ffs_alloc.c revision 1.26 1 /* $NetBSD: ffs_alloc.c,v 1.26 1998/08/18 18:15:41 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_quota.h"
40 #include "opt_uvm.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53
54 #include <ufs/ufs/quota.h>
55 #include <ufs/ufs/ufsmount.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/ufs_extern.h>
58 #include <ufs/ufs/ufs_bswap.h>
59
60 #include <ufs/ffs/fs.h>
61 #include <ufs/ffs/ffs_extern.h>
62
63 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
64 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
65 struct cg *, ufs_daddr_t));
66 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
67 static ino_t ffs_dirpref __P((struct fs *));
68 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
69 static void ffs_fserr __P((struct fs *, u_int, char *));
70 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
71 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
72 int)));
73 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
74 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
75 ufs_daddr_t, int));
76 #if defined(DIAGNOSTIC) || defined(DEBUG)
77 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
78 #endif
79
80 /* in ffs_tables.c */
81 extern int inside[], around[];
82 extern u_char *fragtbl[];
83
84 /*
85 * Allocate a block in the file system.
86 *
87 * The size of the requested block is given, which must be some
88 * multiple of fs_fsize and <= fs_bsize.
89 * A preference may be optionally specified. If a preference is given
90 * the following hierarchy is used to allocate a block:
91 * 1) allocate the requested block.
92 * 2) allocate a rotationally optimal block in the same cylinder.
93 * 3) allocate a block in the same cylinder group.
94 * 4) quadradically rehash into other cylinder groups, until an
95 * available block is located.
96 * If no block preference is given the following heirarchy is used
97 * to allocate a block:
98 * 1) allocate a block in the cylinder group that contains the
99 * inode for the file.
100 * 2) quadradically rehash into other cylinder groups, until an
101 * available block is located.
102 */
103 int
104 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
105 register struct inode *ip;
106 ufs_daddr_t lbn, bpref;
107 int size;
108 struct ucred *cred;
109 ufs_daddr_t *bnp;
110 {
111 register struct fs *fs;
112 ufs_daddr_t bno;
113 int cg;
114 #ifdef QUOTA
115 int error;
116 #endif
117
118 *bnp = 0;
119 fs = ip->i_fs;
120 #ifdef DIAGNOSTIC
121 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
122 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
123 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
124 panic("ffs_alloc: bad size");
125 }
126 if (cred == NOCRED)
127 panic("ffs_alloc: missing credential\n");
128 #endif /* DIAGNOSTIC */
129 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
130 goto nospace;
131 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
132 goto nospace;
133 #ifdef QUOTA
134 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
135 return (error);
136 #endif
137 if (bpref >= fs->fs_size)
138 bpref = 0;
139 if (bpref == 0)
140 cg = ino_to_cg(fs, ip->i_number);
141 else
142 cg = dtog(fs, bpref);
143 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
144 ffs_alloccg);
145 if (bno > 0) {
146 ip->i_ffs_blocks += btodb(size);
147 ip->i_flag |= IN_CHANGE | IN_UPDATE;
148 *bnp = bno;
149 return (0);
150 }
151 #ifdef QUOTA
152 /*
153 * Restore user's disk quota because allocation failed.
154 */
155 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
156 #endif
157 nospace:
158 ffs_fserr(fs, cred->cr_uid, "file system full");
159 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
160 return (ENOSPC);
161 }
162
163 /*
164 * Reallocate a fragment to a bigger size
165 *
166 * The number and size of the old block is given, and a preference
167 * and new size is also specified. The allocator attempts to extend
168 * the original block. Failing that, the regular block allocator is
169 * invoked to get an appropriate block.
170 */
171 int
172 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
173 register struct inode *ip;
174 ufs_daddr_t lbprev;
175 ufs_daddr_t bpref;
176 int osize, nsize;
177 struct ucred *cred;
178 struct buf **bpp;
179 {
180 register struct fs *fs;
181 struct buf *bp;
182 int cg, request, error;
183 ufs_daddr_t bprev, bno;
184
185 *bpp = 0;
186 fs = ip->i_fs;
187 #ifdef DIAGNOSTIC
188 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
189 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
190 printf(
191 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
192 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
193 panic("ffs_realloccg: bad size");
194 }
195 if (cred == NOCRED)
196 panic("ffs_realloccg: missing credential\n");
197 #endif /* DIAGNOSTIC */
198 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
199 goto nospace;
200 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
201 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
202 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
203 panic("ffs_realloccg: bad bprev");
204 }
205 /*
206 * Allocate the extra space in the buffer.
207 */
208 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
209 brelse(bp);
210 return (error);
211 }
212 #ifdef QUOTA
213 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
214 brelse(bp);
215 return (error);
216 }
217 #endif
218 /*
219 * Check for extension in the existing location.
220 */
221 cg = dtog(fs, bprev);
222 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
223 if (bp->b_blkno != fsbtodb(fs, bno))
224 panic("bad blockno");
225 ip->i_ffs_blocks += btodb(nsize - osize);
226 ip->i_flag |= IN_CHANGE | IN_UPDATE;
227 allocbuf(bp, nsize);
228 bp->b_flags |= B_DONE;
229 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
230 *bpp = bp;
231 return (0);
232 }
233 /*
234 * Allocate a new disk location.
235 */
236 if (bpref >= fs->fs_size)
237 bpref = 0;
238 switch ((int)fs->fs_optim) {
239 case FS_OPTSPACE:
240 /*
241 * Allocate an exact sized fragment. Although this makes
242 * best use of space, we will waste time relocating it if
243 * the file continues to grow. If the fragmentation is
244 * less than half of the minimum free reserve, we choose
245 * to begin optimizing for time.
246 */
247 request = nsize;
248 if (fs->fs_minfree < 5 ||
249 fs->fs_cstotal.cs_nffree >
250 fs->fs_dsize * fs->fs_minfree / (2 * 100))
251 break;
252 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
253 fs->fs_fsmnt);
254 fs->fs_optim = FS_OPTTIME;
255 break;
256 case FS_OPTTIME:
257 /*
258 * At this point we have discovered a file that is trying to
259 * grow a small fragment to a larger fragment. To save time,
260 * we allocate a full sized block, then free the unused portion.
