Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.17
      1 /*	$NetBSD: ffs_alloc.c,v 1.17 1998/02/10 14:10:51 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36  */
     37 
     38 #include "opt_uvm.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/proc.h>
     44 #include <sys/vnode.h>
     45 #include <sys/mount.h>
     46 #include <sys/kernel.h>
     47 #include <sys/syslog.h>
     48 
     49 #include <vm/vm.h>
     50 
     51 #include <ufs/ufs/quota.h>
     52 #include <ufs/ufs/inode.h>
     53 #include <ufs/ufs/ufs_extern.h>
     54 
     55 #include <ufs/ffs/fs.h>
     56 #include <ufs/ffs/ffs_extern.h>
     57 
     58 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     59 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     60 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     61 static ino_t	ffs_dirpref __P((struct fs *));
     62 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     63 static void	ffs_fserr __P((struct fs *, u_int, char *));
     64 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     65 				   daddr_t (*)(struct inode *, int, daddr_t,
     66 					       int)));
     67 static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     68 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     69 
     70 /*
     71  * Allocate a block in the file system.
     72  *
     73  * The size of the requested block is given, which must be some
     74  * multiple of fs_fsize and <= fs_bsize.
     75  * A preference may be optionally specified. If a preference is given
     76  * the following hierarchy is used to allocate a block:
     77  *   1) allocate the requested block.
     78  *   2) allocate a rotationally optimal block in the same cylinder.
     79  *   3) allocate a block in the same cylinder group.
     80  *   4) quadradically rehash into other cylinder groups, until an
     81  *      available block is located.
     82  * If no block preference is given the following heirarchy is used
     83  * to allocate a block:
     84  *   1) allocate a block in the cylinder group that contains the
     85  *      inode for the file.
     86  *   2) quadradically rehash into other cylinder groups, until an
     87  *      available block is located.
     88  */
     89 int
     90 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     91 	register struct inode *ip;
     92 	daddr_t lbn, bpref;
     93 	int size;
     94 	struct ucred *cred;
     95 	daddr_t *bnp;
     96 {
     97 	register struct fs *fs;
     98 	daddr_t bno;
     99 	int cg;
    100 #ifdef QUOTA
    101 	int error;
    102 #endif
    103 
    104 	*bnp = 0;
    105 	fs = ip->i_fs;
    106 #ifdef DIAGNOSTIC
    107 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    108 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    109 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    110 		panic("ffs_alloc: bad size");
    111 	}
    112 	if (cred == NOCRED)
    113 		panic("ffs_alloc: missing credential\n");
    114 #endif /* DIAGNOSTIC */
    115 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    116 		goto nospace;
    117 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    118 		goto nospace;
    119 #ifdef QUOTA
    120 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    121 		return (error);
    122 #endif
    123 	if (bpref >= fs->fs_size)
    124 		bpref = 0;
    125 	if (bpref == 0)
    126 		cg = ino_to_cg(fs, ip->i_number);
    127 	else
    128 		cg = dtog(fs, bpref);
    129 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    130 	    			     ffs_alloccg);
    131 	if (bno > 0) {
    132 		ip->i_ffs_blocks += btodb(size);
    133 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    134 		*bnp = bno;
    135 		return (0);
    136 	}
    137 #ifdef QUOTA
    138 	/*
    139 	 * Restore user's disk quota because allocation failed.
    140 	 */
    141 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    142 #endif
    143 nospace:
    144 	ffs_fserr(fs, cred->cr_uid, "file system full");
    145 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    146 	return (ENOSPC);
    147 }
    148 
    149 /*
    150  * Reallocate a fragment to a bigger size
    151  *
    152  * The number and size of the old block is given, and a preference
    153  * and new size is also specified. The allocator attempts to extend
    154  * the original block. Failing that, the regular block allocator is
    155  * invoked to get an appropriate block.
    156  */
    157 int
    158 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    159 	register struct inode *ip;
    160 	daddr_t lbprev;
    161 	daddr_t bpref;
    162 	int osize, nsize;
    163 	struct ucred *cred;
    164 	struct buf **bpp;
    165 {
    166 	register struct fs *fs;
    167 	struct buf *bp;
    168 	int cg, request, error;
    169 	daddr_t bprev, bno;
    170 
    171 	*bpp = 0;
    172 	fs = ip->i_fs;
    173 #ifdef DIAGNOSTIC
    174 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    175 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    176 		printf(
    177 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    178 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    179 		panic("ffs_realloccg: bad size");
    180 	}
    181 	if (cred == NOCRED)
    182 		panic("ffs_realloccg: missing credential\n");
    183 #endif /* DIAGNOSTIC */
    184 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    185 		goto nospace;
    186 	if ((bprev = ip->i_ffs_db[lbprev]) == 0) {
    187 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    188 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    189 		panic("ffs_realloccg: bad bprev");
    190 	}
    191 	/*
    192 	 * Allocate the extra space in the buffer.
    193 	 */
    194 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    195 		brelse(bp);
    196 		return (error);
    197 	}
    198 #ifdef QUOTA
    199 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    200 		brelse(bp);
    201 		return (error);
    202 	}
    203 #endif
    204 	/*
    205 	 * Check for extension in the existing location.
    206 	 */
    207 	cg = dtog(fs, bprev);
    208 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    209 		if (bp->b_blkno != fsbtodb(fs, bno))
    210 			panic("bad blockno");
    211 		ip->i_ffs_blocks += btodb(nsize - osize);
    212 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    213 		allocbuf(bp, nsize);
    214 		bp->b_flags |= B_DONE;
    215 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    216 		*bpp = bp;
    217 		return (0);
    218 	}
    219 	/*
    220 	 * Allocate a new disk location.
    221 	 */
    222 	if (bpref >= fs->fs_size)
    223 		bpref = 0;
    224 	switch ((int)fs->fs_optim) {
    225 	case FS_OPTSPACE:
    226 		/*
    227 		 * Allocate an exact sized fragment. Although this makes
    228 		 * best use of space, we will waste time relocating it if
    229 		 * the file continues to grow. If the fragmentation is
    230 		 * less than half of the minimum free reserve, we choose
    231 		 * to begin optimizing for time.
    232 		 */
    233 		request = nsize;
    234 		if (fs->fs_minfree < 5 ||
    235 		    fs->fs_cstotal.cs_nffree >
    236 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    237 			break;
    238 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    239 			fs->fs_fsmnt);
    240 		fs->fs_optim = FS_OPTTIME;
    241 		break;
    242 	case FS_OPTTIME:
    243 		/*
    244 		 * At this point we have discovered a file that is trying to
    245 		 * grow a small fragment to a larger fragment. To save time,
    246 		 * we allocate a full sized block, then free the unused portion.
