ffs_alloc.c revision 1.2 1 /* $NetBSD: ffs_alloc.c,v 1.2 1994/06/29 06:46:26 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46
47 #include <vm/vm.h>
48
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54
55 extern u_long nextgennumber;
56
57 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
58 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
59 static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
60 static ino_t ffs_dirpref __P((struct fs *));
61 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
62 static void ffs_fserr __P((struct fs *, u_int, char *));
63 static u_long ffs_hashalloc
64 __P((struct inode *, int, long, int, u_long (*)()));
65 static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67
68 /*
69 * Allocate a block in the file system.
70 *
71 * The size of the requested block is given, which must be some
72 * multiple of fs_fsize and <= fs_bsize.
73 * A preference may be optionally specified. If a preference is given
74 * the following hierarchy is used to allocate a block:
75 * 1) allocate the requested block.
76 * 2) allocate a rotationally optimal block in the same cylinder.
77 * 3) allocate a block in the same cylinder group.
78 * 4) quadradically rehash into other cylinder groups, until an
79 * available block is located.
80 * If no block preference is given the following heirarchy is used
81 * to allocate a block:
82 * 1) allocate a block in the cylinder group that contains the
83 * inode for the file.
84 * 2) quadradically rehash into other cylinder groups, until an
85 * available block is located.
86 */
87 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
88 register struct inode *ip;
89 daddr_t lbn, bpref;
90 int size;
91 struct ucred *cred;
92 daddr_t *bnp;
93 {
94 register struct fs *fs;
95 daddr_t bno;
96 int cg, error;
97
98 *bnp = 0;
99 fs = ip->i_fs;
100 #ifdef DIAGNOSTIC
101 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
102 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
103 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
104 panic("ffs_alloc: bad size");
105 }
106 if (cred == NOCRED)
107 panic("ffs_alloc: missing credential\n");
108 #endif /* DIAGNOSTIC */
109 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
110 goto nospace;
111 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
112 goto nospace;
113 #ifdef QUOTA
114 if (error = chkdq(ip, (long)btodb(size), cred, 0))
115 return (error);
116 #endif
117 if (bpref >= fs->fs_size)
118 bpref = 0;
119 if (bpref == 0)
120 cg = ino_to_cg(fs, ip->i_number);
121 else
122 cg = dtog(fs, bpref);
123 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
124 (u_long (*)())ffs_alloccg);
125 if (bno > 0) {
126 ip->i_blocks += btodb(size);
127 ip->i_flag |= IN_CHANGE | IN_UPDATE;
128 *bnp = bno;
129 return (0);
130 }
131 #ifdef QUOTA
132 /*
133 * Restore user's disk quota because allocation failed.
134 */
135 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
136 #endif
137 nospace:
138 ffs_fserr(fs, cred->cr_uid, "file system full");
139 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
140 return (ENOSPC);
141 }
142
143 /*
144 * Reallocate a fragment to a bigger size
145 *
146 * The number and size of the old block is given, and a preference
147 * and new size is also specified. The allocator attempts to extend
148 * the original block. Failing that, the regular block allocator is
149 * invoked to get an appropriate block.
150 */
151 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
152 register struct inode *ip;
153 daddr_t lbprev;
154 daddr_t bpref;
155 int osize, nsize;
156 struct ucred *cred;
157 struct buf **bpp;
158 {
159 register struct fs *fs;
160 struct buf *bp;
161 int cg, request, error;
162 daddr_t bprev, bno;
163
164 *bpp = 0;
165 fs = ip->i_fs;
166 #ifdef DIAGNOSTIC
167 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
168 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
169 printf(
170 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
171 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
172 panic("ffs_realloccg: bad size");
173 }
174 if (cred == NOCRED)
175 panic("ffs_realloccg: missing credential\n");
176 #endif /* DIAGNOSTIC */
177 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
178 goto nospace;
179 if ((bprev = ip->i_db[lbprev]) == 0) {
180 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
181 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
182 panic("ffs_realloccg: bad bprev");
183 }
184 /*
185 * Allocate the extra space in the buffer.
186 */
187 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
188 brelse(bp);
189 return (error);
190 }
191 #ifdef QUOTA
192 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
193 brelse(bp);
194 return (error);
195 }
196 #endif
197 /*
198 * Check for extension in the existing location.
199 */
200 cg = dtog(fs, bprev);
201 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
202 if (bp->b_blkno != fsbtodb(fs, bno))
203 panic("bad blockno");
204 ip->i_blocks += btodb(nsize - osize);
205 ip->i_flag |= IN_CHANGE | IN_UPDATE;
206 allocbuf(bp, nsize);
207 bp->b_flags |= B_DONE;
208 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
209 *bpp = bp;
210 return (0);
211 }
212 /*
213 * Allocate a new disk location.
214 */
215 if (bpref >= fs->fs_size)
216 bpref = 0;
217 switch ((int)fs->fs_optim) {
218 case FS_OPTSPACE:
219 /*
220 * Allocate an exact sized fragment. Although this makes
221 * best use of space, we will waste time relocating it if
222 * the file continues to grow. If the fragmentation is
223 * less than half of the minimum free reserve, we choose
224 * to begin optimizing for time.
225 */
226 request = nsize;
227 if (fs->fs_minfree < 5 ||
228 fs->fs_cstotal.cs_nffree >
229 fs->fs_dsize * fs->fs_minfree / (2 * 100))
230 break;
231 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
232 fs->fs_fsmnt);
233 fs->fs_optim = FS_OPTTIME;
234 break;
235 case FS_OPTTIME:
236 /*
237 * At this point we have discovered a file that is trying to
238 * grow a small fragment to a larger fragment. To save time,
239 * we allocate a full sized block, then free the unused portion.
