Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.18
      1 /*	$NetBSD: ffs_alloc.c,v 1.18 1998/03/01 02:23:14 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #include "opt_uvm.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/proc.h>
     44 #include <sys/vnode.h>
     45 #include <sys/mount.h>
     46 #include <sys/kernel.h>
     47 #include <sys/syslog.h>
     48 
     49 #include <vm/vm.h>
     50 
     51 #include <ufs/ufs/quota.h>
     52 #include <ufs/ufs/inode.h>
     53 #include <ufs/ufs/ufs_extern.h>
     54 
     55 #include <ufs/ffs/fs.h>
     56 #include <ufs/ffs/ffs_extern.h>
     57 
     58 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     59 static ufs_daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, ufs_daddr_t));
     60 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     61 static ino_t ffs_dirpref __P((struct fs *));
     62 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     63 static void ffs_fserr __P((struct fs *, u_int, char *));
     64 static u_long ffs_hashalloc
     65 		__P((struct inode *, int, long, int,
     66 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     67 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     68 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
     69 				      int));
     70 #if defined(DIAGNOSTIC) || defined(DEBUG)
     71 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     72 #endif
     73 
     74 /*
     75  * Allocate a block in the file system.
     76  *
     77  * The size of the requested block is given, which must be some
     78  * multiple of fs_fsize and <= fs_bsize.
     79  * A preference may be optionally specified. If a preference is given
     80  * the following hierarchy is used to allocate a block:
     81  *   1) allocate the requested block.
     82  *   2) allocate a rotationally optimal block in the same cylinder.
     83  *   3) allocate a block in the same cylinder group.
     84  *   4) quadradically rehash into other cylinder groups, until an
     85  *      available block is located.
     86  * If no block preference is given the following heirarchy is used
     87  * to allocate a block:
     88  *   1) allocate a block in the cylinder group that contains the
     89  *      inode for the file.
     90  *   2) quadradically rehash into other cylinder groups, until an
     91  *      available block is located.
     92  */
     93 int
     94 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     95 	register struct inode *ip;
     96 	ufs_daddr_t lbn, bpref;
     97 	int size;
     98 	struct ucred *cred;
     99 	ufs_daddr_t *bnp;
    100 {
    101 	register struct fs *fs;
    102 	ufs_daddr_t bno;
    103 	int cg;
    104 #ifdef QUOTA
    105 	int error;
    106 #endif
    107 
    108 	*bnp = 0;
    109 	fs = ip->i_fs;
    110 #ifdef DIAGNOSTIC
    111 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    112 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    113 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    114 		panic("ffs_alloc: bad size");
    115 	}
    116 	if (cred == NOCRED)
    117 		panic("ffs_alloc: missing credential\n");
    118 #endif /* DIAGNOSTIC */
    119 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    120 		goto nospace;
    121 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    122 		goto nospace;
    123 #ifdef QUOTA
    124 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    125 		return (error);
    126 #endif
    127 	if (bpref >= fs->fs_size)
    128 		bpref = 0;
    129 	if (bpref == 0)
    130 		cg = ino_to_cg(fs, ip->i_number);
    131 	else
    132 		cg = dtog(fs, bpref);
    133 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    134 	    			     ffs_alloccg);
    135 	if (bno > 0) {
    136 		ip->i_ffs_blocks += btodb(size);
    137 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    138 		*bnp = bno;
    139 		return (0);
    140 	}
    141 #ifdef QUOTA
    142 	/*
    143 	 * Restore user's disk quota because allocation failed.
    144 	 */
    145 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    146 #endif
    147 nospace:
    148 	ffs_fserr(fs, cred->cr_uid, "file system full");
    149 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    150 	return (ENOSPC);
    151 }
    152 
    153 /*
    154  * Reallocate a fragment to a bigger size
    155  *
    156  * The number and size of the old block is given, and a preference
    157  * and new size is also specified. The allocator attempts to extend
    158  * the original block. Failing that, the regular block allocator is
    159  * invoked to get an appropriate block.
    160  */
    161 int
    162 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    163 	register struct inode *ip;
    164 	ufs_daddr_t lbprev;
    165 	ufs_daddr_t bpref;
    166 	int osize, nsize;
    167 	struct ucred *cred;
    168 	struct buf **bpp;
    169 {
    170 	register struct fs *fs;
    171 	struct buf *bp;
    172 	int cg, request, error;
    173 	ufs_daddr_t bprev, bno;
    174 
    175 	*bpp = 0;
    176 	fs = ip->i_fs;
    177 #ifdef DIAGNOSTIC
    178 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    179 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    180 		printf(
    181 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    182 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    183 		panic("ffs_realloccg: bad size");
    184 	}
    185 	if (cred == NOCRED)
    186 		panic("ffs_realloccg: missing credential\n");
    187 #endif /* DIAGNOSTIC */
    188 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    189 		goto nospace;
    190 	if ((bprev = ip->i_ffs_db[lbprev]) == 0) {
    191 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    192 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    193 		panic("ffs_realloccg: bad bprev");
    194 	}
    195 	/*
    196 	 * Allocate the extra space in the buffer.
    197 	 */
    198 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    199 		brelse(bp);
    200 		return (error);
    201 	}
    202 #ifdef QUOTA
    203 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    204 		brelse(bp);
    205 		return (error);
    206 	}
    207 #endif
    208 	/*
    209 	 * Check for extension in the existing location.
    210 	 */
    211 	cg = dtog(fs, bprev);
    212 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    213 		if (bp->b_blkno != fsbtodb(fs, bno))
    214 			panic("bad blockno");
    215 		ip->i_ffs_blocks += btodb(nsize - osize);
    216 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    217 		allocbuf(bp, nsize);
    218 		bp->b_flags |= B_DONE;
    219 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    220 		*bpp = bp;
    221 		return (0);
    222 	}
    223 	/*
    224 	 * Allocate a new disk location.
    225 	 */
    226 	if (bpref >= fs->fs_size)
    227 		bpref = 0;
    228 	switch ((int)fs->fs_optim) {
    229 	case FS_OPTSPACE:
    230 		/*
    231 		 * Allocate an exact sized fragment. Although this makes
    232 		 * best use of space, we will waste time relocating it if
    233 		 * the file continues to grow. If the fragmentation is
    234 		 * less than half of the minimum free reserve, we choose
    235 		 * to begin optimizing for time.
    236 		 */
    237 		request = nsize;
    238 		if (fs->fs_minfree < 5 ||
    239 		    fs->fs_cstotal.cs_nffree >
    240 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    241 			break;
    242 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    243 			fs->fs_fsmnt);
    244 		fs->fs_optim = FS_OPTTIME;
    245 		break;
    246 	case FS_OPTTIME:
    247 		/*
    248 		 * At this point we have discovered a file that is trying to
    249 		 * grow a small fragment to a larger fragment. To save time,
    250 		 * we allocate a full sized block, then free the unused portion.