    247 		 * If the file continues to grow, the `ffs_fragextend' call
    248 		 * above will be able to grow it in place without further
    249 		 * copying. If aberrant programs cause disk fragmentation to
    250 		 * grow within 2% of the free reserve, we choose to begin
    251 		 * optimizing for space.
    252 		 */
    253 		request = fs->fs_bsize;
    254 		if (fs->fs_cstotal.cs_nffree <
    255 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    256 			break;
    257 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    258 			fs->fs_fsmnt);
    259 		fs->fs_optim = FS_OPTSPACE;
    260 		break;
    261 	default:
    262 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    263 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    264 		panic("ffs_realloccg: bad optim");
    265 		/* NOTREACHED */
    266 	}
    267 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    268 	    			     ffs_alloccg);
    269 	if (bno > 0) {
    270 		bp->b_blkno = fsbtodb(fs, bno);
    271 #if defined(UVM)
    272 		(void) uvm_vnp_uncache(ITOV(ip));
    273 #else
    274 		(void) vnode_pager_uncache(ITOV(ip));
    275 #endif
    276 		ffs_blkfree(ip, bprev, (long)osize);
    277 		if (nsize < request)
    278 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    279 			    (long)(request - nsize));
    280 		ip->i_ffs_blocks += btodb(nsize - osize);
    281 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    282 		allocbuf(bp, nsize);
    283 		bp->b_flags |= B_DONE;
    284 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    285 		*bpp = bp;
    286 		return (0);
    287 	}
    288 #ifdef QUOTA
    289 	/*
    290 	 * Restore user's disk quota because allocation failed.
    291 	 */
    292 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    293 #endif
    294 	brelse(bp);
    295 nospace:
    296 	/*
    297 	 * no space available
    298 	 */
    299 	ffs_fserr(fs, cred->cr_uid, "file system full");
    300 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    301 	return (ENOSPC);
    302 }
    303 
    304 /*
    305  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    306  *
    307  * The vnode and an array of buffer pointers for a range of sequential
    308  * logical blocks to be made contiguous is given. The allocator attempts
    309  * to find a range of sequential blocks starting as close as possible to
    310  * an fs_rotdelay offset from the end of the allocation for the logical
    311  * block immediately preceeding the current range. If successful, the
    312  * physical block numbers in the buffer pointers and in the inode are
    313  * changed to reflect the new allocation. If unsuccessful, the allocation
    314  * is left unchanged. The success in doing the reallocation is returned.
    315  * Note that the error return is not reflected back to the user. Rather
    316  * the previous block allocation will be used.
    317  */
    318 #ifdef DEBUG
    319 #include <sys/sysctl.h>
    320 int doasyncfree = 1;
    321 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    322 int prtrealloc = 0;
    323 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    324 #else
    325 #define doasyncfree 1
    326 #endif
    327 
    328 int
    329 ffs_reallocblks(v)
    330 	void *v;
    331 {
    332 	struct vop_reallocblks_args /* {
    333 		struct vnode *a_vp;
    334 		struct cluster_save *a_buflist;
    335 	} */ *ap = v;
    336 	struct fs *fs;
    337 	struct inode *ip;
    338 	struct vnode *vp;
    339 	struct buf *sbp, *ebp;
    340 	daddr_t *bap, *sbap, *ebap = NULL;
    341 	struct cluster_save *buflist;
    342 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    343 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    344 	int i, len, start_lvl, end_lvl, pref, ssize;
    345 	struct timespec ts;
    346 
    347 	vp = ap->a_vp;
    348 	ip = VTOI(vp);
    349 	fs = ip->i_fs;
    350 	if (fs->fs_contigsumsize <= 0)
    351 		return (ENOSPC);
    352 	buflist = ap->a_buflist;
    353 	len = buflist->bs_nchildren;
    354 	start_lbn = buflist->bs_children[0]->b_lblkno;
    355 	end_lbn = start_lbn + len - 1;
    356 #ifdef DIAGNOSTIC
    357 	for (i = 1; i < len; i++)
    358 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    359 			panic("ffs_reallocblks: non-cluster");
    360 #endif
    361 	/*
    362 	 * If the latest allocation is in a new cylinder group, assume that
    363 	 * the filesystem has decided to move and do not force it back to
    364 	 * the previous cylinder group.
    365 	 */
    366 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    367 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    368 		return (ENOSPC);
    369 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    370 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    371 		return (ENOSPC);
    372 	/*
    373 	 * Get the starting offset and block map for the first block.
    374 	 */
    375 	if (start_lvl == 0) {
    376 		sbap = &ip->i_ffs_db[0];
    377 		soff = start_lbn;
    378 	} else {
    379 		idp = &start_ap[start_lvl - 1];
    380 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    381 			brelse(sbp);
    382 			return (ENOSPC);
    383 		}
    384 		sbap = (daddr_t *)sbp->b_data;
    385 		soff = idp->in_off;
    386 	}
    387 	/*
    388 	 * Find the preferred location for the cluster.
    389 	 */
    390 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    391 	/*
    392 	 * If the block range spans two block maps, get the second map.
    393 	 */
    394 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    395 		ssize = len;
    396 	} else {
    397 #ifdef DIAGNOSTIC
    398 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    399 			panic("ffs_reallocblk: start == end");
    400 #endif
    401 		ssize = len - (idp->in_off + 1);
    402 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    403 			goto fail;
    404 		ebap = (daddr_t *)ebp->b_data;
    405 	}
    406 	/*
    407 	 * Search the block map looking for an allocation of the desired size.
    408 	 */
    409 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    410 	    len, ffs_clusteralloc)) == 0)
    411 		goto fail;
    412 	/*
    413 	 * We have found a new contiguous block.
    414 	 *
    415 	 * First we have to replace the old block pointers with the new
    416 	 * block pointers in the inode and indirect blocks associated
    417 	 * with the file.
    418 	 */
    419 #ifdef DEBUG
    420 	if (prtrealloc)
    421 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    422 		    start_lbn, end_lbn);
    423 #endif
    424 	blkno = newblk;
    425 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    426 		if (i == ssize)
    427 			bap = ebap;
    428 #ifdef DIAGNOSTIC
    429 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    430 			panic("ffs_reallocblks: alloc mismatch");
    431 #endif
    432 #ifdef DEBUG
    433 		if (prtrealloc)
    434 			printf(" %d,", *bap);
    435 #endif
    436 		*bap++ = blkno;
    437 	}
    438 	/*
    439 	 * Next we must write out the modified inode and indirect blocks.