240 * If the file continues to grow, the `ffs_fragextend' call
241 * above will be able to grow it in place without further
242 * copying. If aberrant programs cause disk fragmentation to
243 * grow within 2% of the free reserve, we choose to begin
244 * optimizing for space.
245 */
246 request = fs->fs_bsize;
247 if (fs->fs_cstotal.cs_nffree <
248 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
249 break;
250 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
251 fs->fs_fsmnt);
252 fs->fs_optim = FS_OPTSPACE;
253 break;
254 default:
255 printf("dev = 0x%x, optim = %d, fs = %s\n",
256 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
257 panic("ffs_realloccg: bad optim");
258 /* NOTREACHED */
259 }
260 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
261 (u_long (*)())ffs_alloccg);
262 if (bno > 0) {
263 bp->b_blkno = fsbtodb(fs, bno);
264 (void) vnode_pager_uncache(ITOV(ip));
265 ffs_blkfree(ip, bprev, (long)osize);
266 if (nsize < request)
267 ffs_blkfree(ip, bno + numfrags(fs, nsize),
268 (long)(request - nsize));
269 ip->i_blocks += btodb(nsize - osize);
270 ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 allocbuf(bp, nsize);
272 bp->b_flags |= B_DONE;
273 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
274 *bpp = bp;
275 return (0);
276 }
277 #ifdef QUOTA
278 /*
279 * Restore user's disk quota because allocation failed.
280 */
281 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
282 #endif
283 brelse(bp);
284 nospace:
285 /*
286 * no space available
287 */
288 ffs_fserr(fs, cred->cr_uid, "file system full");
289 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 return (ENOSPC);
291 }
292
293 /*
294 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
295 *
296 * The vnode and an array of buffer pointers for a range of sequential
297 * logical blocks to be made contiguous is given. The allocator attempts
298 * to find a range of sequential blocks starting as close as possible to
299 * an fs_rotdelay offset from the end of the allocation for the logical
300 * block immediately preceeding the current range. If successful, the
301 * physical block numbers in the buffer pointers and in the inode are
302 * changed to reflect the new allocation. If unsuccessful, the allocation
303 * is left unchanged. The success in doing the reallocation is returned.
304 * Note that the error return is not reflected back to the user. Rather
305 * the previous block allocation will be used.
306 */
307 #include <sys/sysctl.h>
308 int doasyncfree = 1;
309
310 #ifdef DEBUG
311 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
312 #endif
313
314 int
315 ffs_reallocblks(ap)
316 struct vop_reallocblks_args /* {
317 struct vnode *a_vp;
318 struct cluster_save *a_buflist;
319 } */ *ap;
320 {
321 struct fs *fs;
322 struct inode *ip;
323 struct vnode *vp;
324 struct buf *sbp, *ebp;
325 daddr_t *bap, *sbap, *ebap;
326 struct cluster_save *buflist;
327 daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
328 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
329 int i, len, start_lvl, end_lvl, pref, ssize;
330
331 vp = ap->a_vp;
332 ip = VTOI(vp);
333 fs = ip->i_fs;
334 if (fs->fs_contigsumsize <= 0)
335 return (ENOSPC);
336 buflist = ap->a_buflist;
337 len = buflist->bs_nchildren;
338 start_lbn = buflist->bs_children[0]->b_lblkno;
339 end_lbn = start_lbn + len - 1;
340 #ifdef DIAGNOSTIC
341 for (i = 1; i < len; i++)
342 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
343 panic("ffs_reallocblks: non-cluster");
344 #endif
345 /*
346 * If the latest allocation is in a new cylinder group, assume that
347 * the filesystem has decided to move and do not force it back to
348 * the previous cylinder group.
349 */
350 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
351 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
352 return (ENOSPC);
353 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
354 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
355 return (ENOSPC);
356 /*
357 * Get the starting offset and block map for the first block.
358 */
359 if (start_lvl == 0) {
360 sbap = &ip->i_db[0];
361 soff = start_lbn;
362 } else {
363 idp = &start_ap[start_lvl - 1];
364 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
365 brelse(sbp);
366 return (ENOSPC);
367 }
368 sbap = (daddr_t *)sbp->b_data;
369 soff = idp->in_off;
370 }
371 /*
372 * Find the preferred location for the cluster.
373 */
374 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
375 /*
376 * If the block range spans two block maps, get the second map.
377 */
378 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
379 ssize = len;
380 } else {
381 #ifdef DIAGNOSTIC
382 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
383 panic("ffs_reallocblk: start == end");
384 #endif
385 ssize = len - (idp->in_off + 1);
386 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
387 goto fail;
388 ebap = (daddr_t *)ebp->b_data;
389 }
390 /*
391 * Search the block map looking for an allocation of the desired size.
392 */
393 if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
394 len, (u_long (*)())ffs_clusteralloc)) == 0)
395 goto fail;
396 /*
397 * We have found a new contiguous block.
398 *
399 * First we have to replace the old block pointers with the new
400 * block pointers in the inode and indirect blocks associated
401 * with the file.
402 */
403 blkno = newblk;
404 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
405 if (i == ssize)
406 bap = ebap;
407 #ifdef DIAGNOSTIC
408 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
409 panic("ffs_reallocblks: alloc mismatch");
410 #endif
411 *bap++ = blkno;
412 }
413 /*
414 * Next we must write out the modified inode and indirect blocks.
415 * For strict correctness, the writes should be synchronous since
416 * the old block values may have been written to disk. In practise
417 * they are almost never written, but if we are concerned about
418 * strict correctness, the `doasyncfree' flag should be set to zero.
419 *
420 * The test on `doasyncfree' should be changed to test a flag
421 * that shows whether the associated buffers and inodes have
422 * been written. The flag should be set when the cluster is
423 * started and cleared whenever the buffer or inode is flushed.
424 * We can then check below to see if it is set, and do the
425 * synchronous write only when it has been cleared.
