Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.21
      1 /*	$NetBSD: ffs_alloc.c,v 1.21 1998/06/08 04:27:51 scottr Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #include "opt_quota.h"
     39 #include "opt_uvm.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/buf.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/mount.h>
     47 #include <sys/kernel.h>
     48 #include <sys/syslog.h>
     49 
     50 #include <vm/vm.h>
     51 
     52 #include <ufs/ufs/quota.h>
     53 #include <ufs/ufs/ufsmount.h>
     54 #include <ufs/ufs/inode.h>
     55 #include <ufs/ufs/ufs_extern.h>
     56 #include <ufs/ufs/ufs_bswap.h>
     57 
     58 #include <ufs/ffs/fs.h>
     59 #include <ufs/ffs/ffs_extern.h>
     60 
     61 static ufs_daddr_t	ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     62 static ufs_daddr_t	ffs_alloccgblk __P((struct mount *, struct fs *,
     63 	struct cg *, ufs_daddr_t));
     64 static ufs_daddr_t	ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     65 static ino_t	ffs_dirpref __P((struct fs *));
     66 static ufs_daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     67 static void	ffs_fserr __P((struct fs *, u_int, char *));
     68 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     69 				   ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
     70 					       int)));
     71 static ufs_daddr_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     72 static ufs_daddr_t	ffs_mapsearch __P((int, struct fs *, struct cg *,
     73 					ufs_daddr_t, int));
     74 #if defined(DIAGNOSTIC) || defined(DEBUG)
     75 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     76 #endif
     77 
     78 /*
     79  * Allocate a block in the file system.
     80  *
     81  * The size of the requested block is given, which must be some
     82  * multiple of fs_fsize and <= fs_bsize.
     83  * A preference may be optionally specified. If a preference is given
     84  * the following hierarchy is used to allocate a block:
     85  *   1) allocate the requested block.
     86  *   2) allocate a rotationally optimal block in the same cylinder.
     87  *   3) allocate a block in the same cylinder group.
     88  *   4) quadradically rehash into other cylinder groups, until an
     89  *      available block is located.
     90  * If no block preference is given the following heirarchy is used
     91  * to allocate a block:
     92  *   1) allocate a block in the cylinder group that contains the
     93  *      inode for the file.
     94  *   2) quadradically rehash into other cylinder groups, until an
     95  *      available block is located.
     96  */
     97 int
     98 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     99 	register struct inode *ip;
    100 	ufs_daddr_t lbn, bpref;
    101 	int size;
    102 	struct ucred *cred;
    103 	ufs_daddr_t *bnp;
    104 {
    105 	register struct fs *fs;
    106 	ufs_daddr_t bno;
    107 	int cg;
    108 #ifdef QUOTA
    109 	int error;
    110 #endif
    111 
    112 	*bnp = 0;
    113 	fs = ip->i_fs;
    114 #ifdef DIAGNOSTIC
    115 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    116 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    117 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    118 		panic("ffs_alloc: bad size");
    119 	}
    120 	if (cred == NOCRED)
    121 		panic("ffs_alloc: missing credential\n");
    122 #endif /* DIAGNOSTIC */
    123 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    124 		goto nospace;
    125 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    126 		goto nospace;
    127 #ifdef QUOTA
    128 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    129 		return (error);
    130 #endif
    131 	if (bpref >= fs->fs_size)
    132 		bpref = 0;
    133 	if (bpref == 0)
    134 		cg = ino_to_cg(fs, ip->i_number);
    135 	else
    136 		cg = dtog(fs, bpref);
    137 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    138 	    			     ffs_alloccg);
    139 	if (bno > 0) {
    140 		ip->i_ffs_blocks += btodb(size);
    141 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    142 		*bnp = bno;
    143 		return (0);
    144 	}
    145 #ifdef QUOTA
    146 	/*
    147 	 * Restore user's disk quota because allocation failed.
    148 	 */
    149 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    150 #endif
    151 nospace:
    152 	ffs_fserr(fs, cred->cr_uid, "file system full");
    153 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    154 	return (ENOSPC);
    155 }
    156 
    157 /*
    158  * Reallocate a fragment to a bigger size
    159  *
    160  * The number and size of the old block is given, and a preference
    161  * and new size is also specified. The allocator attempts to extend
    162  * the original block. Failing that, the regular block allocator is
    163  * invoked to get an appropriate block.
    164  */
    165 int
    166 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    167 	register struct inode *ip;
    168 	ufs_daddr_t lbprev;
    169 	ufs_daddr_t bpref;
    170 	int osize, nsize;
    171 	struct ucred *cred;
    172 	struct buf **bpp;
    173 {
    174 	register struct fs *fs;
    175 	struct buf *bp;
    176 	int cg, request, error;
    177 	ufs_daddr_t bprev, bno;
    178 
    179 	*bpp = 0;
    180 	fs = ip->i_fs;
    181 #ifdef DIAGNOSTIC
    182 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    183 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    184 		printf(
    185 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    186 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    187 		panic("ffs_realloccg: bad size");
    188 	}
    189 	if (cred == NOCRED)
    190 		panic("ffs_realloccg: missing credential\n");
    191 #endif /* DIAGNOSTIC */
    192 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    193 		goto nospace;
    194 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
    195 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    196 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    197 		panic("ffs_realloccg: bad bprev");
    198 	}
    199 	/*
    200 	 * Allocate the extra space in the buffer.
    201 	 */
    202 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    203 		brelse(bp);
    204 		return (error);
    205 	}
    206 #ifdef QUOTA
    207 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    208 		brelse(bp);
    209 		return (error);
    210 	}
    211 #endif
    212 	/*
    213 	 * Check for extension in the existing location.
    214 	 */
    215 	cg = dtog(fs, bprev);
    216 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    217 		if (bp->b_blkno != fsbtodb(fs, bno))
    218 			panic("bad blockno");
    219 		ip->i_ffs_blocks += btodb(nsize - osize);
    220 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    221 		allocbuf(bp, nsize);
    222 		bp->b_flags |= B_DONE;
    223 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    224 		*bpp = bp;
    225 		return (0);
    226 	}
    227 	/*
    228 	 * Allocate a new disk location.
    229 	 */
    230 	if (bpref >= fs->fs_size)
    231 		bpref = 0;
    232 	switch ((int)fs->fs_optim) {
    233 	case FS_OPTSPACE:
    234 		/*
    235 		 * Allocate an exact sized fragment. Although this makes
    236 		 * best use of space, we will waste time relocating it if
    237 		 * the file continues to grow. If the fragmentation is
    238 		 * less than half of the minimum free reserve, we choose
    239 		 * to begin optimizing for time.