    440 	 * For strict correctness, the writes should be synchronous since
    441 	 * the old block values may have been written to disk. In practise
    442 	 * they are almost never written, but if we are concerned about
    443 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    444 	 *
    445 	 * The test on `doasyncfree' should be changed to test a flag
    446 	 * that shows whether the associated buffers and inodes have
    447 	 * been written. The flag should be set when the cluster is
    448 	 * started and cleared whenever the buffer or inode is flushed.
    449 	 * We can then check below to see if it is set, and do the
    450 	 * synchronous write only when it has been cleared.
    451 	 */
    452 	if (sbap != &ip->i_ffs_db[0]) {
    453 		if (doasyncfree)
    454 			bdwrite(sbp);
    455 		else
    456 			bwrite(sbp);
    457 	} else {
    458 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    459 		if (!doasyncfree) {
    460 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    461 			VOP_UPDATE(vp, &ts, &ts, 1);
    462 		}
    463 	}
    464 	if (ssize < len)
    465 		if (doasyncfree)
    466 			bdwrite(ebp);
    467 		else
    468 			bwrite(ebp);
    469 	/*
    470 	 * Last, free the old blocks and assign the new blocks to the buffers.
    471 	 */
    472 #ifdef DEBUG
    473 	if (prtrealloc)
    474 		printf("\n\tnew:");
    475 #endif
    476 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    477 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    478 		    fs->fs_bsize);
    479 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    480 #ifdef DEBUG
    481 		if (prtrealloc)
    482 			printf(" %d,", blkno);
    483 #endif
    484 	}
    485 #ifdef DEBUG
    486 	if (prtrealloc) {
    487 		prtrealloc--;
    488 		printf("\n");
    489 	}
    490 #endif
    491 	return (0);
    492 
    493 fail:
    494 	if (ssize < len)
    495 		brelse(ebp);
    496 	if (sbap != &ip->i_ffs_db[0])
    497 		brelse(sbp);
    498 	return (ENOSPC);
    499 }
    500 
    501 /*
    502  * Allocate an inode in the file system.
    503  *
    504  * If allocating a directory, use ffs_dirpref to select the inode.
    505  * If allocating in a directory, the following hierarchy is followed:
    506  *   1) allocate the preferred inode.
    507  *   2) allocate an inode in the same cylinder group.
    508  *   3) quadradically rehash into other cylinder groups, until an
    509  *      available inode is located.
    510  * If no inode preference is given the following heirarchy is used
    511  * to allocate an inode:
    512  *   1) allocate an inode in cylinder group 0.
    513  *   2) quadradically rehash into other cylinder groups, until an
    514  *      available inode is located.
    515  */
    516 int
    517 ffs_valloc(v)
    518 	void *v;
    519 {
    520 	struct vop_valloc_args /* {
    521 		struct vnode *a_pvp;
    522 		int a_mode;
    523 		struct ucred *a_cred;
    524 		struct vnode **a_vpp;
    525 	} */ *ap = v;
    526 	register struct vnode *pvp = ap->a_pvp;
    527 	register struct inode *pip;
    528 	register struct fs *fs;
    529 	register struct inode *ip;
    530 	mode_t mode = ap->a_mode;
    531 	ino_t ino, ipref;
    532 	int cg, error;
    533 
    534 	*ap->a_vpp = NULL;
    535 	pip = VTOI(pvp);
    536 	fs = pip->i_fs;
    537 	if (fs->fs_cstotal.cs_nifree == 0)
    538 		goto noinodes;
    539 
    540 	if ((mode & IFMT) == IFDIR)
    541 		ipref = ffs_dirpref(fs);
    542 	else
    543 		ipref = pip->i_number;
    544 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    545 		ipref = 0;
    546 	cg = ino_to_cg(fs, ipref);
    547 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    548 	if (ino == 0)
    549 		goto noinodes;
    550 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    551 	if (error) {
    552 		VOP_VFREE(pvp, ino, mode);
    553 		return (error);
    554 	}
    555 	ip = VTOI(*ap->a_vpp);
    556 	if (ip->i_ffs_mode) {
    557 		printf("mode = 0%o, inum = %d, fs = %s\n",
    558 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    559 		panic("ffs_valloc: dup alloc");
    560 	}
    561 	if (ip->i_ffs_blocks) {				/* XXX */
    562 		printf("free inode %s/%d had %d blocks\n",
    563 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    564 		ip->i_ffs_blocks = 0;
    565 	}
    566 	ip->i_ffs_flags = 0;
    567 	/*
    568 	 * Set up a new generation number for this inode.
    569 	 */
    570 	ip->i_ffs_gen++;
    571 	return (0);
    572 noinodes:
    573 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    574 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    575 	return (ENOSPC);
    576 }
    577 
    578 /*
    579  * Find a cylinder to place a directory.
    580  *
    581  * The policy implemented by this algorithm is to select from
    582  * among those cylinder groups with above the average number of
    583  * free inodes, the one with the smallest number of directories.
    584  */
    585 static ino_t
    586 ffs_dirpref(fs)
    587 	register struct fs *fs;
    588 {
    589 	int cg, minndir, mincg, avgifree;
    590 
    591 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    592 	minndir = fs->fs_ipg;
    593 	mincg = 0;
    594 	for (cg = 0; cg < fs->fs_ncg; cg++)
    595 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    596 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    597 			mincg = cg;
    598 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    599 		}
    600 	return ((ino_t)(fs->fs_ipg * mincg));
    601 }
    602 
    603 /*
    604  * Select the desired position for the next block in a file.  The file is
    605  * logically divided into sections. The first section is composed of the
    606  * direct blocks. Each additional section contains fs_maxbpg blocks.
    607  *
    608  * If no blocks have been allocated in the first section, the policy is to
    609  * request a block in the same cylinder group as the inode that describes
    610  * the file. If no blocks have been allocated in any other section, the
    611  * policy is to place the section in a cylinder group with a greater than
    612  * average number of free blocks.  An appropriate cylinder group is found
    613  * by using a rotor that sweeps the cylinder groups. When a new group of
    614  * blocks is needed, the sweep begins in the cylinder group following the
    615  * cylinder group from which the previous allocation was made. The sweep
    616  * continues until a cylinder group with greater than the average number
    617  * of free blocks is found. If the allocation is for the first block in an
    618  * indirect block, the information on the previous allocation is unavailable;
    619  * here a best guess is made based upon the logical block number being
    620  * allocated.
    621  *
    622  * If a section is already partially allocated, the policy is to
    623  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    624  * contiguous blocks and the beginning of the next is physically separated
    625  * so that the disk head will be in transit between them for at least
    626  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    627  * schedule another I/O transfer.
