ffs_alloc.c revision 1.25 1 /* $NetBSD: ffs_alloc.c,v 1.25 1998/08/18 06:47:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_quota.h"
40 #include "opt_uvm.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53
54 #include <ufs/ufs/quota.h>
55 #include <ufs/ufs/ufsmount.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/ufs_extern.h>
58 #include <ufs/ufs/ufs_bswap.h>
59
60 #include <ufs/ffs/fs.h>
61 #include <ufs/ffs/ffs_extern.h>
62
63 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
64 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
65 struct cg *, ufs_daddr_t));
66 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
67 static ino_t ffs_dirpref __P((struct fs *));
68 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
69 static void ffs_fserr __P((struct fs *, u_int, char *));
70 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
71 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
72 int)));
73 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
74 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
75 ufs_daddr_t, int));
76 #if defined(DIAGNOSTIC) || defined(DEBUG)
77 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
78 #endif
79
80 /* in ffs_tables.c */
81 extern int inside[], around[];
82 extern u_char *fragtbl[];
83
84 /*
85 * Allocate a block in the file system.
86 *
87 * The size of the requested block is given, which must be some
88 * multiple of fs_fsize and <= fs_bsize.
89 * A preference may be optionally specified. If a preference is given
90 * the following hierarchy is used to allocate a block:
91 * 1) allocate the requested block.
92 * 2) allocate a rotationally optimal block in the same cylinder.
93 * 3) allocate a block in the same cylinder group.
94 * 4) quadradically rehash into other cylinder groups, until an
95 * available block is located.
96 * If no block preference is given the following heirarchy is used
97 * to allocate a block:
98 * 1) allocate a block in the cylinder group that contains the
99 * inode for the file.
100 * 2) quadradically rehash into other cylinder groups, until an
101 * available block is located.
102 */
103 int
104 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
105 register struct inode *ip;
106 ufs_daddr_t lbn, bpref;
107 int size;
108 struct ucred *cred;
109 ufs_daddr_t *bnp;
110 {
111 register struct fs *fs;
112 ufs_daddr_t bno;
113 int cg;
114 #ifdef QUOTA
115 int error;
116 #endif
117
118 *bnp = 0;
119 fs = ip->i_fs;
120 #ifdef DIAGNOSTIC
121 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
122 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
123 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
124 panic("ffs_alloc: bad size");
125 }
126 if (cred == NOCRED)
127 panic("ffs_alloc: missing credential\n");
128 #endif /* DIAGNOSTIC */
129 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
130 goto nospace;
131 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
132 goto nospace;
133 #ifdef QUOTA
134 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
135 return (error);
136 #endif
137 if (bpref >= fs->fs_size)
138 bpref = 0;
139 if (bpref == 0)
140 cg = ino_to_cg(fs, ip->i_number);
141 else
142 cg = dtog(fs, bpref);
143 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
144 ffs_alloccg);
145 if (bno > 0) {
146 ip->i_ffs_blocks += btodb(size);
147 ip->i_flag |= IN_CHANGE | IN_UPDATE;
148 *bnp = bno;
149 return (0);
150 }
151 #ifdef QUOTA
152 /*
153 * Restore user's disk quota because allocation failed.
154 */
155 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
156 #endif
157 nospace:
158 ffs_fserr(fs, cred->cr_uid, "file system full");
159 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
160 return (ENOSPC);
161 }
162
163 /*
164 * Reallocate a fragment to a bigger size
165 *
166 * The number and size of the old block is given, and a preference
167 * and new size is also specified. The allocator attempts to extend
168 * the original block. Failing that, the regular block allocator is
169 * invoked to get an appropriate block.
170 */
171 int
172 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
173 register struct inode *ip;
174 ufs_daddr_t lbprev;
175 ufs_daddr_t bpref;
176 int osize, nsize;
177 struct ucred *cred;
178 struct buf **bpp;
179 {
180 register struct fs *fs;
181 struct buf *bp;
182 int cg, request, error;
183 ufs_daddr_t bprev, bno;
184
185 #ifdef __GNUC__
186 /* XXX bogus -Wuninitialized */
187 request = 0;
188 #endif
189
190 *bpp = 0;
191 fs = ip->i_fs;
192 #ifdef DIAGNOSTIC
193 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
194 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
195 printf(
196 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
197 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
198 panic("ffs_realloccg: bad size");
199 }
200 if (cred == NOCRED)
201 panic("ffs_realloccg: missing credential\n");
202 #endif /* DIAGNOSTIC */
203 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
204 goto nospace;
205 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
206 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
207 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
208 panic("ffs_realloccg: bad bprev");
209 }
210 /*
211 * Allocate the extra space in the buffer.
212 */
213 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
214 brelse(bp);
215 return (error);
216 }
217 #ifdef QUOTA
218 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
219 brelse(bp);
220 return (error);
221 }
222 #endif
223 /*
224 * Check for extension in the existing location.
225 */
226 cg = dtog(fs, bprev);
227 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
228 if (bp->b_blkno != fsbtodb(fs, bno))
229 panic("bad blockno");
230 ip->i_ffs_blocks += btodb(nsize - osize);
231 ip->i_flag |= IN_CHANGE | IN_UPDATE;
232 allocbuf(bp, nsize);
233 bp->b_flags |= B_DONE;
234 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
235 *bpp = bp;
236 return (0);
237 }
238 /*
239 * Allocate a new disk location.
240 */
241 if (bpref >= fs->fs_size)
242 bpref = 0;
243 switch ((int)fs->fs_optim) {
244 case FS_OPTSPACE:
245 /*
246 * Allocate an exact sized fragment. Although this makes
247 * best use of space, we will waste time relocating it if
248 * the file continues to grow. If the fragmentation is
249 * less than half of the minimum free reserve, we choose
250 * to begin optimizing for time.
251 */
252 request = nsize;
253 if (fs->fs_minfree < 5 ||
254 fs->fs_cstotal.cs_nffree >
255 fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 break;
257 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 fs->fs_fsmnt);
259 fs->fs_optim = FS_OPTTIME;
260 break;
261 case FS_OPTTIME:
262 /*
263 * At this point we have discovered a file that is trying to
264 * grow a small fragment to a larger fragment. To save time,
265 * we allocate a full sized block, then free the unused portion.
