ffs_alloc.c revision 1.26.2.2 1 /* $NetBSD: ffs_alloc.c,v 1.26.2.2 1999/02/25 04:00:12 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_quota.h"
40 #include "opt_uvm.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53 #ifdef UBC
54 #include <uvm/uvm.h>
55 #endif
56
57 #include <ufs/ufs/quota.h>
58 #include <ufs/ufs/ufsmount.h>
59 #include <ufs/ufs/inode.h>
60 #include <ufs/ufs/ufs_extern.h>
61 #include <ufs/ufs/ufs_bswap.h>
62
63 #include <ufs/ffs/fs.h>
64 #include <ufs/ffs/ffs_extern.h>
65
66 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
67 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
68 struct cg *, ufs_daddr_t));
69 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
70 static ino_t ffs_dirpref __P((struct fs *));
71 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
72 static void ffs_fserr __P((struct fs *, u_int, char *));
73 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
74 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
75 int)));
76 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
77 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
78 ufs_daddr_t, int));
79 #if defined(DIAGNOSTIC) || defined(DEBUG)
80 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
81 #endif
82
83 /* in ffs_tables.c */
84 extern int inside[], around[];
85 extern u_char *fragtbl[];
86
87 /*
88 * Allocate a block in the file system.
89 *
90 * The size of the requested block is given, which must be some
91 * multiple of fs_fsize and <= fs_bsize.
92 * A preference may be optionally specified. If a preference is given
93 * the following hierarchy is used to allocate a block:
94 * 1) allocate the requested block.
95 * 2) allocate a rotationally optimal block in the same cylinder.
96 * 3) allocate a block in the same cylinder group.
97 * 4) quadradically rehash into other cylinder groups, until an
98 * available block is located.
99 * If no block preference is given the following heirarchy is used
100 * to allocate a block:
101 * 1) allocate a block in the cylinder group that contains the
102 * inode for the file.
103 * 2) quadradically rehash into other cylinder groups, until an
104 * available block is located.
105 */
106 int
107 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
108 register struct inode *ip;
109 ufs_daddr_t lbn, bpref;
110 int size;
111 struct ucred *cred;
112 ufs_daddr_t *bnp;
113 {
114 register struct fs *fs;
115 ufs_daddr_t bno;
116 int cg;
117 #ifdef QUOTA
118 int error;
119 #endif
120
121 *bnp = 0;
122 fs = ip->i_fs;
123 #ifdef DIAGNOSTIC
124 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
125 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
126 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
127 panic("ffs_alloc: bad size");
128 }
129 if (cred == NOCRED)
130 panic("ffs_alloc: missing credential\n");
131 #endif /* DIAGNOSTIC */
132 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
133 goto nospace;
134 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
135 goto nospace;
136 #ifdef QUOTA
137 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
138 return (error);
139 #endif
140 if (bpref >= fs->fs_size)
141 bpref = 0;
142 if (bpref == 0)
143 cg = ino_to_cg(fs, ip->i_number);
144 else
145 cg = dtog(fs, bpref);
146 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
147 ffs_alloccg);
148 if (bno > 0) {
149 ip->i_ffs_blocks += btodb(size);
150 ip->i_flag |= IN_CHANGE | IN_UPDATE;
151 *bnp = bno;
152 return (0);
153 }
154 #ifdef QUOTA
155 /*
156 * Restore user's disk quota because allocation failed.
157 */
158 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
159 #endif
160 nospace:
161 ffs_fserr(fs, cred->cr_uid, "file system full");
162 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
163 return (ENOSPC);
164 }
165
166 /*
167 * Reallocate a fragment to a bigger size
168 *
169 * The number and size of the old block is given, and a preference
170 * and new size is also specified. The allocator attempts to extend
171 * the original block. Failing that, the regular block allocator is
172 * invoked to get an appropriate block.
