1580 	}
   1581 	cgp = (struct cg *)bp->b_data;
   1582 	if (!cg_chkmagic(cgp, needswap)) {
   1583 		brelse(bp, 0);
   1584 		return;
   1585 	}
   1586 
   1587 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1588 
   1589 	bdwrite(bp);
   1590 }
   1591 
   1592 struct discardopdata {
   1593 	struct work wk; /* must be first */
   1594 	struct vnode *devvp;
   1595 	daddr_t bno;
   1596 	long size;
   1597 };
   1598 
   1599 struct discarddata {
   1600 	struct fs *fs;
   1601 	struct discardopdata *entry;
   1602 	long maxsize;
   1603 	kmutex_t entrylk;
   1604 	struct workqueue *wq;
   1605 	int wqcnt, wqdraining;
   1606 	kmutex_t wqlk;
   1607 	kcondvar_t wqcv;
   1608 	/* timer for flush? */
   1609 };
   1610 
   1611 static void
   1612 ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1613 {
   1614 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1615 	long todo;
   1616 	int error;
   1617 
   1618 	while (td->size) {
   1619 		todo = uimin(td->size,
   1620 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1621 		error = UFS_WAPBL_BEGIN(mp);
   1622 		if (error) {
   1623 			printf("ffs: failed to begin wapbl transaction"
   1624 			    " for discard: %d\n", error);
   1625 			break;
   1626 		}
   1627 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1628 		UFS_WAPBL_END(mp);
   1629 		td->bno += ffs_numfrags(fs, todo);
   1630 		td->size -= todo;
   1631 	}
   1632 }
   1633 
   1634 static void
   1635 ffs_discardcb(struct work *wk, void *arg)
   1636 {
   1637 	struct discardopdata *td = (void *)wk;
   1638 	struct discarddata *ts = arg;
   1639 	struct fs *fs = ts->fs;
   1640 	off_t start, len;
   1641 #ifdef TRIMDEBUG
   1642 	int error;
   1643 #endif
   1644 
   1645 /* like FSBTODB but emits bytes; XXX move to fs.h */
   1646 #ifndef FFS_FSBTOBYTES
   1647 #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1648 #endif
   1649 
   1650 	start = FFS_FSBTOBYTES(fs, td->bno);
   1651 	len = td->size;
   1652 #ifdef TRIMDEBUG
   1653 	error =
   1654 #endif
   1655 		VOP_FDISCARD(td->devvp, start, len);
   1656 #ifdef TRIMDEBUG
   1657 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1658 #endif
   1659 
   1660 	ffs_blkfree_td(fs, td);
   1661 	kmem_free(td, sizeof(*td));
   1662 	mutex_enter(&ts->wqlk);
   1663 	ts->wqcnt--;
   1664 	if (ts->wqdraining && !ts->wqcnt)
   1665 		cv_signal(&ts->wqcv);
   1666 	mutex_exit(&ts->wqlk);
   1667 }
   1668 
   1669 void *
   1670 ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1671 {
   1672 	struct discarddata *ts;
   1673 	int error;
   1674 
   1675 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1676 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1677 				 PRI_USER, IPL_NONE, 0);
   1678 	if (error) {
   1679 		kmem_free(ts, sizeof (*ts));
   1680 		return NULL;
   1681 	}
   1682 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1683 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1684 	cv_init(&ts->wqcv, "trimwqcv");
   1685 	ts->maxsize = 100*1024; /* XXX */
   1686 	ts->fs = fs;
   1687 	return ts;
   1688 }
   1689 
   1690 void
   1691 ffs_discard_finish(void *vts, int flags)
   1692 {
   1693 	struct discarddata *ts = vts;
   1694 	struct discardopdata *td = NULL;
   1695 
   1696 	/* wait for workqueue to drain */
   1697 	mutex_enter(&ts->wqlk);
   1698 	if (ts->wqcnt) {
   1699 		ts->wqdraining = 1;
   1700 		cv_wait(&ts->wqcv, &ts->wqlk);
   1701 	}
   1702 	mutex_exit(&ts->wqlk);