261 * If the file continues to grow, the `ffs_fragextend' call
262 * above will be able to grow it in place without further
263 * copying. If aberrant programs cause disk fragmentation to
264 * grow within 2% of the free reserve, we choose to begin
265 * optimizing for space.
266 */
267 request = fs->fs_bsize;
268 if (fs->fs_cstotal.cs_nffree <
269 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
270 break;
271 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
272 fs->fs_fsmnt);
273 fs->fs_optim = FS_OPTSPACE;
274 break;
275 default:
276 printf("dev = 0x%x, optim = %d, fs = %s\n",
277 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
278 panic("ffs_realloccg: bad optim");
279 /* NOTREACHED */
280 }
281 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
282 ffs_alloccg);
283 if (bno > 0) {
284 bp->b_blkno = fsbtodb(fs, bno);
285 #if defined(UVM)
286 (void) uvm_vnp_uncache(ITOV(ip));
287 #else
288 (void) vnode_pager_uncache(ITOV(ip));
289 #endif
290 ffs_blkfree(ip, bprev, (long)osize);
291 if (nsize < request)
292 ffs_blkfree(ip, bno + numfrags(fs, nsize),
293 (long)(request - nsize));
294 ip->i_ffs_blocks += btodb(nsize - osize);
295 ip->i_flag |= IN_CHANGE | IN_UPDATE;
296 allocbuf(bp, nsize);
297 bp->b_flags |= B_DONE;
298 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
299 *bpp = bp;
300 return (0);
301 }
302 #ifdef QUOTA
303 /*
304 * Restore user's disk quota because allocation failed.
305 */
306 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 brelse(bp);
309 nospace:
310 /*
311 * no space available
312 */
313 ffs_fserr(fs, cred->cr_uid, "file system full");
314 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
315 return (ENOSPC);
316 }
317
318 /*
319 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
320 *
321 * The vnode and an array of buffer pointers for a range of sequential
322 * logical blocks to be made contiguous is given. The allocator attempts
323 * to find a range of sequential blocks starting as close as possible to
324 * an fs_rotdelay offset from the end of the allocation for the logical
325 * block immediately preceeding the current range. If successful, the
326 * physical block numbers in the buffer pointers and in the inode are
327 * changed to reflect the new allocation. If unsuccessful, the allocation
328 * is left unchanged. The success in doing the reallocation is returned.
329 * Note that the error return is not reflected back to the user. Rather
330 * the previous block allocation will be used.
331 */
332 #ifdef DEBUG
333 #include <sys/sysctl.h>
334 int prtrealloc = 0;
335 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
336 #endif
337
338 int doasyncfree = 1;
339 extern int doreallocblks;
340
341 int
342 ffs_reallocblks(v)
343 void *v;
344 {
345 struct vop_reallocblks_args /* {
346 struct vnode *a_vp;
347 struct cluster_save *a_buflist;
348 } */ *ap = v;
349 struct fs *fs;
350 struct inode *ip;
351 struct vnode *vp;
352 struct buf *sbp, *ebp;
353 ufs_daddr_t *bap, *sbap, *ebap = NULL;
354 struct cluster_save *buflist;
355 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
356 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
357 int i, len, start_lvl, end_lvl, pref, ssize;
358 struct timespec ts;
359
360 vp = ap->a_vp;
361 ip = VTOI(vp);
362 fs = ip->i_fs;
363 if (fs->fs_contigsumsize <= 0)
364 return (ENOSPC);
365 buflist = ap->a_buflist;
366 len = buflist->bs_nchildren;
367 start_lbn = buflist->bs_children[0]->b_lblkno;
368 end_lbn = start_lbn + len - 1;
369 #ifdef DIAGNOSTIC
370 for (i = 0; i < len; i++)
371 if (!ffs_checkblk(ip,
372 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
373 panic("ffs_reallocblks: unallocated block 1");
374 for (i = 1; i < len; i++)
375 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
376 panic("ffs_reallocblks: non-logical cluster");
377 blkno = buflist->bs_children[0]->b_blkno;
378 ssize = fsbtodb(fs, fs->fs_frag);
379 for (i = 1; i < len - 1; i++)
380 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
381 panic("ffs_reallocblks: non-physical cluster %d", i);
382 #endif
383 /*
384 * If the latest allocation is in a new cylinder group, assume that
385 * the filesystem has decided to move and do not force it back to
386 * the previous cylinder group.
387 */
388 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
389 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
390 return (ENOSPC);
391 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
392 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
393 return (ENOSPC);
394 /*
395 * Get the starting offset and block map for the first block.
396 */
397 if (start_lvl == 0) {
398 sbap = &ip->i_ffs_db[0];
399 soff = start_lbn;
400 } else {
401 idp = &start_ap[start_lvl - 1];
402 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
403 brelse(sbp);
404 return (ENOSPC);
405 }
406 sbap = (ufs_daddr_t *)sbp->b_data;
407 soff = idp->in_off;
408 }
409 /*
410 * Find the preferred location for the cluster.
411 */
412 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
413 /*
414 * If the block range spans two block maps, get the second map.
415 */
416 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
417 ssize = len;
418 } else {
419 #ifdef DIAGNOSTIC
420 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
421 panic("ffs_reallocblk: start == end");
422 #endif
423 ssize = len - (idp->in_off + 1);
424 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
425 goto fail;
426 ebap = (ufs_daddr_t *)ebp->b_data;
427 }
428 /*
429 * Search the block map looking for an allocation of the desired size.
430 */
431 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
432 len, ffs_clusteralloc)) == 0)
433 goto fail;
434 /*
435 * We have found a new contiguous block.
436 *
437 * First we have to replace the old block pointers with the new
438 * block pointers in the inode and indirect blocks associated
439 * with the file.
440 */
441 #ifdef DEBUG
442 if (prtrealloc)
443 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
444 start_lbn, end_lbn);
445 #endif
446 blkno = newblk;
447 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
448 if (i == ssize)
449 bap = ebap;
450 #ifdef DIAGNOSTIC
451 if (!ffs_checkblk(ip,
452 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
453 panic("ffs_reallocblks: unallocated block 2");
454 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
455 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
456 panic("ffs_reallocblks: alloc mismatch");
457 #endif
458 #ifdef DEBUG
459 if (prtrealloc)
460 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
461 #endif
462 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
463 }
464 /*
465 * Next we must write out the modified inode and indirect blocks.