    251 		 * If the file continues to grow, the `ffs_fragextend' call
    252 		 * above will be able to grow it in place without further
    253 		 * copying. If aberrant programs cause disk fragmentation to
    254 		 * grow within 2% of the free reserve, we choose to begin
    255 		 * optimizing for space.
    256 		 */
    257 		request = fs->fs_bsize;
    258 		if (fs->fs_cstotal.cs_nffree <
    259 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    260 			break;
    261 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    262 			fs->fs_fsmnt);
    263 		fs->fs_optim = FS_OPTSPACE;
    264 		break;
    265 	default:
    266 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    267 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    268 		panic("ffs_realloccg: bad optim");
    269 		/* NOTREACHED */
    270 	}
    271 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    272 	    			     ffs_alloccg);
    273 	if (bno > 0) {
    274 		bp->b_blkno = fsbtodb(fs, bno);
    275 #if defined(UVM)
    276 		(void) uvm_vnp_uncache(ITOV(ip));
    277 #else
    278 		(void) vnode_pager_uncache(ITOV(ip));
    279 #endif
    280 		ffs_blkfree(ip, bprev, (long)osize);
    281 		if (nsize < request)
    282 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    283 			    (long)(request - nsize));
    284 		ip->i_ffs_blocks += btodb(nsize - osize);
    285 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    286 		allocbuf(bp, nsize);
    287 		bp->b_flags |= B_DONE;
    288 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    289 		*bpp = bp;
    290 		return (0);
    291 	}
    292 #ifdef QUOTA
    293 	/*
    294 	 * Restore user's disk quota because allocation failed.
    295 	 */
    296 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    297 #endif
    298 	brelse(bp);
    299 nospace:
    300 	/*
    301 	 * no space available
    302 	 */
    303 	ffs_fserr(fs, cred->cr_uid, "file system full");
    304 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    305 	return (ENOSPC);
    306 }
    307 
    308 /*
    309  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    310  *
    311  * The vnode and an array of buffer pointers for a range of sequential
    312  * logical blocks to be made contiguous is given. The allocator attempts
    313  * to find a range of sequential blocks starting as close as possible to
    314  * an fs_rotdelay offset from the end of the allocation for the logical
    315  * block immediately preceeding the current range. If successful, the
    316  * physical block numbers in the buffer pointers and in the inode are
    317  * changed to reflect the new allocation. If unsuccessful, the allocation
    318  * is left unchanged. The success in doing the reallocation is returned.
    319  * Note that the error return is not reflected back to the user. Rather
    320  * the previous block allocation will be used.
    321  */
    322 #ifdef DEBUG
    323 #include <sys/sysctl.h>
    324 int prtrealloc = 0;
    325 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    326 #endif
    327 
    328 int doasyncfree = 1;
    329 extern int doreallocblks;
    330 
    331 int
    332 ffs_reallocblks(v)
    333 	void *v;
    334 {
    335 	struct vop_reallocblks_args /* {
    336 		struct vnode *a_vp;
    337 		struct cluster_save *a_buflist;
    338 	} */ *ap = v;
    339 	struct fs *fs;
    340 	struct inode *ip;
    341 	struct vnode *vp;
    342 	struct buf *sbp, *ebp;
    343 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    344 	struct cluster_save *buflist;
    345 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    346 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    347 	int i, len, start_lvl, end_lvl, pref, ssize;
    348 	struct timespec ts;
    349 
    350 	vp = ap->a_vp;
    351 	ip = VTOI(vp);
    352 	fs = ip->i_fs;
    353 	if (fs->fs_contigsumsize <= 0)
    354 		return (ENOSPC);
    355 	buflist = ap->a_buflist;
    356 	len = buflist->bs_nchildren;
    357 	start_lbn = buflist->bs_children[0]->b_lblkno;
    358 	end_lbn = start_lbn + len - 1;
    359 #ifdef DIAGNOSTIC
    360 	for (i = 0; i < len; i++)
    361 		if (!ffs_checkblk(ip,
    362 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    363 			panic("ffs_reallocblks: unallocated block 1");
    364 	for (i = 1; i < len; i++)
    365 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    366 			panic("ffs_reallocblks: non-logical cluster");
    367 	blkno = buflist->bs_children[0]->b_blkno;
    368 	ssize = fsbtodb(fs, fs->fs_frag);
    369 	for (i = 1; i < len - 1; i++)
    370 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    371 			panic("ffs_reallocblks: non-physical cluster %d", i);
    372 #endif
    373 	/*
    374 	 * If the latest allocation is in a new cylinder group, assume that
    375 	 * the filesystem has decided to move and do not force it back to
    376 	 * the previous cylinder group.
    377 	 */
    378 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    379 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    380 		return (ENOSPC);
    381 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    382 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    383 		return (ENOSPC);
    384 	/*
    385 	 * Get the starting offset and block map for the first block.
    386 	 */
    387 	if (start_lvl == 0) {
    388 		sbap = &ip->i_ffs_db[0];
    389 		soff = start_lbn;
    390 	} else {
    391 		idp = &start_ap[start_lvl - 1];
    392 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    393 			brelse(sbp);
    394 			return (ENOSPC);
    395 		}
    396 		sbap = (ufs_daddr_t *)sbp->b_data;
    397 		soff = idp->in_off;
    398 	}
    399 	/*
    400 	 * Find the preferred location for the cluster.
    401 	 */
    402 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    403 	/*
    404 	 * If the block range spans two block maps, get the second map.
    405 	 */
    406 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    407 		ssize = len;
    408 	} else {
    409 #ifdef DIAGNOSTIC
    410 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    411 			panic("ffs_reallocblk: start == end");
    412 #endif
    413 		ssize = len - (idp->in_off + 1);
    414 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    415 			goto fail;
    416 		ebap = (ufs_daddr_t *)ebp->b_data;
    417 	}
    418 	/*
    419 	 * Search the block map looking for an allocation of the desired size.
    420 	 */
    421 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    422 	    len, ffs_clusteralloc)) == 0)
    423 		goto fail;
    424 	/*
    425 	 * We have found a new contiguous block.
    426 	 *
    427 	 * First we have to replace the old block pointers with the new
    428 	 * block pointers in the inode and indirect blocks associated
    429 	 * with the file.
    430 	 */
    431 #ifdef DEBUG
    432 	if (prtrealloc)
    433 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    434 		    start_lbn, end_lbn);
    435 #endif
    436 	blkno = newblk;
    437 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    438 		if (i == ssize)
    439 			bap = ebap;
    440 #ifdef DIAGNOSTIC
    441 		if (!ffs_checkblk(ip,
    442 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    443 			panic("ffs_reallocblks: unallocated block 2");
    444 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    445 			panic("ffs_reallocblks: alloc mismatch");
    446 #endif
    447 #ifdef DEBUG
    448 		if (prtrealloc)
    449 			printf(" %d,", *bap);
    450 #endif
    451 		*bap++ = blkno;
    452 	}
    453 	/*
    454 	 * Next we must write out the modified inode and indirect blocks.