    240 		 */
    241 		request = nsize;
    242 		if (fs->fs_minfree < 5 ||
    243 		    fs->fs_cstotal.cs_nffree >
    244 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    245 			break;
    246 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    247 			fs->fs_fsmnt);
    248 		fs->fs_optim = FS_OPTTIME;
    249 		break;
    250 	case FS_OPTTIME:
    251 		/*
    252 		 * At this point we have discovered a file that is trying to
    253 		 * grow a small fragment to a larger fragment. To save time,
    254 		 * we allocate a full sized block, then free the unused portion.
    255 		 * If the file continues to grow, the `ffs_fragextend' call
    256 		 * above will be able to grow it in place without further
    257 		 * copying. If aberrant programs cause disk fragmentation to
    258 		 * grow within 2% of the free reserve, we choose to begin
    259 		 * optimizing for space.
    260 		 */
    261 		request = fs->fs_bsize;
    262 		if (fs->fs_cstotal.cs_nffree <
    263 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    264 			break;
    265 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    266 			fs->fs_fsmnt);
    267 		fs->fs_optim = FS_OPTSPACE;
    268 		break;
    269 	default:
    270 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    271 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    272 		panic("ffs_realloccg: bad optim");
    273 		/* NOTREACHED */
    274 	}
    275 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    276 	    			     ffs_alloccg);
    277 	if (bno > 0) {
    278 		bp->b_blkno = fsbtodb(fs, bno);
    279 #if defined(UVM)
    280 		(void) uvm_vnp_uncache(ITOV(ip));
    281 #else
    282 		(void) vnode_pager_uncache(ITOV(ip));
    283 #endif
    284 		ffs_blkfree(ip, bprev, (long)osize);
    285 		if (nsize < request)
    286 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    287 			    (long)(request - nsize));
    288 		ip->i_ffs_blocks += btodb(nsize - osize);
    289 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    290 		allocbuf(bp, nsize);
    291 		bp->b_flags |= B_DONE;
    292 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    293 		*bpp = bp;
    294 		return (0);
    295 	}
    296 #ifdef QUOTA
    297 	/*
    298 	 * Restore user's disk quota because allocation failed.
    299 	 */
    300 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    301 #endif
    302 	brelse(bp);
    303 nospace:
    304 	/*
    305 	 * no space available
    306 	 */
    307 	ffs_fserr(fs, cred->cr_uid, "file system full");
    308 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    309 	return (ENOSPC);
    310 }
    311 
    312 /*
    313  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    314  *
    315  * The vnode and an array of buffer pointers for a range of sequential
    316  * logical blocks to be made contiguous is given. The allocator attempts
    317  * to find a range of sequential blocks starting as close as possible to
    318  * an fs_rotdelay offset from the end of the allocation for the logical
    319  * block immediately preceeding the current range. If successful, the
    320  * physical block numbers in the buffer pointers and in the inode are
    321  * changed to reflect the new allocation. If unsuccessful, the allocation
    322  * is left unchanged. The success in doing the reallocation is returned.
    323  * Note that the error return is not reflected back to the user. Rather
    324  * the previous block allocation will be used.
    325  */
    326 #ifdef DEBUG
    327 #include <sys/sysctl.h>
    328 int prtrealloc = 0;
    329 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    330 #endif
    331 
    332 int doasyncfree = 1;
    333 extern int doreallocblks;
    334 
    335 int
    336 ffs_reallocblks(v)
    337 	void *v;
    338 {
    339 	struct vop_reallocblks_args /* {
    340 		struct vnode *a_vp;
    341 		struct cluster_save *a_buflist;
    342 	} */ *ap = v;
    343 	struct fs *fs;
    344 	struct inode *ip;
    345 	struct vnode *vp;
    346 	struct buf *sbp, *ebp;
    347 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    348 	struct cluster_save *buflist;
    349 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    350 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    351 	int i, len, start_lvl, end_lvl, pref, ssize;
    352 	struct timespec ts;
    353 
    354 	vp = ap->a_vp;
    355 	ip = VTOI(vp);
    356 	fs = ip->i_fs;
    357 	if (fs->fs_contigsumsize <= 0)
    358 		return (ENOSPC);
    359 	buflist = ap->a_buflist;
    360 	len = buflist->bs_nchildren;
    361 	start_lbn = buflist->bs_children[0]->b_lblkno;
    362 	end_lbn = start_lbn + len - 1;
    363 #ifdef DIAGNOSTIC
    364 	for (i = 0; i < len; i++)
    365 		if (!ffs_checkblk(ip,
    366 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    367 			panic("ffs_reallocblks: unallocated block 1");
    368 	for (i = 1; i < len; i++)
    369 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    370 			panic("ffs_reallocblks: non-logical cluster");
    371 	blkno = buflist->bs_children[0]->b_blkno;
    372 	ssize = fsbtodb(fs, fs->fs_frag);
    373 	for (i = 1; i < len - 1; i++)
    374 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    375 			panic("ffs_reallocblks: non-physical cluster %d", i);
    376 #endif
    377 	/*
    378 	 * If the latest allocation is in a new cylinder group, assume that
    379 	 * the filesystem has decided to move and do not force it back to
    380 	 * the previous cylinder group.
    381 	 */
    382 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    383 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    384 		return (ENOSPC);
    385 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    386 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    387 		return (ENOSPC);
    388 	/*
    389 	 * Get the starting offset and block map for the first block.
    390 	 */
    391 	if (start_lvl == 0) {
    392 		sbap = &ip->i_ffs_db[0];
    393 		soff = start_lbn;
    394 	} else {
    395 		idp = &start_ap[start_lvl - 1];
    396 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    397 			brelse(sbp);
    398 			return (ENOSPC);
    399 		}
    400 		sbap = (ufs_daddr_t *)sbp->b_data;
    401 		soff = idp->in_off;
    402 	}
    403 	/*
    404 	 * Find the preferred location for the cluster.
    405 	 */
    406 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    407 	/*
    408 	 * If the block range spans two block maps, get the second map.
    409 	 */
    410 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    411 		ssize = len;
    412 	} else {
    413 #ifdef DIAGNOSTIC
    414 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    415 			panic("ffs_reallocblk: start == end");
    416 #endif
    417 		ssize = len - (idp->in_off + 1);
    418 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    419 			goto fail;
    420 		ebap = (ufs_daddr_t *)ebp->b_data;
    421 	}
    422 	/*
    423 	 * Search the block map looking for an allocation of the desired size.
    424 	 */
    425 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    426 	    len, ffs_clusteralloc)) == 0)
    427 		goto fail;
    428 	/*
    429 	 * We have found a new contiguous block.
    430 	 *
    431 	 * First we have to replace the old block pointers with the new
    432 	 * block pointers in the inode and indirect blocks associated
    433 	 * with the file.
