Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.19
      1 /*	$NetBSD: ffs_alloc.c,v 1.19 1998/03/18 15:57:27 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #include "opt_uvm.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/proc.h>
     44 #include <sys/vnode.h>
     45 #include <sys/mount.h>
     46 #include <sys/kernel.h>
     47 #include <sys/syslog.h>
     48 
     49 #include <vm/vm.h>
     50 
     51 #include <ufs/ufs/quota.h>
     52 #include <ufs/ufs/ufsmount.h>
     53 #include <ufs/ufs/inode.h>
     54 #include <ufs/ufs/ufs_extern.h>
     55 #include <ufs/ufs/ufs_bswap.h>
     56 
     57 #include <ufs/ffs/fs.h>
     58 #include <ufs/ffs/ffs_extern.h>
     59 
     60 static ufs_daddr_t	ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     61 static ufs_daddr_t	ffs_alloccgblk __P((struct mount *, struct fs *,
     62 	struct cg *, ufs_daddr_t));
     63 static ufs_daddr_t	ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     64 static ino_t	ffs_dirpref __P((struct fs *));
     65 static ufs_daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     66 static void	ffs_fserr __P((struct fs *, u_int, char *));
     67 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     68 				   ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
     69 					       int)));
     70 static ufs_daddr_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     71 static ufs_daddr_t	ffs_mapsearch __P((int, struct fs *, struct cg *,
     72 					ufs_daddr_t, int));
     73 #if defined(DIAGNOSTIC) || defined(DEBUG)
     74 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     75 #endif
     76 
     77 /*
     78  * Allocate a block in the file system.
     79  *
     80  * The size of the requested block is given, which must be some
     81  * multiple of fs_fsize and <= fs_bsize.
     82  * A preference may be optionally specified. If a preference is given
     83  * the following hierarchy is used to allocate a block:
     84  *   1) allocate the requested block.
     85  *   2) allocate a rotationally optimal block in the same cylinder.
     86  *   3) allocate a block in the same cylinder group.
     87  *   4) quadradically rehash into other cylinder groups, until an
     88  *      available block is located.
     89  * If no block preference is given the following heirarchy is used
     90  * to allocate a block:
     91  *   1) allocate a block in the cylinder group that contains the
     92  *      inode for the file.
     93  *   2) quadradically rehash into other cylinder groups, until an
     94  *      available block is located.
     95  */
     96 int
     97 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     98 	register struct inode *ip;
     99 	ufs_daddr_t lbn, bpref;
    100 	int size;
    101 	struct ucred *cred;
    102 	ufs_daddr_t *bnp;
    103 {
    104 	register struct fs *fs;
    105 	ufs_daddr_t bno;
    106 	int cg;
    107 #ifdef QUOTA
    108 	int error;
    109 #endif
    110 
    111 	*bnp = 0;
    112 	fs = ip->i_fs;
    113 #ifdef DIAGNOSTIC
    114 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    115 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    116 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    117 		panic("ffs_alloc: bad size");
    118 	}
    119 	if (cred == NOCRED)
    120 		panic("ffs_alloc: missing credential\n");
    121 #endif /* DIAGNOSTIC */
    122 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    123 		goto nospace;
    124 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    125 		goto nospace;
    126 #ifdef QUOTA
    127 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    128 		return (error);
    129 #endif
    130 	if (bpref >= fs->fs_size)
    131 		bpref = 0;
    132 	if (bpref == 0)
    133 		cg = ino_to_cg(fs, ip->i_number);
    134 	else
    135 		cg = dtog(fs, bpref);
    136 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    137 	    			     ffs_alloccg);
    138 	if (bno > 0) {
    139 		ip->i_ffs_blocks += btodb(size);
    140 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    141 		*bnp = bno;
    142 		return (0);
    143 	}
    144 #ifdef QUOTA
    145 	/*
    146 	 * Restore user's disk quota because allocation failed.
    147 	 */
    148 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    149 #endif
    150 nospace:
    151 	ffs_fserr(fs, cred->cr_uid, "file system full");
    152 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    153 	return (ENOSPC);
    154 }
    155 
    156 /*
    157  * Reallocate a fragment to a bigger size
    158  *
    159  * The number and size of the old block is given, and a preference
    160  * and new size is also specified. The allocator attempts to extend
    161  * the original block. Failing that, the regular block allocator is
    162  * invoked to get an appropriate block.
    163  */
    164 int
    165 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    166 	register struct inode *ip;
    167 	ufs_daddr_t lbprev;
    168 	ufs_daddr_t bpref;
    169 	int osize, nsize;
    170 	struct ucred *cred;
    171 	struct buf **bpp;
    172 {
    173 	register struct fs *fs;
    174 	struct buf *bp;
    175 	int cg, request, error;
    176 	ufs_daddr_t bprev, bno;
    177 
    178 	*bpp = 0;
    179 	fs = ip->i_fs;
    180 #ifdef DIAGNOSTIC
    181 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    182 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    183 		printf(
    184 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    185 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    186 		panic("ffs_realloccg: bad size");
    187 	}
    188 	if (cred == NOCRED)
    189 		panic("ffs_realloccg: missing credential\n");
    190 #endif /* DIAGNOSTIC */
    191 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    192 		goto nospace;
    193 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
    194 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    195 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    196 		panic("ffs_realloccg: bad bprev");
    197 	}
    198 	/*
    199 	 * Allocate the extra space in the buffer.
    200 	 */
    201 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    202 		brelse(bp);
    203 		return (error);
    204 	}
    205 #ifdef QUOTA
    206 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    207 		brelse(bp);
    208 		return (error);
    209 	}
    210 #endif
    211 	/*
    212 	 * Check for extension in the existing location.
    213 	 */
    214 	cg = dtog(fs, bprev);
    215 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    216 		if (bp->b_blkno != fsbtodb(fs, bno))
    217 			panic("bad blockno");
    218 		ip->i_ffs_blocks += btodb(nsize - osize);
    219 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    220 		allocbuf(bp, nsize);
    221 		bp->b_flags |= B_DONE;
    222 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    223 		*bpp = bp;
    224 		return (0);
    225 	}
    226 	/*
    227 	 * Allocate a new disk location.
    228 	 */
    229 	if (bpref >= fs->fs_size)
    230 		bpref = 0;
    231 	switch ((int)fs->fs_optim) {
    232 	case FS_OPTSPACE:
    233 		/*
    234 		 * Allocate an exact sized fragment. Although this makes
    235 		 * best use of space, we will waste time relocating it if
    236 		 * the file continues to grow. If the fragmentation is
    237 		 * less than half of the minimum free reserve, we choose
    238 		 * to begin optimizing for time.