266 * If the file continues to grow, the `ffs_fragextend' call
267 * above will be able to grow it in place without further
268 * copying. If aberrant programs cause disk fragmentation to
269 * grow within 2% of the free reserve, we choose to begin
270 * optimizing for space.
271 */
272 request = fs->fs_bsize;
273 if (fs->fs_cstotal.cs_nffree <
274 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 break;
276 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 fs->fs_fsmnt);
278 fs->fs_optim = FS_OPTSPACE;
279 break;
280 default:
281 printf("dev = 0x%x, optim = %d, fs = %s\n",
282 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
283 panic("ffs_realloccg: bad optim");
284 /* NOTREACHED */
285 }
286 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 ffs_alloccg);
288 if (bno > 0) {
289 bp->b_blkno = fsbtodb(fs, bno);
290 #if defined(UVM)
291 (void) uvm_vnp_uncache(ITOV(ip));
292 #else
293 (void) vnode_pager_uncache(ITOV(ip));
294 #endif
295 ffs_blkfree(ip, bprev, (long)osize);
296 if (nsize < request)
297 ffs_blkfree(ip, bno + numfrags(fs, nsize),
298 (long)(request - nsize));
299 ip->i_ffs_blocks += btodb(nsize - osize);
300 ip->i_flag |= IN_CHANGE | IN_UPDATE;
301 allocbuf(bp, nsize);
302 bp->b_flags |= B_DONE;
303 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
304 *bpp = bp;
305 return (0);
306 }
307 #ifdef QUOTA
308 /*
309 * Restore user's disk quota because allocation failed.
310 */
311 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
312 #endif
313 brelse(bp);
314 nospace:
315 /*
316 * no space available
317 */
318 ffs_fserr(fs, cred->cr_uid, "file system full");
319 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
320 return (ENOSPC);
321 }
322
323 /*
324 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
325 *
326 * The vnode and an array of buffer pointers for a range of sequential
327 * logical blocks to be made contiguous is given. The allocator attempts
328 * to find a range of sequential blocks starting as close as possible to
329 * an fs_rotdelay offset from the end of the allocation for the logical
330 * block immediately preceeding the current range. If successful, the
331 * physical block numbers in the buffer pointers and in the inode are
332 * changed to reflect the new allocation. If unsuccessful, the allocation
333 * is left unchanged. The success in doing the reallocation is returned.
334 * Note that the error return is not reflected back to the user. Rather
335 * the previous block allocation will be used.
336 */
337 #ifdef DEBUG
338 #include <sys/sysctl.h>
339 int prtrealloc = 0;
340 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
341 #endif
342
343 int doasyncfree = 1;
344 extern int doreallocblks;
345
346 int
347 ffs_reallocblks(v)
348 void *v;
349 {
350 struct vop_reallocblks_args /* {
351 struct vnode *a_vp;
352 struct cluster_save *a_buflist;
353 } */ *ap = v;
354 struct fs *fs;
355 struct inode *ip;
356 struct vnode *vp;
357 struct buf *sbp, *ebp;
358 ufs_daddr_t *bap, *sbap, *ebap = NULL;
359 struct cluster_save *buflist;
360 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
361 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
362 int i, len, start_lvl, end_lvl, pref, ssize;
363 struct timespec ts;
364
365 vp = ap->a_vp;
366 ip = VTOI(vp);
367 fs = ip->i_fs;
368 if (fs->fs_contigsumsize <= 0)
369 return (ENOSPC);
370 buflist = ap->a_buflist;
371 len = buflist->bs_nchildren;
372 start_lbn = buflist->bs_children[0]->b_lblkno;
373 end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 for (i = 0; i < len; i++)
376 if (!ffs_checkblk(ip,
377 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
378 panic("ffs_reallocblks: unallocated block 1");
379 for (i = 1; i < len; i++)
380 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
381 panic("ffs_reallocblks: non-logical cluster");
382 blkno = buflist->bs_children[0]->b_blkno;
383 ssize = fsbtodb(fs, fs->fs_frag);
384 for (i = 1; i < len - 1; i++)
385 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
386 panic("ffs_reallocblks: non-physical cluster %d", i);
387 #endif
388 /*
389 * If the latest allocation is in a new cylinder group, assume that
390 * the filesystem has decided to move and do not force it back to
391 * the previous cylinder group.
392 */
393 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
394 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
395 return (ENOSPC);
396 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
397 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
398 return (ENOSPC);
399 /*
400 * Get the starting offset and block map for the first block.
401 */
402 if (start_lvl == 0) {
403 sbap = &ip->i_ffs_db[0];
404 soff = start_lbn;
405 } else {
406 idp = &start_ap[start_lvl - 1];
407 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
408 brelse(sbp);
409 return (ENOSPC);
410 }
411 sbap = (ufs_daddr_t *)sbp->b_data;
412 soff = idp->in_off;
413 }
414 /*
415 * Find the preferred location for the cluster.
416 */
417 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
418 /*
419 * If the block range spans two block maps, get the second map.
420 */
421 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
422 ssize = len;
423 } else {
424 #ifdef DIAGNOSTIC
425 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
426 panic("ffs_reallocblk: start == end");
427 #endif
428 ssize = len - (idp->in_off + 1);
429 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
430 goto fail;
431 ebap = (ufs_daddr_t *)ebp->b_data;
432 }
433 /*
434 * Search the block map looking for an allocation of the desired size.
435 */
436 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
437 len, ffs_clusteralloc)) == 0)
438 goto fail;
439 /*
440 * We have found a new contiguous block.
441 *
442 * First we have to replace the old block pointers with the new
443 * block pointers in the inode and indirect blocks associated
444 * with the file.
445 */
446 #ifdef DEBUG
447 if (prtrealloc)
448 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
449 start_lbn, end_lbn);
450 #endif
451 blkno = newblk;
452 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
453 if (i == ssize)
454 bap = ebap;
455 #ifdef DIAGNOSTIC
456 if (!ffs_checkblk(ip,
457 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
458 panic("ffs_reallocblks: unallocated block 2");
459 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
460 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
461 panic("ffs_reallocblks: alloc mismatch");
462 #endif
463 #ifdef DEBUG
464 if (prtrealloc)
465 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
466 #endif
467 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
468 }
469 /*
470 * Next we must write out the modified inode and indirect blocks.