    628  */
    629 daddr_t
    630 ffs_blkpref(ip, lbn, indx, bap)
    631 	struct inode *ip;
    632 	daddr_t lbn;
    633 	int indx;
    634 	daddr_t *bap;
    635 {
    636 	register struct fs *fs;
    637 	register int cg;
    638 	int avgbfree, startcg;
    639 	daddr_t nextblk;
    640 
    641 	fs = ip->i_fs;
    642 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    643 		if (lbn < NDADDR) {
    644 			cg = ino_to_cg(fs, ip->i_number);
    645 			return (fs->fs_fpg * cg + fs->fs_frag);
    646 		}
    647 		/*
    648 		 * Find a cylinder with greater than average number of
    649 		 * unused data blocks.
    650 		 */
    651 		if (indx == 0 || bap[indx - 1] == 0)
    652 			startcg =
    653 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    654 		else
    655 			startcg = dtog(fs, bap[indx - 1]) + 1;
    656 		startcg %= fs->fs_ncg;
    657 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    658 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    659 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    660 				fs->fs_cgrotor = cg;
    661 				return (fs->fs_fpg * cg + fs->fs_frag);
    662 			}
    663 		for (cg = 0; cg <= startcg; cg++)
    664 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    665 				fs->fs_cgrotor = cg;
    666 				return (fs->fs_fpg * cg + fs->fs_frag);
    667 			}
    668 		return (NULL);
    669 	}
    670 	/*
    671 	 * One or more previous blocks have been laid out. If less
    672 	 * than fs_maxcontig previous blocks are contiguous, the
    673 	 * next block is requested contiguously, otherwise it is
    674 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    675 	 */
    676 	nextblk = bap[indx - 1] + fs->fs_frag;
    677 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    678 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    679 		return (nextblk);
    680 	if (fs->fs_rotdelay != 0)
    681 		/*
    682 		 * Here we convert ms of delay to frags as:
    683 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    684 		 *	((sect/frag) * (ms/sec))
    685 		 * then round up to the next block.
    686 		 */
    687 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    688 		    (NSPF(fs) * 1000), fs->fs_frag);
    689 	return (nextblk);
    690 }
    691 
    692 /*
    693  * Implement the cylinder overflow algorithm.
    694  *
    695  * The policy implemented by this algorithm is:
    696  *   1) allocate the block in its requested cylinder group.
    697  *   2) quadradically rehash on the cylinder group number.
    698  *   3) brute force search for a free block.
    699  */
    700 /*VARARGS5*/
    701 static u_long
    702 ffs_hashalloc(ip, cg, pref, size, allocator)
    703 	struct inode *ip;
    704 	int cg;
    705 	long pref;
    706 	int size;	/* size for data blocks, mode for inodes */
    707 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    708 {
    709 	register struct fs *fs;
    710 	long result;
    711 	int i, icg = cg;
    712 
    713 	fs = ip->i_fs;
    714 	/*
    715 	 * 1: preferred cylinder group
    716 	 */
    717 	result = (*allocator)(ip, cg, pref, size);
    718 	if (result)
    719 		return (result);
    720 	/*
    721 	 * 2: quadratic rehash
    722 	 */
    723 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    724 		cg += i;
    725 		if (cg >= fs->fs_ncg)
    726 			cg -= fs->fs_ncg;
    727 		result = (*allocator)(ip, cg, 0, size);
    728 		if (result)
    729 			return (result);
    730 	}
    731 	/*
    732 	 * 3: brute force search
    733 	 * Note that we start at i == 2, since 0 was checked initially,
    734 	 * and 1 is always checked in the quadratic rehash.
    735 	 */
    736 	cg = (icg + 2) % fs->fs_ncg;
    737 	for (i = 2; i < fs->fs_ncg; i++) {
    738 		result = (*allocator)(ip, cg, 0, size);
    739 		if (result)
    740 			return (result);
    741 		cg++;
    742 		if (cg == fs->fs_ncg)
    743 			cg = 0;
    744 	}
    745 	return (NULL);
    746 }
    747 
    748 /*
    749  * Determine whether a fragment can be extended.
    750  *
    751  * Check to see if the necessary fragments are available, and
    752  * if they are, allocate them.
    753  */
    754 static daddr_t
    755 ffs_fragextend(ip, cg, bprev, osize, nsize)
    756 	struct inode *ip;
    757 	int cg;
    758 	long bprev;
    759 	int osize, nsize;
    760 {
    761 	register struct fs *fs;
    762 	register struct cg *cgp;
    763 	struct buf *bp;
    764 	long bno;
    765 	int frags, bbase;
    766 	int i, error;
    767 
    768 	fs = ip->i_fs;
    769 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    770 		return (NULL);
    771 	frags = numfrags(fs, nsize);
    772 	bbase = fragnum(fs, bprev);
    773 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    774 		/* cannot extend across a block boundary */
    775 		return (NULL);
    776 	}
    777 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    778 		(int)fs->fs_cgsize, NOCRED, &bp);
    779 	if (error) {
    780 		brelse(bp);
    781 		return (NULL);
    782 	}
    783 	cgp = (struct cg *)bp->b_data;
    784 	if (!cg_chkmagic(cgp)) {
    785 		brelse(bp);
    786 		return (NULL);
    787 	}
    788 	cgp->cg_time = time.tv_sec;
    789 	bno = dtogd(fs, bprev);
    790 	for (i = numfrags(fs, osize); i < frags; i++)
    791 		if (isclr(cg_blksfree(cgp), bno + i)) {
    792 			brelse(bp);
    793 			return (NULL);
    794 		}
    795 	/*
    796 	 * the current fragment can be extended
    797 	 * deduct the count on fragment being extended into
    798 	 * increase the count on the remaining fragment (if any)
    799 	 * allocate the extended piece
    800 	 */
    801 	for (i = frags; i < fs->fs_frag - bbase; i++)
    802 		if (isclr(cg_blksfree(cgp), bno + i))
    803 			break;
    804 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    805 	if (i != frags)
    806 		cgp->cg_frsum[i - frags]++;
    807 	for (i = numfrags(fs, osize); i < frags; i++) {
    808 		clrbit(cg_blksfree(cgp), bno + i);
    809 		cgp->cg_cs.cs_nffree--;
    810 		fs->fs_cstotal.cs_nffree--;
    811 		fs->fs_cs(fs, cg).cs_nffree--;
    812 	}
    813 	fs->fs_fmod = 1;
    814 	bdwrite(bp);
    815 	return (bprev);
    816 }
    817 
    818 /*
    819  * Determine whether a block can be allocated.