    434 	 */
    435 #ifdef DEBUG
    436 	if (prtrealloc)
    437 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    438 		    start_lbn, end_lbn);
    439 #endif
    440 	blkno = newblk;
    441 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    442 		if (i == ssize)
    443 			bap = ebap;
    444 #ifdef DIAGNOSTIC
    445 		if (!ffs_checkblk(ip,
    446 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    447 			panic("ffs_reallocblks: unallocated block 2");
    448 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
    449 			ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
    450 			panic("ffs_reallocblks: alloc mismatch");
    451 #endif
    452 #ifdef DEBUG
    453 		if (prtrealloc)
    454 			printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
    455 #endif
    456 		*bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
    457 	}
    458 	/*
    459 	 * Next we must write out the modified inode and indirect blocks.
    460 	 * For strict correctness, the writes should be synchronous since
    461 	 * the old block values may have been written to disk. In practise
    462 	 * they are almost never written, but if we are concerned about
    463 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    464 	 *
    465 	 * The test on `doasyncfree' should be changed to test a flag
    466 	 * that shows whether the associated buffers and inodes have
    467 	 * been written. The flag should be set when the cluster is
    468 	 * started and cleared whenever the buffer or inode is flushed.
    469 	 * We can then check below to see if it is set, and do the
    470 	 * synchronous write only when it has been cleared.
    471 	 */
    472 	if (sbap != &ip->i_ffs_db[0]) {
    473 		if (doasyncfree)
    474 			bdwrite(sbp);
    475 		else
    476 			bwrite(sbp);
    477 	} else {
    478 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    479 		if (!doasyncfree) {
    480 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    481 			VOP_UPDATE(vp, &ts, &ts, 1);
    482 		}
    483 	}
    484 	if (ssize < len)
    485 		if (doasyncfree)
    486 			bdwrite(ebp);
    487 		else
    488 			bwrite(ebp);
    489 	/*
    490 	 * Last, free the old blocks and assign the new blocks to the buffers.
    491 	 */
    492 #ifdef DEBUG
    493 	if (prtrealloc)
    494 		printf("\n\tnew:");
    495 #endif
    496 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    497 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    498 		    fs->fs_bsize);
    499 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    500 #ifdef DEBUG
    501 		if (!ffs_checkblk(ip,
    502 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    503 			panic("ffs_reallocblks: unallocated block 3");
    504 		if (prtrealloc)
    505 			printf(" %d,", blkno);
    506 #endif
    507 	}
    508 #ifdef DEBUG
    509 	if (prtrealloc) {
    510 		prtrealloc--;
    511 		printf("\n");
    512 	}
    513 #endif
    514 	return (0);
    515 
    516 fail:
    517 	if (ssize < len)
    518 		brelse(ebp);
    519 	if (sbap != &ip->i_ffs_db[0])
    520 		brelse(sbp);
    521 	return (ENOSPC);
    522 }
    523 
    524 /*
    525  * Allocate an inode in the file system.
    526  *
    527  * If allocating a directory, use ffs_dirpref to select the inode.
    528  * If allocating in a directory, the following hierarchy is followed:
    529  *   1) allocate the preferred inode.
    530  *   2) allocate an inode in the same cylinder group.
    531  *   3) quadradically rehash into other cylinder groups, until an
    532  *      available inode is located.
    533  * If no inode preference is given the following heirarchy is used
    534  * to allocate an inode:
    535  *   1) allocate an inode in cylinder group 0.
    536  *   2) quadradically rehash into other cylinder groups, until an
    537  *      available inode is located.
    538  */
    539 int
    540 ffs_valloc(v)
    541 	void *v;
    542 {
    543 	struct vop_valloc_args /* {
    544 		struct vnode *a_pvp;
    545 		int a_mode;
    546 		struct ucred *a_cred;
    547 		struct vnode **a_vpp;
    548 	} */ *ap = v;
    549 	register struct vnode *pvp = ap->a_pvp;
    550 	register struct inode *pip;
    551 	register struct fs *fs;
    552 	register struct inode *ip;
    553 	mode_t mode = ap->a_mode;
    554 	ino_t ino, ipref;
    555 	int cg, error;
    556 
    557 	*ap->a_vpp = NULL;
    558 	pip = VTOI(pvp);
    559 	fs = pip->i_fs;
    560 	if (fs->fs_cstotal.cs_nifree == 0)
    561 		goto noinodes;
    562 
    563 	if ((mode & IFMT) == IFDIR)
    564 		ipref = ffs_dirpref(fs);
    565 	else
    566 		ipref = pip->i_number;
    567 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    568 		ipref = 0;
    569 	cg = ino_to_cg(fs, ipref);
    570 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    571 	if (ino == 0)
    572 		goto noinodes;
    573 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    574 	if (error) {
    575 		VOP_VFREE(pvp, ino, mode);
    576 		return (error);
    577 	}
    578 	ip = VTOI(*ap->a_vpp);
    579 	if (ip->i_ffs_mode) {
    580 		printf("mode = 0%o, inum = %d, fs = %s\n",
    581 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    582 		panic("ffs_valloc: dup alloc");
    583 	}
    584 	if (ip->i_ffs_blocks) {				/* XXX */
    585 		printf("free inode %s/%d had %d blocks\n",
    586 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    587 		ip->i_ffs_blocks = 0;
    588 	}
    589 	ip->i_ffs_flags = 0;
    590 	/*
    591 	 * Set up a new generation number for this inode.
    592 	 */
    593 	ip->i_ffs_gen++;
    594 	return (0);
    595 noinodes:
    596 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    597 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    598 	return (ENOSPC);
    599 }
    600 
    601 /*
    602  * Find a cylinder to place a directory.
    603  *
    604  * The policy implemented by this algorithm is to select from
    605  * among those cylinder groups with above the average number of
    606  * free inodes, the one with the smallest number of directories.
    607  */
    608 static ino_t
    609 ffs_dirpref(fs)
    610 	register struct fs *fs;
    611 {
    612 	int cg, minndir, mincg, avgifree;
    613 
    614 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    615 	minndir = fs->fs_ipg;
    616 	mincg = 0;
    617 	for (cg = 0; cg < fs->fs_ncg; cg++)
    618 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    619 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    620 			mincg = cg;
    621 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    622 		}
    623 	return ((ino_t)(fs->fs_ipg * mincg));
    624 }
    625 
    626 /*
    627  * Select the desired position for the next block in a file.  The file is
    628  * logically divided into sections. The first section is composed of the
    629  * direct blocks. Each additional section contains fs_maxbpg blocks.
    630  *
    631  * If no blocks have been allocated in the first section, the policy is to
    632  * request a block in the same cylinder group as the inode that describes
    633  * the file. If no blocks have been allocated in any other section, the
    634  * policy is to place the section in a cylinder group with a greater than
    635  * average number of free blocks.  An appropriate cylinder group is found
    636  * by using a rotor that sweeps the cylinder groups. When a new group of
    637  * blocks is needed, the sweep begins in the cylinder group following the
    638  * cylinder group from which the previous allocation was made. The sweep
    639  * continues until a cylinder group with greater than the average number
    640  * of free blocks is found. If the allocation is for the first block in an
    641  * indirect block, the information on the previous allocation is unavailable;
    642  * here a best guess is made based upon the logical block number being
    643  * allocated.