    239 		 */
    240 		request = nsize;
    241 		if (fs->fs_minfree < 5 ||
    242 		    fs->fs_cstotal.cs_nffree >
    243 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    244 			break;
    245 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    246 			fs->fs_fsmnt);
    247 		fs->fs_optim = FS_OPTTIME;
    248 		break;
    249 	case FS_OPTTIME:
    250 		/*
    251 		 * At this point we have discovered a file that is trying to
    252 		 * grow a small fragment to a larger fragment. To save time,
    253 		 * we allocate a full sized block, then free the unused portion.
    254 		 * If the file continues to grow, the `ffs_fragextend' call
    255 		 * above will be able to grow it in place without further
    256 		 * copying. If aberrant programs cause disk fragmentation to
    257 		 * grow within 2% of the free reserve, we choose to begin
    258 		 * optimizing for space.
    259 		 */
    260 		request = fs->fs_bsize;
    261 		if (fs->fs_cstotal.cs_nffree <
    262 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    263 			break;
    264 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    265 			fs->fs_fsmnt);
    266 		fs->fs_optim = FS_OPTSPACE;
    267 		break;
    268 	default:
    269 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    270 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    271 		panic("ffs_realloccg: bad optim");
    272 		/* NOTREACHED */
    273 	}
    274 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    275 	    			     ffs_alloccg);
    276 	if (bno > 0) {
    277 		bp->b_blkno = fsbtodb(fs, bno);
    278 #if defined(UVM)
    279 		(void) uvm_vnp_uncache(ITOV(ip));
    280 #else
    281 		(void) vnode_pager_uncache(ITOV(ip));
    282 #endif
    283 		ffs_blkfree(ip, bprev, (long)osize);
    284 		if (nsize < request)
    285 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    286 			    (long)(request - nsize));
    287 		ip->i_ffs_blocks += btodb(nsize - osize);
    288 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    289 		allocbuf(bp, nsize);
    290 		bp->b_flags |= B_DONE;
    291 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    292 		*bpp = bp;
    293 		return (0);
    294 	}
    295 #ifdef QUOTA
    296 	/*
    297 	 * Restore user's disk quota because allocation failed.
    298 	 */
    299 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    300 #endif
    301 	brelse(bp);
    302 nospace:
    303 	/*
    304 	 * no space available
    305 	 */
    306 	ffs_fserr(fs, cred->cr_uid, "file system full");
    307 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    308 	return (ENOSPC);
    309 }
    310 
    311 /*
    312  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    313  *
    314  * The vnode and an array of buffer pointers for a range of sequential
    315  * logical blocks to be made contiguous is given. The allocator attempts
    316  * to find a range of sequential blocks starting as close as possible to
    317  * an fs_rotdelay offset from the end of the allocation for the logical
    318  * block immediately preceeding the current range. If successful, the
    319  * physical block numbers in the buffer pointers and in the inode are
    320  * changed to reflect the new allocation. If unsuccessful, the allocation
    321  * is left unchanged. The success in doing the reallocation is returned.
    322  * Note that the error return is not reflected back to the user. Rather
    323  * the previous block allocation will be used.
    324  */
    325 #ifdef DEBUG
    326 #include <sys/sysctl.h>
    327 int prtrealloc = 0;
    328 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    329 #endif
    330 
    331 int doasyncfree = 1;
    332 extern int doreallocblks;
    333 
    334 int
    335 ffs_reallocblks(v)
    336 	void *v;
    337 {
    338 	struct vop_reallocblks_args /* {
    339 		struct vnode *a_vp;
    340 		struct cluster_save *a_buflist;
    341 	} */ *ap = v;
    342 	struct fs *fs;
    343 	struct inode *ip;
    344 	struct vnode *vp;
    345 	struct buf *sbp, *ebp;
    346 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    347 	struct cluster_save *buflist;
    348 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    349 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    350 	int i, len, start_lvl, end_lvl, pref, ssize;
    351 	struct timespec ts;
    352 
    353 	vp = ap->a_vp;
    354 	ip = VTOI(vp);
    355 	fs = ip->i_fs;
    356 	if (fs->fs_contigsumsize <= 0)
    357 		return (ENOSPC);
    358 	buflist = ap->a_buflist;
    359 	len = buflist->bs_nchildren;
    360 	start_lbn = buflist->bs_children[0]->b_lblkno;
    361 	end_lbn = start_lbn + len - 1;
    362 #ifdef DIAGNOSTIC
    363 	for (i = 0; i < len; i++)
    364 		if (!ffs_checkblk(ip,
    365 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    366 			panic("ffs_reallocblks: unallocated block 1");
    367 	for (i = 1; i < len; i++)
    368 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    369 			panic("ffs_reallocblks: non-logical cluster");
    370 	blkno = buflist->bs_children[0]->b_blkno;
    371 	ssize = fsbtodb(fs, fs->fs_frag);
    372 	for (i = 1; i < len - 1; i++)
    373 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    374 			panic("ffs_reallocblks: non-physical cluster %d", i);
    375 #endif
    376 	/*
    377 	 * If the latest allocation is in a new cylinder group, assume that
    378 	 * the filesystem has decided to move and do not force it back to
    379 	 * the previous cylinder group.
    380 	 */
    381 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    382 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    383 		return (ENOSPC);
    384 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    385 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    386 		return (ENOSPC);
    387 	/*
    388 	 * Get the starting offset and block map for the first block.
    389 	 */
    390 	if (start_lvl == 0) {
    391 		sbap = &ip->i_ffs_db[0];
    392 		soff = start_lbn;
    393 	} else {
    394 		idp = &start_ap[start_lvl - 1];
    395 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    396 			brelse(sbp);
    397 			return (ENOSPC);
    398 		}
    399 		sbap = (ufs_daddr_t *)sbp->b_data;
    400 		soff = idp->in_off;
    401 	}
    402 	/*
    403 	 * Find the preferred location for the cluster.
    404 	 */
    405 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    406 	/*
    407 	 * If the block range spans two block maps, get the second map.
    408 	 */
    409 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    410 		ssize = len;
    411 	} else {
    412 #ifdef DIAGNOSTIC
    413 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    414 			panic("ffs_reallocblk: start == end");
    415 #endif
    416 		ssize = len - (idp->in_off + 1);
    417 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    418 			goto fail;
    419 		ebap = (ufs_daddr_t *)ebp->b_data;
    420 	}
    421 	/*
    422 	 * Search the block map looking for an allocation of the desired size.
    423 	 */
    424 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    425 	    len, ffs_clusteralloc)) == 0)
    426 		goto fail;
    427 	/*
    428 	 * We have found a new contiguous block.
    429 	 *
    430 	 * First we have to replace the old block pointers with the new
    431 	 * block pointers in the inode and indirect blocks associated
    432 	 * with the file.