471 * For strict correctness, the writes should be synchronous since
472 * the old block values may have been written to disk. In practise
473 * they are almost never written, but if we are concerned about
474 * strict correctness, the `doasyncfree' flag should be set to zero.
475 *
476 * The test on `doasyncfree' should be changed to test a flag
477 * that shows whether the associated buffers and inodes have
478 * been written. The flag should be set when the cluster is
479 * started and cleared whenever the buffer or inode is flushed.
480 * We can then check below to see if it is set, and do the
481 * synchronous write only when it has been cleared.
482 */
483 if (sbap != &ip->i_ffs_db[0]) {
484 if (doasyncfree)
485 bdwrite(sbp);
486 else
487 bwrite(sbp);
488 } else {
489 ip->i_flag |= IN_CHANGE | IN_UPDATE;
490 if (!doasyncfree) {
491 TIMEVAL_TO_TIMESPEC(&time, &ts);
492 VOP_UPDATE(vp, &ts, &ts, 1);
493 }
494 }
495 if (ssize < len) {
496 if (doasyncfree)
497 bdwrite(ebp);
498 else
499 bwrite(ebp);
500 }
501 /*
502 * Last, free the old blocks and assign the new blocks to the buffers.
503 */
504 #ifdef DEBUG
505 if (prtrealloc)
506 printf("\n\tnew:");
507 #endif
508 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
509 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
510 fs->fs_bsize);
511 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
512 #ifdef DEBUG
513 if (!ffs_checkblk(ip,
514 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
515 panic("ffs_reallocblks: unallocated block 3");
516 if (prtrealloc)
517 printf(" %d,", blkno);
518 #endif
519 }
520 #ifdef DEBUG
521 if (prtrealloc) {
522 prtrealloc--;
523 printf("\n");
524 }
525 #endif
526 return (0);
527
528 fail:
529 if (ssize < len)
530 brelse(ebp);
531 if (sbap != &ip->i_ffs_db[0])
532 brelse(sbp);
533 return (ENOSPC);
534 }
535
536 /*
537 * Allocate an inode in the file system.
538 *
539 * If allocating a directory, use ffs_dirpref to select the inode.
540 * If allocating in a directory, the following hierarchy is followed:
541 * 1) allocate the preferred inode.
542 * 2) allocate an inode in the same cylinder group.
543 * 3) quadradically rehash into other cylinder groups, until an
544 * available inode is located.
545 * If no inode preference is given the following heirarchy is used
546 * to allocate an inode:
547 * 1) allocate an inode in cylinder group 0.
548 * 2) quadradically rehash into other cylinder groups, until an
549 * available inode is located.
550 */
551 int
552 ffs_valloc(v)
553 void *v;
554 {
555 struct vop_valloc_args /* {
556 struct vnode *a_pvp;
557 int a_mode;
558 struct ucred *a_cred;
559 struct vnode **a_vpp;
560 } */ *ap = v;
561 register struct vnode *pvp = ap->a_pvp;
562 register struct inode *pip;
563 register struct fs *fs;
564 register struct inode *ip;
565 mode_t mode = ap->a_mode;
566 ino_t ino, ipref;
567 int cg, error;
568
569 *ap->a_vpp = NULL;
570 pip = VTOI(pvp);
571 fs = pip->i_fs;
572 if (fs->fs_cstotal.cs_nifree == 0)
573 goto noinodes;
574
575 if ((mode & IFMT) == IFDIR)
576 ipref = ffs_dirpref(fs);
577 else
578 ipref = pip->i_number;
579 if (ipref >= fs->fs_ncg * fs->fs_ipg)
580 ipref = 0;
581 cg = ino_to_cg(fs, ipref);
582 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
583 if (ino == 0)
584 goto noinodes;
585 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
586 if (error) {
587 VOP_VFREE(pvp, ino, mode);
588 return (error);
589 }
590 ip = VTOI(*ap->a_vpp);
591 if (ip->i_ffs_mode) {
592 printf("mode = 0%o, inum = %d, fs = %s\n",
593 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
594 panic("ffs_valloc: dup alloc");
595 }
596 if (ip->i_ffs_blocks) { /* XXX */
597 printf("free inode %s/%d had %d blocks\n",
598 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
599 ip->i_ffs_blocks = 0;
600 }
601 ip->i_ffs_flags = 0;
602 /*
603 * Set up a new generation number for this inode.
604 */
605 ip->i_ffs_gen++;
606 return (0);
607 noinodes:
608 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
609 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
610 return (ENOSPC);
611 }
612
613 /*
614 * Find a cylinder to place a directory.
615 *
616 * The policy implemented by this algorithm is to select from
617 * among those cylinder groups with above the average number of
618 * free inodes, the one with the smallest number of directories.
619 */
620 static ino_t
621 ffs_dirpref(fs)
622 register struct fs *fs;
623 {
624 int cg, minndir, mincg, avgifree;
625
626 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
627 minndir = fs->fs_ipg;
628 mincg = 0;
629 for (cg = 0; cg < fs->fs_ncg; cg++)
630 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
631 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
632 mincg = cg;
633 minndir = fs->fs_cs(fs, cg).cs_ndir;
634 }
635 return ((ino_t)(fs->fs_ipg * mincg));
636 }
637
638 /*
639 * Select the desired position for the next block in a file. The file is
640 * logically divided into sections. The first section is composed of the
641 * direct blocks. Each additional section contains fs_maxbpg blocks.
642 *
643 * If no blocks have been allocated in the first section, the policy is to
644 * request a block in the same cylinder group as the inode that describes
645 * the file. If no blocks have been allocated in any other section, the
646 * policy is to place the section in a cylinder group with a greater than
647 * average number of free blocks. An appropriate cylinder group is found
648 * by using a rotor that sweeps the cylinder groups. When a new group of
649 * blocks is needed, the sweep begins in the cylinder group following the
650 * cylinder group from which the previous allocation was made. The sweep
651 * continues until a cylinder group with greater than the average number
652 * of free blocks is found. If the allocation is for the first block in an
653 * indirect block, the information on the previous allocation is unavailable;
654 * here a best guess is made based upon the logical block number being
655 * allocated.
656 *
657 * If a section is already partially allocated, the policy is to
658 * contiguously allocate fs_maxcontig blocks. The end of one of these
659 * contiguous blocks and the beginning of the next is physically separated
660 * so that the disk head will be in transit between them for at least
661 * fs_rotdelay milliseconds. This is to allow time for the processor to
662 * schedule another I/O transfer.