    455 	 * For strict correctness, the writes should be synchronous since
    456 	 * the old block values may have been written to disk. In practise
    457 	 * they are almost never written, but if we are concerned about
    458 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    459 	 *
    460 	 * The test on `doasyncfree' should be changed to test a flag
    461 	 * that shows whether the associated buffers and inodes have
    462 	 * been written. The flag should be set when the cluster is
    463 	 * started and cleared whenever the buffer or inode is flushed.
    464 	 * We can then check below to see if it is set, and do the
    465 	 * synchronous write only when it has been cleared.
    466 	 */
    467 	if (sbap != &ip->i_ffs_db[0]) {
    468 		if (doasyncfree)
    469 			bdwrite(sbp);
    470 		else
    471 			bwrite(sbp);
    472 	} else {
    473 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    474 		if (!doasyncfree) {
    475 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    476 			VOP_UPDATE(vp, &ts, &ts, 1);
    477 		}
    478 	}
    479 	if (ssize < len)
    480 		if (doasyncfree)
    481 			bdwrite(ebp);
    482 		else
    483 			bwrite(ebp);
    484 	/*
    485 	 * Last, free the old blocks and assign the new blocks to the buffers.
    486 	 */
    487 #ifdef DEBUG
    488 	if (prtrealloc)
    489 		printf("\n\tnew:");
    490 #endif
    491 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    492 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    493 		    fs->fs_bsize);
    494 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    495 #ifdef DEBUG
    496 		if (!ffs_checkblk(ip,
    497 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    498 			panic("ffs_reallocblks: unallocated block 3");
    499 		if (prtrealloc)
    500 			printf(" %d,", blkno);
    501 #endif
    502 	}
    503 #ifdef DEBUG
    504 	if (prtrealloc) {
    505 		prtrealloc--;
    506 		printf("\n");
    507 	}
    508 #endif
    509 	return (0);
    510 
    511 fail:
    512 	if (ssize < len)
    513 		brelse(ebp);
    514 	if (sbap != &ip->i_ffs_db[0])
    515 		brelse(sbp);
    516 	return (ENOSPC);
    517 }
    518 
    519 /*
    520  * Allocate an inode in the file system.
    521  *
    522  * If allocating a directory, use ffs_dirpref to select the inode.
    523  * If allocating in a directory, the following hierarchy is followed:
    524  *   1) allocate the preferred inode.
    525  *   2) allocate an inode in the same cylinder group.
    526  *   3) quadradically rehash into other cylinder groups, until an
    527  *      available inode is located.
    528  * If no inode preference is given the following heirarchy is used
    529  * to allocate an inode:
    530  *   1) allocate an inode in cylinder group 0.
    531  *   2) quadradically rehash into other cylinder groups, until an
    532  *      available inode is located.
    533  */
    534 int
    535 ffs_valloc(v)
    536 	void *v;
    537 {
    538 	struct vop_valloc_args /* {
    539 		struct vnode *a_pvp;
    540 		int a_mode;
    541 		struct ucred *a_cred;
    542 		struct vnode **a_vpp;
    543 	} */ *ap = v;
    544 	register struct vnode *pvp = ap->a_pvp;
    545 	register struct inode *pip;
    546 	register struct fs *fs;
    547 	register struct inode *ip;
    548 	mode_t mode = ap->a_mode;
    549 	ino_t ino, ipref;
    550 	int cg, error;
    551 
    552 	*ap->a_vpp = NULL;
    553 	pip = VTOI(pvp);
    554 	fs = pip->i_fs;
    555 	if (fs->fs_cstotal.cs_nifree == 0)
    556 		goto noinodes;
    557 
    558 	if ((mode & IFMT) == IFDIR)
    559 		ipref = ffs_dirpref(fs);
    560 	else
    561 		ipref = pip->i_number;
    562 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    563 		ipref = 0;
    564 	cg = ino_to_cg(fs, ipref);
    565 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    566 	if (ino == 0)
    567 		goto noinodes;
    568 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    569 	if (error) {
    570 		VOP_VFREE(pvp, ino, mode);
    571 		return (error);
    572 	}
    573 	ip = VTOI(*ap->a_vpp);
    574 	if (ip->i_ffs_mode) {
    575 		printf("mode = 0%o, inum = %d, fs = %s\n",
    576 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    577 		panic("ffs_valloc: dup alloc");
    578 	}
    579 	if (ip->i_ffs_blocks) {				/* XXX */
    580 		printf("free inode %s/%d had %d blocks\n",
    581 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    582 		ip->i_ffs_blocks = 0;
    583 	}
    584 	ip->i_ffs_flags = 0;
    585 	/*
    586 	 * Set up a new generation number for this inode.
    587 	 */
    588 	ip->i_ffs_gen++;
    589 	return (0);
    590 noinodes:
    591 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    592 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    593 	return (ENOSPC);
    594 }
    595 
    596 /*
    597  * Find a cylinder to place a directory.
    598  *
    599  * The policy implemented by this algorithm is to select from
    600  * among those cylinder groups with above the average number of
    601  * free inodes, the one with the smallest number of directories.
    602  */
    603 static ino_t
    604 ffs_dirpref(fs)
    605 	register struct fs *fs;
    606 {
    607 	int cg, minndir, mincg, avgifree;
    608 
    609 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    610 	minndir = fs->fs_ipg;
    611 	mincg = 0;
    612 	for (cg = 0; cg < fs->fs_ncg; cg++)
    613 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    614 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    615 			mincg = cg;
    616 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    617 		}
    618 	return ((ino_t)(fs->fs_ipg * mincg));
    619 }
    620 
    621 /*
    622  * Select the desired position for the next block in a file.  The file is
    623  * logically divided into sections. The first section is composed of the
    624  * direct blocks. Each additional section contains fs_maxbpg blocks.
    625  *
    626  * If no blocks have been allocated in the first section, the policy is to
    627  * request a block in the same cylinder group as the inode that describes
    628  * the file. If no blocks have been allocated in any other section, the
    629  * policy is to place the section in a cylinder group with a greater than
    630  * average number of free blocks.  An appropriate cylinder group is found
    631  * by using a rotor that sweeps the cylinder groups. When a new group of
    632  * blocks is needed, the sweep begins in the cylinder group following the
    633  * cylinder group from which the previous allocation was made. The sweep
    634  * continues until a cylinder group with greater than the average number
    635  * of free blocks is found. If the allocation is for the first block in an
    636  * indirect block, the information on the previous allocation is unavailable;
    637  * here a best guess is made based upon the logical block number being
    638  * allocated.
    639  *
    640  * If a section is already partially allocated, the policy is to
    641  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    642  * contiguous blocks and the beginning of the next is physically separated
    643  * so that the disk head will be in transit between them for at least
    644  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    645  * schedule another I/O transfer.