    433 	 */
    434 #ifdef DEBUG
    435 	if (prtrealloc)
    436 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    437 		    start_lbn, end_lbn);
    438 #endif
    439 	blkno = newblk;
    440 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    441 		if (i == ssize)
    442 			bap = ebap;
    443 #ifdef DIAGNOSTIC
    444 		if (!ffs_checkblk(ip,
    445 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    446 			panic("ffs_reallocblks: unallocated block 2");
    447 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
    448 			ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
    449 			panic("ffs_reallocblks: alloc mismatch");
    450 #endif
    451 #ifdef DEBUG
    452 		if (prtrealloc)
    453 			printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
    454 #endif
    455 		*bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
    456 	}
    457 	/*
    458 	 * Next we must write out the modified inode and indirect blocks.
    459 	 * For strict correctness, the writes should be synchronous since
    460 	 * the old block values may have been written to disk. In practise
    461 	 * they are almost never written, but if we are concerned about
    462 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    463 	 *
    464 	 * The test on `doasyncfree' should be changed to test a flag
    465 	 * that shows whether the associated buffers and inodes have
    466 	 * been written. The flag should be set when the cluster is
    467 	 * started and cleared whenever the buffer or inode is flushed.
    468 	 * We can then check below to see if it is set, and do the
    469 	 * synchronous write only when it has been cleared.
    470 	 */
    471 	if (sbap != &ip->i_ffs_db[0]) {
    472 		if (doasyncfree)
    473 			bdwrite(sbp);
    474 		else
    475 			bwrite(sbp);
    476 	} else {
    477 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    478 		if (!doasyncfree) {
    479 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    480 			VOP_UPDATE(vp, &ts, &ts, 1);
    481 		}
    482 	}
    483 	if (ssize < len)
    484 		if (doasyncfree)
    485 			bdwrite(ebp);
    486 		else
    487 			bwrite(ebp);
    488 	/*
    489 	 * Last, free the old blocks and assign the new blocks to the buffers.
    490 	 */
    491 #ifdef DEBUG
    492 	if (prtrealloc)
    493 		printf("\n\tnew:");
    494 #endif
    495 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    496 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    497 		    fs->fs_bsize);
    498 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    499 #ifdef DEBUG
    500 		if (!ffs_checkblk(ip,
    501 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    502 			panic("ffs_reallocblks: unallocated block 3");
    503 		if (prtrealloc)
    504 			printf(" %d,", blkno);
    505 #endif
    506 	}
    507 #ifdef DEBUG
    508 	if (prtrealloc) {
    509 		prtrealloc--;
    510 		printf("\n");
    511 	}
    512 #endif
    513 	return (0);
    514 
    515 fail:
    516 	if (ssize < len)
    517 		brelse(ebp);
    518 	if (sbap != &ip->i_ffs_db[0])
    519 		brelse(sbp);
    520 	return (ENOSPC);
    521 }
    522 
    523 /*
    524  * Allocate an inode in the file system.
    525  *
    526  * If allocating a directory, use ffs_dirpref to select the inode.
    527  * If allocating in a directory, the following hierarchy is followed:
    528  *   1) allocate the preferred inode.
    529  *   2) allocate an inode in the same cylinder group.
    530  *   3) quadradically rehash into other cylinder groups, until an
    531  *      available inode is located.
    532  * If no inode preference is given the following heirarchy is used
    533  * to allocate an inode:
    534  *   1) allocate an inode in cylinder group 0.
    535  *   2) quadradically rehash into other cylinder groups, until an
    536  *      available inode is located.
    537  */
    538 int
    539 ffs_valloc(v)
    540 	void *v;
    541 {
    542 	struct vop_valloc_args /* {
    543 		struct vnode *a_pvp;
    544 		int a_mode;
    545 		struct ucred *a_cred;
    546 		struct vnode **a_vpp;
    547 	} */ *ap = v;
    548 	register struct vnode *pvp = ap->a_pvp;
    549 	register struct inode *pip;
    550 	register struct fs *fs;
    551 	register struct inode *ip;
    552 	mode_t mode = ap->a_mode;
    553 	ino_t ino, ipref;
    554 	int cg, error;
    555 
    556 	*ap->a_vpp = NULL;
    557 	pip = VTOI(pvp);
    558 	fs = pip->i_fs;
    559 	if (fs->fs_cstotal.cs_nifree == 0)
    560 		goto noinodes;
    561 
    562 	if ((mode & IFMT) == IFDIR)
    563 		ipref = ffs_dirpref(fs);
    564 	else
    565 		ipref = pip->i_number;
    566 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    567 		ipref = 0;
    568 	cg = ino_to_cg(fs, ipref);
    569 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    570 	if (ino == 0)
    571 		goto noinodes;
    572 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    573 	if (error) {
    574 		VOP_VFREE(pvp, ino, mode);
    575 		return (error);
    576 	}
    577 	ip = VTOI(*ap->a_vpp);
    578 	if (ip->i_ffs_mode) {
    579 		printf("mode = 0%o, inum = %d, fs = %s\n",
    580 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    581 		panic("ffs_valloc: dup alloc");
    582 	}
    583 	if (ip->i_ffs_blocks) {				/* XXX */
    584 		printf("free inode %s/%d had %d blocks\n",
    585 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    586 		ip->i_ffs_blocks = 0;
    587 	}
    588 	ip->i_ffs_flags = 0;
    589 	/*
    590 	 * Set up a new generation number for this inode.
    591 	 */
    592 	ip->i_ffs_gen++;
    593 	return (0);
    594 noinodes:
    595 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    596 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    597 	return (ENOSPC);
    598 }
    599 
    600 /*
    601  * Find a cylinder to place a directory.
    602  *
    603  * The policy implemented by this algorithm is to select from
    604  * among those cylinder groups with above the average number of
    605  * free inodes, the one with the smallest number of directories.
    606  */
    607 static ino_t
    608 ffs_dirpref(fs)
    609 	register struct fs *fs;
    610 {
    611 	int cg, minndir, mincg, avgifree;
    612 
    613 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    614 	minndir = fs->fs_ipg;
    615 	mincg = 0;
    616 	for (cg = 0; cg < fs->fs_ncg; cg++)
    617 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    618 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    619 			mincg = cg;
    620 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    621 		}
    622 	return ((ino_t)(fs->fs_ipg * mincg));
    623 }
    624 
    625 /*
    626  * Select the desired position for the next block in a file.  The file is
    627  * logically divided into sections. The first section is composed of the
    628  * direct blocks. Each additional section contains fs_maxbpg blocks.
    629  *
    630  * If no blocks have been allocated in the first section, the policy is to
    631  * request a block in the same cylinder group as the inode that describes
    632  * the file. If no blocks have been allocated in any other section, the
    633  * policy is to place the section in a cylinder group with a greater than
    634  * average number of free blocks.  An appropriate cylinder group is found
    635  * by using a rotor that sweeps the cylinder groups. When a new group of
    636  * blocks is needed, the sweep begins in the cylinder group following the
    637  * cylinder group from which the previous allocation was made. The sweep
    638  * continues until a cylinder group with greater than the average number
    639  * of free blocks is found. If the allocation is for the first block in an
    640  * indirect block, the information on the previous allocation is unavailable;
    641  * here a best guess is made based upon the logical block number being
    642  * allocated.