    820  *
    821  * Check to see if a block of the appropriate size is available,
    822  * and if it is, allocate it.
    823  */
    824 static daddr_t
    825 ffs_alloccg(ip, cg, bpref, size)
    826 	struct inode *ip;
    827 	int cg;
    828 	daddr_t bpref;
    829 	int size;
    830 {
    831 	register struct fs *fs;
    832 	register struct cg *cgp;
    833 	struct buf *bp;
    834 	register int i;
    835 	int error, bno, frags, allocsiz;
    836 
    837 	fs = ip->i_fs;
    838 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    839 		return (NULL);
    840 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    841 		(int)fs->fs_cgsize, NOCRED, &bp);
    842 	if (error) {
    843 		brelse(bp);
    844 		return (NULL);
    845 	}
    846 	cgp = (struct cg *)bp->b_data;
    847 	if (!cg_chkmagic(cgp) ||
    848 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    849 		brelse(bp);
    850 		return (NULL);
    851 	}
    852 	cgp->cg_time = time.tv_sec;
    853 	if (size == fs->fs_bsize) {
    854 		bno = ffs_alloccgblk(fs, cgp, bpref);
    855 		bdwrite(bp);
    856 		return (bno);
    857 	}
    858 	/*
    859 	 * check to see if any fragments are already available
    860 	 * allocsiz is the size which will be allocated, hacking
    861 	 * it down to a smaller size if necessary
    862 	 */
    863 	frags = numfrags(fs, size);
    864 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    865 		if (cgp->cg_frsum[allocsiz] != 0)
    866 			break;
    867 	if (allocsiz == fs->fs_frag) {
    868 		/*
    869 		 * no fragments were available, so a block will be
    870 		 * allocated, and hacked up
    871 		 */
    872 		if (cgp->cg_cs.cs_nbfree == 0) {
    873 			brelse(bp);
    874 			return (NULL);
    875 		}
    876 		bno = ffs_alloccgblk(fs, cgp, bpref);
    877 		bpref = dtogd(fs, bno);
    878 		for (i = frags; i < fs->fs_frag; i++)
    879 			setbit(cg_blksfree(cgp), bpref + i);
    880 		i = fs->fs_frag - frags;
    881 		cgp->cg_cs.cs_nffree += i;
    882 		fs->fs_cstotal.cs_nffree += i;
    883 		fs->fs_cs(fs, cg).cs_nffree += i;
    884 		fs->fs_fmod = 1;
    885 		cgp->cg_frsum[i]++;
    886 		bdwrite(bp);
    887 		return (bno);
    888 	}
    889 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    890 	if (bno < 0) {
    891 		brelse(bp);
    892 		return (NULL);
    893 	}
    894 	for (i = 0; i < frags; i++)
    895 		clrbit(cg_blksfree(cgp), bno + i);
    896 	cgp->cg_cs.cs_nffree -= frags;
    897 	fs->fs_cstotal.cs_nffree -= frags;
    898 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    899 	fs->fs_fmod = 1;
    900 	cgp->cg_frsum[allocsiz]--;
    901 	if (frags != allocsiz)
    902 		cgp->cg_frsum[allocsiz - frags]++;
    903 	bdwrite(bp);
    904 	return (cg * fs->fs_fpg + bno);
    905 }
    906 
    907 /*
    908  * Allocate a block in a cylinder group.
    909  *
    910  * This algorithm implements the following policy:
    911  *   1) allocate the requested block.
    912  *   2) allocate a rotationally optimal block in the same cylinder.
    913  *   3) allocate the next available block on the block rotor for the
    914  *      specified cylinder group.
    915  * Note that this routine only allocates fs_bsize blocks; these
    916  * blocks may be fragmented by the routine that allocates them.
    917  */
    918 static daddr_t
    919 ffs_alloccgblk(fs, cgp, bpref)
    920 	register struct fs *fs;
    921 	register struct cg *cgp;
    922 	daddr_t bpref;
    923 {
    924 	daddr_t bno, blkno;
    925 	int cylno, pos, delta;
    926 	short *cylbp;
    927 	register int i;
    928 
    929 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    930 		bpref = cgp->cg_rotor;
    931 		goto norot;
    932 	}
    933 	bpref = blknum(fs, bpref);
    934 	bpref = dtogd(fs, bpref);
    935 	/*
    936 	 * if the requested block is available, use it
    937 	 */
    938 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    939 		bno = bpref;
    940 		goto gotit;
    941 	}
    942 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
    943 		/*
    944 		 * Block layout information is not available.
    945 		 * Leaving bpref unchanged means we take the
    946 		 * next available free block following the one
    947 		 * we just allocated. Hopefully this will at
    948 		 * least hit a track cache on drives of unknown
    949 		 * geometry (e.g. SCSI).
    950 		 */
    951 		goto norot;
    952 	}
    953 	/*
    954 	 * check for a block available on the same cylinder
    955 	 */
    956 	cylno = cbtocylno(fs, bpref);
    957 	if (cg_blktot(cgp)[cylno] == 0)
    958 		goto norot;
    959 	/*
    960 	 * check the summary information to see if a block is
    961 	 * available in the requested cylinder starting at the
    962 	 * requested rotational position and proceeding around.
    963 	 */
    964 	cylbp = cg_blks(fs, cgp, cylno);
    965 	pos = cbtorpos(fs, bpref);
    966 	for (i = pos; i < fs->fs_nrpos; i++)
    967 		if (cylbp[i] > 0)
    968 			break;
    969 	if (i == fs->fs_nrpos)
    970 		for (i = 0; i < pos; i++)
    971 			if (cylbp[i] > 0)
    972 				break;
    973 	if (cylbp[i] > 0) {
    974 		/*
    975 		 * found a rotational position, now find the actual
    976 		 * block. A panic if none is actually there.
    977 		 */
    978 		pos = cylno % fs->fs_cpc;
    979 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    980 		if (fs_postbl(fs, pos)[i] == -1) {
    981 			printf("pos = %d, i = %d, fs = %s\n",
    982 			    pos, i, fs->fs_fsmnt);
    983 			panic("ffs_alloccgblk: cyl groups corrupted");
    984 		}
    985 		for (i = fs_postbl(fs, pos)[i];; ) {
    986 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    987 				bno = blkstofrags(fs, (bno + i));
    988 				goto gotit;
    989 			}
    990 			delta = fs_rotbl(fs)[i];
    991 			if (delta <= 0 ||
    992 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    993 				break;
    994 			i += delta;
    995 		}
    996 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    997 		panic("ffs_alloccgblk: can't find blk in cyl");
    998 	}
    999 norot:
   1000 	/*
   1001 	 * no blocks in the requested cylinder, so take next
   1002 	 * available one in this cylinder group.