    646  */
    647 ufs_daddr_t
    648 ffs_blkpref(ip, lbn, indx, bap)
    649 	struct inode *ip;
    650 	ufs_daddr_t lbn;
    651 	int indx;
    652 	ufs_daddr_t *bap;
    653 {
    654 	register struct fs *fs;
    655 	register int cg;
    656 	int avgbfree, startcg;
    657 	ufs_daddr_t nextblk;
    658 
    659 	fs = ip->i_fs;
    660 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    661 		if (lbn < NDADDR) {
    662 			cg = ino_to_cg(fs, ip->i_number);
    663 			return (fs->fs_fpg * cg + fs->fs_frag);
    664 		}
    665 		/*
    666 		 * Find a cylinder with greater than average number of
    667 		 * unused data blocks.
    668 		 */
    669 		if (indx == 0 || bap[indx - 1] == 0)
    670 			startcg =
    671 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    672 		else
    673 			startcg = dtog(fs, bap[indx - 1]) + 1;
    674 		startcg %= fs->fs_ncg;
    675 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    676 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    677 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    678 				fs->fs_cgrotor = cg;
    679 				return (fs->fs_fpg * cg + fs->fs_frag);
    680 			}
    681 		for (cg = 0; cg <= startcg; cg++)
    682 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    683 				fs->fs_cgrotor = cg;
    684 				return (fs->fs_fpg * cg + fs->fs_frag);
    685 			}
    686 		return (NULL);
    687 	}
    688 	/*
    689 	 * One or more previous blocks have been laid out. If less
    690 	 * than fs_maxcontig previous blocks are contiguous, the
    691 	 * next block is requested contiguously, otherwise it is
    692 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    693 	 */
    694 	nextblk = bap[indx - 1] + fs->fs_frag;
    695 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    696 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    697 		return (nextblk);
    698 	if (fs->fs_rotdelay != 0)
    699 		/*
    700 		 * Here we convert ms of delay to frags as:
    701 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    702 		 *	((sect/frag) * (ms/sec))
    703 		 * then round up to the next block.
    704 		 */
    705 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    706 		    (NSPF(fs) * 1000), fs->fs_frag);
    707 	return (nextblk);
    708 }
    709 
    710 /*
    711  * Implement the cylinder overflow algorithm.
    712  *
    713  * The policy implemented by this algorithm is:
    714  *   1) allocate the block in its requested cylinder group.
    715  *   2) quadradically rehash on the cylinder group number.
    716  *   3) brute force search for a free block.
    717  */
    718 /*VARARGS5*/
    719 static u_long
    720 ffs_hashalloc(ip, cg, pref, size, allocator)
    721 	struct inode *ip;
    722 	int cg;
    723 	long pref;
    724 	int size;	/* size for data blocks, mode for inodes */
    725 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    726 {
    727 	register struct fs *fs;
    728 	long result;
    729 	int i, icg = cg;
    730 
    731 	fs = ip->i_fs;
    732 	/*
    733 	 * 1: preferred cylinder group
    734 	 */
    735 	result = (*allocator)(ip, cg, pref, size);
    736 	if (result)
    737 		return (result);
    738 	/*
    739 	 * 2: quadratic rehash
    740 	 */
    741 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    742 		cg += i;
    743 		if (cg >= fs->fs_ncg)
    744 			cg -= fs->fs_ncg;
    745 		result = (*allocator)(ip, cg, 0, size);
    746 		if (result)
    747 			return (result);
    748 	}
    749 	/*
    750 	 * 3: brute force search
    751 	 * Note that we start at i == 2, since 0 was checked initially,
    752 	 * and 1 is always checked in the quadratic rehash.
    753 	 */
    754 	cg = (icg + 2) % fs->fs_ncg;
    755 	for (i = 2; i < fs->fs_ncg; i++) {
    756 		result = (*allocator)(ip, cg, 0, size);
    757 		if (result)
    758 			return (result);
    759 		cg++;
    760 		if (cg == fs->fs_ncg)
    761 			cg = 0;
    762 	}
    763 	return (NULL);
    764 }
    765 
    766 /*
    767  * Determine whether a fragment can be extended.
    768  *
    769  * Check to see if the necessary fragments are available, and
    770  * if they are, allocate them.
    771  */
    772 static ufs_daddr_t
    773 ffs_fragextend(ip, cg, bprev, osize, nsize)
    774 	struct inode *ip;
    775 	int cg;
    776 	long bprev;
    777 	int osize, nsize;
    778 {
    779 	register struct fs *fs;
    780 	register struct cg *cgp;
    781 	struct buf *bp;
    782 	long bno;
    783 	int frags, bbase;
    784 	int i, error;
    785 
    786 	fs = ip->i_fs;
    787 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    788 		return (NULL);
    789 	frags = numfrags(fs, nsize);
    790 	bbase = fragnum(fs, bprev);
    791 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    792 		/* cannot extend across a block boundary */
    793 		return (NULL);
    794 	}
    795 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    796 		(int)fs->fs_cgsize, NOCRED, &bp);
    797 	if (error) {
    798 		brelse(bp);
    799 		return (NULL);
    800 	}
    801 	cgp = (struct cg *)bp->b_data;
    802 	if (!cg_chkmagic(cgp)) {
    803 		brelse(bp);
    804 		return (NULL);
    805 	}
    806 	cgp->cg_time = time.tv_sec;
    807 	bno = dtogd(fs, bprev);
    808 	for (i = numfrags(fs, osize); i < frags; i++)
    809 		if (isclr(cg_blksfree(cgp), bno + i)) {
    810 			brelse(bp);
    811 			return (NULL);
    812 		}
    813 	/*
    814 	 * the current fragment can be extended
    815 	 * deduct the count on fragment being extended into
    816 	 * increase the count on the remaining fragment (if any)
    817 	 * allocate the extended piece
    818 	 */
    819 	for (i = frags; i < fs->fs_frag - bbase; i++)
    820 		if (isclr(cg_blksfree(cgp), bno + i))
    821 			break;
    822 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    823 	if (i != frags)
    824 		cgp->cg_frsum[i - frags]++;
    825 	for (i = numfrags(fs, osize); i < frags; i++) {
    826 		clrbit(cg_blksfree(cgp), bno + i);
    827 		cgp->cg_cs.cs_nffree--;
    828 		fs->fs_cstotal.cs_nffree--;
    829 		fs->fs_cs(fs, cg).cs_nffree--;
    830 	}
    831 	fs->fs_fmod = 1;
    832 	bdwrite(bp);
    833 	return (bprev);
    834 }
    835 
    836 /*
    837  * Determine whether a block can be allocated.
    838  *
    839  * Check to see if a block of the appropriate size is available,
    840  * and if it is, allocate it.