    643  *
    644  * If a section is already partially allocated, the policy is to
    645  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    646  * contiguous blocks and the beginning of the next is physically separated
    647  * so that the disk head will be in transit between them for at least
    648  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    649  * schedule another I/O transfer.
    650  */
    651 ufs_daddr_t
    652 ffs_blkpref(ip, lbn, indx, bap)
    653 	struct inode *ip;
    654 	ufs_daddr_t lbn;
    655 	int indx;
    656 	ufs_daddr_t *bap;
    657 {
    658 	register struct fs *fs;
    659 	register int cg;
    660 	int avgbfree, startcg;
    661 	ufs_daddr_t nextblk;
    662 
    663 	fs = ip->i_fs;
    664 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    665 		if (lbn < NDADDR) {
    666 			cg = ino_to_cg(fs, ip->i_number);
    667 			return (fs->fs_fpg * cg + fs->fs_frag);
    668 		}
    669 		/*
    670 		 * Find a cylinder with greater than average number of
    671 		 * unused data blocks.
    672 		 */
    673 		if (indx == 0 || bap[indx - 1] == 0)
    674 			startcg =
    675 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    676 		else
    677 			startcg = dtog(fs,
    678 				ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
    679 		startcg %= fs->fs_ncg;
    680 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    681 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    682 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    683 				fs->fs_cgrotor = cg;
    684 				return (fs->fs_fpg * cg + fs->fs_frag);
    685 			}
    686 		for (cg = 0; cg <= startcg; cg++)
    687 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    688 				fs->fs_cgrotor = cg;
    689 				return (fs->fs_fpg * cg + fs->fs_frag);
    690 			}
    691 		return (NULL);
    692 	}
    693 	/*
    694 	 * One or more previous blocks have been laid out. If less
    695 	 * than fs_maxcontig previous blocks are contiguous, the
    696 	 * next block is requested contiguously, otherwise it is
    697 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    698 	 */
    699 	nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
    700 	if (indx < fs->fs_maxcontig ||
    701 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
    702 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    703 		return (nextblk);
    704 	if (fs->fs_rotdelay != 0)
    705 		/*
    706 		 * Here we convert ms of delay to frags as:
    707 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    708 		 *	((sect/frag) * (ms/sec))
    709 		 * then round up to the next block.
    710 		 */
    711 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    712 		    (NSPF(fs) * 1000), fs->fs_frag);
    713 	return (nextblk);
    714 }
    715 
    716 /*
    717  * Implement the cylinder overflow algorithm.
    718  *
    719  * The policy implemented by this algorithm is:
    720  *   1) allocate the block in its requested cylinder group.
    721  *   2) quadradically rehash on the cylinder group number.
    722  *   3) brute force search for a free block.
    723  */
    724 /*VARARGS5*/
    725 static u_long
    726 ffs_hashalloc(ip, cg, pref, size, allocator)
    727 	struct inode *ip;
    728 	int cg;
    729 	long pref;
    730 	int size;	/* size for data blocks, mode for inodes */
    731 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    732 {
    733 	register struct fs *fs;
    734 	long result;
    735 	int i, icg = cg;
    736 
    737 	fs = ip->i_fs;
    738 	/*
    739 	 * 1: preferred cylinder group
    740 	 */
    741 	result = (*allocator)(ip, cg, pref, size);
    742 	if (result)
    743 		return (result);
    744 	/*
    745 	 * 2: quadratic rehash
    746 	 */
    747 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    748 		cg += i;
    749 		if (cg >= fs->fs_ncg)
    750 			cg -= fs->fs_ncg;
    751 		result = (*allocator)(ip, cg, 0, size);
    752 		if (result)
    753 			return (result);
    754 	}
    755 	/*
    756 	 * 3: brute force search
    757 	 * Note that we start at i == 2, since 0 was checked initially,
    758 	 * and 1 is always checked in the quadratic rehash.
    759 	 */
    760 	cg = (icg + 2) % fs->fs_ncg;
    761 	for (i = 2; i < fs->fs_ncg; i++) {
    762 		result = (*allocator)(ip, cg, 0, size);
    763 		if (result)
    764 			return (result);
    765 		cg++;
    766 		if (cg == fs->fs_ncg)
    767 			cg = 0;
    768 	}
    769 	return (NULL);
    770 }
    771 
    772 /*
    773  * Determine whether a fragment can be extended.
    774  *
    775  * Check to see if the necessary fragments are available, and
    776  * if they are, allocate them.
    777  */
    778 static ufs_daddr_t
    779 ffs_fragextend(ip, cg, bprev, osize, nsize)
    780 	struct inode *ip;
    781 	int cg;
    782 	long bprev;
    783 	int osize, nsize;
    784 {
    785 	register struct fs *fs;
    786 	register struct cg *cgp;
    787 	struct buf *bp;
    788 	long bno;
    789 	int frags, bbase;
    790 	int i, error;
    791 
    792 	fs = ip->i_fs;
    793 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    794 		return (NULL);
    795 	frags = numfrags(fs, nsize);
    796 	bbase = fragnum(fs, bprev);
    797 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    798 		/* cannot extend across a block boundary */
    799 		return (NULL);
    800 	}
    801 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    802 		(int)fs->fs_cgsize, NOCRED, &bp);
    803 	if (error) {
    804 		brelse(bp);
    805 		return (NULL);
    806 	}
    807 	cgp = (struct cg *)bp->b_data;
    808 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
    809 		brelse(bp);
    810 		return (NULL);
    811 	}
    812 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
    813 	bno = dtogd(fs, bprev);
    814 	for (i = numfrags(fs, osize); i < frags; i++)
    815 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
    816 			brelse(bp);
    817 			return (NULL);
    818 		}
    819 	/*
    820 	 * the current fragment can be extended
    821 	 * deduct the count on fragment being extended into
    822 	 * increase the count on the remaining fragment (if any)
    823 	 * allocate the extended piece
    824 	 */
    825 	for (i = frags; i < fs->fs_frag - bbase; i++)
    826 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
    827 			break;
    828 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
    829 	if (i != frags)
    830 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
    831 	for (i = numfrags(fs, osize); i < frags; i++) {
    832 		clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
    833 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
    834 		fs->fs_cstotal.cs_nffree--;
    835 		fs->fs_cs(fs, cg).cs_nffree--;
    836 	}
    837 	fs->fs_fmod = 1;
    838 	bdwrite(bp);
    839 	return (bprev);
    840 }
    841 
    842 /*
    843  * Determine whether a block can be allocated.
    844  *
    845  * Check to see if a block of the appropriate size is available,
    846  * and if it is, allocate it.