426 */
427 if (sbap != &ip->i_db[0]) {
428 if (doasyncfree)
429 bdwrite(sbp);
430 else
431 bwrite(sbp);
432 } else {
433 ip->i_flag |= IN_CHANGE | IN_UPDATE;
434 if (!doasyncfree)
435 VOP_UPDATE(vp, &time, &time, MNT_WAIT);
436 }
437 if (ssize < len)
438 if (doasyncfree)
439 bdwrite(ebp);
440 else
441 bwrite(ebp);
442 /*
443 * Last, free the old blocks and assign the new blocks to the buffers.
444 */
445 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
446 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
447 fs->fs_bsize);
448 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
449 }
450 return (0);
451
452 fail:
453 if (ssize < len)
454 brelse(ebp);
455 if (sbap != &ip->i_db[0])
456 brelse(sbp);
457 return (ENOSPC);
458 }
459
460 /*
461 * Allocate an inode in the file system.
462 *
463 * If allocating a directory, use ffs_dirpref to select the inode.
464 * If allocating in a directory, the following hierarchy is followed:
465 * 1) allocate the preferred inode.
466 * 2) allocate an inode in the same cylinder group.
467 * 3) quadradically rehash into other cylinder groups, until an
468 * available inode is located.
469 * If no inode preference is given the following heirarchy is used
470 * to allocate an inode:
471 * 1) allocate an inode in cylinder group 0.
472 * 2) quadradically rehash into other cylinder groups, until an
473 * available inode is located.
474 */
475 ffs_valloc(ap)
476 struct vop_valloc_args /* {
477 struct vnode *a_pvp;
478 int a_mode;
479 struct ucred *a_cred;
480 struct vnode **a_vpp;
481 } */ *ap;
482 {
483 register struct vnode *pvp = ap->a_pvp;
484 register struct inode *pip;
485 register struct fs *fs;
486 register struct inode *ip;
487 mode_t mode = ap->a_mode;
488 ino_t ino, ipref;
489 int cg, error;
490
491 *ap->a_vpp = NULL;
492 pip = VTOI(pvp);
493 fs = pip->i_fs;
494 if (fs->fs_cstotal.cs_nifree == 0)
495 goto noinodes;
496
497 if ((mode & IFMT) == IFDIR)
498 ipref = ffs_dirpref(fs);
499 else
500 ipref = pip->i_number;
501 if (ipref >= fs->fs_ncg * fs->fs_ipg)
502 ipref = 0;
503 cg = ino_to_cg(fs, ipref);
504 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
505 if (ino == 0)
506 goto noinodes;
507 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
508 if (error) {
509 VOP_VFREE(pvp, ino, mode);
510 return (error);
511 }
512 ip = VTOI(*ap->a_vpp);
513 if (ip->i_mode) {
514 printf("mode = 0%o, inum = %d, fs = %s\n",
515 ip->i_mode, ip->i_number, fs->fs_fsmnt);
516 panic("ffs_valloc: dup alloc");
517 }
518 if (ip->i_blocks) { /* XXX */
519 printf("free inode %s/%d had %d blocks\n",
520 fs->fs_fsmnt, ino, ip->i_blocks);
521 ip->i_blocks = 0;
522 }
523 ip->i_flags = 0;
524 /*
525 * Set up a new generation number for this inode.
526 */
527 if (++nextgennumber < (u_long)time.tv_sec)
528 nextgennumber = time.tv_sec;
529 ip->i_gen = nextgennumber;
530 return (0);
531 noinodes:
532 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
533 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
534 return (ENOSPC);
535 }
536
537 /*
538 * Find a cylinder to place a directory.
539 *
540 * The policy implemented by this algorithm is to select from
541 * among those cylinder groups with above the average number of
542 * free inodes, the one with the smallest number of directories.
543 */
544 static ino_t
545 ffs_dirpref(fs)
546 register struct fs *fs;
547 {
548 int cg, minndir, mincg, avgifree;
549
550 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
551 minndir = fs->fs_ipg;
552 mincg = 0;
553 for (cg = 0; cg < fs->fs_ncg; cg++)
554 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
555 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
556 mincg = cg;
557 minndir = fs->fs_cs(fs, cg).cs_ndir;
558 }
559 return ((ino_t)(fs->fs_ipg * mincg));
560 }
561
562 /*
563 * Select the desired position for the next block in a file. The file is
564 * logically divided into sections. The first section is composed of the
565 * direct blocks. Each additional section contains fs_maxbpg blocks.
566 *
567 * If no blocks have been allocated in the first section, the policy is to
568 * request a block in the same cylinder group as the inode that describes
569 * the file. If no blocks have been allocated in any other section, the
570 * policy is to place the section in a cylinder group with a greater than
571 * average number of free blocks. An appropriate cylinder group is found
572 * by using a rotor that sweeps the cylinder groups. When a new group of
573 * blocks is needed, the sweep begins in the cylinder group following the
574 * cylinder group from which the previous allocation was made. The sweep
575 * continues until a cylinder group with greater than the average number
576 * of free blocks is found. If the allocation is for the first block in an
577 * indirect block, the information on the previous allocation is unavailable;
578 * here a best guess is made based upon the logical block number being
579 * allocated.
580 *
581 * If a section is already partially allocated, the policy is to
582 * contiguously allocate fs_maxcontig blocks. The end of one of these
583 * contiguous blocks and the beginning of the next is physically separated
584 * so that the disk head will be in transit between them for at least
585 * fs_rotdelay milliseconds. This is to allow time for the processor to
586 * schedule another I/O transfer.