    841  */
    842 static ufs_daddr_t
    843 ffs_alloccg(ip, cg, bpref, size)
    844 	struct inode *ip;
    845 	int cg;
    846 	ufs_daddr_t bpref;
    847 	int size;
    848 {
    849 	register struct fs *fs;
    850 	register struct cg *cgp;
    851 	struct buf *bp;
    852 	register int i;
    853 	int error, bno, frags, allocsiz;
    854 
    855 	fs = ip->i_fs;
    856 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    857 		return (NULL);
    858 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    859 		(int)fs->fs_cgsize, NOCRED, &bp);
    860 	if (error) {
    861 		brelse(bp);
    862 		return (NULL);
    863 	}
    864 	cgp = (struct cg *)bp->b_data;
    865 	if (!cg_chkmagic(cgp) ||
    866 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    867 		brelse(bp);
    868 		return (NULL);
    869 	}
    870 	cgp->cg_time = time.tv_sec;
    871 	if (size == fs->fs_bsize) {
    872 		bno = ffs_alloccgblk(fs, cgp, bpref);
    873 		bdwrite(bp);
    874 		return (bno);
    875 	}
    876 	/*
    877 	 * check to see if any fragments are already available
    878 	 * allocsiz is the size which will be allocated, hacking
    879 	 * it down to a smaller size if necessary
    880 	 */
    881 	frags = numfrags(fs, size);
    882 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    883 		if (cgp->cg_frsum[allocsiz] != 0)
    884 			break;
    885 	if (allocsiz == fs->fs_frag) {
    886 		/*
    887 		 * no fragments were available, so a block will be
    888 		 * allocated, and hacked up
    889 		 */
    890 		if (cgp->cg_cs.cs_nbfree == 0) {
    891 			brelse(bp);
    892 			return (NULL);
    893 		}
    894 		bno = ffs_alloccgblk(fs, cgp, bpref);
    895 		bpref = dtogd(fs, bno);
    896 		for (i = frags; i < fs->fs_frag; i++)
    897 			setbit(cg_blksfree(cgp), bpref + i);
    898 		i = fs->fs_frag - frags;
    899 		cgp->cg_cs.cs_nffree += i;
    900 		fs->fs_cstotal.cs_nffree += i;
    901 		fs->fs_cs(fs, cg).cs_nffree += i;
    902 		fs->fs_fmod = 1;
    903 		cgp->cg_frsum[i]++;
    904 		bdwrite(bp);
    905 		return (bno);
    906 	}
    907 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    908 	if (bno < 0) {
    909 		brelse(bp);
    910 		return (NULL);
    911 	}
    912 	for (i = 0; i < frags; i++)
    913 		clrbit(cg_blksfree(cgp), bno + i);
    914 	cgp->cg_cs.cs_nffree -= frags;
    915 	fs->fs_cstotal.cs_nffree -= frags;
    916 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    917 	fs->fs_fmod = 1;
    918 	cgp->cg_frsum[allocsiz]--;
    919 	if (frags != allocsiz)
    920 		cgp->cg_frsum[allocsiz - frags]++;
    921 	bdwrite(bp);
    922 	return (cg * fs->fs_fpg + bno);
    923 }
    924 
    925 /*
    926  * Allocate a block in a cylinder group.
    927  *
    928  * This algorithm implements the following policy:
    929  *   1) allocate the requested block.
    930  *   2) allocate a rotationally optimal block in the same cylinder.
    931  *   3) allocate the next available block on the block rotor for the
    932  *      specified cylinder group.
    933  * Note that this routine only allocates fs_bsize blocks; these
    934  * blocks may be fragmented by the routine that allocates them.
    935  */
    936 static ufs_daddr_t
    937 ffs_alloccgblk(fs, cgp, bpref)
    938 	register struct fs *fs;
    939 	register struct cg *cgp;
    940 	ufs_daddr_t bpref;
    941 {
    942 	ufs_daddr_t bno, blkno;
    943 	int cylno, pos, delta;
    944 	short *cylbp;
    945 	register int i;
    946 
    947 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    948 		bpref = cgp->cg_rotor;
    949 		goto norot;
    950 	}
    951 	bpref = blknum(fs, bpref);
    952 	bpref = dtogd(fs, bpref);
    953 	/*
    954 	 * if the requested block is available, use it
    955 	 */
    956 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    957 		bno = bpref;
    958 		goto gotit;
    959 	}
    960 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    961 		/*
    962 		 * Block layout information is not available.
    963 		 * Leaving bpref unchanged means we take the
    964 		 * next available free block following the one
    965 		 * we just allocated. Hopefully this will at
    966 		 * least hit a track cache on drives of unknown
    967 		 * geometry (e.g. SCSI).
    968 		 */
    969 		goto norot;
    970 	}
    971 	/*
    972 	 * check for a block available on the same cylinder
    973 	 */
    974 	cylno = cbtocylno(fs, bpref);
    975 	if (cg_blktot(cgp)[cylno] == 0)
    976 		goto norot;
    977 	/*
    978 	 * check the summary information to see if a block is
    979 	 * available in the requested cylinder starting at the
    980 	 * requested rotational position and proceeding around.
    981 	 */
    982 	cylbp = cg_blks(fs, cgp, cylno);
    983 	pos = cbtorpos(fs, bpref);
    984 	for (i = pos; i < fs->fs_nrpos; i++)
    985 		if (cylbp[i] > 0)
    986 			break;
    987 	if (i == fs->fs_nrpos)
    988 		for (i = 0; i < pos; i++)
    989 			if (cylbp[i] > 0)
    990 				break;
    991 	if (cylbp[i] > 0) {
    992 		/*
    993 		 * found a rotational position, now find the actual
    994 		 * block. A panic if none is actually there.
    995 		 */
    996 		pos = cylno % fs->fs_cpc;
    997 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    998 		if (fs_postbl(fs, pos)[i] == -1) {
    999 			printf("pos = %d, i = %d, fs = %s\n",
   1000 			    pos, i, fs->fs_fsmnt);
   1001 			panic("ffs_alloccgblk: cyl groups corrupted");
   1002 		}
   1003 		for (i = fs_postbl(fs, pos)[i];; ) {
   1004 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
   1005 				bno = blkstofrags(fs, (bno + i));
   1006 				goto gotit;
   1007 			}
   1008 			delta = fs_rotbl(fs)[i];
   1009 			if (delta <= 0 ||
   1010 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1011 				break;
   1012 			i += delta;
   1013 		}
   1014 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1015 		panic("ffs_alloccgblk: can't find blk in cyl");
   1016 	}
   1017 norot:
   1018 	/*
   1019 	 * no blocks in the requested cylinder, so take next
   1020 	 * available one in this cylinder group.
   1021 	 */
   1022 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1023 	if (bno < 0)
   1024 		return (NULL);
   1025 	cgp->cg_rotor = bno;
   1026 gotit:
   1027 	blkno = fragstoblks(fs, bno);
   1028 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1029 	ffs_clusteracct(fs, cgp, blkno, -1);
   1030 	cgp->cg_cs.cs_nbfree--;
   1031 	fs->fs_cstotal.cs_nbfree--;
   1032 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1033 	cylno = cbtocylno(fs, bno);
   1034 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1035 	cg_blktot(cgp)[cylno]--;
   1036 	fs->fs_fmod = 1;
   1037 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1038 }
   1039 
   1040 /*
   1041  * Determine whether a cluster can be allocated.
   1042  *
   1043  * We do not currently check for optimal rotational layout if there
   1044  * are multiple choices in the same cylinder group. Instead we just
   1045  * take the first one that we find following bpref.