   1703 
   1704 	mutex_enter(&ts->entrylk);
   1705 	if (ts->entry) {
   1706 		td = ts->entry;
   1707 		ts->entry = NULL;
   1708 	}
   1709 	mutex_exit(&ts->entrylk);
   1710 	if (td) {
   1711 		/* XXX don't tell disk, its optional */
   1712 		ffs_blkfree_td(ts->fs, td);
   1713 #ifdef TRIMDEBUG
   1714 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1715 #endif
   1716 		kmem_free(td, sizeof(*td));
   1717 	}
   1718 
   1719 	cv_destroy(&ts->wqcv);
   1720 	mutex_destroy(&ts->entrylk);
   1721 	mutex_destroy(&ts->wqlk);
   1722 	workqueue_destroy(ts->wq);
   1723 	kmem_free(ts, sizeof(*ts));
   1724 }
   1725 
   1726 void
   1727 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1728     ino_t inum)
   1729 {
   1730 	struct ufsmount *ump;
   1731 	int error;
   1732 	dev_t dev;
   1733 	struct discarddata *ts;
   1734 	struct discardopdata *td;
   1735 
   1736 	dev = devvp->v_rdev;
   1737 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1738 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1739 		return;
   1740 
   1741 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1742 	if (error)
   1743 		return;
   1744 
   1745 	if (!ump->um_discarddata) {
   1746 		ffs_blkfree_cg(fs, devvp, bno, size);
   1747 		return;
   1748 	}
   1749 
   1750 #ifdef TRIMDEBUG
   1751 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1752 #endif
   1753 	ts = ump->um_discarddata;
   1754 	td = NULL;
   1755 
   1756 	mutex_enter(&ts->entrylk);
   1757 	if (ts->entry) {
   1758 		td = ts->entry;
   1759 		/* ffs deallocs backwards, check for prepend only */
   1760 		if (td->bno == bno + ffs_numfrags(fs, size)
   1761 		    && td->size + size <= ts->maxsize) {
   1762 			td->bno = bno;
   1763 			td->size += size;
   1764 			if (td->size < ts->maxsize) {
   1765 #ifdef TRIMDEBUG
   1766 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1767 #endif
   1768 				mutex_exit(&ts->entrylk);
   1769 				return;
   1770 			}
   1771 			size = 0; /* mark done */
   1772 		}
   1773 		ts->entry = NULL;
   1774 	}
   1775 	mutex_exit(&ts->entrylk);
   1776 
   1777 	if (td) {
   1778 #ifdef TRIMDEBUG
   1779 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1780 #endif
   1781 		mutex_enter(&ts->wqlk);
   1782 		ts->wqcnt++;
   1783 		mutex_exit(&ts->wqlk);
   1784 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1785 	}
   1786 	if (!size)
   1787 		return;
   1788 
   1789 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1790 	td->devvp = devvp;
   1791 	td->bno = bno;
   1792 	td->size = size;
   1793 
   1794 	if (td->size < ts->maxsize) { /* XXX always the case */
   1795 		mutex_enter(&ts->entrylk);
   1796 		if (!ts->entry) { /* possible race? */
   1797 #ifdef TRIMDEBUG
   1798 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1799 #endif
   1800 			ts->entry = td;
   1801 			td = NULL;
   1802 		}
   1803 		mutex_exit(&ts->entrylk);
   1804 	}
   1805 	if (td) {
   1806 #ifdef TRIMDEBUG
   1807 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1808 #endif
   1809 		mutex_enter(&ts->wqlk);
   1810 		ts->wqcnt++;
   1811 		mutex_exit(&ts->wqlk);
   1812 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1813 	}
   1814 }
   1815 
   1816 /*
   1817  * Free a block or fragment from a snapshot cg copy.
   1818  *
   1819  * The specified block or fragment is placed back in the
   1820  * free map. If a fragment is deallocated, a possible
   1821  * block reassembly is checked.