663 */
664 ufs_daddr_t
665 ffs_blkpref(ip, lbn, indx, bap)
666 struct inode *ip;
667 ufs_daddr_t lbn;
668 int indx;
669 ufs_daddr_t *bap;
670 {
671 register struct fs *fs;
672 register int cg;
673 int avgbfree, startcg;
674 ufs_daddr_t nextblk;
675
676 fs = ip->i_fs;
677 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
678 if (lbn < NDADDR) {
679 cg = ino_to_cg(fs, ip->i_number);
680 return (fs->fs_fpg * cg + fs->fs_frag);
681 }
682 /*
683 * Find a cylinder with greater than average number of
684 * unused data blocks.
685 */
686 if (indx == 0 || bap[indx - 1] == 0)
687 startcg =
688 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
689 else
690 startcg = dtog(fs,
691 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
692 startcg %= fs->fs_ncg;
693 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
694 for (cg = startcg; cg < fs->fs_ncg; cg++)
695 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
696 fs->fs_cgrotor = cg;
697 return (fs->fs_fpg * cg + fs->fs_frag);
698 }
699 for (cg = 0; cg <= startcg; cg++)
700 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
701 fs->fs_cgrotor = cg;
702 return (fs->fs_fpg * cg + fs->fs_frag);
703 }
704 return (NULL);
705 }
706 /*
707 * One or more previous blocks have been laid out. If less
708 * than fs_maxcontig previous blocks are contiguous, the
709 * next block is requested contiguously, otherwise it is
710 * requested rotationally delayed by fs_rotdelay milliseconds.
711 */
712 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
713 if (indx < fs->fs_maxcontig ||
714 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
715 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
716 return (nextblk);
717 if (fs->fs_rotdelay != 0)
718 /*
719 * Here we convert ms of delay to frags as:
720 * (frags) = (ms) * (rev/sec) * (sect/rev) /
721 * ((sect/frag) * (ms/sec))
722 * then round up to the next block.
723 */
724 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
725 (NSPF(fs) * 1000), fs->fs_frag);
726 return (nextblk);
727 }
728
729 /*
730 * Implement the cylinder overflow algorithm.
731 *
732 * The policy implemented by this algorithm is:
733 * 1) allocate the block in its requested cylinder group.
734 * 2) quadradically rehash on the cylinder group number.
735 * 3) brute force search for a free block.
736 */
737 /*VARARGS5*/
738 static u_long
739 ffs_hashalloc(ip, cg, pref, size, allocator)
740 struct inode *ip;
741 int cg;
742 long pref;
743 int size; /* size for data blocks, mode for inodes */
744 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
745 {
746 register struct fs *fs;
747 long result;
748 int i, icg = cg;
749
750 fs = ip->i_fs;
751 /*
752 * 1: preferred cylinder group
753 */
754 result = (*allocator)(ip, cg, pref, size);
755 if (result)
756 return (result);
757 /*
758 * 2: quadratic rehash
759 */
760 for (i = 1; i < fs->fs_ncg; i *= 2) {
761 cg += i;
762 if (cg >= fs->fs_ncg)
763 cg -= fs->fs_ncg;
764 result = (*allocator)(ip, cg, 0, size);
765 if (result)
766 return (result);
767 }
768 /*
769 * 3: brute force search
770 * Note that we start at i == 2, since 0 was checked initially,
771 * and 1 is always checked in the quadratic rehash.
772 */
773 cg = (icg + 2) % fs->fs_ncg;
774 for (i = 2; i < fs->fs_ncg; i++) {
775 result = (*allocator)(ip, cg, 0, size);
776 if (result)
777 return (result);
778 cg++;
779 if (cg == fs->fs_ncg)
780 cg = 0;
781 }
782 return (NULL);
783 }
784
785 /*
786 * Determine whether a fragment can be extended.
787 *
788 * Check to see if the necessary fragments are available, and
789 * if they are, allocate them.
790 */
791 static ufs_daddr_t
792 ffs_fragextend(ip, cg, bprev, osize, nsize)
793 struct inode *ip;
794 int cg;
795 long bprev;
796 int osize, nsize;
797 {
798 register struct fs *fs;
799 register struct cg *cgp;
800 struct buf *bp;
801 long bno;
802 int frags, bbase;
803 int i, error;
804
805 fs = ip->i_fs;
806 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
807 return (NULL);
808 frags = numfrags(fs, nsize);
809 bbase = fragnum(fs, bprev);
810 if (bbase > fragnum(fs, (bprev + frags - 1))) {
811 /* cannot extend across a block boundary */
812 return (NULL);
813 }
814 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
815 (int)fs->fs_cgsize, NOCRED, &bp);
816 if (error) {
817 brelse(bp);
818 return (NULL);
819 }
820 cgp = (struct cg *)bp->b_data;
821 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
822 brelse(bp);
823 return (NULL);
824 }
825 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
826 bno = dtogd(fs, bprev);
827 for (i = numfrags(fs, osize); i < frags; i++)
828 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
829 brelse(bp);
830 return (NULL);
831 }
832 /*
833 * the current fragment can be extended
834 * deduct the count on fragment being extended into
835 * increase the count on the remaining fragment (if any)
836 * allocate the extended piece
837 */
838 for (i = frags; i < fs->fs_frag - bbase; i++)
839 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
840 break;
841 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
842 if (i != frags)
843 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
844 for (i = numfrags(fs, osize); i < frags; i++) {
845 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
846 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
847 fs->fs_cstotal.cs_nffree--;
848 fs->fs_cs(fs, cg).cs_nffree--;
849 }
850 fs->fs_fmod = 1;
851 bdwrite(bp);
852 return (bprev);
853 }
854
855 /*
856 * Determine whether a block can be allocated.
857 *
858 * Check to see if a block of the appropriate size is available,
859 * and if it is, allocate it.