466 * For strict correctness, the writes should be synchronous since
467 * the old block values may have been written to disk. In practise
468 * they are almost never written, but if we are concerned about
469 * strict correctness, the `doasyncfree' flag should be set to zero.
470 *
471 * The test on `doasyncfree' should be changed to test a flag
472 * that shows whether the associated buffers and inodes have
473 * been written. The flag should be set when the cluster is
474 * started and cleared whenever the buffer or inode is flushed.
475 * We can then check below to see if it is set, and do the
476 * synchronous write only when it has been cleared.
477 */
478 if (sbap != &ip->i_ffs_db[0]) {
479 if (doasyncfree)
480 bdwrite(sbp);
481 else
482 bwrite(sbp);
483 } else {
484 ip->i_flag |= IN_CHANGE | IN_UPDATE;
485 if (!doasyncfree) {
486 TIMEVAL_TO_TIMESPEC(&time, &ts);
487 VOP_UPDATE(vp, &ts, &ts, 1);
488 }
489 }
490 if (ssize < len) {
491 if (doasyncfree)
492 bdwrite(ebp);
493 else
494 bwrite(ebp);
495 }
496 /*
497 * Last, free the old blocks and assign the new blocks to the buffers.
498 */
499 #ifdef DEBUG
500 if (prtrealloc)
501 printf("\n\tnew:");
502 #endif
503 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
504 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
505 fs->fs_bsize);
506 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
507 #ifdef DEBUG
508 if (!ffs_checkblk(ip,
509 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
510 panic("ffs_reallocblks: unallocated block 3");
511 if (prtrealloc)
512 printf(" %d,", blkno);
513 #endif
514 }
515 #ifdef DEBUG
516 if (prtrealloc) {
517 prtrealloc--;
518 printf("\n");
519 }
520 #endif
521 return (0);
522
523 fail:
524 if (ssize < len)
525 brelse(ebp);
526 if (sbap != &ip->i_ffs_db[0])
527 brelse(sbp);
528 return (ENOSPC);
529 }
530
531 /*
532 * Allocate an inode in the file system.
533 *
534 * If allocating a directory, use ffs_dirpref to select the inode.
535 * If allocating in a directory, the following hierarchy is followed:
536 * 1) allocate the preferred inode.
537 * 2) allocate an inode in the same cylinder group.
538 * 3) quadradically rehash into other cylinder groups, until an
539 * available inode is located.
540 * If no inode preference is given the following heirarchy is used
541 * to allocate an inode:
542 * 1) allocate an inode in cylinder group 0.
543 * 2) quadradically rehash into other cylinder groups, until an
544 * available inode is located.
545 */
546 int
547 ffs_valloc(v)
548 void *v;
549 {
550 struct vop_valloc_args /* {
551 struct vnode *a_pvp;
552 int a_mode;
553 struct ucred *a_cred;
554 struct vnode **a_vpp;
555 } */ *ap = v;
556 register struct vnode *pvp = ap->a_pvp;
557 register struct inode *pip;
558 register struct fs *fs;
559 register struct inode *ip;
560 mode_t mode = ap->a_mode;
561 ino_t ino, ipref;
562 int cg, error;
563
564 *ap->a_vpp = NULL;
565 pip = VTOI(pvp);
566 fs = pip->i_fs;
567 if (fs->fs_cstotal.cs_nifree == 0)
568 goto noinodes;
569
570 if ((mode & IFMT) == IFDIR)
571 ipref = ffs_dirpref(fs);
572 else
573 ipref = pip->i_number;
574 if (ipref >= fs->fs_ncg * fs->fs_ipg)
575 ipref = 0;
576 cg = ino_to_cg(fs, ipref);
577 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
578 if (ino == 0)
579 goto noinodes;
580 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
581 if (error) {
582 VOP_VFREE(pvp, ino, mode);
583 return (error);
584 }
585 ip = VTOI(*ap->a_vpp);
586 if (ip->i_ffs_mode) {
587 printf("mode = 0%o, inum = %d, fs = %s\n",
588 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
589 panic("ffs_valloc: dup alloc");
590 }
591 if (ip->i_ffs_blocks) { /* XXX */
592 printf("free inode %s/%d had %d blocks\n",
593 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
594 ip->i_ffs_blocks = 0;
595 }
596 ip->i_ffs_flags = 0;
597 /*
598 * Set up a new generation number for this inode.
599 */
600 ip->i_ffs_gen++;
601 return (0);
602 noinodes:
603 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
604 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
605 return (ENOSPC);
606 }
607
608 /*
609 * Find a cylinder to place a directory.
610 *
611 * The policy implemented by this algorithm is to select from
612 * among those cylinder groups with above the average number of
613 * free inodes, the one with the smallest number of directories.
614 */
615 static ino_t
616 ffs_dirpref(fs)
617 register struct fs *fs;
618 {
619 int cg, minndir, mincg, avgifree;
620
621 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
622 minndir = fs->fs_ipg;
623 mincg = 0;
624 for (cg = 0; cg < fs->fs_ncg; cg++)
625 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
626 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
627 mincg = cg;
628 minndir = fs->fs_cs(fs, cg).cs_ndir;
629 }
630 return ((ino_t)(fs->fs_ipg * mincg));
631 }
632
633 /*
634 * Select the desired position for the next block in a file. The file is
635 * logically divided into sections. The first section is composed of the
636 * direct blocks. Each additional section contains fs_maxbpg blocks.
637 *
638 * If no blocks have been allocated in the first section, the policy is to
639 * request a block in the same cylinder group as the inode that describes
640 * the file. If no blocks have been allocated in any other section, the
641 * policy is to place the section in a cylinder group with a greater than
642 * average number of free blocks. An appropriate cylinder group is found
643 * by using a rotor that sweeps the cylinder groups. When a new group of
644 * blocks is needed, the sweep begins in the cylinder group following the
645 * cylinder group from which the previous allocation was made. The sweep
646 * continues until a cylinder group with greater than the average number
647 * of free blocks is found. If the allocation is for the first block in an
648 * indirect block, the information on the previous allocation is unavailable;
649 * here a best guess is made based upon the logical block number being
650 * allocated.