173 */
174 int
175 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
176 register struct inode *ip;
177 ufs_daddr_t lbprev;
178 ufs_daddr_t bpref;
179 int osize, nsize;
180 struct ucred *cred;
181 struct buf **bpp;
182 ufs_daddr_t *blknop;
183 {
184 register struct fs *fs;
185 struct buf *bp;
186 int cg, request, error;
187 ufs_daddr_t bprev, bno;
188
189 *bpp = 0;
190 fs = ip->i_fs;
191 #ifdef DIAGNOSTIC
192 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
193 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
194 printf(
195 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
196 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
197 panic("ffs_realloccg: bad size");
198 }
199 if (cred == NOCRED)
200 panic("ffs_realloccg: missing credential\n");
201 #endif /* DIAGNOSTIC */
202 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
203 goto nospace;
204 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
205 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
206 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
207 panic("ffs_realloccg: bad bprev");
208 }
209
210 #ifdef QUOTA
211 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
212 return (error);
213 }
214 #endif
215
216 /*
217 * Allocate the extra space in the buffer.
218 */
219 if (bpp != NULL &&
220 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
221 brelse(bp);
222 return (error);
223 }
224
225 /*
226 * Check for extension in the existing location.
227 */
228 cg = dtog(fs, bprev);
229 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
230 ip->i_ffs_blocks += btodb(nsize - osize);
231 ip->i_flag |= IN_CHANGE | IN_UPDATE;
232
233 if (bpp != NULL) {
234 if (bp->b_blkno != fsbtodb(fs, bno))
235 panic("bad blockno");
236 allocbuf(bp, nsize);
237 bp->b_flags |= B_DONE;
238 memset(bp->b_data + osize, 0, nsize - osize);
239 *bpp = bp;
240 }
241 else {
242 /*
243 * XXX do page-cache stuff.
244 * I think we don't need to do anything,
245 * assuming pages are always zeroed when alloc'd.
246 */
247 }
248
249 *blknop = bno;
250 return (0);
251 }
252 /*
253 * Allocate a new disk location.
254 */
255 if (bpref >= fs->fs_size)
256 bpref = 0;
257 switch ((int)fs->fs_optim) {
258 case FS_OPTSPACE:
259 /*
260 * Allocate an exact sized fragment. Although this makes
261 * best use of space, we will waste time relocating it if
262 * the file continues to grow. If the fragmentation is
263 * less than half of the minimum free reserve, we choose
264 * to begin optimizing for time.
265 */
266 request = nsize;
267 if (fs->fs_minfree < 5 ||
268 fs->fs_cstotal.cs_nffree >
269 fs->fs_dsize * fs->fs_minfree / (2 * 100))
270 break;
271 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
272 fs->fs_fsmnt);
273 fs->fs_optim = FS_OPTTIME;
274 break;
275 case FS_OPTTIME:
276 /*
277 * At this point we have discovered a file that is trying to
278 * grow a small fragment to a larger fragment. To save time,
279 * we allocate a full sized block, then free the unused portion.
280 * If the file continues to grow, the `ffs_fragextend' call
281 * above will be able to grow it in place without further
282 * copying. If aberrant programs cause disk fragmentation to
283 * grow within 2% of the free reserve, we choose to begin
284 * optimizing for space.
285 */
286 request = fs->fs_bsize;
287 if (fs->fs_cstotal.cs_nffree <
288 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
289 break;
290 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
291 fs->fs_fsmnt);
292 fs->fs_optim = FS_OPTSPACE;
293 break;
294 default:
295 printf("dev = 0x%x, optim = %d, fs = %s\n",
296 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
297 panic("ffs_realloccg: bad optim");
298 /* NOTREACHED */
299 }
300 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
301 ffs_alloccg);
302 if (bno > 0) {
303
304 if (bpp != NULL) {
305 bp->b_blkno = fsbtodb(fs, bno);
306 }
307 else {
308 /*
309 * re-label cached pages, if any
310 */
311 uvm_vnp_setpageblknos(ITOV(ip), lblktosize(fs, lbprev),
312 blkoff(fs, ip->i_ffs_size),
313 fsbtodb(fs, bno), UFP_NOALLOC,
314 FALSE);
315 }
316
317 #if defined(UVM)
318 (void) uvm_vnp_uncache(ITOV(ip));
319 #else
320 (void) vnode_pager_uncache(ITOV(ip));
321 #endif
322
323 ffs_blkfree(ip, bprev, (long)osize);
324 if (nsize < request)
325 ffs_blkfree(ip, bno + numfrags(fs, nsize),
326 (long)(request - nsize));
327 ip->i_ffs_blocks += btodb(nsize - osize);
328 ip->i_flag |= IN_CHANGE | IN_UPDATE;
329
330 if (bpp != NULL) {
331 allocbuf(bp, nsize);
332 bp->b_flags |= B_DONE;
333 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
334 *bpp = bp;
335 }
336
337 *blknop = bno;
338 return (0);
339 }
340 #ifdef QUOTA
341 /*
342 * Restore user's disk quota because allocation failed.