   1003 	 */
   1004 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1005 	if (bno < 0)
   1006 		return (NULL);
   1007 	cgp->cg_rotor = bno;
   1008 gotit:
   1009 	blkno = fragstoblks(fs, bno);
   1010 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1011 	ffs_clusteracct(fs, cgp, blkno, -1);
   1012 	cgp->cg_cs.cs_nbfree--;
   1013 	fs->fs_cstotal.cs_nbfree--;
   1014 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1015 	cylno = cbtocylno(fs, bno);
   1016 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1017 	cg_blktot(cgp)[cylno]--;
   1018 	fs->fs_fmod = 1;
   1019 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1020 }
   1021 
   1022 /*
   1023  * Determine whether a cluster can be allocated.
   1024  *
   1025  * We do not currently check for optimal rotational layout if there
   1026  * are multiple choices in the same cylinder group. Instead we just
   1027  * take the first one that we find following bpref.
   1028  */
   1029 static daddr_t
   1030 ffs_clusteralloc(ip, cg, bpref, len)
   1031 	struct inode *ip;
   1032 	int cg;
   1033 	daddr_t bpref;
   1034 	int len;
   1035 {
   1036 	register struct fs *fs;
   1037 	register struct cg *cgp;
   1038 	struct buf *bp;
   1039 	int i, run, bno, bit, map;
   1040 	u_char *mapp;
   1041 	int32_t *lp;
   1042 
   1043 	fs = ip->i_fs;
   1044 	if (fs->fs_maxcluster[cg] < len)
   1045 		return (NULL);
   1046 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1047 	    NOCRED, &bp))
   1048 		goto fail;
   1049 	cgp = (struct cg *)bp->b_data;
   1050 	if (!cg_chkmagic(cgp))
   1051 		goto fail;
   1052 	/*
   1053 	 * Check to see if a cluster of the needed size (or bigger) is
   1054 	 * available in this cylinder group.
   1055 	 */
   1056 	lp = &cg_clustersum(cgp)[len];
   1057 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1058 		if (*lp++ > 0)
   1059 			break;
   1060 	if (i > fs->fs_contigsumsize) {
   1061 		/*
   1062 		 * This is the first time looking for a cluster in this
   1063 		 * cylinder group. Update the cluster summary information
   1064 		 * to reflect the true maximum sized cluster so that
   1065 		 * future cluster allocation requests can avoid reading
   1066 		 * the cylinder group map only to find no clusters.
   1067 		 */
   1068 		lp = &cg_clustersum(cgp)[len - 1];
   1069 		for (i = len - 1; i > 0; i--)
   1070 			if (*lp-- > 0)
   1071 				break;
   1072 		fs->fs_maxcluster[cg] = i;
   1073 		goto fail;
   1074 	}
   1075 	/*
   1076 	 * Search the cluster map to find a big enough cluster.
   1077 	 * We take the first one that we find, even if it is larger
   1078 	 * than we need as we prefer to get one close to the previous
   1079 	 * block allocation. We do not search before the current
   1080 	 * preference point as we do not want to allocate a block
   1081 	 * that is allocated before the previous one (as we will
   1082 	 * then have to wait for another pass of the elevator
   1083 	 * algorithm before it will be read). We prefer to fail and
   1084 	 * be recalled to try an allocation in the next cylinder group.
   1085 	 */
   1086 	if (dtog(fs, bpref) != cg)
   1087 		bpref = 0;
   1088 	else
   1089 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1090 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1091 	map = *mapp++;
   1092 	bit = 1 << (bpref % NBBY);
   1093 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1094 		if ((map & bit) == 0) {
   1095 			run = 0;
   1096 		} else {
   1097 			run++;
   1098 			if (run == len)
   1099 				break;
   1100 		}
   1101 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1102 			bit <<= 1;
   1103 		} else {
   1104 			map = *mapp++;
   1105 			bit = 1;
   1106 		}
   1107 	}
   1108 	if (i == cgp->cg_nclusterblks)
   1109 		goto fail;
   1110 	/*
   1111 	 * Allocate the cluster that we have found.
   1112 	 */
   1113 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1114 	len = blkstofrags(fs, len);
   1115 	for (i = 0; i < len; i += fs->fs_frag)
   1116 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1117 			panic("ffs_clusteralloc: lost block");
   1118 	bdwrite(bp);
   1119 	return (bno);
   1120 
   1121 fail:
   1122 	brelse(bp);
   1123 	return (0);
   1124 }
   1125 
   1126 /*
   1127  * Determine whether an inode can be allocated.
   1128  *
   1129  * Check to see if an inode is available, and if it is,
   1130  * allocate it using the following policy:
   1131  *   1) allocate the requested inode.
   1132  *   2) allocate the next available inode after the requested
   1133  *      inode in the specified cylinder group.
   1134  */
   1135 static daddr_t
   1136 ffs_nodealloccg(ip, cg, ipref, mode)
   1137 	struct inode *ip;
   1138 	int cg;
   1139 	daddr_t ipref;
   1140 	int mode;
   1141 {
   1142 	register struct fs *fs;
   1143 	register struct cg *cgp;
   1144 	struct buf *bp;
   1145 	int error, start, len, loc, map, i;
   1146 
   1147 	fs = ip->i_fs;
   1148 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1149 		return (NULL);
   1150 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1151 		(int)fs->fs_cgsize, NOCRED, &bp);
   1152 	if (error) {
   1153 		brelse(bp);
   1154 		return (NULL);
   1155 	}
   1156 	cgp = (struct cg *)bp->b_data;
   1157 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1158 		brelse(bp);
   1159 		return (NULL);
   1160 	}
   1161 	cgp->cg_time = time.tv_sec;
   1162 	if (ipref) {
   1163 		ipref %= fs->fs_ipg;
   1164 		if (isclr(cg_inosused(cgp), ipref))
   1165 			goto gotit;
   1166 	}
   1167 	start = cgp->cg_irotor / NBBY;
   1168 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1169 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1170 	if (loc == 0) {
   1171 		len = start + 1;
   1172 		start = 0;
   1173 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1174 		if (loc == 0) {
   1175 			printf("cg = %d, irotor = %d, fs = %s\n",
   1176 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1177 			panic("ffs_nodealloccg: map corrupted");
   1178 			/* NOTREACHED */
   1179 		}
   1180 	}
   1181 	i = start + len - loc;
   1182 	map = cg_inosused(cgp)[i];
   1183 	ipref = i * NBBY;
   1184 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1185 		if ((map & i) == 0) {
   1186 			cgp->cg_irotor = ipref;
   1187 			goto gotit;
   1188 		}
   1189 	}
   1190 	printf("fs = %s\n", fs->fs_fsmnt);
   1191 	panic("ffs_nodealloccg: block not in map");
   1192 	/* NOTREACHED */
   1193 gotit:
   1194 	setbit(cg_inosused(cgp), ipref);
   1195 	cgp->cg_cs.cs_nifree--;
   1196 	fs->fs_cstotal.cs_nifree--;
   1197 	fs->fs_cs(fs, cg).cs_nifree--;
   1198 	fs->fs_fmod = 1;
   1199 	if ((mode & IFMT) == IFDIR) {
   1200 		cgp->cg_cs.cs_ndir++;
   1201 		fs->fs_cstotal.cs_ndir++;
   1202 		fs->fs_cs(fs, cg).cs_ndir++;
   1203 	}
   1204 	bdwrite(bp);
   1205 	return (cg * fs->fs_ipg + ipref);
   1206 }
   1207 
   1208 /*
   1209  * Free a block or fragment.