587 */
588 daddr_t
589 ffs_blkpref(ip, lbn, indx, bap)
590 struct inode *ip;
591 daddr_t lbn;
592 int indx;
593 daddr_t *bap;
594 {
595 register struct fs *fs;
596 register int cg;
597 int avgbfree, startcg;
598 daddr_t nextblk;
599
600 fs = ip->i_fs;
601 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
602 if (lbn < NDADDR) {
603 cg = ino_to_cg(fs, ip->i_number);
604 return (fs->fs_fpg * cg + fs->fs_frag);
605 }
606 /*
607 * Find a cylinder with greater than average number of
608 * unused data blocks.
609 */
610 if (indx == 0 || bap[indx - 1] == 0)
611 startcg =
612 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
613 else
614 startcg = dtog(fs, bap[indx - 1]) + 1;
615 startcg %= fs->fs_ncg;
616 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
617 for (cg = startcg; cg < fs->fs_ncg; cg++)
618 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
619 fs->fs_cgrotor = cg;
620 return (fs->fs_fpg * cg + fs->fs_frag);
621 }
622 for (cg = 0; cg <= startcg; cg++)
623 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
624 fs->fs_cgrotor = cg;
625 return (fs->fs_fpg * cg + fs->fs_frag);
626 }
627 return (NULL);
628 }
629 /*
630 * One or more previous blocks have been laid out. If less
631 * than fs_maxcontig previous blocks are contiguous, the
632 * next block is requested contiguously, otherwise it is
633 * requested rotationally delayed by fs_rotdelay milliseconds.
634 */
635 nextblk = bap[indx - 1] + fs->fs_frag;
636 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
637 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
638 return (nextblk);
639 if (fs->fs_rotdelay != 0)
640 /*
641 * Here we convert ms of delay to frags as:
642 * (frags) = (ms) * (rev/sec) * (sect/rev) /
643 * ((sect/frag) * (ms/sec))
644 * then round up to the next block.
645 */
646 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
647 (NSPF(fs) * 1000), fs->fs_frag);
648 return (nextblk);
649 }
650
651 /*
652 * Implement the cylinder overflow algorithm.
653 *
654 * The policy implemented by this algorithm is:
655 * 1) allocate the block in its requested cylinder group.
656 * 2) quadradically rehash on the cylinder group number.
657 * 3) brute force search for a free block.
658 */
659 /*VARARGS5*/
660 static u_long
661 ffs_hashalloc(ip, cg, pref, size, allocator)
662 struct inode *ip;
663 int cg;
664 long pref;
665 int size; /* size for data blocks, mode for inodes */
666 u_long (*allocator)();
667 {
668 register struct fs *fs;
669 long result;
670 int i, icg = cg;
671
672 fs = ip->i_fs;
673 /*
674 * 1: preferred cylinder group
675 */
676 result = (*allocator)(ip, cg, pref, size);
677 if (result)
678 return (result);
679 /*
680 * 2: quadratic rehash
681 */
682 for (i = 1; i < fs->fs_ncg; i *= 2) {
683 cg += i;
684 if (cg >= fs->fs_ncg)
685 cg -= fs->fs_ncg;
686 result = (*allocator)(ip, cg, 0, size);
687 if (result)
688 return (result);
689 }
690 /*
691 * 3: brute force search
692 * Note that we start at i == 2, since 0 was checked initially,
693 * and 1 is always checked in the quadratic rehash.
694 */
695 cg = (icg + 2) % fs->fs_ncg;
696 for (i = 2; i < fs->fs_ncg; i++) {
697 result = (*allocator)(ip, cg, 0, size);
698 if (result)
699 return (result);
700 cg++;
701 if (cg == fs->fs_ncg)
702 cg = 0;
703 }
704 return (NULL);
705 }
706
707 /*
708 * Determine whether a fragment can be extended.
709 *
710 * Check to see if the necessary fragments are available, and
711 * if they are, allocate them.
712 */
713 static daddr_t
714 ffs_fragextend(ip, cg, bprev, osize, nsize)
715 struct inode *ip;
716 int cg;
717 long bprev;
718 int osize, nsize;
719 {
720 register struct fs *fs;
721 register struct cg *cgp;
722 struct buf *bp;
723 long bno;
724 int frags, bbase;
725 int i, error;
726
727 fs = ip->i_fs;
728 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
729 return (NULL);
730 frags = numfrags(fs, nsize);
731 bbase = fragnum(fs, bprev);
732 if (bbase > fragnum(fs, (bprev + frags - 1))) {
733 /* cannot extend across a block boundary */
734 return (NULL);
735 }
736 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
737 (int)fs->fs_cgsize, NOCRED, &bp);
738 if (error) {
739 brelse(bp);
740 return (NULL);
741 }
742 cgp = (struct cg *)bp->b_data;
743 if (!cg_chkmagic(cgp)) {
744 brelse(bp);
745 return (NULL);
746 }
747 cgp->cg_time = time.tv_sec;
748 bno = dtogd(fs, bprev);
749 for (i = numfrags(fs, osize); i < frags; i++)
750 if (isclr(cg_blksfree(cgp), bno + i)) {
751 brelse(bp);
752 return (NULL);
753 }
754 /*
755 * the current fragment can be extended
756 * deduct the count on fragment being extended into
757 * increase the count on the remaining fragment (if any)
758 * allocate the extended piece
759 */
760 for (i = frags; i < fs->fs_frag - bbase; i++)
761 if (isclr(cg_blksfree(cgp), bno + i))
762 break;
763 cgp->cg_frsum[i - numfrags(fs, osize)]--;
764 if (i != frags)
765 cgp->cg_frsum[i - frags]++;
766 for (i = numfrags(fs, osize); i < frags; i++) {
767 clrbit(cg_blksfree(cgp), bno + i);
768 cgp->cg_cs.cs_nffree--;
769 fs->fs_cstotal.cs_nffree--;
770 fs->fs_cs(fs, cg).cs_nffree--;
771 }
772 fs->fs_fmod = 1;
773 bdwrite(bp);
774 return (bprev);
775 }
776
777 /*
778 * Determine whether a block can be allocated.