    847  */
    848 static ufs_daddr_t
    849 ffs_alloccg(ip, cg, bpref, size)
    850 	struct inode *ip;
    851 	int cg;
    852 	ufs_daddr_t bpref;
    853 	int size;
    854 {
    855 	register struct fs *fs;
    856 	register struct cg *cgp;
    857 	struct buf *bp;
    858 	register int i;
    859 	int error, bno, frags, allocsiz;
    860 	const int needswap = UFS_IPNEEDSWAP(ip);
    861 
    862 	fs = ip->i_fs;
    863 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    864 		return (NULL);
    865 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    866 		(int)fs->fs_cgsize, NOCRED, &bp);
    867 	if (error) {
    868 		brelse(bp);
    869 		return (NULL);
    870 	}
    871 	cgp = (struct cg *)bp->b_data;
    872 	if (!cg_chkmagic(cgp, needswap) ||
    873 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    874 		brelse(bp);
    875 		return (NULL);
    876 	}
    877 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    878 	if (size == fs->fs_bsize) {
    879 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    880 		bdwrite(bp);
    881 		return (bno);
    882 	}
    883 	/*
    884 	 * check to see if any fragments are already available
    885 	 * allocsiz is the size which will be allocated, hacking
    886 	 * it down to a smaller size if necessary
    887 	 */
    888 	frags = numfrags(fs, size);
    889 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    890 		if (cgp->cg_frsum[allocsiz] != 0)
    891 			break;
    892 	if (allocsiz == fs->fs_frag) {
    893 		/*
    894 		 * no fragments were available, so a block will be
    895 		 * allocated, and hacked up
    896 		 */
    897 		if (cgp->cg_cs.cs_nbfree == 0) {
    898 			brelse(bp);
    899 			return (NULL);
    900 		}
    901 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    902 		bpref = dtogd(fs, bno);
    903 		for (i = frags; i < fs->fs_frag; i++)
    904 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    905 		i = fs->fs_frag - frags;
    906 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    907 		fs->fs_cstotal.cs_nffree += i;
    908 		fs->fs_cs(fs, cg).cs_nffree +=i;
    909 		fs->fs_fmod = 1;
    910 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    911 		bdwrite(bp);
    912 		return (bno);
    913 	}
    914 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
    915 	if (bno < 0) {
    916 		brelse(bp);
    917 		return (NULL);
    918 	}
    919 	for (i = 0; i < frags; i++)
    920 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    921 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    922 	fs->fs_cstotal.cs_nffree -= frags;
    923 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    924 	fs->fs_fmod = 1;
    925 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    926 	if (frags != allocsiz)
    927 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    928 	bdwrite(bp);
    929 	return (cg * fs->fs_fpg + bno);
    930 }
    931 
    932 /*
    933  * Allocate a block in a cylinder group.
    934  *
    935  * This algorithm implements the following policy:
    936  *   1) allocate the requested block.
    937  *   2) allocate a rotationally optimal block in the same cylinder.
    938  *   3) allocate the next available block on the block rotor for the
    939  *      specified cylinder group.
    940  * Note that this routine only allocates fs_bsize blocks; these
    941  * blocks may be fragmented by the routine that allocates them.
    942  */
    943 static ufs_daddr_t
    944 ffs_alloccgblk(mp, fs, cgp, bpref)
    945 	struct  mount *mp;
    946 	register struct fs *fs;
    947 	register struct cg *cgp;
    948 	ufs_daddr_t bpref;
    949 {
    950 	ufs_daddr_t bno, blkno;
    951 	int cylno, pos, delta;
    952 	short *cylbp;
    953 	register int i;
    954 	const int needswap = UFS_MPNEEDSWAP(mp);
    955 
    956 	if (bpref == 0 ||
    957 		dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    958 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    959 		goto norot;
    960 	}
    961 	bpref = blknum(fs, bpref);
    962 	bpref = dtogd(fs, bpref);
    963 	/*
    964 	 * if the requested block is available, use it
    965 	 */
    966 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
    967 		fragstoblks(fs, bpref))) {
    968 		bno = bpref;
    969 		goto gotit;
    970 	}
    971 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    972 		/*
    973 		 * Block layout information is not available.
    974 		 * Leaving bpref unchanged means we take the
    975 		 * next available free block following the one
    976 		 * we just allocated. Hopefully this will at
    977 		 * least hit a track cache on drives of unknown
    978 		 * geometry (e.g. SCSI).
    979 		 */
    980 		goto norot;
    981 	}
    982 	/*
    983 	 * check for a block available on the same cylinder
    984 	 */
    985 	cylno = cbtocylno(fs, bpref);
    986 	if (cg_blktot(cgp, needswap)[cylno] == 0)
    987 		goto norot;
    988 	/*
    989 	 * check the summary information to see if a block is
    990 	 * available in the requested cylinder starting at the
    991 	 * requested rotational position and proceeding around.
    992 	 */
    993 	cylbp = cg_blks(fs, cgp, cylno, needswap);
    994 	pos = cbtorpos(fs, bpref);
    995 	for (i = pos; i < fs->fs_nrpos; i++)
    996 		if (ufs_rw16(cylbp[i], needswap) > 0)
    997 			break;
    998 	if (i == fs->fs_nrpos)
    999 		for (i = 0; i < pos; i++)
   1000 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1001 				break;
   1002 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1003 		/*
   1004 		 * found a rotational position, now find the actual
   1005 		 * block. A panic if none is actually there.
   1006 		 */
   1007 		pos = cylno % fs->fs_cpc;
   1008 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1009 		if (fs_postbl(fs, pos)[i] == -1) {
   1010 			printf("pos = %d, i = %d, fs = %s\n",
   1011 			    pos, i, fs->fs_fsmnt);
   1012 			panic("ffs_alloccgblk: cyl groups corrupted");
   1013 		}
   1014 		for (i = fs_postbl(fs, pos)[i];; ) {
   1015 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1016 				bno = blkstofrags(fs, (bno + i));
   1017 				goto gotit;
   1018 			}
   1019 			delta = fs_rotbl(fs)[i];
   1020 			if (delta <= 0 ||
   1021 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1022 				break;
   1023 			i += delta;
   1024 		}
   1025 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1026 		panic("ffs_alloccgblk: can't find blk in cyl");
   1027 	}
   1028 norot:
   1029 	/*
   1030 	 * no blocks in the requested cylinder, so take next
   1031 	 * available one in this cylinder group.
   1032 	 */
   1033 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
   1034 	if (bno < 0)
   1035 		return (NULL);
   1036 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1037 gotit:
   1038 	blkno = fragstoblks(fs, bno);
   1039 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1040 	ffs_clusteracct(needswap, fs, cgp, blkno, -1);
   1041 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1042 	fs->fs_cstotal.cs_nbfree--;
   1043 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1044 	cylno = cbtocylno(fs, bno);
   1045 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1046 		needswap);
   1047 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1048 	fs->fs_fmod = 1;
   1049 	return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
   1050 }
   1051 
   1052 /*
   1053  * Determine whether a cluster can be allocated.