860 */
861 static ufs_daddr_t
862 ffs_alloccg(ip, cg, bpref, size)
863 struct inode *ip;
864 int cg;
865 ufs_daddr_t bpref;
866 int size;
867 {
868 register struct fs *fs;
869 register struct cg *cgp;
870 struct buf *bp;
871 register int i;
872 int error, bno, frags, allocsiz;
873 const int needswap = UFS_IPNEEDSWAP(ip);
874
875 fs = ip->i_fs;
876 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
877 return (NULL);
878 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
879 (int)fs->fs_cgsize, NOCRED, &bp);
880 if (error) {
881 brelse(bp);
882 return (NULL);
883 }
884 cgp = (struct cg *)bp->b_data;
885 if (!cg_chkmagic(cgp, needswap) ||
886 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
887 brelse(bp);
888 return (NULL);
889 }
890 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
891 if (size == fs->fs_bsize) {
892 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
893 bdwrite(bp);
894 return (bno);
895 }
896 /*
897 * check to see if any fragments are already available
898 * allocsiz is the size which will be allocated, hacking
899 * it down to a smaller size if necessary
900 */
901 frags = numfrags(fs, size);
902 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
903 if (cgp->cg_frsum[allocsiz] != 0)
904 break;
905 if (allocsiz == fs->fs_frag) {
906 /*
907 * no fragments were available, so a block will be
908 * allocated, and hacked up
909 */
910 if (cgp->cg_cs.cs_nbfree == 0) {
911 brelse(bp);
912 return (NULL);
913 }
914 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
915 bpref = dtogd(fs, bno);
916 for (i = frags; i < fs->fs_frag; i++)
917 setbit(cg_blksfree(cgp, needswap), bpref + i);
918 i = fs->fs_frag - frags;
919 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
920 fs->fs_cstotal.cs_nffree += i;
921 fs->fs_cs(fs, cg).cs_nffree +=i;
922 fs->fs_fmod = 1;
923 ufs_add32(cgp->cg_frsum[i], 1, needswap);
924 bdwrite(bp);
925 return (bno);
926 }
927 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
928 if (bno < 0) {
929 brelse(bp);
930 return (NULL);
931 }
932 for (i = 0; i < frags; i++)
933 clrbit(cg_blksfree(cgp, needswap), bno + i);
934 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
935 fs->fs_cstotal.cs_nffree -= frags;
936 fs->fs_cs(fs, cg).cs_nffree -= frags;
937 fs->fs_fmod = 1;
938 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
939 if (frags != allocsiz)
940 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
941 bdwrite(bp);
942 return (cg * fs->fs_fpg + bno);
943 }
944
945 /*
946 * Allocate a block in a cylinder group.
947 *
948 * This algorithm implements the following policy:
949 * 1) allocate the requested block.
950 * 2) allocate a rotationally optimal block in the same cylinder.
951 * 3) allocate the next available block on the block rotor for the
952 * specified cylinder group.
953 * Note that this routine only allocates fs_bsize blocks; these
954 * blocks may be fragmented by the routine that allocates them.
955 */
956 static ufs_daddr_t
957 ffs_alloccgblk(mp, fs, cgp, bpref)
958 struct mount *mp;
959 register struct fs *fs;
960 register struct cg *cgp;
961 ufs_daddr_t bpref;
962 {
963 ufs_daddr_t bno, blkno;
964 int cylno, pos, delta;
965 short *cylbp;
966 register int i;
967 const int needswap = UFS_MPNEEDSWAP(mp);
968
969 if (bpref == 0 ||
970 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
971 bpref = ufs_rw32(cgp->cg_rotor, needswap);
972 goto norot;
973 }
974 bpref = blknum(fs, bpref);
975 bpref = dtogd(fs, bpref);
976 /*
977 * if the requested block is available, use it
978 */
979 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
980 fragstoblks(fs, bpref))) {
981 bno = bpref;
982 goto gotit;
983 }
984 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
985 /*
986 * Block layout information is not available.
987 * Leaving bpref unchanged means we take the
988 * next available free block following the one
989 * we just allocated. Hopefully this will at
990 * least hit a track cache on drives of unknown
991 * geometry (e.g. SCSI).
992 */
993 goto norot;
994 }
995 /*
996 * check for a block available on the same cylinder
997 */
998 cylno = cbtocylno(fs, bpref);
999 if (cg_blktot(cgp, needswap)[cylno] == 0)
1000 goto norot;
1001 /*
1002 * check the summary information to see if a block is
1003 * available in the requested cylinder starting at the
1004 * requested rotational position and proceeding around.
1005 */
1006 cylbp = cg_blks(fs, cgp, cylno, needswap);
1007 pos = cbtorpos(fs, bpref);
1008 for (i = pos; i < fs->fs_nrpos; i++)
1009 if (ufs_rw16(cylbp[i], needswap) > 0)
1010 break;
1011 if (i == fs->fs_nrpos)
1012 for (i = 0; i < pos; i++)
1013 if (ufs_rw16(cylbp[i], needswap) > 0)
1014 break;
1015 if (ufs_rw16(cylbp[i], needswap) > 0) {
1016 /*
1017 * found a rotational position, now find the actual
1018 * block. A panic if none is actually there.
1019 */
1020 pos = cylno % fs->fs_cpc;
1021 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1022 if (fs_postbl(fs, pos)[i] == -1) {
1023 printf("pos = %d, i = %d, fs = %s\n",
1024 pos, i, fs->fs_fsmnt);
1025 panic("ffs_alloccgblk: cyl groups corrupted");
1026 }
1027 for (i = fs_postbl(fs, pos)[i];; ) {
1028 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1029 bno = blkstofrags(fs, (bno + i));
1030 goto gotit;
1031 }
1032 delta = fs_rotbl(fs)[i];
1033 if (delta <= 0 ||
1034 delta + i > fragstoblks(fs, fs->fs_fpg))
1035 break;
1036 i += delta;
1037 }
1038 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1039 panic("ffs_alloccgblk: can't find blk in cyl");
1040 }
1041 norot:
1042 /*
1043 * no blocks in the requested cylinder, so take next
1044 * available one in this cylinder group.
1045 */
1046 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1047 if (bno < 0)
1048 return (NULL);
1049 cgp->cg_rotor = ufs_rw32(bno, needswap);
1050 gotit:
1051 blkno = fragstoblks(fs, bno);
1052 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1053 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1054 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1055 fs->fs_cstotal.cs_nbfree--;
1056 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1057 cylno = cbtocylno(fs, bno);
1058 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1059 needswap);
1060 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1061 fs->fs_fmod = 1;
1062 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1063 }
1064
1065 /*
1066 * Determine whether a cluster can be allocated.