779 *
780 * Check to see if a block of the appropriate size is available,
781 * and if it is, allocate it.
782 */
783 static daddr_t
784 ffs_alloccg(ip, cg, bpref, size)
785 struct inode *ip;
786 int cg;
787 daddr_t bpref;
788 int size;
789 {
790 register struct fs *fs;
791 register struct cg *cgp;
792 struct buf *bp;
793 register int i;
794 int error, bno, frags, allocsiz;
795
796 fs = ip->i_fs;
797 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
798 return (NULL);
799 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
800 (int)fs->fs_cgsize, NOCRED, &bp);
801 if (error) {
802 brelse(bp);
803 return (NULL);
804 }
805 cgp = (struct cg *)bp->b_data;
806 if (!cg_chkmagic(cgp) ||
807 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
808 brelse(bp);
809 return (NULL);
810 }
811 cgp->cg_time = time.tv_sec;
812 if (size == fs->fs_bsize) {
813 bno = ffs_alloccgblk(fs, cgp, bpref);
814 bdwrite(bp);
815 return (bno);
816 }
817 /*
818 * check to see if any fragments are already available
819 * allocsiz is the size which will be allocated, hacking
820 * it down to a smaller size if necessary
821 */
822 frags = numfrags(fs, size);
823 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
824 if (cgp->cg_frsum[allocsiz] != 0)
825 break;
826 if (allocsiz == fs->fs_frag) {
827 /*
828 * no fragments were available, so a block will be
829 * allocated, and hacked up
830 */
831 if (cgp->cg_cs.cs_nbfree == 0) {
832 brelse(bp);
833 return (NULL);
834 }
835 bno = ffs_alloccgblk(fs, cgp, bpref);
836 bpref = dtogd(fs, bno);
837 for (i = frags; i < fs->fs_frag; i++)
838 setbit(cg_blksfree(cgp), bpref + i);
839 i = fs->fs_frag - frags;
840 cgp->cg_cs.cs_nffree += i;
841 fs->fs_cstotal.cs_nffree += i;
842 fs->fs_cs(fs, cg).cs_nffree += i;
843 fs->fs_fmod = 1;
844 cgp->cg_frsum[i]++;
845 bdwrite(bp);
846 return (bno);
847 }
848 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
849 if (bno < 0) {
850 brelse(bp);
851 return (NULL);
852 }
853 for (i = 0; i < frags; i++)
854 clrbit(cg_blksfree(cgp), bno + i);
855 cgp->cg_cs.cs_nffree -= frags;
856 fs->fs_cstotal.cs_nffree -= frags;
857 fs->fs_cs(fs, cg).cs_nffree -= frags;
858 fs->fs_fmod = 1;
859 cgp->cg_frsum[allocsiz]--;
860 if (frags != allocsiz)
861 cgp->cg_frsum[allocsiz - frags]++;
862 bdwrite(bp);
863 return (cg * fs->fs_fpg + bno);
864 }
865
866 /*
867 * Allocate a block in a cylinder group.
868 *
869 * This algorithm implements the following policy:
870 * 1) allocate the requested block.
871 * 2) allocate a rotationally optimal block in the same cylinder.
872 * 3) allocate the next available block on the block rotor for the
873 * specified cylinder group.
874 * Note that this routine only allocates fs_bsize blocks; these
875 * blocks may be fragmented by the routine that allocates them.
876 */
877 static daddr_t
878 ffs_alloccgblk(fs, cgp, bpref)
879 register struct fs *fs;
880 register struct cg *cgp;
881 daddr_t bpref;
882 {
883 daddr_t bno, blkno;
884 int cylno, pos, delta;
885 short *cylbp;
886 register int i;
887
888 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
889 bpref = cgp->cg_rotor;
890 goto norot;
891 }
892 bpref = blknum(fs, bpref);
893 bpref = dtogd(fs, bpref);
894 /*
895 * if the requested block is available, use it
896 */
897 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
898 bno = bpref;
899 goto gotit;
900 }
901 /*
902 * check for a block available on the same cylinder
903 */
904 cylno = cbtocylno(fs, bpref);
905 if (cg_blktot(cgp)[cylno] == 0)
906 goto norot;
907 if (fs->fs_cpc == 0) {
908 /*
909 * Block layout information is not available.
910 * Leaving bpref unchanged means we take the
911 * next available free block following the one
912 * we just allocated. Hopefully this will at
913 * least hit a track cache on drives of unknown
914 * geometry (e.g. SCSI).
915 */
916 goto norot;
917 }
918 /*
919 * check the summary information to see if a block is
920 * available in the requested cylinder starting at the
921 * requested rotational position and proceeding around.
922 */
923 cylbp = cg_blks(fs, cgp, cylno);
924 pos = cbtorpos(fs, bpref);
925 for (i = pos; i < fs->fs_nrpos; i++)
926 if (cylbp[i] > 0)
927 break;
928 if (i == fs->fs_nrpos)
929 for (i = 0; i < pos; i++)
930 if (cylbp[i] > 0)
931 break;
932 if (cylbp[i] > 0) {
933 /*
934 * found a rotational position, now find the actual
935 * block. A panic if none is actually there.
936 */
937 pos = cylno % fs->fs_cpc;
938 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
939 if (fs_postbl(fs, pos)[i] == -1) {
940 printf("pos = %d, i = %d, fs = %s\n",
941 pos, i, fs->fs_fsmnt);
942 panic("ffs_alloccgblk: cyl groups corrupted");
943 }
944 for (i = fs_postbl(fs, pos)[i];; ) {
945 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
946 bno = blkstofrags(fs, (bno + i));
947 goto gotit;
948 }
949 delta = fs_rotbl(fs)[i];
950 if (delta <= 0 ||
951 delta + i > fragstoblks(fs, fs->fs_fpg))
952 break;
953 i += delta;
954 }
955 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
956 panic("ffs_alloccgblk: can't find blk in cyl");
957 }
958 norot:
959 /*
960 * no blocks in the requested cylinder, so take next
961 * available one in this cylinder group.