343 */
344 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
345 #endif
346
347 if (bpp != NULL) {
348 brelse(bp);
349 }
350
351 nospace:
352 /*
353 * no space available
354 */
355 ffs_fserr(fs, cred->cr_uid, "file system full");
356 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
357 return (ENOSPC);
358 }
359
360 /*
361 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
362 *
363 * The vnode and an array of buffer pointers for a range of sequential
364 * logical blocks to be made contiguous is given. The allocator attempts
365 * to find a range of sequential blocks starting as close as possible to
366 * an fs_rotdelay offset from the end of the allocation for the logical
367 * block immediately preceeding the current range. If successful, the
368 * physical block numbers in the buffer pointers and in the inode are
369 * changed to reflect the new allocation. If unsuccessful, the allocation
370 * is left unchanged. The success in doing the reallocation is returned.
371 * Note that the error return is not reflected back to the user. Rather
372 * the previous block allocation will be used.
373 */
374 #ifdef DEBUG
375 #include <sys/sysctl.h>
376 int prtrealloc = 0;
377 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
378 #endif
379
380 int doasyncfree = 1;
381 extern int doreallocblks;
382
383 int
384 ffs_reallocblks(v)
385 void *v;
386 {
387 struct vop_reallocblks_args /* {
388 struct vnode *a_vp;
389 struct cluster_save *a_buflist;
390 } */ *ap = v;
391 struct fs *fs;
392 struct inode *ip;
393 struct vnode *vp;
394 struct buf *sbp, *ebp;
395 ufs_daddr_t *bap, *sbap, *ebap = NULL;
396 struct cluster_save *buflist;
397 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
398 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
399 int i, len, start_lvl, end_lvl, pref, ssize;
400 struct timespec ts;
401
402 #ifdef UBC
403 /* XXX don't do this for now */
404 return ENOSPC;
405 #endif
406
407 vp = ap->a_vp;
408 ip = VTOI(vp);
409 fs = ip->i_fs;
410 if (fs->fs_contigsumsize <= 0)
411 return (ENOSPC);
412 buflist = ap->a_buflist;
413 len = buflist->bs_nchildren;
414 start_lbn = buflist->bs_children[0]->b_lblkno;
415 end_lbn = start_lbn + len - 1;
416 #ifdef DIAGNOSTIC
417 for (i = 0; i < len; i++)
418 if (!ffs_checkblk(ip,
419 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
420 panic("ffs_reallocblks: unallocated block 1");
421 for (i = 1; i < len; i++)
422 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
423 panic("ffs_reallocblks: non-logical cluster");
424 blkno = buflist->bs_children[0]->b_blkno;
425 ssize = fsbtodb(fs, fs->fs_frag);
426 for (i = 1; i < len - 1; i++)
427 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
428 panic("ffs_reallocblks: non-physical cluster %d", i);
429 #endif
430 /*
431 * If the latest allocation is in a new cylinder group, assume that
432 * the filesystem has decided to move and do not force it back to
433 * the previous cylinder group.
434 */
435 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
436 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
437 return (ENOSPC);
438 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
439 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
440 return (ENOSPC);
441 /*
442 * Get the starting offset and block map for the first block.
443 */
444 if (start_lvl == 0) {
445 sbap = &ip->i_ffs_db[0];
446 soff = start_lbn;
447 } else {
448 idp = &start_ap[start_lvl - 1];
449 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
450 brelse(sbp);
451 return (ENOSPC);
452 }
453 sbap = (ufs_daddr_t *)sbp->b_data;
454 soff = idp->in_off;
455 }
456 /*
457 * Find the preferred location for the cluster.
458 */
459 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
460 /*
461 * If the block range spans two block maps, get the second map.