1067 *
1068 * We do not currently check for optimal rotational layout if there
1069 * are multiple choices in the same cylinder group. Instead we just
1070 * take the first one that we find following bpref.
1071 */
1072 static ufs_daddr_t
1073 ffs_clusteralloc(ip, cg, bpref, len)
1074 struct inode *ip;
1075 int cg;
1076 ufs_daddr_t bpref;
1077 int len;
1078 {
1079 register struct fs *fs;
1080 register struct cg *cgp;
1081 struct buf *bp;
1082 int i, got, run, bno, bit, map;
1083 u_char *mapp;
1084 int32_t *lp;
1085
1086 fs = ip->i_fs;
1087 if (fs->fs_maxcluster[cg] < len)
1088 return (NULL);
1089 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1090 NOCRED, &bp))
1091 goto fail;
1092 cgp = (struct cg *)bp->b_data;
1093 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1094 goto fail;
1095 /*
1096 * Check to see if a cluster of the needed size (or bigger) is
1097 * available in this cylinder group.
1098 */
1099 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1100 for (i = len; i <= fs->fs_contigsumsize; i++)
1101 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1102 break;
1103 if (i > fs->fs_contigsumsize) {
1104 /*
1105 * This is the first time looking for a cluster in this
1106 * cylinder group. Update the cluster summary information
1107 * to reflect the true maximum sized cluster so that
1108 * future cluster allocation requests can avoid reading
1109 * the cylinder group map only to find no clusters.
1110 */
1111 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1112 for (i = len - 1; i > 0; i--)
1113 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1114 break;
1115 fs->fs_maxcluster[cg] = i;
1116 goto fail;
1117 }
1118 /*
1119 * Search the cluster map to find a big enough cluster.
1120 * We take the first one that we find, even if it is larger
1121 * than we need as we prefer to get one close to the previous
1122 * block allocation. We do not search before the current
1123 * preference point as we do not want to allocate a block
1124 * that is allocated before the previous one (as we will
1125 * then have to wait for another pass of the elevator
1126 * algorithm before it will be read). We prefer to fail and
1127 * be recalled to try an allocation in the next cylinder group.
1128 */
1129 if (dtog(fs, bpref) != cg)
1130 bpref = 0;
1131 else
1132 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1133 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1134 map = *mapp++;
1135 bit = 1 << (bpref % NBBY);
1136 for (run = 0, got = bpref;
1137 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1138 if ((map & bit) == 0) {
1139 run = 0;
1140 } else {
1141 run++;
1142 if (run == len)
1143 break;
1144 }
1145 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1146 bit <<= 1;
1147 } else {
1148 map = *mapp++;
1149 bit = 1;
1150 }
1151 }
1152 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1153 goto fail;
1154 /*
1155 * Allocate the cluster that we have found.
1156 */
1157 for (i = 1; i <= len; i++)
1158 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1159 got - run + i))
1160 panic("ffs_clusteralloc: map mismatch");
1161 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1162 if (dtog(fs, bno) != cg)
1163 panic("ffs_clusteralloc: allocated out of group");
1164 len = blkstofrags(fs, len);
1165 for (i = 0; i < len; i += fs->fs_frag)
1166 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1167 != bno + i)
1168 panic("ffs_clusteralloc: lost block");
1169 bdwrite(bp);
1170 return (bno);
1171
1172 fail:
1173 brelse(bp);
1174 return (0);
1175 }
1176
1177 /*
1178 * Determine whether an inode can be allocated.
1179 *
1180 * Check to see if an inode is available, and if it is,
1181 * allocate it using the following policy:
1182 * 1) allocate the requested inode.
1183 * 2) allocate the next available inode after the requested
1184 * inode in the specified cylinder group.
1185 */
1186 static ufs_daddr_t
1187 ffs_nodealloccg(ip, cg, ipref, mode)
1188 struct inode *ip;
1189 int cg;
1190 ufs_daddr_t ipref;
1191 int mode;
1192 {
1193 register struct fs *fs;
1194 register struct cg *cgp;
1195 struct buf *bp;
1196 int error, start, len, loc, map, i;
1197 #ifdef FFS_EI
1198 const int needswap = UFS_IPNEEDSWAP(ip);
1199 #endif
1200
1201 fs = ip->i_fs;
1202 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1203 return (NULL);
1204 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1205 (int)fs->fs_cgsize, NOCRED, &bp);
1206 if (error) {
1207 brelse(bp);
1208 return (NULL);
1209 }
1210 cgp = (struct cg *)bp->b_data;
1211 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1212 brelse(bp);
1213 return (NULL);
1214 }
1215 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1216 if (ipref) {
1217 ipref %= fs->fs_ipg;
1218 if (isclr(cg_inosused(cgp, needswap), ipref))
1219 goto gotit;
1220 }
1221 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1222 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1223 NBBY);
1224 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1225 if (loc == 0) {
1226 len = start + 1;
1227 start = 0;
1228 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1229 if (loc == 0) {
1230 printf("cg = %d, irotor = %d, fs = %s\n",
1231 cg, ufs_rw32(cgp->cg_irotor, needswap),
1232 fs->fs_fsmnt);
1233 panic("ffs_nodealloccg: map corrupted");
1234 /* NOTREACHED */
1235 }
1236 }
1237 i = start + len - loc;
1238 map = cg_inosused(cgp, needswap)[i];
1239 ipref = i * NBBY;
1240 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1241 if ((map & i) == 0) {
1242 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1243 goto gotit;
1244 }
1245 }
1246 printf("fs = %s\n", fs->fs_fsmnt);
1247 panic("ffs_nodealloccg: block not in map");
1248 /* NOTREACHED */
1249 gotit:
1250 setbit(cg_inosused(cgp, needswap), ipref);
1251 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1252 fs->fs_cstotal.cs_nifree--;
1253 fs->fs_cs(fs, cg).cs_nifree --;
1254 fs->fs_fmod = 1;
1255 if ((mode & IFMT) == IFDIR) {
1256 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1257 fs->fs_cstotal.cs_ndir++;
1258 fs->fs_cs(fs, cg).cs_ndir++;
1259 }
1260 bdwrite(bp);
1261 return (cg * fs->fs_ipg + ipref);
1262 }
1263
1264 /*
1265 * Free a block or fragment.