   1822  *
   1823  * => um_lock not held on entry or exit
   1824  */
   1825 void
   1826 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1827     ino_t inum)
   1828 {
   1829 	struct cg *cgp;
   1830 	struct buf *bp;
   1831 	struct ufsmount *ump;
   1832 	daddr_t cgblkno;
   1833 	int error, cg;
   1834 	dev_t dev;
   1835 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1836 	const int needswap = UFS_FSNEEDSWAP(fs);
   1837 
   1838 	KASSERT(devvp_is_snapshot);
   1839 
   1840 	cg = dtog(fs, bno);
   1841 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1842 	ump = VFSTOUFS(devvp->v_mount);
   1843 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1844 
   1845 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1846 	if (error)
   1847 		return;
   1848 
   1849 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1850 	    B_MODIFY, &bp);
   1851 	if (error) {
   1852 		return;
   1853 	}
   1854 	cgp = (struct cg *)bp->b_data;
   1855 	if (!cg_chkmagic(cgp, needswap)) {
   1856 		brelse(bp, 0);
   1857 		return;
   1858 	}
   1859 
   1860 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1861 
   1862 	bdwrite(bp);
   1863 }
   1864 
   1865 static void
   1866 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1867     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1868 {
   1869 	struct cg *cgp;
   1870 	int32_t fragno, cgbno;
   1871 	int i, cg, blk, frags, bbase;
   1872 	u_int8_t *blksfree;
   1873 	const int needswap = UFS_FSNEEDSWAP(fs);
   1874 
   1875 	cg = dtog(fs, bno);
   1876 	cgp = (struct cg *)bp->b_data;
   1877 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1878 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1879 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1880 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1881 	cgbno = dtogd(fs, bno);
   1882 	blksfree = cg_blksfree(cgp, needswap);
   1883 	mutex_enter(&ump->um_lock);
   1884 	if (size == fs->fs_bsize) {
   1885 		fragno = ffs_fragstoblks(fs, cgbno);
   1886 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1887 			if (devvp_is_snapshot) {
   1888 				mutex_exit(&ump->um_lock);
   1889 				return;
   1890 			}
   1891 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1892 			    PRId64 ", fs = %s", __func__,
   1893 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1894 		}
   1895 		ffs_setblock(fs, blksfree, fragno);
   1896 		ffs_clusteracct(fs, cgp, fragno, 1);
   1897 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1898 		fs->fs_cstotal.cs_nbfree++;
   1899 		fs->fs_cs(fs, cg).cs_nbfree++;
   1900 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1901 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1902 			i = old_cbtocylno(fs, cgbno);
   1903 			KASSERT(i >= 0);
   1904 			KASSERT(i < fs->fs_old_ncyl);
   1905 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1906 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1907 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1908 			    needswap);
   1909 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1910 		}
   1911 	} else {
   1912 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1913 		/*
   1914 		 * decrement the counts associated with the old frags
   1915 		 */
   1916 		blk = blkmap(fs, blksfree, bbase);
   1917 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1918 		/*
   1919 		 * deallocate the fragment
   1920 		 */
   1921 		frags = ffs_numfrags(fs, size);
   1922 		for (i = 0; i < frags; i++) {
   1923 			if (isset(blksfree, cgbno + i)) {
   1924 				panic("%s: freeing free frag: "
   1925 				    "dev = 0x%llx, block = %" PRId64
   1926 				    ", fs = %s", __func__,
   1927 				    (unsigned long long)dev, bno + i,
   1928 				    fs->fs_fsmnt);
   1929 			}
   1930 			setbit(blksfree, cgbno + i);
   1931 		}
   1932 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1933 		fs->fs_cstotal.cs_nffree += i;
   1934 		fs->fs_cs(fs, cg).cs_nffree += i;
   1935 		/*
   1936 		 * add back in counts associated with the new frags
   1937 		 */
   1938 		blk = blkmap(fs, blksfree, bbase);
   1939 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1940 		/*
   1941 		 * if a complete block has been reassembled, account for it
   1942 		 */
   1943 		fragno = ffs_fragstoblks(fs, bbase);
   1944 		if (ffs_isblock(fs, blksfree, fragno)) {
   1945 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1946 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1947 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1948 			ffs_clusteracct(fs, cgp, fragno, 1);
   1949 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1950 			fs->fs_cstotal.cs_nbfree++;
   1951 			fs->fs_cs(fs, cg).cs_nbfree++;
   1952 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1953 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1954 				i = old_cbtocylno(fs, bbase);
   1955 				KASSERT(i >= 0);
   1956 				KASSERT(i < fs->fs_old_ncyl);
   1957 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1958 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1959 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1960 				    bbase)], 1, needswap);
   1961 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1962 			}
   1963 		}
   1964 	}
   1965 	fs->fs_fmod = 1;
   1966 	ACTIVECG_CLR(fs, cg);
   1967 	mutex_exit(&ump->um_lock);
   1968 }
   1969 
   1970 /*
   1971  * Free an inode.