462 */
463 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
464 ssize = len;
465 } else {
466 #ifdef DIAGNOSTIC
467 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
468 panic("ffs_reallocblk: start == end");
469 #endif
470 ssize = len - (idp->in_off + 1);
471 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
472 goto fail;
473 ebap = (ufs_daddr_t *)ebp->b_data;
474 }
475 /*
476 * Search the block map looking for an allocation of the desired size.
477 */
478 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
479 len, ffs_clusteralloc)) == 0)
480 goto fail;
481 /*
482 * We have found a new contiguous block.
483 *
484 * First we have to replace the old block pointers with the new
485 * block pointers in the inode and indirect blocks associated
486 * with the file.
487 */
488 #ifdef DEBUG
489 if (prtrealloc)
490 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
491 start_lbn, end_lbn);
492 #endif
493 blkno = newblk;
494 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
495 if (i == ssize)
496 bap = ebap;
497 #ifdef DIAGNOSTIC
498 if (!ffs_checkblk(ip,
499 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
500 panic("ffs_reallocblks: unallocated block 2");
501 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
502 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
503 panic("ffs_reallocblks: alloc mismatch");
504 #endif
505 #ifdef DEBUG
506 if (prtrealloc)
507 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
508 #endif
509 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
510 }
511 /*
512 * Next we must write out the modified inode and indirect blocks.
513 * For strict correctness, the writes should be synchronous since
514 * the old block values may have been written to disk. In practise
515 * they are almost never written, but if we are concerned about
516 * strict correctness, the `doasyncfree' flag should be set to zero.
517 *
518 * The test on `doasyncfree' should be changed to test a flag
519 * that shows whether the associated buffers and inodes have
520 * been written. The flag should be set when the cluster is
521 * started and cleared whenever the buffer or inode is flushed.
522 * We can then check below to see if it is set, and do the
523 * synchronous write only when it has been cleared.
524 */
525 if (sbap != &ip->i_ffs_db[0]) {
526 if (doasyncfree)
527 bdwrite(sbp);
528 else
529 bwrite(sbp);
530 } else {
531 ip->i_flag |= IN_CHANGE | IN_UPDATE;
532 if (!doasyncfree) {
533 TIMEVAL_TO_TIMESPEC(&time, &ts);
534 VOP_UPDATE(vp, &ts, &ts, 1);
535 }
536 }
537 if (ssize < len) {
538 if (doasyncfree)
539 bdwrite(ebp);
540 else
541 bwrite(ebp);
542 }
543 /*
544 * Last, free the old blocks and assign the new blocks to the buffers.
545 */
546 #ifdef DEBUG
547 if (prtrealloc)
548 printf("\n\tnew:");
549 #endif
550 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
551 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
552 fs->fs_bsize);
553 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
554 #ifdef DEBUG
555 if (!ffs_checkblk(ip,
556 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
557 panic("ffs_reallocblks: unallocated block 3");
558 if (prtrealloc)
559 printf(" %d,", blkno);
560 #endif
561 }
562 #ifdef DEBUG
563 if (prtrealloc) {
564 prtrealloc--;
565 printf("\n");
566 }
567 #endif
568 return (0);
569
570 fail:
571 if (ssize < len)
572 brelse(ebp);
573 if (sbap != &ip->i_ffs_db[0])
574 brelse(sbp);
575 return (ENOSPC);
576 }
577
578 /*
579 * Allocate an inode in the file system.
580 *
581 * If allocating a directory, use ffs_dirpref to select the inode.
582 * If allocating in a directory, the following hierarchy is followed:
583 * 1) allocate the preferred inode.
584 * 2) allocate an inode in the same cylinder group.
585 * 3) quadradically rehash into other cylinder groups, until an
586 * available inode is located.
587 * If no inode preference is given the following heirarchy is used
588 * to allocate an inode:
589 * 1) allocate an inode in cylinder group 0.
590 * 2) quadradically rehash into other cylinder groups, until an
591 * available inode is located.