1266 *
1267 * The specified block or fragment is placed back in the
1268 * free map. If a fragment is deallocated, a possible
1269 * block reassembly is checked.
1270 */
1271 void
1272 ffs_blkfree(ip, bno, size)
1273 register struct inode *ip;
1274 ufs_daddr_t bno;
1275 long size;
1276 {
1277 register struct fs *fs;
1278 register struct cg *cgp;
1279 struct buf *bp;
1280 ufs_daddr_t blkno;
1281 int i, error, cg, blk, frags, bbase;
1282 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1283
1284 fs = ip->i_fs;
1285 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1286 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1287 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1288 panic("blkfree: bad size");
1289 }
1290 cg = dtog(fs, bno);
1291 if ((u_int)bno >= fs->fs_size) {
1292 printf("bad block %d, ino %d\n", bno, ip->i_number);
1293 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1294 return;
1295 }
1296 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1297 (int)fs->fs_cgsize, NOCRED, &bp);
1298 if (error) {
1299 brelse(bp);
1300 return;
1301 }
1302 cgp = (struct cg *)bp->b_data;
1303 if (!cg_chkmagic(cgp, needswap)) {
1304 brelse(bp);
1305 return;
1306 }
1307 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1308 bno = dtogd(fs, bno);
1309 if (size == fs->fs_bsize) {
1310 blkno = fragstoblks(fs, bno);
1311 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1312 printf("dev = 0x%x, block = %d, fs = %s\n",
1313 ip->i_dev, bno, fs->fs_fsmnt);
1314 panic("blkfree: freeing free block");
1315 }
1316 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1317 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1318 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1319 fs->fs_cstotal.cs_nbfree++;
1320 fs->fs_cs(fs, cg).cs_nbfree++;
1321 i = cbtocylno(fs, bno);
1322 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1323 needswap);
1324 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1325 } else {
1326 bbase = bno - fragnum(fs, bno);
1327 /*
1328 * decrement the counts associated with the old frags
1329 */
1330 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1331 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1332 /*
1333 * deallocate the fragment
1334 */
1335 frags = numfrags(fs, size);
1336 for (i = 0; i < frags; i++) {
1337 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1338 printf("dev = 0x%x, block = %d, fs = %s\n",
1339 ip->i_dev, bno + i, fs->fs_fsmnt);
1340 panic("blkfree: freeing free frag");
1341 }
1342 setbit(cg_blksfree(cgp, needswap), bno + i);
1343 }
1344 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1345 fs->fs_cstotal.cs_nffree += i;
1346 fs->fs_cs(fs, cg).cs_nffree +=i;
1347 /*
1348 * add back in counts associated with the new frags
1349 */
1350 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1351 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1352 /*
1353 * if a complete block has been reassembled, account for it
1354 */
1355 blkno = fragstoblks(fs, bbase);
1356 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1357 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1358 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1359 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1360 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1361 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1362 fs->fs_cstotal.cs_nbfree++;
1363 fs->fs_cs(fs, cg).cs_nbfree++;
1364 i = cbtocylno(fs, bbase);
1365 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1366 needswap);
1367 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1368 }
1369 }
1370 fs->fs_fmod = 1;
1371 bdwrite(bp);
1372 }
1373
1374 #if defined(DIAGNOSTIC) || defined(DEBUG)
1375 /*
1376 * Verify allocation of a block or fragment. Returns true if block or
1377 * fragment is allocated, false if it is free.
1378 */
1379 static int
1380 ffs_checkblk(ip, bno, size)
1381 struct inode *ip;
1382 ufs_daddr_t bno;
1383 long size;
1384 {
1385 struct fs *fs;
1386 struct cg *cgp;
1387 struct buf *bp;
1388 int i, error, frags, free;
1389
1390 fs = ip->i_fs;
1391 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1392 printf("bsize = %d, size = %ld, fs = %s\n",
1393 fs->fs_bsize, size, fs->fs_fsmnt);
1394 panic("checkblk: bad size");
1395 }
1396 if ((u_int)bno >= fs->fs_size)
1397 panic("checkblk: bad block %d", bno);
1398 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1399 (int)fs->fs_cgsize, NOCRED, &bp);
1400 if (error) {
1401 brelse(bp);
1402 return 0;
1403 }
1404 cgp = (struct cg *)bp->b_data;
1405 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1406 brelse(bp);
1407 return 0;
1408 }
1409 bno = dtogd(fs, bno);
1410 if (size == fs->fs_bsize) {
1411 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1412 fragstoblks(fs, bno));
1413 } else {
1414 frags = numfrags(fs, size);
1415 for (free = 0, i = 0; i < frags; i++)
1416 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1417 free++;
1418 if (free != 0 && free != frags)
1419 panic("checkblk: partially free fragment");
1420 }
1421 brelse(bp);
1422 return (!free);
1423 }
1424 #endif /* DIAGNOSTIC */
1425
1426 /*
1427 * Free an inode.
1428 *
1429 * The specified inode is placed back in the free map.
1430 */
1431 int
1432 ffs_vfree(v)
1433 void *v;
1434 {
1435 struct vop_vfree_args /* {
1436 struct vnode *a_pvp;
1437 ino_t a_ino;
1438 int a_mode;
1439 } */ *ap = v;
1440 register struct fs *fs;
1441 register struct cg *cgp;
1442 register struct inode *pip;
1443 ino_t ino = ap->a_ino;
1444 struct buf *bp;
1445 int error, cg;
1446 #ifdef FFS_EI
1447 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1448 #endif
1449
1450 pip = VTOI(ap->a_pvp);
1451 fs = pip->i_fs;
1452 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1453 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1454 pip->i_dev, ino, fs->fs_fsmnt);
1455 cg = ino_to_cg(fs, ino);
1456 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1457 (int)fs->fs_cgsize, NOCRED, &bp);
1458 if (error) {
1459 brelse(bp);
1460 return (0);
1461 }
1462 cgp = (struct cg *)bp->b_data;
1463 if (!cg_chkmagic(cgp, needswap)) {
1464 brelse(bp);
1465 return (0);
1466 }
1467 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1468 ino %= fs->fs_ipg;
1469 if (isclr(cg_inosused(cgp, needswap), ino)) {
1470 printf("dev = 0x%x, ino = %d, fs = %s\n",
1471 pip->i_dev, ino, fs->fs_fsmnt);
1472 if (fs->fs_ronly == 0)
1473 panic("ifree: freeing free inode");
1474 }
1475 clrbit(cg_inosused(cgp, needswap), ino);
1476 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1477 cgp->cg_irotor = ufs_rw32(ino, needswap);
1478 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1479 fs->fs_cstotal.cs_nifree++;
1480 fs->fs_cs(fs, cg).cs_nifree++;
1481 if ((ap->a_mode & IFMT) == IFDIR) {
1482 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1483 fs->fs_cstotal.cs_ndir--;
1484 fs->fs_cs(fs, cg).cs_ndir--;
1485 }
1486 fs->fs_fmod = 1;
1487 bdwrite(bp);
1488 return (0);
1489 }
1490
1491 /*
1492 * Find a block of the specified size in the specified cylinder group.