651 *
652 * If a section is already partially allocated, the policy is to
653 * contiguously allocate fs_maxcontig blocks. The end of one of these
654 * contiguous blocks and the beginning of the next is physically separated
655 * so that the disk head will be in transit between them for at least
656 * fs_rotdelay milliseconds. This is to allow time for the processor to
657 * schedule another I/O transfer.
658 */
659 ufs_daddr_t
660 ffs_blkpref(ip, lbn, indx, bap)
661 struct inode *ip;
662 ufs_daddr_t lbn;
663 int indx;
664 ufs_daddr_t *bap;
665 {
666 register struct fs *fs;
667 register int cg;
668 int avgbfree, startcg;
669 ufs_daddr_t nextblk;
670
671 fs = ip->i_fs;
672 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
673 if (lbn < NDADDR) {
674 cg = ino_to_cg(fs, ip->i_number);
675 return (fs->fs_fpg * cg + fs->fs_frag);
676 }
677 /*
678 * Find a cylinder with greater than average number of
679 * unused data blocks.
680 */
681 if (indx == 0 || bap[indx - 1] == 0)
682 startcg =
683 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
684 else
685 startcg = dtog(fs,
686 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
687 startcg %= fs->fs_ncg;
688 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
689 for (cg = startcg; cg < fs->fs_ncg; cg++)
690 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
691 fs->fs_cgrotor = cg;
692 return (fs->fs_fpg * cg + fs->fs_frag);
693 }
694 for (cg = 0; cg <= startcg; cg++)
695 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
696 fs->fs_cgrotor = cg;
697 return (fs->fs_fpg * cg + fs->fs_frag);
698 }
699 return (NULL);
700 }
701 /*
702 * One or more previous blocks have been laid out. If less
703 * than fs_maxcontig previous blocks are contiguous, the
704 * next block is requested contiguously, otherwise it is
705 * requested rotationally delayed by fs_rotdelay milliseconds.
706 */
707 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
708 if (indx < fs->fs_maxcontig ||
709 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
710 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
711 return (nextblk);
712 if (fs->fs_rotdelay != 0)
713 /*
714 * Here we convert ms of delay to frags as:
715 * (frags) = (ms) * (rev/sec) * (sect/rev) /
716 * ((sect/frag) * (ms/sec))
717 * then round up to the next block.
718 */
719 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
720 (NSPF(fs) * 1000), fs->fs_frag);
721 return (nextblk);
722 }
723
724 /*
725 * Implement the cylinder overflow algorithm.
726 *
727 * The policy implemented by this algorithm is:
728 * 1) allocate the block in its requested cylinder group.
729 * 2) quadradically rehash on the cylinder group number.
730 * 3) brute force search for a free block.
731 */
732 /*VARARGS5*/
733 static u_long
734 ffs_hashalloc(ip, cg, pref, size, allocator)
735 struct inode *ip;
736 int cg;
737 long pref;
738 int size; /* size for data blocks, mode for inodes */
739 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
740 {
741 register struct fs *fs;
742 long result;
743 int i, icg = cg;
744
745 fs = ip->i_fs;
746 /*
747 * 1: preferred cylinder group
748 */
749 result = (*allocator)(ip, cg, pref, size);
750 if (result)
751 return (result);
752 /*
753 * 2: quadratic rehash
754 */
755 for (i = 1; i < fs->fs_ncg; i *= 2) {
756 cg += i;
757 if (cg >= fs->fs_ncg)
758 cg -= fs->fs_ncg;
759 result = (*allocator)(ip, cg, 0, size);
760 if (result)
761 return (result);
762 }
763 /*
764 * 3: brute force search
765 * Note that we start at i == 2, since 0 was checked initially,
766 * and 1 is always checked in the quadratic rehash.
767 */
768 cg = (icg + 2) % fs->fs_ncg;
769 for (i = 2; i < fs->fs_ncg; i++) {
770 result = (*allocator)(ip, cg, 0, size);
771 if (result)
772 return (result);
773 cg++;
774 if (cg == fs->fs_ncg)
775 cg = 0;
776 }
777 return (NULL);
778 }
779
780 /*
781 * Determine whether a fragment can be extended.
782 *
783 * Check to see if the necessary fragments are available, and
784 * if they are, allocate them.
785 */
786 static ufs_daddr_t
787 ffs_fragextend(ip, cg, bprev, osize, nsize)
788 struct inode *ip;
789 int cg;
790 long bprev;
791 int osize, nsize;
792 {
793 register struct fs *fs;
794 register struct cg *cgp;
795 struct buf *bp;
796 long bno;
797 int frags, bbase;
798 int i, error;
799
800 fs = ip->i_fs;
801 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
802 return (NULL);
803 frags = numfrags(fs, nsize);
804 bbase = fragnum(fs, bprev);
805 if (bbase > fragnum(fs, (bprev + frags - 1))) {
806 /* cannot extend across a block boundary */
807 return (NULL);
808 }
809 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
810 (int)fs->fs_cgsize, NOCRED, &bp);
811 if (error) {
812 brelse(bp);
813 return (NULL);
814 }
815 cgp = (struct cg *)bp->b_data;
816 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
817 brelse(bp);
818 return (NULL);
819 }
820 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
821 bno = dtogd(fs, bprev);
822 for (i = numfrags(fs, osize); i < frags; i++)
823 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
824 brelse(bp);
825 return (NULL);
826 }
827 /*
828 * the current fragment can be extended
829 * deduct the count on fragment being extended into
830 * increase the count on the remaining fragment (if any)
831 * allocate the extended piece
832 */
833 for (i = frags; i < fs->fs_frag - bbase; i++)
834 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
835 break;
836 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
837 if (i != frags)
838 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
839 for (i = numfrags(fs, osize); i < frags; i++) {
840 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
841 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
842 fs->fs_cstotal.cs_nffree--;
843 fs->fs_cs(fs, cg).cs_nffree--;
844 }
845 fs->fs_fmod = 1;
846 bdwrite(bp);
847 return (bprev);
848 }
849
850 /*
851 * Determine whether a block can be allocated.
852 *
853 * Check to see if a block of the appropriate size is available,
854 * and if it is, allocate it.