   1972  */
   1973 int
   1974 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1975 {
   1976 
   1977 	return ffs_freefile(vp->v_mount, ino, mode);
   1978 }
   1979 
   1980 /*
   1981  * Do the actual free operation.
   1982  * The specified inode is placed back in the free map.
   1983  *
   1984  * => um_lock not held on entry or exit
   1985  */
   1986 int
   1987 ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1988 {
   1989 	struct ufsmount *ump = VFSTOUFS(mp);
   1990 	struct fs *fs = ump->um_fs;
   1991 	struct vnode *devvp;
   1992 	struct cg *cgp;
   1993 	struct buf *bp;
   1994 	int error, cg;
   1995 	daddr_t cgbno;
   1996 	dev_t dev;
   1997 	const int needswap = UFS_FSNEEDSWAP(fs);
   1998 
   1999 	cg = ino_to_cg(fs, ino);
   2000 	devvp = ump->um_devvp;
   2001 	dev = devvp->v_rdev;
   2002 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2003 
   2004 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2005 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2006 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2007 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2008 	    B_MODIFY, &bp);
   2009 	if (error) {
   2010 		return (error);
   2011 	}
   2012 	cgp = (struct cg *)bp->b_data;
   2013 	if (!cg_chkmagic(cgp, needswap)) {
   2014 		brelse(bp, 0);
   2015 		return (0);
   2016 	}
   2017 
   2018 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2019 
   2020 	bdwrite(bp);
   2021 
   2022 	return 0;
   2023 }
   2024 
   2025 int
   2026 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2027 {
   2028 	struct ufsmount *ump;
   2029 	struct cg *cgp;
   2030 	struct buf *bp;
   2031 	int error, cg;
   2032 	daddr_t cgbno;
   2033 	dev_t dev;
   2034 	const int needswap = UFS_FSNEEDSWAP(fs);
   2035 
   2036 	KASSERT(devvp->v_type != VBLK);
   2037 
   2038 	cg = ino_to_cg(fs, ino);
   2039 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2040 	ump = VFSTOUFS(devvp->v_mount);
   2041 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2042 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2043 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2044 		    (unsigned long long)dev, (unsigned long long)ino,
   2045 		    fs->fs_fsmnt);
   2046 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2047 	    B_MODIFY, &bp);
   2048 	if (error) {
   2049 		return (error);
   2050 	}
   2051 	cgp = (struct cg *)bp->b_data;
   2052 	if (!cg_chkmagic(cgp, needswap)) {
   2053 		brelse(bp, 0);
   2054 		return (0);
   2055 	}
   2056 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2057 
   2058 	bdwrite(bp);
   2059 
   2060 	return 0;
   2061 }
   2062 
   2063 static void
   2064 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2065     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2066 {
   2067 	int cg;
   2068 	struct cg *cgp;
   2069 	u_int8_t *inosused;
   2070 	const int needswap = UFS_FSNEEDSWAP(fs);
   2071 
   2072 	cg = ino_to_cg(fs, ino);
   2073 	cgp = (struct cg *)bp->b_data;
   2074 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2075 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2076 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2077 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2078 	inosused = cg_inosused(cgp, needswap);
   2079 	ino %= fs->fs_ipg;
   2080 	if (isclr(inosused, ino)) {
   2081 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2082 		    (unsigned long long)dev, (unsigned long long)ino +
   2083 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2084 		if (fs->fs_ronly == 0)
   2085 			panic("%s: freeing free inode", __func__);
   2086 	}
   2087 	clrbit(inosused, ino);
   2088 	if (!devvp_is_snapshot)
   2089 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2090 		    ino + cg * fs->fs_ipg, mode);
   2091 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2092 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2093 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2094 	mutex_enter(&ump->um_lock);
   2095 	fs->fs_cstotal.cs_nifree++;
   2096 	fs->fs_cs(fs, cg).cs_nifree++;
   2097 	if ((mode & IFMT) == IFDIR) {
   2098 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2099 		fs->fs_cstotal.cs_ndir--;
   2100 		fs->fs_cs(fs, cg).cs_ndir--;
   2101 	}
   2102 	fs->fs_fmod = 1;
   2103 	ACTIVECG_CLR(fs, cg);
   2104 	mutex_exit(&ump->um_lock);
   2105 }
   2106 
   2107 /*
   2108  * Check to see if a file is free.