962 */
963 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
964 if (bno < 0)
965 return (NULL);
966 cgp->cg_rotor = bno;
967 gotit:
968 blkno = fragstoblks(fs, bno);
969 ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
970 ffs_clusteracct(fs, cgp, blkno, -1);
971 cgp->cg_cs.cs_nbfree--;
972 fs->fs_cstotal.cs_nbfree--;
973 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
974 cylno = cbtocylno(fs, bno);
975 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
976 cg_blktot(cgp)[cylno]--;
977 fs->fs_fmod = 1;
978 return (cgp->cg_cgx * fs->fs_fpg + bno);
979 }
980
981 /*
982 * Determine whether a cluster can be allocated.
983 *
984 * We do not currently check for optimal rotational layout if there
985 * are multiple choices in the same cylinder group. Instead we just
986 * take the first one that we find following bpref.
987 */
988 static daddr_t
989 ffs_clusteralloc(ip, cg, bpref, len)
990 struct inode *ip;
991 int cg;
992 daddr_t bpref;
993 int len;
994 {
995 register struct fs *fs;
996 register struct cg *cgp;
997 struct buf *bp;
998 int i, run, bno, bit, map;
999 u_char *mapp;
1000
1001 fs = ip->i_fs;
1002 if (fs->fs_cs(fs, cg).cs_nbfree < len)
1003 return (NULL);
1004 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1005 NOCRED, &bp))
1006 goto fail;
1007 cgp = (struct cg *)bp->b_data;
1008 if (!cg_chkmagic(cgp))
1009 goto fail;
1010 /*
1011 * Check to see if a cluster of the needed size (or bigger) is
1012 * available in this cylinder group.
1013 */
1014 for (i = len; i <= fs->fs_contigsumsize; i++)
1015 if (cg_clustersum(cgp)[i] > 0)
1016 break;
1017 if (i > fs->fs_contigsumsize)
1018 goto fail;
1019 /*
1020 * Search the cluster map to find a big enough cluster.
1021 * We take the first one that we find, even if it is larger
1022 * than we need as we prefer to get one close to the previous
1023 * block allocation. We do not search before the current
1024 * preference point as we do not want to allocate a block
1025 * that is allocated before the previous one (as we will
1026 * then have to wait for another pass of the elevator
1027 * algorithm before it will be read). We prefer to fail and
1028 * be recalled to try an allocation in the next cylinder group.
1029 */
1030 if (dtog(fs, bpref) != cg)
1031 bpref = 0;
1032 else
1033 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1034 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1035 map = *mapp++;
1036 bit = 1 << (bpref % NBBY);
1037 for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1038 if ((map & bit) == 0) {
1039 run = 0;
1040 } else {
1041 run++;
1042 if (run == len)
1043 break;
1044 }
1045 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1046 bit <<= 1;
1047 } else {
1048 map = *mapp++;
1049 bit = 1;
1050 }
1051 }
1052 if (i == cgp->cg_nclusterblks)
1053 goto fail;
1054 /*
1055 * Allocate the cluster that we have found.
1056 */
1057 bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1058 len = blkstofrags(fs, len);
1059 for (i = 0; i < len; i += fs->fs_frag)
1060 if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1061 panic("ffs_clusteralloc: lost block");
1062 brelse(bp);
1063 return (bno);
1064
1065 fail:
1066 brelse(bp);
1067 return (0);
1068 }
1069
1070 /*
1071 * Determine whether an inode can be allocated.
1072 *
1073 * Check to see if an inode is available, and if it is,
1074 * allocate it using the following policy:
1075 * 1) allocate the requested inode.
1076 * 2) allocate the next available inode after the requested
1077 * inode in the specified cylinder group.
1078 */
1079 static ino_t
1080 ffs_nodealloccg(ip, cg, ipref, mode)
1081 struct inode *ip;
1082 int cg;
1083 daddr_t ipref;
1084 int mode;
1085 {
1086 register struct fs *fs;
1087 register struct cg *cgp;
1088 struct buf *bp;
1089 int error, start, len, loc, map, i;
1090
1091 fs = ip->i_fs;
1092 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1093 return (NULL);
1094 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1095 (int)fs->fs_cgsize, NOCRED, &bp);
1096 if (error) {
1097 brelse(bp);
1098 return (NULL);
1099 }
1100 cgp = (struct cg *)bp->b_data;
1101 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1102 brelse(bp);
1103 return (NULL);
1104 }
1105 cgp->cg_time = time.tv_sec;
1106 if (ipref) {
1107 ipref %= fs->fs_ipg;
1108 if (isclr(cg_inosused(cgp), ipref))
1109 goto gotit;
1110 }
1111 start = cgp->cg_irotor / NBBY;
1112 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1113 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1114 if (loc == 0) {
1115 len = start + 1;
1116 start = 0;
1117 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1118 if (loc == 0) {
1119 printf("cg = %d, irotor = %d, fs = %s\n",
1120 cg, cgp->cg_irotor, fs->fs_fsmnt);
1121 panic("ffs_nodealloccg: map corrupted");
1122 /* NOTREACHED */
1123 }
1124 }
1125 i = start + len - loc;
1126 map = cg_inosused(cgp)[i];
1127 ipref = i * NBBY;
1128 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1129 if ((map & i) == 0) {
1130 cgp->cg_irotor = ipref;
1131 goto gotit;
1132 }
1133 }
1134 printf("fs = %s\n", fs->fs_fsmnt);
1135 panic("ffs_nodealloccg: block not in map");
1136 /* NOTREACHED */
1137 gotit:
1138 setbit(cg_inosused(cgp), ipref);
1139 cgp->cg_cs.cs_nifree--;
1140 fs->fs_cstotal.cs_nifree--;
1141 fs->fs_cs(fs, cg).cs_nifree--;
1142 fs->fs_fmod = 1;
1143 if ((mode & IFMT) == IFDIR) {
1144 cgp->cg_cs.cs_ndir++;
1145 fs->fs_cstotal.cs_ndir++;
1146 fs->fs_cs(fs, cg).cs_ndir++;
1147 }
1148 bdwrite(bp);
1149 return (cg * fs->fs_ipg + ipref);
1150 }
1151
1152 /*
1153 * Free a block or fragment.