855 */
856 static ufs_daddr_t
857 ffs_alloccg(ip, cg, bpref, size)
858 struct inode *ip;
859 int cg;
860 ufs_daddr_t bpref;
861 int size;
862 {
863 register struct fs *fs;
864 register struct cg *cgp;
865 struct buf *bp;
866 register int i;
867 int error, bno, frags, allocsiz;
868 const int needswap = UFS_IPNEEDSWAP(ip);
869
870 fs = ip->i_fs;
871 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
872 return (NULL);
873 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
874 (int)fs->fs_cgsize, NOCRED, &bp);
875 if (error) {
876 brelse(bp);
877 return (NULL);
878 }
879 cgp = (struct cg *)bp->b_data;
880 if (!cg_chkmagic(cgp, needswap) ||
881 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
882 brelse(bp);
883 return (NULL);
884 }
885 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
886 if (size == fs->fs_bsize) {
887 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
888 bdwrite(bp);
889 return (bno);
890 }
891 /*
892 * check to see if any fragments are already available
893 * allocsiz is the size which will be allocated, hacking
894 * it down to a smaller size if necessary
895 */
896 frags = numfrags(fs, size);
897 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
898 if (cgp->cg_frsum[allocsiz] != 0)
899 break;
900 if (allocsiz == fs->fs_frag) {
901 /*
902 * no fragments were available, so a block will be
903 * allocated, and hacked up
904 */
905 if (cgp->cg_cs.cs_nbfree == 0) {
906 brelse(bp);
907 return (NULL);
908 }
909 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
910 bpref = dtogd(fs, bno);
911 for (i = frags; i < fs->fs_frag; i++)
912 setbit(cg_blksfree(cgp, needswap), bpref + i);
913 i = fs->fs_frag - frags;
914 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
915 fs->fs_cstotal.cs_nffree += i;
916 fs->fs_cs(fs, cg).cs_nffree +=i;
917 fs->fs_fmod = 1;
918 ufs_add32(cgp->cg_frsum[i], 1, needswap);
919 bdwrite(bp);
920 return (bno);
921 }
922 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
923 if (bno < 0) {
924 brelse(bp);
925 return (NULL);
926 }
927 for (i = 0; i < frags; i++)
928 clrbit(cg_blksfree(cgp, needswap), bno + i);
929 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
930 fs->fs_cstotal.cs_nffree -= frags;
931 fs->fs_cs(fs, cg).cs_nffree -= frags;
932 fs->fs_fmod = 1;
933 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
934 if (frags != allocsiz)
935 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
936 bdwrite(bp);
937 return (cg * fs->fs_fpg + bno);
938 }
939
940 /*
941 * Allocate a block in a cylinder group.
942 *
943 * This algorithm implements the following policy:
944 * 1) allocate the requested block.
945 * 2) allocate a rotationally optimal block in the same cylinder.
946 * 3) allocate the next available block on the block rotor for the
947 * specified cylinder group.
948 * Note that this routine only allocates fs_bsize blocks; these
949 * blocks may be fragmented by the routine that allocates them.
950 */
951 static ufs_daddr_t
952 ffs_alloccgblk(mp, fs, cgp, bpref)
953 struct mount *mp;
954 register struct fs *fs;
955 register struct cg *cgp;
956 ufs_daddr_t bpref;
957 {
958 ufs_daddr_t bno, blkno;
959 int cylno, pos, delta;
960 short *cylbp;
961 register int i;
962 const int needswap = UFS_MPNEEDSWAP(mp);
963
964 if (bpref == 0 ||
965 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
966 bpref = ufs_rw32(cgp->cg_rotor, needswap);
967 goto norot;
968 }
969 bpref = blknum(fs, bpref);
970 bpref = dtogd(fs, bpref);
971 /*
972 * if the requested block is available, use it
973 */
974 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
975 fragstoblks(fs, bpref))) {
976 bno = bpref;
977 goto gotit;
978 }
979 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
980 /*
981 * Block layout information is not available.
982 * Leaving bpref unchanged means we take the
983 * next available free block following the one
984 * we just allocated. Hopefully this will at
985 * least hit a track cache on drives of unknown
986 * geometry (e.g. SCSI).
987 */
988 goto norot;
989 }
990 /*
991 * check for a block available on the same cylinder
992 */
993 cylno = cbtocylno(fs, bpref);
994 if (cg_blktot(cgp, needswap)[cylno] == 0)
995 goto norot;
996 /*
997 * check the summary information to see if a block is
998 * available in the requested cylinder starting at the
999 * requested rotational position and proceeding around.
1000 */
1001 cylbp = cg_blks(fs, cgp, cylno, needswap);
1002 pos = cbtorpos(fs, bpref);
1003 for (i = pos; i < fs->fs_nrpos; i++)
1004 if (ufs_rw16(cylbp[i], needswap) > 0)
1005 break;
1006 if (i == fs->fs_nrpos)
1007 for (i = 0; i < pos; i++)
1008 if (ufs_rw16(cylbp[i], needswap) > 0)
1009 break;
1010 if (ufs_rw16(cylbp[i], needswap) > 0) {
1011 /*
1012 * found a rotational position, now find the actual
1013 * block. A panic if none is actually there.
1014 */
1015 pos = cylno % fs->fs_cpc;
1016 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1017 if (fs_postbl(fs, pos)[i] == -1) {
1018 printf("pos = %d, i = %d, fs = %s\n",
1019 pos, i, fs->fs_fsmnt);
1020 panic("ffs_alloccgblk: cyl groups corrupted");
1021 }
1022 for (i = fs_postbl(fs, pos)[i];; ) {
1023 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1024 bno = blkstofrags(fs, (bno + i));
1025 goto gotit;
1026 }
1027 delta = fs_rotbl(fs)[i];
1028 if (delta <= 0 ||
1029 delta + i > fragstoblks(fs, fs->fs_fpg))
1030 break;
1031 i += delta;
1032 }
1033 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1034 panic("ffs_alloccgblk: can't find blk in cyl");
1035 }
1036 norot:
1037 /*
1038 * no blocks in the requested cylinder, so take next
1039 * available one in this cylinder group.
1040 */
1041 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1042 if (bno < 0)
1043 return (NULL);
1044 cgp->cg_rotor = ufs_rw32(bno, needswap);
1045 gotit:
1046 blkno = fragstoblks(fs, bno);
1047 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1048 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1049 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1050 fs->fs_cstotal.cs_nbfree--;
1051 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1052 cylno = cbtocylno(fs, bno);
1053 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1054 needswap);
1055 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1056 fs->fs_fmod = 1;
1057 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1058 }
1059
1060 /*
1061 * Determine whether a cluster can be allocated.