   1046  */
   1047 static ufs_daddr_t
   1048 ffs_clusteralloc(ip, cg, bpref, len)
   1049 	struct inode *ip;
   1050 	int cg;
   1051 	ufs_daddr_t bpref;
   1052 	int len;
   1053 {
   1054 	register struct fs *fs;
   1055 	register struct cg *cgp;
   1056 	struct buf *bp;
   1057 	int i, got, run, bno, bit, map;
   1058 	u_char *mapp;
   1059 	int32_t *lp;
   1060 
   1061 	fs = ip->i_fs;
   1062 	if (fs->fs_maxcluster[cg] < len)
   1063 		return (NULL);
   1064 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1065 	    NOCRED, &bp))
   1066 		goto fail;
   1067 	cgp = (struct cg *)bp->b_data;
   1068 	if (!cg_chkmagic(cgp))
   1069 		goto fail;
   1070 	/*
   1071 	 * Check to see if a cluster of the needed size (or bigger) is
   1072 	 * available in this cylinder group.
   1073 	 */
   1074 	lp = &cg_clustersum(cgp)[len];
   1075 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1076 		if (*lp++ > 0)
   1077 			break;
   1078 	if (i > fs->fs_contigsumsize) {
   1079 		/*
   1080 		 * This is the first time looking for a cluster in this
   1081 		 * cylinder group. Update the cluster summary information
   1082 		 * to reflect the true maximum sized cluster so that
   1083 		 * future cluster allocation requests can avoid reading
   1084 		 * the cylinder group map only to find no clusters.
   1085 		 */
   1086 		lp = &cg_clustersum(cgp)[len - 1];
   1087 		for (i = len - 1; i > 0; i--)
   1088 			if (*lp-- > 0)
   1089 				break;
   1090 		fs->fs_maxcluster[cg] = i;
   1091 		goto fail;
   1092 	}
   1093 	/*
   1094 	 * Search the cluster map to find a big enough cluster.
   1095 	 * We take the first one that we find, even if it is larger
   1096 	 * than we need as we prefer to get one close to the previous
   1097 	 * block allocation. We do not search before the current
   1098 	 * preference point as we do not want to allocate a block
   1099 	 * that is allocated before the previous one (as we will
   1100 	 * then have to wait for another pass of the elevator
   1101 	 * algorithm before it will be read). We prefer to fail and
   1102 	 * be recalled to try an allocation in the next cylinder group.
   1103 	 */
   1104 	if (dtog(fs, bpref) != cg)
   1105 		bpref = 0;
   1106 	else
   1107 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1108 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1109 	map = *mapp++;
   1110 	bit = 1 << (bpref % NBBY);
   1111 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
   1112 		if ((map & bit) == 0) {
   1113 			run = 0;
   1114 		} else {
   1115 			run++;
   1116 			if (run == len)
   1117 				break;
   1118 		}
   1119 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1120 			bit <<= 1;
   1121 		} else {
   1122 			map = *mapp++;
   1123 			bit = 1;
   1124 		}
   1125 	}
   1126 	if (got == cgp->cg_nclusterblks)
   1127 		goto fail;
   1128 	/*
   1129 	 * Allocate the cluster that we have found.
   1130 	 */
   1131 	for (i = 1; i <= len; i++)
   1132 		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
   1133 			panic("ffs_clusteralloc: map mismatch");
   1134 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1135 	if (dtog(fs, bno) != cg)
   1136 		panic("ffs_clusteralloc: allocated out of group");
   1137 	len = blkstofrags(fs, len);
   1138 	for (i = 0; i < len; i += fs->fs_frag)
   1139 		if ((got = ffs_alloccgblk(fs, cgp, bno + i)) != bno + i)
   1140 			panic("ffs_clusteralloc: lost block");
   1141 	bdwrite(bp);
   1142 	return (bno);
   1143 
   1144 fail:
   1145 	brelse(bp);
   1146 	return (0);
   1147 }
   1148 
   1149 /*
   1150  * Determine whether an inode can be allocated.
   1151  *
   1152  * Check to see if an inode is available, and if it is,
   1153  * allocate it using the following policy:
   1154  *   1) allocate the requested inode.
   1155  *   2) allocate the next available inode after the requested
   1156  *      inode in the specified cylinder group.
   1157  */
   1158 static ufs_daddr_t
   1159 ffs_nodealloccg(ip, cg, ipref, mode)
   1160 	struct inode *ip;
   1161 	int cg;
   1162 	ufs_daddr_t ipref;
   1163 	int mode;
   1164 {
   1165 	register struct fs *fs;
   1166 	register struct cg *cgp;
   1167 	struct buf *bp;
   1168 	int error, start, len, loc, map, i;
   1169 
   1170 	fs = ip->i_fs;
   1171 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1172 		return (NULL);
   1173 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1174 		(int)fs->fs_cgsize, NOCRED, &bp);
   1175 	if (error) {
   1176 		brelse(bp);
   1177 		return (NULL);
   1178 	}
   1179 	cgp = (struct cg *)bp->b_data;
   1180 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1181 		brelse(bp);
   1182 		return (NULL);
   1183 	}
   1184 	cgp->cg_time = time.tv_sec;
   1185 	if (ipref) {
   1186 		ipref %= fs->fs_ipg;
   1187 		if (isclr(cg_inosused(cgp), ipref))
   1188 			goto gotit;
   1189 	}
   1190 	start = cgp->cg_irotor / NBBY;
   1191 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1192 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1193 	if (loc == 0) {
   1194 		len = start + 1;
   1195 		start = 0;
   1196 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1197 		if (loc == 0) {
   1198 			printf("cg = %d, irotor = %d, fs = %s\n",
   1199 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1200 			panic("ffs_nodealloccg: map corrupted");
   1201 			/* NOTREACHED */
   1202 		}
   1203 	}
   1204 	i = start + len - loc;
   1205 	map = cg_inosused(cgp)[i];
   1206 	ipref = i * NBBY;
   1207 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1208 		if ((map & i) == 0) {
   1209 			cgp->cg_irotor = ipref;
   1210 			goto gotit;
   1211 		}
   1212 	}
   1213 	printf("fs = %s\n", fs->fs_fsmnt);
   1214 	panic("ffs_nodealloccg: block not in map");
   1215 	/* NOTREACHED */
   1216 gotit:
   1217 	setbit(cg_inosused(cgp), ipref);
   1218 	cgp->cg_cs.cs_nifree--;
   1219 	fs->fs_cstotal.cs_nifree--;
   1220 	fs->fs_cs(fs, cg).cs_nifree--;
   1221 	fs->fs_fmod = 1;
   1222 	if ((mode & IFMT) == IFDIR) {
   1223 		cgp->cg_cs.cs_ndir++;
   1224 		fs->fs_cstotal.cs_ndir++;
   1225 		fs->fs_cs(fs, cg).cs_ndir++;
   1226 	}
   1227 	bdwrite(bp);
   1228 	return (cg * fs->fs_ipg + ipref);
   1229 }
   1230 
   1231 /*
   1232  * Free a block or fragment.