1493 *
1494 * It is a panic if a request is made to find a block if none are
1495 * available.
1496 */
1497 static ufs_daddr_t
1498 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1499 int needswap;
1500 register struct fs *fs;
1501 register struct cg *cgp;
1502 ufs_daddr_t bpref;
1503 int allocsiz;
1504 {
1505 ufs_daddr_t bno;
1506 int start, len, loc, i;
1507 int blk, field, subfield, pos;
1508 int ostart, olen;
1509
1510 /*
1511 * find the fragment by searching through the free block
1512 * map for an appropriate bit pattern
1513 */
1514 if (bpref)
1515 start = dtogd(fs, bpref) / NBBY;
1516 else
1517 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1518 len = howmany(fs->fs_fpg, NBBY) - start;
1519 ostart = start;
1520 olen = len;
1521 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1522 (u_char *)fragtbl[fs->fs_frag],
1523 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1524 if (loc == 0) {
1525 len = start + 1;
1526 start = 0;
1527 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1528 (u_char *)fragtbl[fs->fs_frag],
1529 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1530 if (loc == 0) {
1531 printf("start = %d, len = %d, fs = %s\n",
1532 ostart, olen, fs->fs_fsmnt);
1533 printf("offset=%d %ld\n",
1534 ufs_rw32(cgp->cg_freeoff, needswap),
1535 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1536 panic("ffs_alloccg: map corrupted");
1537 /* NOTREACHED */
1538 }
1539 }
1540 bno = (start + len - loc) * NBBY;
1541 cgp->cg_frotor = ufs_rw32(bno, needswap);
1542 /*
1543 * found the byte in the map
1544 * sift through the bits to find the selected frag
1545 */
1546 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1547 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1548 blk <<= 1;
1549 field = around[allocsiz];
1550 subfield = inside[allocsiz];
1551 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1552 if ((blk & field) == subfield)
1553 return (bno + pos);
1554 field <<= 1;
1555 subfield <<= 1;
1556 }
1557 }
1558 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1559 panic("ffs_alloccg: block not in map");
1560 return (-1);
1561 }
1562
1563 /*
1564 * Update the cluster map because of an allocation or free.
1565 *
1566 * Cnt == 1 means free; cnt == -1 means allocating.
1567 */
1568 void
1569 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1570 int needswap;
1571 struct fs *fs;
1572 struct cg *cgp;
1573 ufs_daddr_t blkno;
1574 int cnt;
1575 {
1576 int32_t *sump;
1577 int32_t *lp;
1578 u_char *freemapp, *mapp;
1579 int i, start, end, forw, back, map, bit;
1580
1581 if (fs->fs_contigsumsize <= 0)
1582 return;
1583 freemapp = cg_clustersfree(cgp, needswap);
1584 sump = cg_clustersum(cgp, needswap);
1585 /*
1586 * Allocate or clear the actual block.
1587 */
1588 if (cnt > 0)
1589 setbit(freemapp, blkno);
1590 else
1591 clrbit(freemapp, blkno);
1592 /*
1593 * Find the size of the cluster going forward.
1594 */
1595 start = blkno + 1;
1596 end = start + fs->fs_contigsumsize;
1597 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1598 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1599 mapp = &freemapp[start / NBBY];
1600 map = *mapp++;
1601 bit = 1 << (start % NBBY);
1602 for (i = start; i < end; i++) {
1603 if ((map & bit) == 0)
1604 break;
1605 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1606 bit <<= 1;
1607 } else {
1608 map = *mapp++;
1609 bit = 1;
1610 }
1611 }
1612 forw = i - start;
1613 /*
1614 * Find the size of the cluster going backward.
1615 */
1616 start = blkno - 1;
1617 end = start - fs->fs_contigsumsize;
1618 if (end < 0)
1619 end = -1;
1620 mapp = &freemapp[start / NBBY];
1621 map = *mapp--;
1622 bit = 1 << (start % NBBY);
1623 for (i = start; i > end; i--) {
1624 if ((map & bit) == 0)
1625 break;
1626 if ((i & (NBBY - 1)) != 0) {
1627 bit >>= 1;
1628 } else {
1629 map = *mapp--;
1630 bit = 1 << (NBBY - 1);
1631 }
1632 }
1633 back = start - i;
1634 /*
1635 * Account for old cluster and the possibly new forward and
1636 * back clusters.
1637 */
1638 i = back + forw + 1;
1639 if (i > fs->fs_contigsumsize)
1640 i = fs->fs_contigsumsize;
1641 ufs_add32(sump[i], cnt, needswap);
1642 if (back > 0)
1643 ufs_add32(sump[back], -cnt, needswap);
1644 if (forw > 0)
1645 ufs_add32(sump[forw], -cnt, needswap);
1646
1647 /*
1648 * Update cluster summary information.
1649 */
1650 lp = &sump[fs->fs_contigsumsize];
1651 for (i = fs->fs_contigsumsize; i > 0; i--)
1652 if (ufs_rw32(*lp--, needswap) > 0)
1653 break;
1654 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1655 }
1656
1657 /*
1658 * Fserr prints the name of a file system with an error diagnostic.
1659 *
1660 * The form of the error message is:
1661 * fs: error message
1662 */
1663 static void
1664 ffs_fserr(fs, uid, cp)
1665 struct fs *fs;
1666 u_int uid;
1667 char *cp;
1668 {
1669
1670 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1671 }
1672