1062 *
1063 * We do not currently check for optimal rotational layout if there
1064 * are multiple choices in the same cylinder group. Instead we just
1065 * take the first one that we find following bpref.
1066 */
1067 static ufs_daddr_t
1068 ffs_clusteralloc(ip, cg, bpref, len)
1069 struct inode *ip;
1070 int cg;
1071 ufs_daddr_t bpref;
1072 int len;
1073 {
1074 register struct fs *fs;
1075 register struct cg *cgp;
1076 struct buf *bp;
1077 int i, got, run, bno, bit, map;
1078 u_char *mapp;
1079 int32_t *lp;
1080
1081 fs = ip->i_fs;
1082 if (fs->fs_maxcluster[cg] < len)
1083 return (NULL);
1084 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1085 NOCRED, &bp))
1086 goto fail;
1087 cgp = (struct cg *)bp->b_data;
1088 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1089 goto fail;
1090 /*
1091 * Check to see if a cluster of the needed size (or bigger) is
1092 * available in this cylinder group.
1093 */
1094 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1095 for (i = len; i <= fs->fs_contigsumsize; i++)
1096 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1097 break;
1098 if (i > fs->fs_contigsumsize) {
1099 /*
1100 * This is the first time looking for a cluster in this
1101 * cylinder group. Update the cluster summary information
1102 * to reflect the true maximum sized cluster so that
1103 * future cluster allocation requests can avoid reading
1104 * the cylinder group map only to find no clusters.
1105 */
1106 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1107 for (i = len - 1; i > 0; i--)
1108 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1109 break;
1110 fs->fs_maxcluster[cg] = i;
1111 goto fail;
1112 }
1113 /*
1114 * Search the cluster map to find a big enough cluster.
1115 * We take the first one that we find, even if it is larger
1116 * than we need as we prefer to get one close to the previous
1117 * block allocation. We do not search before the current
1118 * preference point as we do not want to allocate a block
1119 * that is allocated before the previous one (as we will
1120 * then have to wait for another pass of the elevator
1121 * algorithm before it will be read). We prefer to fail and
1122 * be recalled to try an allocation in the next cylinder group.
1123 */
1124 if (dtog(fs, bpref) != cg)
1125 bpref = 0;
1126 else
1127 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1128 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1129 map = *mapp++;
1130 bit = 1 << (bpref % NBBY);
1131 for (run = 0, got = bpref;
1132 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1133 if ((map & bit) == 0) {
1134 run = 0;
1135 } else {
1136 run++;
1137 if (run == len)
1138 break;
1139 }
1140 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1141 bit <<= 1;
1142 } else {
1143 map = *mapp++;
1144 bit = 1;
1145 }
1146 }
1147 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1148 goto fail;
1149 /*
1150 * Allocate the cluster that we have found.
1151 */
1152 for (i = 1; i <= len; i++)
1153 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1154 got - run + i))
1155 panic("ffs_clusteralloc: map mismatch");
1156 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1157 if (dtog(fs, bno) != cg)
1158 panic("ffs_clusteralloc: allocated out of group");
1159 len = blkstofrags(fs, len);
1160 for (i = 0; i < len; i += fs->fs_frag)
1161 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1162 != bno + i)
1163 panic("ffs_clusteralloc: lost block");
1164 bdwrite(bp);
1165 return (bno);
1166
1167 fail:
1168 brelse(bp);
1169 return (0);
1170 }
1171
1172 /*
1173 * Determine whether an inode can be allocated.
1174 *
1175 * Check to see if an inode is available, and if it is,
1176 * allocate it using the following policy:
1177 * 1) allocate the requested inode.
1178 * 2) allocate the next available inode after the requested
1179 * inode in the specified cylinder group.
1180 */
1181 static ufs_daddr_t
1182 ffs_nodealloccg(ip, cg, ipref, mode)
1183 struct inode *ip;
1184 int cg;
1185 ufs_daddr_t ipref;
1186 int mode;
1187 {
1188 register struct fs *fs;
1189 register struct cg *cgp;
1190 struct buf *bp;
1191 int error, start, len, loc, map, i;
1192 #ifdef FFS_EI
1193 const int needswap = UFS_IPNEEDSWAP(ip);
1194 #endif
1195
1196 fs = ip->i_fs;
1197 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1198 return (NULL);
1199 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1200 (int)fs->fs_cgsize, NOCRED, &bp);
1201 if (error) {
1202 brelse(bp);
1203 return (NULL);
1204 }
1205 cgp = (struct cg *)bp->b_data;
1206 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1207 brelse(bp);
1208 return (NULL);
1209 }
1210 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1211 if (ipref) {
1212 ipref %= fs->fs_ipg;
1213 if (isclr(cg_inosused(cgp, needswap), ipref))
1214 goto gotit;
1215 }
1216 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1217 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1218 NBBY);
1219 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1220 if (loc == 0) {
1221 len = start + 1;
1222 start = 0;
1223 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1224 if (loc == 0) {
1225 printf("cg = %d, irotor = %d, fs = %s\n",
1226 cg, ufs_rw32(cgp->cg_irotor, needswap),
1227 fs->fs_fsmnt);
1228 panic("ffs_nodealloccg: map corrupted");
1229 /* NOTREACHED */
1230 }
1231 }
1232 i = start + len - loc;
1233 map = cg_inosused(cgp, needswap)[i];
1234 ipref = i * NBBY;
1235 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1236 if ((map & i) == 0) {
1237 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1238 goto gotit;
1239 }
1240 }
1241 printf("fs = %s\n", fs->fs_fsmnt);
1242 panic("ffs_nodealloccg: block not in map");
1243 /* NOTREACHED */
1244 gotit:
1245 setbit(cg_inosused(cgp, needswap), ipref);
1246 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1247 fs->fs_cstotal.cs_nifree--;
1248 fs->fs_cs(fs, cg).cs_nifree --;
1249 fs->fs_fmod = 1;
1250 if ((mode & IFMT) == IFDIR) {
1251 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1252 fs->fs_cstotal.cs_ndir++;
1253 fs->fs_cs(fs, cg).cs_ndir++;
1254 }
1255 bdwrite(bp);
1256 return (cg * fs->fs_ipg + ipref);
1257 }
1258
1259 /*
1260 * Free a block or fragment.