    644  *
    645  * If a section is already partially allocated, the policy is to
    646  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    647  * contiguous blocks and the beginning of the next is physically separated
    648  * so that the disk head will be in transit between them for at least
    649  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    650  * schedule another I/O transfer.
    651  */
    652 ufs_daddr_t
    653 ffs_blkpref(ip, lbn, indx, bap)
    654 	struct inode *ip;
    655 	ufs_daddr_t lbn;
    656 	int indx;
    657 	ufs_daddr_t *bap;
    658 {
    659 	register struct fs *fs;
    660 	register int cg;
    661 	int avgbfree, startcg;
    662 	ufs_daddr_t nextblk;
    663 
    664 	fs = ip->i_fs;
    665 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    666 		if (lbn < NDADDR) {
    667 			cg = ino_to_cg(fs, ip->i_number);
    668 			return (fs->fs_fpg * cg + fs->fs_frag);
    669 		}
    670 		/*
    671 		 * Find a cylinder with greater than average number of
    672 		 * unused data blocks.
    673 		 */
    674 		if (indx == 0 || bap[indx - 1] == 0)
    675 			startcg =
    676 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    677 		else
    678 			startcg = dtog(fs,
    679 				ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
    680 		startcg %= fs->fs_ncg;
    681 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    682 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    683 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    684 				fs->fs_cgrotor = cg;
    685 				return (fs->fs_fpg * cg + fs->fs_frag);
    686 			}
    687 		for (cg = 0; cg <= startcg; cg++)
    688 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    689 				fs->fs_cgrotor = cg;
    690 				return (fs->fs_fpg * cg + fs->fs_frag);
    691 			}
    692 		return (NULL);
    693 	}
    694 	/*
    695 	 * One or more previous blocks have been laid out. If less
    696 	 * than fs_maxcontig previous blocks are contiguous, the
    697 	 * next block is requested contiguously, otherwise it is
    698 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    699 	 */
    700 	nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
    701 	if (indx < fs->fs_maxcontig ||
    702 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
    703 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    704 		return (nextblk);
    705 	if (fs->fs_rotdelay != 0)
    706 		/*
    707 		 * Here we convert ms of delay to frags as:
    708 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    709 		 *	((sect/frag) * (ms/sec))
    710 		 * then round up to the next block.
    711 		 */
    712 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    713 		    (NSPF(fs) * 1000), fs->fs_frag);
    714 	return (nextblk);
    715 }
    716 
    717 /*
    718  * Implement the cylinder overflow algorithm.
    719  *
    720  * The policy implemented by this algorithm is:
    721  *   1) allocate the block in its requested cylinder group.
    722  *   2) quadradically rehash on the cylinder group number.
    723  *   3) brute force search for a free block.
    724  */
    725 /*VARARGS5*/
    726 static u_long
    727 ffs_hashalloc(ip, cg, pref, size, allocator)
    728 	struct inode *ip;
    729 	int cg;
    730 	long pref;
    731 	int size;	/* size for data blocks, mode for inodes */
    732 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    733 {
    734 	register struct fs *fs;
    735 	long result;
    736 	int i, icg = cg;
    737 
    738 	fs = ip->i_fs;
    739 	/*
    740 	 * 1: preferred cylinder group
    741 	 */
    742 	result = (*allocator)(ip, cg, pref, size);
    743 	if (result)
    744 		return (result);
    745 	/*
    746 	 * 2: quadratic rehash
    747 	 */
    748 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    749 		cg += i;
    750 		if (cg >= fs->fs_ncg)
    751 			cg -= fs->fs_ncg;
    752 		result = (*allocator)(ip, cg, 0, size);
    753 		if (result)
    754 			return (result);
    755 	}
    756 	/*
    757 	 * 3: brute force search
    758 	 * Note that we start at i == 2, since 0 was checked initially,
    759 	 * and 1 is always checked in the quadratic rehash.
    760 	 */
    761 	cg = (icg + 2) % fs->fs_ncg;
    762 	for (i = 2; i < fs->fs_ncg; i++) {
    763 		result = (*allocator)(ip, cg, 0, size);
    764 		if (result)
    765 			return (result);
    766 		cg++;
    767 		if (cg == fs->fs_ncg)
    768 			cg = 0;
    769 	}
    770 	return (NULL);
    771 }
    772 
    773 /*
    774  * Determine whether a fragment can be extended.
    775  *
    776  * Check to see if the necessary fragments are available, and
    777  * if they are, allocate them.
    778  */
    779 static ufs_daddr_t
    780 ffs_fragextend(ip, cg, bprev, osize, nsize)
    781 	struct inode *ip;
    782 	int cg;
    783 	long bprev;
    784 	int osize, nsize;
    785 {
    786 	register struct fs *fs;
    787 	register struct cg *cgp;
    788 	struct buf *bp;
    789 	long bno;
    790 	int frags, bbase;
    791 	int i, error;
    792 
    793 	fs = ip->i_fs;
    794 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    795 		return (NULL);
    796 	frags = numfrags(fs, nsize);
    797 	bbase = fragnum(fs, bprev);
    798 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    799 		/* cannot extend across a block boundary */
    800 		return (NULL);
    801 	}
    802 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    803 		(int)fs->fs_cgsize, NOCRED, &bp);
    804 	if (error) {
    805 		brelse(bp);
    806 		return (NULL);
    807 	}
    808 	cgp = (struct cg *)bp->b_data;
    809 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
    810 		brelse(bp);
    811 		return (NULL);
    812 	}
    813 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
    814 	bno = dtogd(fs, bprev);
    815 	for (i = numfrags(fs, osize); i < frags; i++)
    816 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
    817 			brelse(bp);
    818 			return (NULL);
    819 		}
    820 	/*
    821 	 * the current fragment can be extended
    822 	 * deduct the count on fragment being extended into
    823 	 * increase the count on the remaining fragment (if any)
    824 	 * allocate the extended piece
    825 	 */
    826 	for (i = frags; i < fs->fs_frag - bbase; i++)
    827 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
    828 			break;
    829 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
    830 	if (i != frags)
    831 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
    832 	for (i = numfrags(fs, osize); i < frags; i++) {
    833 		clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
    834 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
    835 		fs->fs_cstotal.cs_nffree--;
    836 		fs->fs_cs(fs, cg).cs_nffree--;
    837 	}
    838 	fs->fs_fmod = 1;
    839 	bdwrite(bp);
    840 	return (bprev);
    841 }
    842 
    843 /*
    844  * Determine whether a block can be allocated.
    845  *
    846  * Check to see if a block of the appropriate size is available,
    847  * and if it is, allocate it.