   1054  *
   1055  * We do not currently check for optimal rotational layout if there
   1056  * are multiple choices in the same cylinder group. Instead we just
   1057  * take the first one that we find following bpref.
   1058  */
   1059 static ufs_daddr_t
   1060 ffs_clusteralloc(ip, cg, bpref, len)
   1061 	struct inode *ip;
   1062 	int cg;
   1063 	ufs_daddr_t bpref;
   1064 	int len;
   1065 {
   1066 	register struct fs *fs;
   1067 	register struct cg *cgp;
   1068 	struct buf *bp;
   1069 	int i, got, run, bno, bit, map;
   1070 	u_char *mapp;
   1071 	int32_t *lp;
   1072 
   1073 	fs = ip->i_fs;
   1074 	if (fs->fs_maxcluster[cg] < len)
   1075 		return (NULL);
   1076 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1077 	    NOCRED, &bp))
   1078 		goto fail;
   1079 	cgp = (struct cg *)bp->b_data;
   1080 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
   1081 		goto fail;
   1082 	/*
   1083 	 * Check to see if a cluster of the needed size (or bigger) is
   1084 	 * available in this cylinder group.
   1085 	 */
   1086 	lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
   1087 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1088 		if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
   1089 			break;
   1090 	if (i > fs->fs_contigsumsize) {
   1091 		/*
   1092 		 * This is the first time looking for a cluster in this
   1093 		 * cylinder group. Update the cluster summary information
   1094 		 * to reflect the true maximum sized cluster so that
   1095 		 * future cluster allocation requests can avoid reading
   1096 		 * the cylinder group map only to find no clusters.
   1097 		 */
   1098 		lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
   1099 		for (i = len - 1; i > 0; i--)
   1100 			if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
   1101 				break;
   1102 		fs->fs_maxcluster[cg] = i;
   1103 		goto fail;
   1104 	}
   1105 	/*
   1106 	 * Search the cluster map to find a big enough cluster.
   1107 	 * We take the first one that we find, even if it is larger
   1108 	 * than we need as we prefer to get one close to the previous
   1109 	 * block allocation. We do not search before the current
   1110 	 * preference point as we do not want to allocate a block
   1111 	 * that is allocated before the previous one (as we will
   1112 	 * then have to wait for another pass of the elevator
   1113 	 * algorithm before it will be read). We prefer to fail and
   1114 	 * be recalled to try an allocation in the next cylinder group.
   1115 	 */
   1116 	if (dtog(fs, bpref) != cg)
   1117 		bpref = 0;
   1118 	else
   1119 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1120 	mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
   1121 	map = *mapp++;
   1122 	bit = 1 << (bpref % NBBY);
   1123 	for (run = 0, got = bpref;
   1124 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
   1125 		if ((map & bit) == 0) {
   1126 			run = 0;
   1127 		} else {
   1128 			run++;
   1129 			if (run == len)
   1130 				break;
   1131 		}
   1132 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1133 			bit <<= 1;
   1134 		} else {
   1135 			map = *mapp++;
   1136 			bit = 1;
   1137 		}
   1138 	}
   1139 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
   1140 		goto fail;
   1141 	/*
   1142 	 * Allocate the cluster that we have found.
   1143 	 */
   1144 	for (i = 1; i <= len; i++)
   1145 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1146 			got - run + i))
   1147 			panic("ffs_clusteralloc: map mismatch");
   1148 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1149 	if (dtog(fs, bno) != cg)
   1150 		panic("ffs_clusteralloc: allocated out of group");
   1151 	len = blkstofrags(fs, len);
   1152 	for (i = 0; i < len; i += fs->fs_frag)
   1153 		if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
   1154 			!= bno + i)
   1155 			panic("ffs_clusteralloc: lost block");
   1156 	bdwrite(bp);
   1157 	return (bno);
   1158 
   1159 fail:
   1160 	brelse(bp);
   1161 	return (0);
   1162 }
   1163 
   1164 /*
   1165  * Determine whether an inode can be allocated.
   1166  *
   1167  * Check to see if an inode is available, and if it is,
   1168  * allocate it using the following policy:
   1169  *   1) allocate the requested inode.
   1170  *   2) allocate the next available inode after the requested
   1171  *      inode in the specified cylinder group.
   1172  */
   1173 static ufs_daddr_t
   1174 ffs_nodealloccg(ip, cg, ipref, mode)
   1175 	struct inode *ip;
   1176 	int cg;
   1177 	ufs_daddr_t ipref;
   1178 	int mode;
   1179 {
   1180 	register struct fs *fs;
   1181 	register struct cg *cgp;
   1182 	struct buf *bp;
   1183 	int error, start, len, loc, map, i;
   1184 #ifdef FFS_EI
   1185 	const int needswap = UFS_IPNEEDSWAP(ip);
   1186 #endif
   1187 
   1188 	fs = ip->i_fs;
   1189 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1190 		return (NULL);
   1191 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1192 		(int)fs->fs_cgsize, NOCRED, &bp);
   1193 	if (error) {
   1194 		brelse(bp);
   1195 		return (NULL);
   1196 	}
   1197 	cgp = (struct cg *)bp->b_data;
   1198 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1199 		brelse(bp);
   1200 		return (NULL);
   1201 	}
   1202 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1203 	if (ipref) {
   1204 		ipref %= fs->fs_ipg;
   1205 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1206 			goto gotit;
   1207 	}
   1208 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1209 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1210 		NBBY);
   1211 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1212 	if (loc == 0) {
   1213 		len = start + 1;
   1214 		start = 0;
   1215 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1216 		if (loc == 0) {
   1217 			printf("cg = %d, irotor = %d, fs = %s\n",
   1218 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1219 				fs->fs_fsmnt);
   1220 			panic("ffs_nodealloccg: map corrupted");
   1221 			/* NOTREACHED */
   1222 		}
   1223 	}
   1224 	i = start + len - loc;
   1225 	map = cg_inosused(cgp, needswap)[i];
   1226 	ipref = i * NBBY;
   1227 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1228 		if ((map & i) == 0) {
   1229 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1230 			goto gotit;
   1231 		}
   1232 	}
   1233 	printf("fs = %s\n", fs->fs_fsmnt);
   1234 	panic("ffs_nodealloccg: block not in map");
   1235 	/* NOTREACHED */
   1236 gotit:
   1237 	setbit(cg_inosused(cgp, needswap), ipref);
   1238 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1239 	fs->fs_cstotal.cs_nifree--;
   1240 	fs->fs_cs(fs, cg).cs_nifree --;
   1241 	fs->fs_fmod = 1;
   1242 	if ((mode & IFMT) == IFDIR) {
   1243 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1244 		fs->fs_cstotal.cs_ndir++;
   1245 		fs->fs_cs(fs, cg).cs_ndir++;
   1246 	}
   1247 	bdwrite(bp);
   1248 	return (cg * fs->fs_ipg + ipref);
   1249 }
   1250 
   1251 /*
   1252  * Free a block or fragment.