1261 *
1262 * The specified block or fragment is placed back in the
1263 * free map. If a fragment is deallocated, a possible
1264 * block reassembly is checked.
1265 */
1266 void
1267 ffs_blkfree(ip, bno, size)
1268 register struct inode *ip;
1269 ufs_daddr_t bno;
1270 long size;
1271 {
1272 register struct fs *fs;
1273 register struct cg *cgp;
1274 struct buf *bp;
1275 ufs_daddr_t blkno;
1276 int i, error, cg, blk, frags, bbase;
1277 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1278
1279 fs = ip->i_fs;
1280 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1281 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1282 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1283 panic("blkfree: bad size");
1284 }
1285 cg = dtog(fs, bno);
1286 if ((u_int)bno >= fs->fs_size) {
1287 printf("bad block %d, ino %d\n", bno, ip->i_number);
1288 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1289 return;
1290 }
1291 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1292 (int)fs->fs_cgsize, NOCRED, &bp);
1293 if (error) {
1294 brelse(bp);
1295 return;
1296 }
1297 cgp = (struct cg *)bp->b_data;
1298 if (!cg_chkmagic(cgp, needswap)) {
1299 brelse(bp);
1300 return;
1301 }
1302 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1303 bno = dtogd(fs, bno);
1304 if (size == fs->fs_bsize) {
1305 blkno = fragstoblks(fs, bno);
1306 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1307 printf("dev = 0x%x, block = %d, fs = %s\n",
1308 ip->i_dev, bno, fs->fs_fsmnt);
1309 panic("blkfree: freeing free block");
1310 }
1311 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1312 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1313 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1314 fs->fs_cstotal.cs_nbfree++;
1315 fs->fs_cs(fs, cg).cs_nbfree++;
1316 i = cbtocylno(fs, bno);
1317 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1318 needswap);
1319 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1320 } else {
1321 bbase = bno - fragnum(fs, bno);
1322 /*
1323 * decrement the counts associated with the old frags
1324 */
1325 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1326 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1327 /*
1328 * deallocate the fragment
1329 */
1330 frags = numfrags(fs, size);
1331 for (i = 0; i < frags; i++) {
1332 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1333 printf("dev = 0x%x, block = %d, fs = %s\n",
1334 ip->i_dev, bno + i, fs->fs_fsmnt);
1335 panic("blkfree: freeing free frag");
1336 }
1337 setbit(cg_blksfree(cgp, needswap), bno + i);
1338 }
1339 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1340 fs->fs_cstotal.cs_nffree += i;
1341 fs->fs_cs(fs, cg).cs_nffree +=i;
1342 /*
1343 * add back in counts associated with the new frags
1344 */
1345 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1346 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1347 /*
1348 * if a complete block has been reassembled, account for it
1349 */
1350 blkno = fragstoblks(fs, bbase);
1351 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1352 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1353 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1354 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1355 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1356 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1357 fs->fs_cstotal.cs_nbfree++;
1358 fs->fs_cs(fs, cg).cs_nbfree++;
1359 i = cbtocylno(fs, bbase);
1360 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1361 needswap);
1362 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1363 }
1364 }
1365 fs->fs_fmod = 1;
1366 bdwrite(bp);
1367 }
1368
1369 #if defined(DIAGNOSTIC) || defined(DEBUG)
1370 /*
1371 * Verify allocation of a block or fragment. Returns true if block or
1372 * fragment is allocated, false if it is free.
1373 */
1374 static int
1375 ffs_checkblk(ip, bno, size)
1376 struct inode *ip;
1377 ufs_daddr_t bno;
1378 long size;
1379 {
1380 struct fs *fs;
1381 struct cg *cgp;
1382 struct buf *bp;
1383 int i, error, frags, free;
1384
1385 fs = ip->i_fs;
1386 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1387 printf("bsize = %d, size = %ld, fs = %s\n",
1388 fs->fs_bsize, size, fs->fs_fsmnt);
1389 panic("checkblk: bad size");
1390 }
1391 if ((u_int)bno >= fs->fs_size)
1392 panic("checkblk: bad block %d", bno);
1393 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1394 (int)fs->fs_cgsize, NOCRED, &bp);
1395 if (error) {
1396 brelse(bp);
1397 return 0;
1398 }
1399 cgp = (struct cg *)bp->b_data;
1400 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1401 brelse(bp);
1402 return 0;
1403 }
1404 bno = dtogd(fs, bno);
1405 if (size == fs->fs_bsize) {
1406 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1407 fragstoblks(fs, bno));
1408 } else {
1409 frags = numfrags(fs, size);
1410 for (free = 0, i = 0; i < frags; i++)
1411 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1412 free++;
1413 if (free != 0 && free != frags)
1414 panic("checkblk: partially free fragment");
1415 }
1416 brelse(bp);
1417 return (!free);
1418 }
1419 #endif /* DIAGNOSTIC */
1420
1421 /*
1422 * Free an inode.
1423 *
1424 * The specified inode is placed back in the free map.
1425 */
1426 int
1427 ffs_vfree(v)
1428 void *v;
1429 {
1430 struct vop_vfree_args /* {
1431 struct vnode *a_pvp;
1432 ino_t a_ino;
1433 int a_mode;
1434 } */ *ap = v;
1435 register struct fs *fs;
1436 register struct cg *cgp;
1437 register struct inode *pip;
1438 ino_t ino = ap->a_ino;
1439 struct buf *bp;
1440 int error, cg;
1441 #ifdef FFS_EI
1442 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1443 #endif
1444
1445 pip = VTOI(ap->a_pvp);
1446 fs = pip->i_fs;
1447 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1448 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1449 pip->i_dev, ino, fs->fs_fsmnt);
1450 cg = ino_to_cg(fs, ino);
1451 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1452 (int)fs->fs_cgsize, NOCRED, &bp);
1453 if (error) {
1454 brelse(bp);
1455 return (0);
1456 }
1457 cgp = (struct cg *)bp->b_data;
1458 if (!cg_chkmagic(cgp, needswap)) {
1459 brelse(bp);
1460 return (0);
1461 }
1462 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1463 ino %= fs->fs_ipg;
1464 if (isclr(cg_inosused(cgp, needswap), ino)) {
1465 printf("dev = 0x%x, ino = %d, fs = %s\n",
1466 pip->i_dev, ino, fs->fs_fsmnt);
1467 if (fs->fs_ronly == 0)
1468 panic("ifree: freeing free inode");
1469 }
1470 clrbit(cg_inosused(cgp, needswap), ino);
1471 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1472 cgp->cg_irotor = ufs_rw32(ino, needswap);
1473 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1474 fs->fs_cstotal.cs_nifree++;
1475 fs->fs_cs(fs, cg).cs_nifree++;
1476 if ((ap->a_mode & IFMT) == IFDIR) {
1477 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1478 fs->fs_cstotal.cs_ndir--;
1479 fs->fs_cs(fs, cg).cs_ndir--;
1480 }
1481 fs->fs_fmod = 1;
1482 bdwrite(bp);
1483 return (0);
1484 }
1485
1486 /*
1487 * Find a block of the specified size in the specified cylinder group.