   1210  *
   1211  * The specified block or fragment is placed back in the
   1212  * free map. If a fragment is deallocated, a possible
   1213  * block reassembly is checked.
   1214  */
   1215 void
   1216 ffs_blkfree(ip, bno, size)
   1217 	register struct inode *ip;
   1218 	daddr_t bno;
   1219 	long size;
   1220 {
   1221 	register struct fs *fs;
   1222 	register struct cg *cgp;
   1223 	struct buf *bp;
   1224 	daddr_t blkno;
   1225 	int i, error, cg, blk, frags, bbase;
   1226 
   1227 	fs = ip->i_fs;
   1228 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1229 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1230 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1231 		panic("blkfree: bad size");
   1232 	}
   1233 	cg = dtog(fs, bno);
   1234 	if ((u_int)bno >= fs->fs_size) {
   1235 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1236 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1237 		return;
   1238 	}
   1239 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1240 		(int)fs->fs_cgsize, NOCRED, &bp);
   1241 	if (error) {
   1242 		brelse(bp);
   1243 		return;
   1244 	}
   1245 	cgp = (struct cg *)bp->b_data;
   1246 	if (!cg_chkmagic(cgp)) {
   1247 		brelse(bp);
   1248 		return;
   1249 	}
   1250 	cgp->cg_time = time.tv_sec;
   1251 	bno = dtogd(fs, bno);
   1252 	if (size == fs->fs_bsize) {
   1253 		blkno = fragstoblks(fs, bno);
   1254 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1255 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1256 			    ip->i_dev, bno, fs->fs_fsmnt);
   1257 			panic("blkfree: freeing free block");
   1258 		}
   1259 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1260 		ffs_clusteracct(fs, cgp, blkno, 1);
   1261 		cgp->cg_cs.cs_nbfree++;
   1262 		fs->fs_cstotal.cs_nbfree++;
   1263 		fs->fs_cs(fs, cg).cs_nbfree++;
   1264 		i = cbtocylno(fs, bno);
   1265 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1266 		cg_blktot(cgp)[i]++;
   1267 	} else {
   1268 		bbase = bno - fragnum(fs, bno);
   1269 		/*
   1270 		 * decrement the counts associated with the old frags
   1271 		 */
   1272 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1273 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1274 		/*
   1275 		 * deallocate the fragment
   1276 		 */
   1277 		frags = numfrags(fs, size);
   1278 		for (i = 0; i < frags; i++) {
   1279 			if (isset(cg_blksfree(cgp), bno + i)) {
   1280 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1281 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1282 				panic("blkfree: freeing free frag");
   1283 			}
   1284 			setbit(cg_blksfree(cgp), bno + i);
   1285 		}
   1286 		cgp->cg_cs.cs_nffree += i;
   1287 		fs->fs_cstotal.cs_nffree += i;
   1288 		fs->fs_cs(fs, cg).cs_nffree += i;
   1289 		/*
   1290 		 * add back in counts associated with the new frags
   1291 		 */
   1292 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1293 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1294 		/*
   1295 		 * if a complete block has been reassembled, account for it
   1296 		 */
   1297 		blkno = fragstoblks(fs, bbase);
   1298 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1299 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1300 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1301 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1302 			ffs_clusteracct(fs, cgp, blkno, 1);
   1303 			cgp->cg_cs.cs_nbfree++;
   1304 			fs->fs_cstotal.cs_nbfree++;
   1305 			fs->fs_cs(fs, cg).cs_nbfree++;
   1306 			i = cbtocylno(fs, bbase);
   1307 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1308 			cg_blktot(cgp)[i]++;
   1309 		}
   1310 	}
   1311 	fs->fs_fmod = 1;
   1312 	bdwrite(bp);
   1313 }
   1314 
   1315 /*
   1316  * Free an inode.
   1317  *
   1318  * The specified inode is placed back in the free map.
   1319  */
   1320 int
   1321 ffs_vfree(v)
   1322 	void *v;
   1323 {
   1324 	struct vop_vfree_args /* {
   1325 		struct vnode *a_pvp;
   1326 		ino_t a_ino;
   1327 		int a_mode;
   1328 	} */ *ap = v;
   1329 	register struct fs *fs;
   1330 	register struct cg *cgp;
   1331 	register struct inode *pip;
   1332 	ino_t ino = ap->a_ino;
   1333 	struct buf *bp;
   1334 	int error, cg;
   1335 
   1336 	pip = VTOI(ap->a_pvp);
   1337 	fs = pip->i_fs;
   1338 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1339 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1340 		    pip->i_dev, ino, fs->fs_fsmnt);
   1341 	cg = ino_to_cg(fs, ino);
   1342 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1343 		(int)fs->fs_cgsize, NOCRED, &bp);
   1344 	if (error) {
   1345 		brelse(bp);
   1346 		return (0);
   1347 	}
   1348 	cgp = (struct cg *)bp->b_data;
   1349 	if (!cg_chkmagic(cgp)) {
   1350 		brelse(bp);
   1351 		return (0);
   1352 	}
   1353 	cgp->cg_time = time.tv_sec;
   1354 	ino %= fs->fs_ipg;
   1355 	if (isclr(cg_inosused(cgp), ino)) {
   1356 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1357 		    pip->i_dev, ino, fs->fs_fsmnt);
   1358 		if (fs->fs_ronly == 0)
   1359 			panic("ifree: freeing free inode");
   1360 	}
   1361 	clrbit(cg_inosused(cgp), ino);
   1362 	if (ino < cgp->cg_irotor)
   1363 		cgp->cg_irotor = ino;
   1364 	cgp->cg_cs.cs_nifree++;
   1365 	fs->fs_cstotal.cs_nifree++;
   1366 	fs->fs_cs(fs, cg).cs_nifree++;
   1367 	if ((ap->a_mode & IFMT) == IFDIR) {
   1368 		cgp->cg_cs.cs_ndir--;
   1369 		fs->fs_cstotal.cs_ndir--;
   1370 		fs->fs_cs(fs, cg).cs_ndir--;
   1371 	}
   1372 	fs->fs_fmod = 1;
   1373 	bdwrite(bp);
   1374 	return (0);
   1375 }
   1376 
   1377 /*
   1378  * Find a block of the specified size in the specified cylinder group.