   1253  *
   1254  * The specified block or fragment is placed back in the
   1255  * free map. If a fragment is deallocated, a possible
   1256  * block reassembly is checked.
   1257  */
   1258 void
   1259 ffs_blkfree(ip, bno, size)
   1260 	register struct inode *ip;
   1261 	ufs_daddr_t bno;
   1262 	long size;
   1263 {
   1264 	register struct fs *fs;
   1265 	register struct cg *cgp;
   1266 	struct buf *bp;
   1267 	ufs_daddr_t blkno;
   1268 	int i, error, cg, blk, frags, bbase;
   1269 	const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
   1270 
   1271 	fs = ip->i_fs;
   1272 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1273 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1274 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1275 		panic("blkfree: bad size");
   1276 	}
   1277 	cg = dtog(fs, bno);
   1278 	if ((u_int)bno >= fs->fs_size) {
   1279 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1280 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1281 		return;
   1282 	}
   1283 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1284 		(int)fs->fs_cgsize, NOCRED, &bp);
   1285 	if (error) {
   1286 		brelse(bp);
   1287 		return;
   1288 	}
   1289 	cgp = (struct cg *)bp->b_data;
   1290 	if (!cg_chkmagic(cgp, needswap)) {
   1291 		brelse(bp);
   1292 		return;
   1293 	}
   1294 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1295 	bno = dtogd(fs, bno);
   1296 	if (size == fs->fs_bsize) {
   1297 		blkno = fragstoblks(fs, bno);
   1298 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1299 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1300 			    ip->i_dev, bno, fs->fs_fsmnt);
   1301 			panic("blkfree: freeing free block");
   1302 		}
   1303 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1304 		ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1305 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1306 		fs->fs_cstotal.cs_nbfree++;
   1307 		fs->fs_cs(fs, cg).cs_nbfree++;
   1308 		i = cbtocylno(fs, bno);
   1309 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1310 			needswap);
   1311 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1312 	} else {
   1313 		bbase = bno - fragnum(fs, bno);
   1314 		/*
   1315 		 * decrement the counts associated with the old frags
   1316 		 */
   1317 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1318 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1319 		/*
   1320 		 * deallocate the fragment
   1321 		 */
   1322 		frags = numfrags(fs, size);
   1323 		for (i = 0; i < frags; i++) {
   1324 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1325 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1326 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1327 				panic("blkfree: freeing free frag");
   1328 			}
   1329 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1330 		}
   1331 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1332 		fs->fs_cstotal.cs_nffree += i;
   1333 		fs->fs_cs(fs, cg).cs_nffree +=i;
   1334 		/*
   1335 		 * add back in counts associated with the new frags
   1336 		 */
   1337 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1338 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1339 		/*
   1340 		 * if a complete block has been reassembled, account for it
   1341 		 */
   1342 		blkno = fragstoblks(fs, bbase);
   1343 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1344 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1345 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1346 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1347 			ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1348 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1349 			fs->fs_cstotal.cs_nbfree++;
   1350 			fs->fs_cs(fs, cg).cs_nbfree++;
   1351 			i = cbtocylno(fs, bbase);
   1352 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
   1353 				needswap);
   1354 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1355 		}
   1356 	}
   1357 	fs->fs_fmod = 1;
   1358 	bdwrite(bp);
   1359 }
   1360 
   1361 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1362 /*
   1363  * Verify allocation of a block or fragment. Returns true if block or
   1364  * fragment is allocated, false if it is free.
   1365  */
   1366 static int
   1367 ffs_checkblk(ip, bno, size)
   1368 	struct inode *ip;
   1369 	ufs_daddr_t bno;
   1370 	long size;
   1371 {
   1372 	struct fs *fs;
   1373 	struct cg *cgp;
   1374 	struct buf *bp;
   1375 	int i, error, frags, free;
   1376 
   1377 	fs = ip->i_fs;
   1378 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1379 		printf("bsize = %d, size = %ld, fs = %s\n",
   1380 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1381 		panic("checkblk: bad size");
   1382 	}
   1383 	if ((u_int)bno >= fs->fs_size)
   1384 		panic("checkblk: bad block %d", bno);
   1385 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1386 		(int)fs->fs_cgsize, NOCRED, &bp);
   1387 	if (error) {
   1388 		brelse(bp);
   1389 		return 0;
   1390 	}
   1391 	cgp = (struct cg *)bp->b_data;
   1392 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
   1393 		brelse(bp);
   1394 		return 0;
   1395 	}
   1396 	bno = dtogd(fs, bno);
   1397 	if (size == fs->fs_bsize) {
   1398 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1399 			fragstoblks(fs, bno));
   1400 	} else {
   1401 		frags = numfrags(fs, size);
   1402 		for (free = 0, i = 0; i < frags; i++)
   1403 			if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
   1404 				free++;
   1405 		if (free != 0 && free != frags)
   1406 			panic("checkblk: partially free fragment");
   1407 	}
   1408 	brelse(bp);
   1409 	return (!free);
   1410 }
   1411 #endif /* DIAGNOSTIC */
   1412 
   1413 /*
   1414  * Free an inode.
   1415  *
   1416  * The specified inode is placed back in the free map.
   1417  */
   1418 int
   1419 ffs_vfree(v)
   1420 	void *v;
   1421 {
   1422 	struct vop_vfree_args /* {
   1423 		struct vnode *a_pvp;
   1424 		ino_t a_ino;
   1425 		int a_mode;
   1426 	} */ *ap = v;
   1427 	register struct fs *fs;
   1428 	register struct cg *cgp;
   1429 	register struct inode *pip;
   1430 	ino_t ino = ap->a_ino;
   1431 	struct buf *bp;
   1432 	int error, cg;
   1433 #ifdef FFS_EI
   1434 	const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
   1435 #endif
   1436 
   1437 	pip = VTOI(ap->a_pvp);
   1438 	fs = pip->i_fs;
   1439 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1440 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1441 		    pip->i_dev, ino, fs->fs_fsmnt);
   1442 	cg = ino_to_cg(fs, ino);
   1443 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1444 		(int)fs->fs_cgsize, NOCRED, &bp);
   1445 	if (error) {
   1446 		brelse(bp);
   1447 		return (0);
   1448 	}
   1449 	cgp = (struct cg *)bp->b_data;
   1450 	if (!cg_chkmagic(cgp, needswap)) {
   1451 		brelse(bp);
   1452 		return (0);
   1453 	}
   1454 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1455 	ino %= fs->fs_ipg;
   1456 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1457 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1458 		    pip->i_dev, ino, fs->fs_fsmnt);
   1459 		if (fs->fs_ronly == 0)
   1460 			panic("ifree: freeing free inode");
   1461 	}
   1462 	clrbit(cg_inosused(cgp, needswap), ino);
   1463 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1464 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1465 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1466 	fs->fs_cstotal.cs_nifree++;
   1467 	fs->fs_cs(fs, cg).cs_nifree++;
   1468 	if ((ap->a_mode & IFMT) == IFDIR) {
   1469 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1470 		fs->fs_cstotal.cs_ndir--;
   1471 		fs->fs_cs(fs, cg).cs_ndir--;
   1472 	}
   1473 	fs->fs_fmod = 1;
   1474 	bdwrite(bp);
   1475 	return (0);
   1476 }
   1477 
   1478 /*
   1479  * Find a block of the specified size in the specified cylinder group.