    848  */
    849 static ufs_daddr_t
    850 ffs_alloccg(ip, cg, bpref, size)
    851 	struct inode *ip;
    852 	int cg;
    853 	ufs_daddr_t bpref;
    854 	int size;
    855 {
    856 	register struct fs *fs;
    857 	register struct cg *cgp;
    858 	struct buf *bp;
    859 	register int i;
    860 	int error, bno, frags, allocsiz;
    861 	const int needswap = UFS_IPNEEDSWAP(ip);
    862 
    863 	fs = ip->i_fs;
    864 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    865 		return (NULL);
    866 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    867 		(int)fs->fs_cgsize, NOCRED, &bp);
    868 	if (error) {
    869 		brelse(bp);
    870 		return (NULL);
    871 	}
    872 	cgp = (struct cg *)bp->b_data;
    873 	if (!cg_chkmagic(cgp, needswap) ||
    874 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    875 		brelse(bp);
    876 		return (NULL);
    877 	}
    878 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    879 	if (size == fs->fs_bsize) {
    880 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    881 		bdwrite(bp);
    882 		return (bno);
    883 	}
    884 	/*
    885 	 * check to see if any fragments are already available
    886 	 * allocsiz is the size which will be allocated, hacking
    887 	 * it down to a smaller size if necessary
    888 	 */
    889 	frags = numfrags(fs, size);
    890 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    891 		if (cgp->cg_frsum[allocsiz] != 0)
    892 			break;
    893 	if (allocsiz == fs->fs_frag) {
    894 		/*
    895 		 * no fragments were available, so a block will be
    896 		 * allocated, and hacked up
    897 		 */
    898 		if (cgp->cg_cs.cs_nbfree == 0) {
    899 			brelse(bp);
    900 			return (NULL);
    901 		}
    902 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    903 		bpref = dtogd(fs, bno);
    904 		for (i = frags; i < fs->fs_frag; i++)
    905 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    906 		i = fs->fs_frag - frags;
    907 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    908 		fs->fs_cstotal.cs_nffree += i;
    909 		fs->fs_cs(fs, cg).cs_nffree +=i;
    910 		fs->fs_fmod = 1;
    911 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    912 		bdwrite(bp);
    913 		return (bno);
    914 	}
    915 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
    916 	if (bno < 0) {
    917 		brelse(bp);
    918 		return (NULL);
    919 	}
    920 	for (i = 0; i < frags; i++)
    921 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    922 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    923 	fs->fs_cstotal.cs_nffree -= frags;
    924 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    925 	fs->fs_fmod = 1;
    926 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    927 	if (frags != allocsiz)
    928 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    929 	bdwrite(bp);
    930 	return (cg * fs->fs_fpg + bno);
    931 }
    932 
    933 /*
    934  * Allocate a block in a cylinder group.
    935  *
    936  * This algorithm implements the following policy:
    937  *   1) allocate the requested block.
    938  *   2) allocate a rotationally optimal block in the same cylinder.
    939  *   3) allocate the next available block on the block rotor for the
    940  *      specified cylinder group.
    941  * Note that this routine only allocates fs_bsize blocks; these
    942  * blocks may be fragmented by the routine that allocates them.
    943  */
    944 static ufs_daddr_t
    945 ffs_alloccgblk(mp, fs, cgp, bpref)
    946 	struct  mount *mp;
    947 	register struct fs *fs;
    948 	register struct cg *cgp;
    949 	ufs_daddr_t bpref;
    950 {
    951 	ufs_daddr_t bno, blkno;
    952 	int cylno, pos, delta;
    953 	short *cylbp;
    954 	register int i;
    955 	const int needswap = UFS_MPNEEDSWAP(mp);
    956 
    957 	if (bpref == 0 ||
    958 		dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    959 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    960 		goto norot;
    961 	}
    962 	bpref = blknum(fs, bpref);
    963 	bpref = dtogd(fs, bpref);
    964 	/*
    965 	 * if the requested block is available, use it
    966 	 */
    967 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
    968 		fragstoblks(fs, bpref))) {
    969 		bno = bpref;
    970 		goto gotit;
    971 	}
    972 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    973 		/*
    974 		 * Block layout information is not available.
    975 		 * Leaving bpref unchanged means we take the
    976 		 * next available free block following the one
    977 		 * we just allocated. Hopefully this will at
    978 		 * least hit a track cache on drives of unknown
    979 		 * geometry (e.g. SCSI).
    980 		 */
    981 		goto norot;
    982 	}
    983 	/*
    984 	 * check for a block available on the same cylinder
    985 	 */
    986 	cylno = cbtocylno(fs, bpref);
    987 	if (cg_blktot(cgp, needswap)[cylno] == 0)
    988 		goto norot;
    989 	/*
    990 	 * check the summary information to see if a block is
    991 	 * available in the requested cylinder starting at the
    992 	 * requested rotational position and proceeding around.
    993 	 */
    994 	cylbp = cg_blks(fs, cgp, cylno, needswap);
    995 	pos = cbtorpos(fs, bpref);
    996 	for (i = pos; i < fs->fs_nrpos; i++)
    997 		if (ufs_rw16(cylbp[i], needswap) > 0)
    998 			break;
    999 	if (i == fs->fs_nrpos)
   1000 		for (i = 0; i < pos; i++)
   1001 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1002 				break;
   1003 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1004 		/*
   1005 		 * found a rotational position, now find the actual
   1006 		 * block. A panic if none is actually there.
   1007 		 */
   1008 		pos = cylno % fs->fs_cpc;
   1009 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1010 		if (fs_postbl(fs, pos)[i] == -1) {
   1011 			printf("pos = %d, i = %d, fs = %s\n",
   1012 			    pos, i, fs->fs_fsmnt);
   1013 			panic("ffs_alloccgblk: cyl groups corrupted");
   1014 		}
   1015 		for (i = fs_postbl(fs, pos)[i];; ) {
   1016 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1017 				bno = blkstofrags(fs, (bno + i));
   1018 				goto gotit;
   1019 			}
   1020 			delta = fs_rotbl(fs)[i];
   1021 			if (delta <= 0 ||
   1022 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1023 				break;
   1024 			i += delta;
   1025 		}
   1026 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1027 		panic("ffs_alloccgblk: can't find blk in cyl");
   1028 	}
   1029 norot:
   1030 	/*
   1031 	 * no blocks in the requested cylinder, so take next
   1032 	 * available one in this cylinder group.
   1033 	 */
   1034 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
   1035 	if (bno < 0)
   1036 		return (NULL);
   1037 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1038 gotit:
   1039 	blkno = fragstoblks(fs, bno);
   1040 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1041 	ffs_clusteracct(needswap, fs, cgp, blkno, -1);
   1042 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1043 	fs->fs_cstotal.cs_nbfree--;
   1044 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1045 	cylno = cbtocylno(fs, bno);
   1046 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1047 		needswap);
   1048 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1049 	fs->fs_fmod = 1;
   1050 	return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
   1051 }
   1052 
   1053 /*
   1054  * Determine whether a cluster can be allocated.