   1379  *
   1380  * It is a panic if a request is made to find a block if none are
   1381  * available.
   1382  */
   1383 static daddr_t
   1384 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1385 	register struct fs *fs;
   1386 	register struct cg *cgp;
   1387 	daddr_t bpref;
   1388 	int allocsiz;
   1389 {
   1390 	daddr_t bno;
   1391 	int start, len, loc, i;
   1392 	int blk, field, subfield, pos;
   1393 
   1394 	/*
   1395 	 * find the fragment by searching through the free block
   1396 	 * map for an appropriate bit pattern
   1397 	 */
   1398 	if (bpref)
   1399 		start = dtogd(fs, bpref) / NBBY;
   1400 	else
   1401 		start = cgp->cg_frotor / NBBY;
   1402 	len = howmany(fs->fs_fpg, NBBY) - start;
   1403 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1404 		(u_char *)fragtbl[fs->fs_frag],
   1405 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1406 	if (loc == 0) {
   1407 		len = start + 1;
   1408 		start = 0;
   1409 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1410 			(u_char *)fragtbl[fs->fs_frag],
   1411 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1412 		if (loc == 0) {
   1413 			printf("start = %d, len = %d, fs = %s\n",
   1414 			    start, len, fs->fs_fsmnt);
   1415 			panic("ffs_alloccg: map corrupted");
   1416 			/* NOTREACHED */
   1417 		}
   1418 	}
   1419 	bno = (start + len - loc) * NBBY;
   1420 	cgp->cg_frotor = bno;
   1421 	/*
   1422 	 * found the byte in the map
   1423 	 * sift through the bits to find the selected frag
   1424 	 */
   1425 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1426 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1427 		blk <<= 1;
   1428 		field = around[allocsiz];
   1429 		subfield = inside[allocsiz];
   1430 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1431 			if ((blk & field) == subfield)
   1432 				return (bno + pos);
   1433 			field <<= 1;
   1434 			subfield <<= 1;
   1435 		}
   1436 	}
   1437 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1438 	panic("ffs_alloccg: block not in map");
   1439 	return (-1);
   1440 }
   1441 
   1442 /*
   1443  * Update the cluster map because of an allocation or free.
   1444  *
   1445  * Cnt == 1 means free; cnt == -1 means allocating.
   1446  */
   1447 void
   1448 ffs_clusteracct(fs, cgp, blkno, cnt)
   1449 	struct fs *fs;
   1450 	struct cg *cgp;
   1451 	daddr_t blkno;
   1452 	int cnt;
   1453 {
   1454 	int32_t *sump;
   1455 	int32_t *lp;
   1456 	u_char *freemapp, *mapp;
   1457 	int i, start, end, forw, back, map, bit;
   1458 
   1459 	if (fs->fs_contigsumsize <= 0)
   1460 		return;
   1461 	freemapp = cg_clustersfree(cgp);
   1462 	sump = cg_clustersum(cgp);
   1463 	/*
   1464 	 * Allocate or clear the actual block.
   1465 	 */
   1466 	if (cnt > 0)
   1467 		setbit(freemapp, blkno);
   1468 	else
   1469 		clrbit(freemapp, blkno);
   1470 	/*
   1471 	 * Find the size of the cluster going forward.
   1472 	 */
   1473 	start = blkno + 1;
   1474 	end = start + fs->fs_contigsumsize;
   1475 	if (end >= cgp->cg_nclusterblks)
   1476 		end = cgp->cg_nclusterblks;
   1477 	mapp = &freemapp[start / NBBY];
   1478 	map = *mapp++;
   1479 	bit = 1 << (start % NBBY);
   1480 	for (i = start; i < end; i++) {
   1481 		if ((map & bit) == 0)
   1482 			break;
   1483 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1484 			bit <<= 1;
   1485 		} else {
   1486 			map = *mapp++;
   1487 			bit = 1;
   1488 		}
   1489 	}
   1490 	forw = i - start;
   1491 	/*
   1492 	 * Find the size of the cluster going backward.
   1493 	 */
   1494 	start = blkno - 1;
   1495 	end = start - fs->fs_contigsumsize;
   1496 	if (end < 0)
   1497 		end = -1;
   1498 	mapp = &freemapp[start / NBBY];
   1499 	map = *mapp--;
   1500 	bit = 1 << (start % NBBY);
   1501 	for (i = start; i > end; i--) {
   1502 		if ((map & bit) == 0)
   1503 			break;
   1504 		if ((i & (NBBY - 1)) != 0) {
   1505 			bit >>= 1;
   1506 		} else {
   1507 			map = *mapp--;
   1508 			bit = 1 << (NBBY - 1);
   1509 		}
   1510 	}
   1511 	back = start - i;
   1512 	/*
   1513 	 * Account for old cluster and the possibly new forward and
   1514 	 * back clusters.
   1515 	 */
   1516 	i = back + forw + 1;
   1517 	if (i > fs->fs_contigsumsize)
   1518 		i = fs->fs_contigsumsize;
   1519 	sump[i] += cnt;
   1520 	if (back > 0)
   1521 		sump[back] -= cnt;
   1522 	if (forw > 0)
   1523 		sump[forw] -= cnt;
   1524 	/*
   1525 	 * Update cluster summary information.
   1526 	 */
   1527 	lp = &sump[fs->fs_contigsumsize];
   1528 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1529 		if (*lp-- > 0)
   1530 			break;
   1531 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1532 }
   1533 
   1534 /*
   1535  * Fserr prints the name of a file system with an error diagnostic.
   1536  *
   1537  * The form of the error message is:
   1538  *	fs: error message
   1539  */
   1540 static void
   1541 ffs_fserr(fs, uid, cp)
   1542 	struct fs *fs;
   1543 	u_int uid;
   1544 	char *cp;
   1545 {
   1546 
   1547 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1548 }
   1549