   1480  *
   1481  * It is a panic if a request is made to find a block if none are
   1482  * available.
   1483  */
   1484 static ufs_daddr_t
   1485 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
   1486 	int needswap;
   1487 	register struct fs *fs;
   1488 	register struct cg *cgp;
   1489 	ufs_daddr_t bpref;
   1490 	int allocsiz;
   1491 {
   1492 	ufs_daddr_t bno;
   1493 	int start, len, loc, i;
   1494 	int blk, field, subfield, pos;
   1495 	int ostart, olen;
   1496 
   1497 	/*
   1498 	 * find the fragment by searching through the free block
   1499 	 * map for an appropriate bit pattern
   1500 	 */
   1501 	if (bpref)
   1502 		start = dtogd(fs, bpref) / NBBY;
   1503 	else
   1504 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1505 	len = howmany(fs->fs_fpg, NBBY) - start;
   1506 	ostart = start;
   1507 	olen = len;
   1508 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1509 		(u_char *)fragtbl[fs->fs_frag],
   1510 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1511 	if (loc == 0) {
   1512 		len = start + 1;
   1513 		start = 0;
   1514 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1515 			(u_char *)fragtbl[fs->fs_frag],
   1516 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1517 		if (loc == 0) {
   1518 			printf("start = %d, len = %d, fs = %s\n",
   1519 			    ostart, olen, fs->fs_fsmnt);
   1520 			printf("offset=%d %d\n",
   1521 				ufs_rw32(cgp->cg_freeoff, needswap),
   1522 				(u_int32_t)cg_blksfree(cgp, needswap) - (u_int32_t)cgp);
   1523 			panic("ffs_alloccg: map corrupted");
   1524 			/* NOTREACHED */
   1525 		}
   1526 	}
   1527 	bno = (start + len - loc) * NBBY;
   1528 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1529 	/*
   1530 	 * found the byte in the map
   1531 	 * sift through the bits to find the selected frag
   1532 	 */
   1533 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1534 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1535 		blk <<= 1;
   1536 		field = around[allocsiz];
   1537 		subfield = inside[allocsiz];
   1538 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1539 			if ((blk & field) == subfield)
   1540 				return (bno + pos);
   1541 			field <<= 1;
   1542 			subfield <<= 1;
   1543 		}
   1544 	}
   1545 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1546 	panic("ffs_alloccg: block not in map");
   1547 	return (-1);
   1548 }
   1549 
   1550 /*
   1551  * Update the cluster map because of an allocation or free.
   1552  *
   1553  * Cnt == 1 means free; cnt == -1 means allocating.
   1554  */
   1555 void
   1556 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
   1557 	int needswap;
   1558 	struct fs *fs;
   1559 	struct cg *cgp;
   1560 	ufs_daddr_t blkno;
   1561 	int cnt;
   1562 {
   1563 	int32_t *sump;
   1564 	int32_t *lp;
   1565 	u_char *freemapp, *mapp;
   1566 	int i, start, end, forw, back, map, bit;
   1567 
   1568 	if (fs->fs_contigsumsize <= 0)
   1569 		return;
   1570 	freemapp = cg_clustersfree(cgp, needswap);
   1571 	sump = cg_clustersum(cgp, needswap);
   1572 	/*
   1573 	 * Allocate or clear the actual block.
   1574 	 */
   1575 	if (cnt > 0)
   1576 		setbit(freemapp, blkno);
   1577 	else
   1578 		clrbit(freemapp, blkno);
   1579 	/*
   1580 	 * Find the size of the cluster going forward.
   1581 	 */
   1582 	start = blkno + 1;
   1583 	end = start + fs->fs_contigsumsize;
   1584 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1585 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1586 	mapp = &freemapp[start / NBBY];
   1587 	map = *mapp++;
   1588 	bit = 1 << (start % NBBY);
   1589 	for (i = start; i < end; i++) {
   1590 		if ((map & bit) == 0)
   1591 			break;
   1592 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1593 			bit <<= 1;
   1594 		} else {
   1595 			map = *mapp++;
   1596 			bit = 1;
   1597 		}
   1598 	}
   1599 	forw = i - start;
   1600 	/*
   1601 	 * Find the size of the cluster going backward.
   1602 	 */
   1603 	start = blkno - 1;
   1604 	end = start - fs->fs_contigsumsize;
   1605 	if (end < 0)
   1606 		end = -1;
   1607 	mapp = &freemapp[start / NBBY];
   1608 	map = *mapp--;
   1609 	bit = 1 << (start % NBBY);
   1610 	for (i = start; i > end; i--) {
   1611 		if ((map & bit) == 0)
   1612 			break;
   1613 		if ((i & (NBBY - 1)) != 0) {
   1614 			bit >>= 1;
   1615 		} else {
   1616 			map = *mapp--;
   1617 			bit = 1 << (NBBY - 1);
   1618 		}
   1619 	}
   1620 	back = start - i;
   1621 	/*
   1622 	 * Account for old cluster and the possibly new forward and
   1623 	 * back clusters.
   1624 	 */
   1625 	i = back + forw + 1;
   1626 	if (i > fs->fs_contigsumsize)
   1627 		i = fs->fs_contigsumsize;
   1628 	ufs_add32(sump[i], cnt, needswap);
   1629 	if (back > 0)
   1630 		ufs_add32(sump[back], -cnt, needswap);
   1631 	if (forw > 0)
   1632 		ufs_add32(sump[forw], -cnt, needswap);
   1633 
   1634 	/*
   1635 	 * Update cluster summary information.
   1636 	 */
   1637 	lp = &sump[fs->fs_contigsumsize];
   1638 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1639 		if (ufs_rw32(*lp--, needswap) > 0)
   1640 			break;
   1641 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1642 }
   1643 
   1644 /*
   1645  * Fserr prints the name of a file system with an error diagnostic.
   1646  *
   1647  * The form of the error message is:
   1648  *	fs: error message
   1649  */
   1650 static void
   1651 ffs_fserr(fs, uid, cp)
   1652 	struct fs *fs;
   1653 	u_int uid;
   1654 	char *cp;
   1655 {
   1656 
   1657 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1658 }
   1659