   1055  *
   1056  * We do not currently check for optimal rotational layout if there
   1057  * are multiple choices in the same cylinder group. Instead we just
   1058  * take the first one that we find following bpref.
   1059  */
   1060 static ufs_daddr_t
   1061 ffs_clusteralloc(ip, cg, bpref, len)
   1062 	struct inode *ip;
   1063 	int cg;
   1064 	ufs_daddr_t bpref;
   1065 	int len;
   1066 {
   1067 	register struct fs *fs;
   1068 	register struct cg *cgp;
   1069 	struct buf *bp;
   1070 	int i, got, run, bno, bit, map;
   1071 	u_char *mapp;
   1072 	int32_t *lp;
   1073 
   1074 	fs = ip->i_fs;
   1075 	if (fs->fs_maxcluster[cg] < len)
   1076 		return (NULL);
   1077 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1078 	    NOCRED, &bp))
   1079 		goto fail;
   1080 	cgp = (struct cg *)bp->b_data;
   1081 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
   1082 		goto fail;
   1083 	/*
   1084 	 * Check to see if a cluster of the needed size (or bigger) is
   1085 	 * available in this cylinder group.
   1086 	 */
   1087 	lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
   1088 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1089 		if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
   1090 			break;
   1091 	if (i > fs->fs_contigsumsize) {
   1092 		/*
   1093 		 * This is the first time looking for a cluster in this
   1094 		 * cylinder group. Update the cluster summary information
   1095 		 * to reflect the true maximum sized cluster so that
   1096 		 * future cluster allocation requests can avoid reading
   1097 		 * the cylinder group map only to find no clusters.
   1098 		 */
   1099 		lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
   1100 		for (i = len - 1; i > 0; i--)
   1101 			if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
   1102 				break;
   1103 		fs->fs_maxcluster[cg] = i;
   1104 		goto fail;
   1105 	}
   1106 	/*
   1107 	 * Search the cluster map to find a big enough cluster.
   1108 	 * We take the first one that we find, even if it is larger
   1109 	 * than we need as we prefer to get one close to the previous
   1110 	 * block allocation. We do not search before the current
   1111 	 * preference point as we do not want to allocate a block
   1112 	 * that is allocated before the previous one (as we will
   1113 	 * then have to wait for another pass of the elevator
   1114 	 * algorithm before it will be read). We prefer to fail and
   1115 	 * be recalled to try an allocation in the next cylinder group.
   1116 	 */
   1117 	if (dtog(fs, bpref) != cg)
   1118 		bpref = 0;
   1119 	else
   1120 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1121 	mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
   1122 	map = *mapp++;
   1123 	bit = 1 << (bpref % NBBY);
   1124 	for (run = 0, got = bpref;
   1125 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
   1126 		if ((map & bit) == 0) {
   1127 			run = 0;
   1128 		} else {
   1129 			run++;
   1130 			if (run == len)
   1131 				break;
   1132 		}
   1133 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1134 			bit <<= 1;
   1135 		} else {
   1136 			map = *mapp++;
   1137 			bit = 1;
   1138 		}
   1139 	}
   1140 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
   1141 		goto fail;
   1142 	/*
   1143 	 * Allocate the cluster that we have found.
   1144 	 */
   1145 	for (i = 1; i <= len; i++)
   1146 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1147 			got - run + i))
   1148 			panic("ffs_clusteralloc: map mismatch");
   1149 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1150 	if (dtog(fs, bno) != cg)
   1151 		panic("ffs_clusteralloc: allocated out of group");
   1152 	len = blkstofrags(fs, len);
   1153 	for (i = 0; i < len; i += fs->fs_frag)
   1154 		if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
   1155 			!= bno + i)
   1156 			panic("ffs_clusteralloc: lost block");
   1157 	bdwrite(bp);
   1158 	return (bno);
   1159 
   1160 fail:
   1161 	brelse(bp);
   1162 	return (0);
   1163 }
   1164 
   1165 /*
   1166  * Determine whether an inode can be allocated.
   1167  *
   1168  * Check to see if an inode is available, and if it is,
   1169  * allocate it using the following policy:
   1170  *   1) allocate the requested inode.
   1171  *   2) allocate the next available inode after the requested
   1172  *      inode in the specified cylinder group.
   1173  */
   1174 static ufs_daddr_t
   1175 ffs_nodealloccg(ip, cg, ipref, mode)
   1176 	struct inode *ip;
   1177 	int cg;
   1178 	ufs_daddr_t ipref;
   1179 	int mode;
   1180 {
   1181 	register struct fs *fs;
   1182 	register struct cg *cgp;
   1183 	struct buf *bp;
   1184 	int error, start, len, loc, map, i;
   1185 #ifdef FFS_EI
   1186 	const int needswap = UFS_IPNEEDSWAP(ip);
   1187 #endif
   1188 
   1189 	fs = ip->i_fs;
   1190 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1191 		return (NULL);
   1192 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1193 		(int)fs->fs_cgsize, NOCRED, &bp);
   1194 	if (error) {
   1195 		brelse(bp);
   1196 		return (NULL);
   1197 	}
   1198 	cgp = (struct cg *)bp->b_data;
   1199 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1200 		brelse(bp);
   1201 		return (NULL);
   1202 	}
   1203 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1204 	if (ipref) {
   1205 		ipref %= fs->fs_ipg;
   1206 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1207 			goto gotit;
   1208 	}
   1209 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1210 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1211 		NBBY);
   1212 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1213 	if (loc == 0) {
   1214 		len = start + 1;
   1215 		start = 0;
   1216 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1217 		if (loc == 0) {
   1218 			printf("cg = %d, irotor = %d, fs = %s\n",
   1219 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1220 				fs->fs_fsmnt);
   1221 			panic("ffs_nodealloccg: map corrupted");
   1222 			/* NOTREACHED */
   1223 		}
   1224 	}
   1225 	i = start + len - loc;
   1226 	map = cg_inosused(cgp, needswap)[i];
   1227 	ipref = i * NBBY;
   1228 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1229 		if ((map & i) == 0) {
   1230 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1231 			goto gotit;
   1232 		}
   1233 	}
   1234 	printf("fs = %s\n", fs->fs_fsmnt);
   1235 	panic("ffs_nodealloccg: block not in map");
   1236 	/* NOTREACHED */
   1237 gotit:
   1238 	setbit(cg_inosused(cgp, needswap), ipref);
   1239 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1240 	fs->fs_cstotal.cs_nifree--;
   1241 	fs->fs_cs(fs, cg).cs_nifree --;
   1242 	fs->fs_fmod = 1;
   1243 	if ((mode & IFMT) == IFDIR) {
   1244 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1245 		fs->fs_cstotal.cs_ndir++;
   1246 		fs->fs_cs(fs, cg).cs_ndir++;
   1247 	}
   1248 	bdwrite(bp);
   1249 	return (cg * fs->fs_ipg + ipref);
   1250 }
   1251 
   1252 /*
   1253  * Free a block or fragment.