1488 *
1489 * It is a panic if a request is made to find a block if none are
1490 * available.
1491 */
1492 static ufs_daddr_t
1493 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1494 int needswap;
1495 register struct fs *fs;
1496 register struct cg *cgp;
1497 ufs_daddr_t bpref;
1498 int allocsiz;
1499 {
1500 ufs_daddr_t bno;
1501 int start, len, loc, i;
1502 int blk, field, subfield, pos;
1503 int ostart, olen;
1504
1505 /*
1506 * find the fragment by searching through the free block
1507 * map for an appropriate bit pattern
1508 */
1509 if (bpref)
1510 start = dtogd(fs, bpref) / NBBY;
1511 else
1512 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1513 len = howmany(fs->fs_fpg, NBBY) - start;
1514 ostart = start;
1515 olen = len;
1516 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1517 (u_char *)fragtbl[fs->fs_frag],
1518 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1519 if (loc == 0) {
1520 len = start + 1;
1521 start = 0;
1522 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1523 (u_char *)fragtbl[fs->fs_frag],
1524 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1525 if (loc == 0) {
1526 printf("start = %d, len = %d, fs = %s\n",
1527 ostart, olen, fs->fs_fsmnt);
1528 printf("offset=%d %ld\n",
1529 ufs_rw32(cgp->cg_freeoff, needswap),
1530 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1531 panic("ffs_alloccg: map corrupted");
1532 /* NOTREACHED */
1533 }
1534 }
1535 bno = (start + len - loc) * NBBY;
1536 cgp->cg_frotor = ufs_rw32(bno, needswap);
1537 /*
1538 * found the byte in the map
1539 * sift through the bits to find the selected frag
1540 */
1541 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1542 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1543 blk <<= 1;
1544 field = around[allocsiz];
1545 subfield = inside[allocsiz];
1546 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1547 if ((blk & field) == subfield)
1548 return (bno + pos);
1549 field <<= 1;
1550 subfield <<= 1;
1551 }
1552 }
1553 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1554 panic("ffs_alloccg: block not in map");
1555 return (-1);
1556 }
1557
1558 /*
1559 * Update the cluster map because of an allocation or free.
1560 *
1561 * Cnt == 1 means free; cnt == -1 means allocating.
1562 */
1563 void
1564 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1565 int needswap;
1566 struct fs *fs;
1567 struct cg *cgp;
1568 ufs_daddr_t blkno;
1569 int cnt;
1570 {
1571 int32_t *sump;
1572 int32_t *lp;
1573 u_char *freemapp, *mapp;
1574 int i, start, end, forw, back, map, bit;
1575
1576 if (fs->fs_contigsumsize <= 0)
1577 return;
1578 freemapp = cg_clustersfree(cgp, needswap);
1579 sump = cg_clustersum(cgp, needswap);
1580 /*
1581 * Allocate or clear the actual block.
1582 */
1583 if (cnt > 0)
1584 setbit(freemapp, blkno);
1585 else
1586 clrbit(freemapp, blkno);
1587 /*
1588 * Find the size of the cluster going forward.
1589 */
1590 start = blkno + 1;
1591 end = start + fs->fs_contigsumsize;
1592 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1593 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1594 mapp = &freemapp[start / NBBY];
1595 map = *mapp++;
1596 bit = 1 << (start % NBBY);
1597 for (i = start; i < end; i++) {
1598 if ((map & bit) == 0)
1599 break;
1600 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1601 bit <<= 1;
1602 } else {
1603 map = *mapp++;
1604 bit = 1;
1605 }
1606 }
1607 forw = i - start;
1608 /*
1609 * Find the size of the cluster going backward.
1610 */
1611 start = blkno - 1;
1612 end = start - fs->fs_contigsumsize;
1613 if (end < 0)
1614 end = -1;
1615 mapp = &freemapp[start / NBBY];
1616 map = *mapp--;
1617 bit = 1 << (start % NBBY);
1618 for (i = start; i > end; i--) {
1619 if ((map & bit) == 0)
1620 break;
1621 if ((i & (NBBY - 1)) != 0) {
1622 bit >>= 1;
1623 } else {
1624 map = *mapp--;
1625 bit = 1 << (NBBY - 1);
1626 }
1627 }
1628 back = start - i;
1629 /*
1630 * Account for old cluster and the possibly new forward and
1631 * back clusters.
1632 */
1633 i = back + forw + 1;
1634 if (i > fs->fs_contigsumsize)
1635 i = fs->fs_contigsumsize;
1636 ufs_add32(sump[i], cnt, needswap);
1637 if (back > 0)
1638 ufs_add32(sump[back], -cnt, needswap);
1639 if (forw > 0)
1640 ufs_add32(sump[forw], -cnt, needswap);
1641
1642 /*
1643 * Update cluster summary information.
1644 */
1645 lp = &sump[fs->fs_contigsumsize];
1646 for (i = fs->fs_contigsumsize; i > 0; i--)
1647 if (ufs_rw32(*lp--, needswap) > 0)
1648 break;
1649 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1650 }
1651
1652 /*
1653 * Fserr prints the name of a file system with an error diagnostic.
1654 *
1655 * The form of the error message is:
1656 * fs: error message
1657 */
1658 static void
1659 ffs_fserr(fs, uid, cp)
1660 struct fs *fs;
1661 u_int uid;
1662 char *cp;
1663 {
1664
1665 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1666 }
1667