   2109  */
   2110 int
   2111 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2112 {
   2113 	struct cg *cgp;
   2114 	struct buf *bp;
   2115 	daddr_t cgbno;
   2116 	int ret, cg;
   2117 	u_int8_t *inosused;
   2118 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2119 
   2120 	KASSERT(devvp_is_snapshot);
   2121 
   2122 	cg = ino_to_cg(fs, ino);
   2123 	if (devvp_is_snapshot)
   2124 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2125 	else
   2126 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2127 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2128 		return 1;
   2129 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2130 		return 1;
   2131 	}
   2132 	cgp = (struct cg *)bp->b_data;
   2133 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2134 		brelse(bp, 0);
   2135 		return 1;
   2136 	}
   2137 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2138 	ino %= fs->fs_ipg;
   2139 	ret = isclr(inosused, ino);
   2140 	brelse(bp, 0);
   2141 	return ret;
   2142 }
   2143 
   2144 /*
   2145  * Find a block of the specified size in the specified cylinder group.
   2146  *
   2147  * It is a panic if a request is made to find a block if none are
   2148  * available.
   2149  */
   2150 static int32_t
   2151 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2152 {
   2153 	int32_t bno;
   2154 	int start, len, loc, i;
   2155 	int blk, field, subfield, pos;
   2156 	int ostart, olen;
   2157 	u_int8_t *blksfree;
   2158 	const int needswap = UFS_FSNEEDSWAP(fs);
   2159 
   2160 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2161 
   2162 	/*
   2163 	 * find the fragment by searching through the free block
   2164 	 * map for an appropriate bit pattern
   2165 	 */
   2166 	if (bpref)
   2167 		start = dtogd(fs, bpref) / NBBY;
   2168 	else
   2169 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2170 	blksfree = cg_blksfree(cgp, needswap);
   2171 	len = howmany(fs->fs_fpg, NBBY) - start;
   2172 	ostart = start;
   2173 	olen = len;
   2174 	loc = scanc((u_int)len,
   2175 		(const u_char *)&blksfree[start],
   2176 		(const u_char *)fragtbl[fs->fs_frag],
   2177 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2178 	if (loc == 0) {
   2179 		len = start + 1;
   2180 		start = 0;
   2181 		loc = scanc((u_int)len,
   2182 			(const u_char *)&blksfree[0],
   2183 			(const u_char *)fragtbl[fs->fs_frag],
   2184 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2185 		if (loc == 0) {
   2186 			panic("%s: map corrupted: start=%d, len=%d, "
   2187 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2188 			    ostart, olen, fs->fs_fsmnt,
   2189 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2190 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2191 			/* NOTREACHED */
   2192 		}
   2193 	}
   2194 	bno = (start + len - loc) * NBBY;
   2195 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2196 	/*
   2197 	 * found the byte in the map
   2198 	 * sift through the bits to find the selected frag
   2199 	 */
   2200 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2201 		blk = blkmap(fs, blksfree, bno);
   2202 		blk <<= 1;
   2203 		field = around[allocsiz];
   2204 		subfield = inside[allocsiz];
   2205 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2206 			if ((blk & field) == subfield)
   2207 				return (bno + pos);
   2208 			field <<= 1;
   2209 			subfield <<= 1;
   2210 		}
   2211 	}
   2212 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2213 	    bno, fs->fs_fsmnt);
   2214 	/* return (-1); */
   2215 }
   2216 
   2217 /*
   2218  * Fserr prints the name of a file system with an error diagnostic.
   2219  *
   2220  * The form of the error message is:
   2221  *	fs: error message
   2222  */
   2223 static void
   2224 ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2225 {
   2226 	KASSERT(cred != NULL);
   2227 
   2228 	if (cred == NOCRED || cred == FSCRED) {
   2229 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2230 		    curproc->p_pid, curproc->p_comm,
   2231 		    fs->fs_fsmnt, cp);
   2232 	} else {
   2233 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2234 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2235 		    fs->fs_fsmnt, cp);
   2236 	}
   2237 }
   2238