   1254  *
   1255  * The specified block or fragment is placed back in the
   1256  * free map. If a fragment is deallocated, a possible
   1257  * block reassembly is checked.
   1258  */
   1259 void
   1260 ffs_blkfree(ip, bno, size)
   1261 	register struct inode *ip;
   1262 	ufs_daddr_t bno;
   1263 	long size;
   1264 {
   1265 	register struct fs *fs;
   1266 	register struct cg *cgp;
   1267 	struct buf *bp;
   1268 	ufs_daddr_t blkno;
   1269 	int i, error, cg, blk, frags, bbase;
   1270 	const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
   1271 
   1272 	fs = ip->i_fs;
   1273 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1274 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1275 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1276 		panic("blkfree: bad size");
   1277 	}
   1278 	cg = dtog(fs, bno);
   1279 	if ((u_int)bno >= fs->fs_size) {
   1280 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1281 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1282 		return;
   1283 	}
   1284 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1285 		(int)fs->fs_cgsize, NOCRED, &bp);
   1286 	if (error) {
   1287 		brelse(bp);
   1288 		return;
   1289 	}
   1290 	cgp = (struct cg *)bp->b_data;
   1291 	if (!cg_chkmagic(cgp, needswap)) {
   1292 		brelse(bp);
   1293 		return;
   1294 	}
   1295 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1296 	bno = dtogd(fs, bno);
   1297 	if (size == fs->fs_bsize) {
   1298 		blkno = fragstoblks(fs, bno);
   1299 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1300 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1301 			    ip->i_dev, bno, fs->fs_fsmnt);
   1302 			panic("blkfree: freeing free block");
   1303 		}
   1304 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1305 		ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1306 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1307 		fs->fs_cstotal.cs_nbfree++;
   1308 		fs->fs_cs(fs, cg).cs_nbfree++;
   1309 		i = cbtocylno(fs, bno);
   1310 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1311 			needswap);
   1312 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1313 	} else {
   1314 		bbase = bno - fragnum(fs, bno);
   1315 		/*
   1316 		 * decrement the counts associated with the old frags
   1317 		 */
   1318 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1319 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1320 		/*
   1321 		 * deallocate the fragment
   1322 		 */
   1323 		frags = numfrags(fs, size);
   1324 		for (i = 0; i < frags; i++) {
   1325 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1326 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1327 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1328 				panic("blkfree: freeing free frag");
   1329 			}
   1330 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1331 		}
   1332 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1333 		fs->fs_cstotal.cs_nffree += i;
   1334 		fs->fs_cs(fs, cg).cs_nffree +=i;
   1335 		/*
   1336 		 * add back in counts associated with the new frags
   1337 		 */
   1338 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1339 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1340 		/*
   1341 		 * if a complete block has been reassembled, account for it
   1342 		 */
   1343 		blkno = fragstoblks(fs, bbase);
   1344 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1345 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1346 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1347 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1348 			ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1349 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1350 			fs->fs_cstotal.cs_nbfree++;
   1351 			fs->fs_cs(fs, cg).cs_nbfree++;
   1352 			i = cbtocylno(fs, bbase);
   1353 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
   1354 				needswap);
   1355 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1356 		}
   1357 	}
   1358 	fs->fs_fmod = 1;
   1359 	bdwrite(bp);
   1360 }
   1361 
   1362 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1363 /*
   1364  * Verify allocation of a block or fragment. Returns true if block or
   1365  * fragment is allocated, false if it is free.
   1366  */
   1367 static int
   1368 ffs_checkblk(ip, bno, size)
   1369 	struct inode *ip;
   1370 	ufs_daddr_t bno;
   1371 	long size;
   1372 {
   1373 	struct fs *fs;
   1374 	struct cg *cgp;
   1375 	struct buf *bp;
   1376 	int i, error, frags, free;
   1377 
   1378 	fs = ip->i_fs;
   1379 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1380 		printf("bsize = %d, size = %ld, fs = %s\n",
   1381 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1382 		panic("checkblk: bad size");
   1383 	}
   1384 	if ((u_int)bno >= fs->fs_size)
   1385 		panic("checkblk: bad block %d", bno);
   1386 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1387 		(int)fs->fs_cgsize, NOCRED, &bp);
   1388 	if (error) {
   1389 		brelse(bp);
   1390 		return 0;
   1391 	}
   1392 	cgp = (struct cg *)bp->b_data;
   1393 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
   1394 		brelse(bp);
   1395 		return 0;
   1396 	}
   1397 	bno = dtogd(fs, bno);
   1398 	if (size == fs->fs_bsize) {
   1399 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1400 			fragstoblks(fs, bno));
   1401 	} else {
   1402 		frags = numfrags(fs, size);
   1403 		for (free = 0, i = 0; i < frags; i++)
   1404 			if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
   1405 				free++;
   1406 		if (free != 0 && free != frags)
   1407 			panic("checkblk: partially free fragment");
   1408 	}
   1409 	brelse(bp);
   1410 	return (!free);
   1411 }
   1412 #endif /* DIAGNOSTIC */
   1413 
   1414 /*
   1415  * Free an inode.
   1416  *
   1417  * The specified inode is placed back in the free map.
   1418  */
   1419 int
   1420 ffs_vfree(v)
   1421 	void *v;
   1422 {
   1423 	struct vop_vfree_args /* {
   1424 		struct vnode *a_pvp;
   1425 		ino_t a_ino;
   1426 		int a_mode;
   1427 	} */ *ap = v;
   1428 	register struct fs *fs;
   1429 	register struct cg *cgp;
   1430 	register struct inode *pip;
   1431 	ino_t ino = ap->a_ino;
   1432 	struct buf *bp;
   1433 	int error, cg;
   1434 #ifdef FFS_EI
   1435 	const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
   1436 #endif
   1437 
   1438 	pip = VTOI(ap->a_pvp);
   1439 	fs = pip->i_fs;
   1440 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1441 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1442 		    pip->i_dev, ino, fs->fs_fsmnt);
   1443 	cg = ino_to_cg(fs, ino);
   1444 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1445 		(int)fs->fs_cgsize, NOCRED, &bp);
   1446 	if (error) {
   1447 		brelse(bp);
   1448 		return (0);
   1449 	}
   1450 	cgp = (struct cg *)bp->b_data;
   1451 	if (!cg_chkmagic(cgp, needswap)) {
   1452 		brelse(bp);
   1453 		return (0);
   1454 	}
   1455 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1456 	ino %= fs->fs_ipg;
   1457 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1458 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1459 		    pip->i_dev, ino, fs->fs_fsmnt);
   1460 		if (fs->fs_ronly == 0)
   1461 			panic("ifree: freeing free inode");
   1462 	}
   1463 	clrbit(cg_inosused(cgp, needswap), ino);
   1464 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1465 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1466 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1467 	fs->fs_cstotal.cs_nifree++;
   1468 	fs->fs_cs(fs, cg).cs_nifree++;
   1469 	if ((ap->a_mode & IFMT) == IFDIR) {
   1470 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1471 		fs->fs_cstotal.cs_ndir--;
   1472 		fs->fs_cs(fs, cg).cs_ndir--;
   1473 	}
   1474 	fs->fs_fmod = 1;
   1475 	bdwrite(bp);
   1476 	return (0);
   1477 }
   1478 
   1479 /*
   1480  * Find a block of the specified size in the specified cylinder group.