1154 *
1155 * The specified block or fragment is placed back in the
1156 * free map. If a fragment is deallocated, a possible
1157 * block reassembly is checked.
1158 */
1159 ffs_blkfree(ip, bno, size)
1160 register struct inode *ip;
1161 daddr_t bno;
1162 long size;
1163 {
1164 register struct fs *fs;
1165 register struct cg *cgp;
1166 struct buf *bp;
1167 daddr_t blkno;
1168 int i, error, cg, blk, frags, bbase;
1169
1170 fs = ip->i_fs;
1171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1172 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1173 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1174 panic("blkfree: bad size");
1175 }
1176 cg = dtog(fs, bno);
1177 if ((u_int)bno >= fs->fs_size) {
1178 printf("bad block %d, ino %d\n", bno, ip->i_number);
1179 ffs_fserr(fs, ip->i_uid, "bad block");
1180 return;
1181 }
1182 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1183 (int)fs->fs_cgsize, NOCRED, &bp);
1184 if (error) {
1185 brelse(bp);
1186 return;
1187 }
1188 cgp = (struct cg *)bp->b_data;
1189 if (!cg_chkmagic(cgp)) {
1190 brelse(bp);
1191 return;
1192 }
1193 cgp->cg_time = time.tv_sec;
1194 bno = dtogd(fs, bno);
1195 if (size == fs->fs_bsize) {
1196 blkno = fragstoblks(fs, bno);
1197 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1198 printf("dev = 0x%x, block = %d, fs = %s\n",
1199 ip->i_dev, bno, fs->fs_fsmnt);
1200 panic("blkfree: freeing free block");
1201 }
1202 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1203 ffs_clusteracct(fs, cgp, blkno, 1);
1204 cgp->cg_cs.cs_nbfree++;
1205 fs->fs_cstotal.cs_nbfree++;
1206 fs->fs_cs(fs, cg).cs_nbfree++;
1207 i = cbtocylno(fs, bno);
1208 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1209 cg_blktot(cgp)[i]++;
1210 } else {
1211 bbase = bno - fragnum(fs, bno);
1212 /*
1213 * decrement the counts associated with the old frags
1214 */
1215 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1216 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1217 /*
1218 * deallocate the fragment
1219 */
1220 frags = numfrags(fs, size);
1221 for (i = 0; i < frags; i++) {
1222 if (isset(cg_blksfree(cgp), bno + i)) {
1223 printf("dev = 0x%x, block = %d, fs = %s\n",
1224 ip->i_dev, bno + i, fs->fs_fsmnt);
1225 panic("blkfree: freeing free frag");
1226 }
1227 setbit(cg_blksfree(cgp), bno + i);
1228 }
1229 cgp->cg_cs.cs_nffree += i;
1230 fs->fs_cstotal.cs_nffree += i;
1231 fs->fs_cs(fs, cg).cs_nffree += i;
1232 /*
1233 * add back in counts associated with the new frags
1234 */
1235 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1236 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1237 /*
1238 * if a complete block has been reassembled, account for it
1239 */
1240 blkno = fragstoblks(fs, bbase);
1241 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1242 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1243 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1244 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1245 ffs_clusteracct(fs, cgp, blkno, 1);
1246 cgp->cg_cs.cs_nbfree++;
1247 fs->fs_cstotal.cs_nbfree++;
1248 fs->fs_cs(fs, cg).cs_nbfree++;
1249 i = cbtocylno(fs, bbase);
1250 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1251 cg_blktot(cgp)[i]++;
1252 }
1253 }
1254 fs->fs_fmod = 1;
1255 bdwrite(bp);
1256 }
1257
1258 /*
1259 * Free an inode.
1260 *
1261 * The specified inode is placed back in the free map.
1262 */
1263 int
1264 ffs_vfree(ap)
1265 struct vop_vfree_args /* {
1266 struct vnode *a_pvp;
1267 ino_t a_ino;
1268 int a_mode;
1269 } */ *ap;
1270 {
1271 register struct fs *fs;
1272 register struct cg *cgp;
1273 register struct inode *pip;
1274 ino_t ino = ap->a_ino;
1275 struct buf *bp;
1276 int error, cg;
1277
1278 pip = VTOI(ap->a_pvp);
1279 fs = pip->i_fs;
1280 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1281 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1282 pip->i_dev, ino, fs->fs_fsmnt);
1283 cg = ino_to_cg(fs, ino);
1284 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1285 (int)fs->fs_cgsize, NOCRED, &bp);
1286 if (error) {
1287 brelse(bp);
1288 return (0);
1289 }
1290 cgp = (struct cg *)bp->b_data;
1291 if (!cg_chkmagic(cgp)) {
1292 brelse(bp);
1293 return (0);
1294 }
1295 cgp->cg_time = time.tv_sec;
1296 ino %= fs->fs_ipg;
1297 if (isclr(cg_inosused(cgp), ino)) {
1298 printf("dev = 0x%x, ino = %d, fs = %s\n",
1299 pip->i_dev, ino, fs->fs_fsmnt);
1300 if (fs->fs_ronly == 0)
1301 panic("ifree: freeing free inode");
1302 }
1303 clrbit(cg_inosused(cgp), ino);
1304 if (ino < cgp->cg_irotor)
1305 cgp->cg_irotor = ino;
1306 cgp->cg_cs.cs_nifree++;
1307 fs->fs_cstotal.cs_nifree++;
1308 fs->fs_cs(fs, cg).cs_nifree++;
1309 if ((ap->a_mode & IFMT) == IFDIR) {
1310 cgp->cg_cs.cs_ndir--;
1311 fs->fs_cstotal.cs_ndir--;
1312 fs->fs_cs(fs, cg).cs_ndir--;
1313 }
1314 fs->fs_fmod = 1;
1315 bdwrite(bp);
1316 return (0);
1317 }
1318
1319 /*
1320 * Find a block of the specified size in the specified cylinder group.