   1233  *
   1234  * The specified block or fragment is placed back in the
   1235  * free map. If a fragment is deallocated, a possible
   1236  * block reassembly is checked.
   1237  */
   1238 void
   1239 ffs_blkfree(ip, bno, size)
   1240 	register struct inode *ip;
   1241 	ufs_daddr_t bno;
   1242 	long size;
   1243 {
   1244 	register struct fs *fs;
   1245 	register struct cg *cgp;
   1246 	struct buf *bp;
   1247 	ufs_daddr_t blkno;
   1248 	int i, error, cg, blk, frags, bbase;
   1249 
   1250 	fs = ip->i_fs;
   1251 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1252 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1253 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1254 		panic("blkfree: bad size");
   1255 	}
   1256 	cg = dtog(fs, bno);
   1257 	if ((u_int)bno >= fs->fs_size) {
   1258 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1259 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1260 		return;
   1261 	}
   1262 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1263 		(int)fs->fs_cgsize, NOCRED, &bp);
   1264 	if (error) {
   1265 		brelse(bp);
   1266 		return;
   1267 	}
   1268 	cgp = (struct cg *)bp->b_data;
   1269 	if (!cg_chkmagic(cgp)) {
   1270 		brelse(bp);
   1271 		return;
   1272 	}
   1273 	cgp->cg_time = time.tv_sec;
   1274 	bno = dtogd(fs, bno);
   1275 	if (size == fs->fs_bsize) {
   1276 		blkno = fragstoblks(fs, bno);
   1277 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1278 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1279 			    ip->i_dev, bno, fs->fs_fsmnt);
   1280 			panic("blkfree: freeing free block");
   1281 		}
   1282 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1283 		ffs_clusteracct(fs, cgp, blkno, 1);
   1284 		cgp->cg_cs.cs_nbfree++;
   1285 		fs->fs_cstotal.cs_nbfree++;
   1286 		fs->fs_cs(fs, cg).cs_nbfree++;
   1287 		i = cbtocylno(fs, bno);
   1288 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1289 		cg_blktot(cgp)[i]++;
   1290 	} else {
   1291 		bbase = bno - fragnum(fs, bno);
   1292 		/*
   1293 		 * decrement the counts associated with the old frags
   1294 		 */
   1295 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1296 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1297 		/*
   1298 		 * deallocate the fragment
   1299 		 */
   1300 		frags = numfrags(fs, size);
   1301 		for (i = 0; i < frags; i++) {
   1302 			if (isset(cg_blksfree(cgp), bno + i)) {
   1303 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1304 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1305 				panic("blkfree: freeing free frag");
   1306 			}
   1307 			setbit(cg_blksfree(cgp), bno + i);
   1308 		}
   1309 		cgp->cg_cs.cs_nffree += i;
   1310 		fs->fs_cstotal.cs_nffree += i;
   1311 		fs->fs_cs(fs, cg).cs_nffree += i;
   1312 		/*
   1313 		 * add back in counts associated with the new frags
   1314 		 */
   1315 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1316 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1317 		/*
   1318 		 * if a complete block has been reassembled, account for it
   1319 		 */
   1320 		blkno = fragstoblks(fs, bbase);
   1321 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1322 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1323 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1324 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1325 			ffs_clusteracct(fs, cgp, blkno, 1);
   1326 			cgp->cg_cs.cs_nbfree++;
   1327 			fs->fs_cstotal.cs_nbfree++;
   1328 			fs->fs_cs(fs, cg).cs_nbfree++;
   1329 			i = cbtocylno(fs, bbase);
   1330 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1331 			cg_blktot(cgp)[i]++;
   1332 		}
   1333 	}
   1334 	fs->fs_fmod = 1;
   1335 	bdwrite(bp);
   1336 }
   1337 
   1338 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1339 /*
   1340  * Verify allocation of a block or fragment. Returns true if block or
   1341  * fragment is allocated, false if it is free.
   1342  */
   1343 static int
   1344 ffs_checkblk(ip, bno, size)
   1345 	struct inode *ip;
   1346 	ufs_daddr_t bno;
   1347 	long size;
   1348 {
   1349 	struct fs *fs;
   1350 	struct cg *cgp;
   1351 	struct buf *bp;
   1352 	int i, error, frags, free;
   1353 
   1354 	fs = ip->i_fs;
   1355 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1356 		printf("bsize = %d, size = %ld, fs = %s\n",
   1357 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1358 		panic("checkblk: bad size");
   1359 	}
   1360 	if ((u_int)bno >= fs->fs_size)
   1361 		panic("checkblk: bad block %d", bno);
   1362 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1363 		(int)fs->fs_cgsize, NOCRED, &bp);
   1364 	if (error) {
   1365 		brelse(bp);
   1366 		return 0;
   1367 	}
   1368 	cgp = (struct cg *)bp->b_data;
   1369 	if (!cg_chkmagic(cgp)) {
   1370 		brelse(bp);
   1371 		return 0;
   1372 	}
   1373 	bno = dtogd(fs, bno);
   1374 	if (size == fs->fs_bsize) {
   1375 		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
   1376 	} else {
   1377 		frags = numfrags(fs, size);
   1378 		for (free = 0, i = 0; i < frags; i++)
   1379 			if (isset(cg_blksfree(cgp), bno + i))
   1380 				free++;
   1381 		if (free != 0 && free != frags)
   1382 			panic("checkblk: partially free fragment");
   1383 	}
   1384 	brelse(bp);
   1385 	return (!free);
   1386 }
   1387 #endif /* DIAGNOSTIC */
   1388 
   1389 /*
   1390  * Free an inode.
   1391  *
   1392  * The specified inode is placed back in the free map.
   1393  */
   1394 int
   1395 ffs_vfree(v)
   1396 	void *v;
   1397 {
   1398 	struct vop_vfree_args /* {
   1399 		struct vnode *a_pvp;
   1400 		ino_t a_ino;
   1401 		int a_mode;
   1402 	} */ *ap = v;
   1403 	register struct fs *fs;
   1404 	register struct cg *cgp;
   1405 	register struct inode *pip;
   1406 	ino_t ino = ap->a_ino;
   1407 	struct buf *bp;
   1408 	int error, cg;
   1409 
   1410 	pip = VTOI(ap->a_pvp);
   1411 	fs = pip->i_fs;
   1412 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1413 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1414 		    pip->i_dev, ino, fs->fs_fsmnt);
   1415 	cg = ino_to_cg(fs, ino);
   1416 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1417 		(int)fs->fs_cgsize, NOCRED, &bp);
   1418 	if (error) {
   1419 		brelse(bp);
   1420 		return (0);
   1421 	}
   1422 	cgp = (struct cg *)bp->b_data;
   1423 	if (!cg_chkmagic(cgp)) {
   1424 		brelse(bp);
   1425 		return (0);
   1426 	}
   1427 	cgp->cg_time = time.tv_sec;
   1428 	ino %= fs->fs_ipg;
   1429 	if (isclr(cg_inosused(cgp), ino)) {
   1430 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1431 		    pip->i_dev, ino, fs->fs_fsmnt);
   1432 		if (fs->fs_ronly == 0)
   1433 			panic("ifree: freeing free inode");
   1434 	}
   1435 	clrbit(cg_inosused(cgp), ino);
   1436 	if (ino < cgp->cg_irotor)
   1437 		cgp->cg_irotor = ino;
   1438 	cgp->cg_cs.cs_nifree++;
   1439 	fs->fs_cstotal.cs_nifree++;
   1440 	fs->fs_cs(fs, cg).cs_nifree++;
   1441 	if ((ap->a_mode & IFMT) == IFDIR) {
   1442 		cgp->cg_cs.cs_ndir--;
   1443 		fs->fs_cstotal.cs_ndir--;
   1444 		fs->fs_cs(fs, cg).cs_ndir--;
   1445 	}
   1446 	fs->fs_fmod = 1;
   1447 	bdwrite(bp);
   1448 	return (0);
   1449 }
   1450 
   1451 /*
   1452  * Find a block of the specified size in the specified cylinder group.