   1481  *
   1482  * It is a panic if a request is made to find a block if none are
   1483  * available.
   1484  */
   1485 static ufs_daddr_t
   1486 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
   1487 	int needswap;
   1488 	register struct fs *fs;
   1489 	register struct cg *cgp;
   1490 	ufs_daddr_t bpref;
   1491 	int allocsiz;
   1492 {
   1493 	ufs_daddr_t bno;
   1494 	int start, len, loc, i;
   1495 	int blk, field, subfield, pos;
   1496 	int ostart, olen;
   1497 
   1498 	/*
   1499 	 * find the fragment by searching through the free block
   1500 	 * map for an appropriate bit pattern
   1501 	 */
   1502 	if (bpref)
   1503 		start = dtogd(fs, bpref) / NBBY;
   1504 	else
   1505 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1506 	len = howmany(fs->fs_fpg, NBBY) - start;
   1507 	ostart = start;
   1508 	olen = len;
   1509 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1510 		(u_char *)fragtbl[fs->fs_frag],
   1511 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1512 	if (loc == 0) {
   1513 		len = start + 1;
   1514 		start = 0;
   1515 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1516 			(u_char *)fragtbl[fs->fs_frag],
   1517 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1518 		if (loc == 0) {
   1519 			printf("start = %d, len = %d, fs = %s\n",
   1520 			    ostart, olen, fs->fs_fsmnt);
   1521 			printf("offset=%d %ld\n",
   1522 				ufs_rw32(cgp->cg_freeoff, needswap),
   1523 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1524 			panic("ffs_alloccg: map corrupted");
   1525 			/* NOTREACHED */
   1526 		}
   1527 	}
   1528 	bno = (start + len - loc) * NBBY;
   1529 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1530 	/*
   1531 	 * found the byte in the map
   1532 	 * sift through the bits to find the selected frag
   1533 	 */
   1534 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1535 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1536 		blk <<= 1;
   1537 		field = around[allocsiz];
   1538 		subfield = inside[allocsiz];
   1539 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1540 			if ((blk & field) == subfield)
   1541 				return (bno + pos);
   1542 			field <<= 1;
   1543 			subfield <<= 1;
   1544 		}
   1545 	}
   1546 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1547 	panic("ffs_alloccg: block not in map");
   1548 	return (-1);
   1549 }
   1550 
   1551 /*
   1552  * Update the cluster map because of an allocation or free.
   1553  *
   1554  * Cnt == 1 means free; cnt == -1 means allocating.
   1555  */
   1556 void
   1557 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
   1558 	int needswap;
   1559 	struct fs *fs;
   1560 	struct cg *cgp;
   1561 	ufs_daddr_t blkno;
   1562 	int cnt;
   1563 {
   1564 	int32_t *sump;
   1565 	int32_t *lp;
   1566 	u_char *freemapp, *mapp;
   1567 	int i, start, end, forw, back, map, bit;
   1568 
   1569 	if (fs->fs_contigsumsize <= 0)
   1570 		return;
   1571 	freemapp = cg_clustersfree(cgp, needswap);
   1572 	sump = cg_clustersum(cgp, needswap);
   1573 	/*
   1574 	 * Allocate or clear the actual block.
   1575 	 */
   1576 	if (cnt > 0)
   1577 		setbit(freemapp, blkno);
   1578 	else
   1579 		clrbit(freemapp, blkno);
   1580 	/*
   1581 	 * Find the size of the cluster going forward.
   1582 	 */
   1583 	start = blkno + 1;
   1584 	end = start + fs->fs_contigsumsize;
   1585 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1586 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1587 	mapp = &freemapp[start / NBBY];
   1588 	map = *mapp++;
   1589 	bit = 1 << (start % NBBY);
   1590 	for (i = start; i < end; i++) {
   1591 		if ((map & bit) == 0)
   1592 			break;
   1593 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1594 			bit <<= 1;
   1595 		} else {
   1596 			map = *mapp++;
   1597 			bit = 1;
   1598 		}
   1599 	}
   1600 	forw = i - start;
   1601 	/*
   1602 	 * Find the size of the cluster going backward.
   1603 	 */
   1604 	start = blkno - 1;
   1605 	end = start - fs->fs_contigsumsize;
   1606 	if (end < 0)
   1607 		end = -1;
   1608 	mapp = &freemapp[start / NBBY];
   1609 	map = *mapp--;
   1610 	bit = 1 << (start % NBBY);
   1611 	for (i = start; i > end; i--) {
   1612 		if ((map & bit) == 0)
   1613 			break;
   1614 		if ((i & (NBBY - 1)) != 0) {
   1615 			bit >>= 1;
   1616 		} else {
   1617 			map = *mapp--;
   1618 			bit = 1 << (NBBY - 1);
   1619 		}
   1620 	}
   1621 	back = start - i;
   1622 	/*
   1623 	 * Account for old cluster and the possibly new forward and
   1624 	 * back clusters.
   1625 	 */
   1626 	i = back + forw + 1;
   1627 	if (i > fs->fs_contigsumsize)
   1628 		i = fs->fs_contigsumsize;
   1629 	ufs_add32(sump[i], cnt, needswap);
   1630 	if (back > 0)
   1631 		ufs_add32(sump[back], -cnt, needswap);
   1632 	if (forw > 0)
   1633 		ufs_add32(sump[forw], -cnt, needswap);
   1634 
   1635 	/*
   1636 	 * Update cluster summary information.
   1637 	 */
   1638 	lp = &sump[fs->fs_contigsumsize];
   1639 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1640 		if (ufs_rw32(*lp--, needswap) > 0)
   1641 			break;
   1642 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1643 }
   1644 
   1645 /*
   1646  * Fserr prints the name of a file system with an error diagnostic.
   1647  *
   1648  * The form of the error message is:
   1649  *	fs: error message
   1650  */
   1651 static void
   1652 ffs_fserr(fs, uid, cp)
   1653 	struct fs *fs;
   1654 	u_int uid;
   1655 	char *cp;
   1656 {
   1657 
   1658 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1659 }
   1660