1321 *
1322 * It is a panic if a request is made to find a block if none are
1323 * available.
1324 */
1325 static daddr_t
1326 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1327 register struct fs *fs;
1328 register struct cg *cgp;
1329 daddr_t bpref;
1330 int allocsiz;
1331 {
1332 daddr_t bno;
1333 int start, len, loc, i;
1334 int blk, field, subfield, pos;
1335
1336 /*
1337 * find the fragment by searching through the free block
1338 * map for an appropriate bit pattern
1339 */
1340 if (bpref)
1341 start = dtogd(fs, bpref) / NBBY;
1342 else
1343 start = cgp->cg_frotor / NBBY;
1344 len = howmany(fs->fs_fpg, NBBY) - start;
1345 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1346 (u_char *)fragtbl[fs->fs_frag],
1347 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1348 if (loc == 0) {
1349 len = start + 1;
1350 start = 0;
1351 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1352 (u_char *)fragtbl[fs->fs_frag],
1353 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1354 if (loc == 0) {
1355 printf("start = %d, len = %d, fs = %s\n",
1356 start, len, fs->fs_fsmnt);
1357 panic("ffs_alloccg: map corrupted");
1358 /* NOTREACHED */
1359 }
1360 }
1361 bno = (start + len - loc) * NBBY;
1362 cgp->cg_frotor = bno;
1363 /*
1364 * found the byte in the map
1365 * sift through the bits to find the selected frag
1366 */
1367 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1368 blk = blkmap(fs, cg_blksfree(cgp), bno);
1369 blk <<= 1;
1370 field = around[allocsiz];
1371 subfield = inside[allocsiz];
1372 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1373 if ((blk & field) == subfield)
1374 return (bno + pos);
1375 field <<= 1;
1376 subfield <<= 1;
1377 }
1378 }
1379 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1380 panic("ffs_alloccg: block not in map");
1381 return (-1);
1382 }
1383
1384 /*
1385 * Update the cluster map because of an allocation or free.
1386 *
1387 * Cnt == 1 means free; cnt == -1 means allocating.
1388 */
1389 ffs_clusteracct(fs, cgp, blkno, cnt)
1390 struct fs *fs;
1391 struct cg *cgp;
1392 daddr_t blkno;
1393 int cnt;
1394 {
1395 long *sump;
1396 u_char *freemapp, *mapp;
1397 int i, start, end, forw, back, map, bit;
1398
1399 if (fs->fs_contigsumsize <= 0)
1400 return;
1401 freemapp = cg_clustersfree(cgp);
1402 sump = cg_clustersum(cgp);
1403 /*
1404 * Allocate or clear the actual block.
1405 */
1406 if (cnt > 0)
1407 setbit(freemapp, blkno);
1408 else
1409 clrbit(freemapp, blkno);
1410 /*
1411 * Find the size of the cluster going forward.
1412 */
1413 start = blkno + 1;
1414 end = start + fs->fs_contigsumsize;
1415 if (end >= cgp->cg_nclusterblks)
1416 end = cgp->cg_nclusterblks;
1417 mapp = &freemapp[start / NBBY];
1418 map = *mapp++;
1419 bit = 1 << (start % NBBY);
1420 for (i = start; i < end; i++) {
1421 if ((map & bit) == 0)
1422 break;
1423 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1424 bit <<= 1;
1425 } else {
1426 map = *mapp++;
1427 bit = 1;
1428 }
1429 }
1430 forw = i - start;
1431 /*
1432 * Find the size of the cluster going backward.
1433 */
1434 start = blkno - 1;
1435 end = start - fs->fs_contigsumsize;
1436 if (end < 0)
1437 end = -1;
1438 mapp = &freemapp[start / NBBY];
1439 map = *mapp--;
1440 bit = 1 << (start % NBBY);
1441 for (i = start; i > end; i--) {
1442 if ((map & bit) == 0)
1443 break;
1444 if ((i & (NBBY - 1)) != 0) {
1445 bit >>= 1;
1446 } else {
1447 map = *mapp--;
1448 bit = 1 << (NBBY - 1);
1449 }
1450 }
1451 back = start - i;
1452 /*
1453 * Account for old cluster and the possibly new forward and
1454 * back clusters.
1455 */
1456 i = back + forw + 1;
1457 if (i > fs->fs_contigsumsize)
1458 i = fs->fs_contigsumsize;
1459 sump[i] += cnt;
1460 if (back > 0)
1461 sump[back] -= cnt;
1462 if (forw > 0)
1463 sump[forw] -= cnt;
1464 }
1465
1466 /*
1467 * Fserr prints the name of a file system with an error diagnostic.
1468 *
1469 * The form of the error message is:
1470 * fs: error message
1471 */
1472 static void
1473 ffs_fserr(fs, uid, cp)
1474 struct fs *fs;
1475 u_int uid;
1476 char *cp;
1477 {
1478
1479 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1480 }
1481