   1453  *
   1454  * It is a panic if a request is made to find a block if none are
   1455  * available.
   1456  */
   1457 static ufs_daddr_t
   1458 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1459 	register struct fs *fs;
   1460 	register struct cg *cgp;
   1461 	ufs_daddr_t bpref;
   1462 	int allocsiz;
   1463 {
   1464 	ufs_daddr_t bno;
   1465 	int start, len, loc, i;
   1466 	int blk, field, subfield, pos;
   1467 
   1468 	/*
   1469 	 * find the fragment by searching through the free block
   1470 	 * map for an appropriate bit pattern
   1471 	 */
   1472 	if (bpref)
   1473 		start = dtogd(fs, bpref) / NBBY;
   1474 	else
   1475 		start = cgp->cg_frotor / NBBY;
   1476 	len = howmany(fs->fs_fpg, NBBY) - start;
   1477 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1478 		(u_char *)fragtbl[fs->fs_frag],
   1479 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1480 	if (loc == 0) {
   1481 		len = start + 1;
   1482 		start = 0;
   1483 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1484 			(u_char *)fragtbl[fs->fs_frag],
   1485 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1486 		if (loc == 0) {
   1487 			printf("start = %d, len = %d, fs = %s\n",
   1488 			    start, len, fs->fs_fsmnt);
   1489 			panic("ffs_alloccg: map corrupted");
   1490 			/* NOTREACHED */
   1491 		}
   1492 	}
   1493 	bno = (start + len - loc) * NBBY;
   1494 	cgp->cg_frotor = bno;
   1495 	/*
   1496 	 * found the byte in the map
   1497 	 * sift through the bits to find the selected frag
   1498 	 */
   1499 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1500 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1501 		blk <<= 1;
   1502 		field = around[allocsiz];
   1503 		subfield = inside[allocsiz];
   1504 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1505 			if ((blk & field) == subfield)
   1506 				return (bno + pos);
   1507 			field <<= 1;
   1508 			subfield <<= 1;
   1509 		}
   1510 	}
   1511 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1512 	panic("ffs_alloccg: block not in map");
   1513 	return (-1);
   1514 }
   1515 
   1516 /*
   1517  * Update the cluster map because of an allocation or free.
   1518  *
   1519  * Cnt == 1 means free; cnt == -1 means allocating.
   1520  */
   1521 void
   1522 ffs_clusteracct(fs, cgp, blkno, cnt)
   1523 	struct fs *fs;
   1524 	struct cg *cgp;
   1525 	ufs_daddr_t blkno;
   1526 	int cnt;
   1527 {
   1528 	int32_t *sump;
   1529 	int32_t *lp;
   1530 	u_char *freemapp, *mapp;
   1531 	int i, start, end, forw, back, map, bit;
   1532 
   1533 	if (fs->fs_contigsumsize <= 0)
   1534 		return;
   1535 	freemapp = cg_clustersfree(cgp);
   1536 	sump = cg_clustersum(cgp);
   1537 	/*
   1538 	 * Allocate or clear the actual block.
   1539 	 */
   1540 	if (cnt > 0)
   1541 		setbit(freemapp, blkno);
   1542 	else
   1543 		clrbit(freemapp, blkno);
   1544 	/*
   1545 	 * Find the size of the cluster going forward.
   1546 	 */
   1547 	start = blkno + 1;
   1548 	end = start + fs->fs_contigsumsize;
   1549 	if (end >= cgp->cg_nclusterblks)
   1550 		end = cgp->cg_nclusterblks;
   1551 	mapp = &freemapp[start / NBBY];
   1552 	map = *mapp++;
   1553 	bit = 1 << (start % NBBY);
   1554 	for (i = start; i < end; i++) {
   1555 		if ((map & bit) == 0)
   1556 			break;
   1557 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1558 			bit <<= 1;
   1559 		} else {
   1560 			map = *mapp++;
   1561 			bit = 1;
   1562 		}
   1563 	}
   1564 	forw = i - start;
   1565 	/*
   1566 	 * Find the size of the cluster going backward.
   1567 	 */
   1568 	start = blkno - 1;
   1569 	end = start - fs->fs_contigsumsize;
   1570 	if (end < 0)
   1571 		end = -1;
   1572 	mapp = &freemapp[start / NBBY];
   1573 	map = *mapp--;
   1574 	bit = 1 << (start % NBBY);
   1575 	for (i = start; i > end; i--) {
   1576 		if ((map & bit) == 0)
   1577 			break;
   1578 		if ((i & (NBBY - 1)) != 0) {
   1579 			bit >>= 1;
   1580 		} else {
   1581 			map = *mapp--;
   1582 			bit = 1 << (NBBY - 1);
   1583 		}
   1584 	}
   1585 	back = start - i;
   1586 	/*
   1587 	 * Account for old cluster and the possibly new forward and
   1588 	 * back clusters.
   1589 	 */
   1590 	i = back + forw + 1;
   1591 	if (i > fs->fs_contigsumsize)
   1592 		i = fs->fs_contigsumsize;
   1593 	sump[i] += cnt;
   1594 	if (back > 0)
   1595 		sump[back] -= cnt;
   1596 	if (forw > 0)
   1597 		sump[forw] -= cnt;
   1598 	/*
   1599 	 * Update cluster summary information.
   1600 	 */
   1601 	lp = &sump[fs->fs_contigsumsize];
   1602 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1603 		if (*lp-- > 0)
   1604 			break;
   1605 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1606 }
   1607 
   1608 /*
   1609  * Fserr prints the name of a file system with an error diagnostic.
   1610  *
   1611  * The form of the error message is:
   1612  *	fs: error message
   1613  */
   1614 static void
   1615 ffs_fserr(fs, uid, cp)
   1616 	struct fs *fs;
   1617 	u_int uid;
   1618 	char *cp;
   1619 {
   1620 
   1621 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1622 }
   1623