592 */
593 int
594 ffs_valloc(v)
595 void *v;
596 {
597 struct vop_valloc_args /* {
598 struct vnode *a_pvp;
599 int a_mode;
600 struct ucred *a_cred;
601 struct vnode **a_vpp;
602 } */ *ap = v;
603 register struct vnode *pvp = ap->a_pvp;
604 register struct inode *pip;
605 register struct fs *fs;
606 register struct inode *ip;
607 mode_t mode = ap->a_mode;
608 ino_t ino, ipref;
609 int cg, error;
610
611 *ap->a_vpp = NULL;
612 pip = VTOI(pvp);
613 fs = pip->i_fs;
614 if (fs->fs_cstotal.cs_nifree == 0)
615 goto noinodes;
616
617 if ((mode & IFMT) == IFDIR)
618 ipref = ffs_dirpref(fs);
619 else
620 ipref = pip->i_number;
621 if (ipref >= fs->fs_ncg * fs->fs_ipg)
622 ipref = 0;
623 cg = ino_to_cg(fs, ipref);
624 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
625 if (ino == 0)
626 goto noinodes;
627 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
628 if (error) {
629 VOP_VFREE(pvp, ino, mode);
630 return (error);
631 }
632 ip = VTOI(*ap->a_vpp);
633 if (ip->i_ffs_mode) {
634 printf("mode = 0%o, inum = %d, fs = %s\n",
635 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
636 panic("ffs_valloc: dup alloc");
637 }
638 if (ip->i_ffs_blocks) { /* XXX */
639 printf("free inode %s/%d had %d blocks\n",
640 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
641 ip->i_ffs_blocks = 0;
642 }
643 ip->i_ffs_flags = 0;
644 /*
645 * Set up a new generation number for this inode.
646 */
647 ip->i_ffs_gen++;
648 return (0);
649 noinodes:
650 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
651 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
652 return (ENOSPC);
653 }
654
655 /*
656 * Find a cylinder to place a directory.
657 *
658 * The policy implemented by this algorithm is to select from
659 * among those cylinder groups with above the average number of
660 * free inodes, the one with the smallest number of directories.
661 */
662 static ino_t
663 ffs_dirpref(fs)
664 register struct fs *fs;
665 {
666 int cg, minndir, mincg, avgifree;
667
668 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
669 minndir = fs->fs_ipg;
670 mincg = 0;
671 for (cg = 0; cg < fs->fs_ncg; cg++)
672 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
673 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
674 mincg = cg;
675 minndir = fs->fs_cs(fs, cg).cs_ndir;
676 }
677 return ((ino_t)(fs->fs_ipg * mincg));
678 }
679
680 /*
681 * Select the desired position for the next block in a file. The file is
682 * logically divided into sections. The first section is composed of the
683 * direct blocks. Each additional section contains fs_maxbpg blocks.
684 *
685 * If no blocks have been allocated in the first section, the policy is to
686 * request a block in the same cylinder group as the inode that describes
687 * the file. If no blocks have been allocated in any other section, the
688 * policy is to place the section in a cylinder group with a greater than
689 * average number of free blocks. An appropriate cylinder group is found
690 * by using a rotor that sweeps the cylinder groups. When a new group of
691 * blocks is needed, the sweep begins in the cylinder group following the
692 * cylinder group from which the previous allocation was made. The sweep
693 * continues until a cylinder group with greater than the average number
694 * of free blocks is found. If the allocation is for the first block in an
695 * indirect block, the information on the previous allocation is unavailable;
696 * here a best guess is made based upon the logical block number being
697 * allocated.
698 *
699 * If a section is already partially allocated, the policy is to
700 * contiguously allocate fs_maxcontig blocks. The end of one of these
701 * contiguous blocks and the beginning of the next is physically separated
702 * so that the disk head will be in transit between them for at least
703 * fs_rotdelay milliseconds. This is to allow time for the processor to
704 * schedule another I/O transfer.
705 */
706 ufs_daddr_t
707 ffs_blkpref(ip, lbn, indx, bap)
708 struct inode *ip;
709 ufs_daddr_t lbn;
710 int indx;
711 ufs_daddr_t *bap;
712 {
713 register struct fs *fs;
714 register int cg;
715 int avgbfree, startcg;
716 ufs_daddr_t nextblk;
717
718 fs = ip->i_fs;
719 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
720 if (lbn < NDADDR) {
721 cg = ino_to_cg(fs, ip->i_number);
722 return (fs->fs_fpg * cg + fs->fs_frag);
723 }
724 /*
725 * Find a cylinder with greater than average number of
726 * unused data blocks.
727 */
728 if (indx == 0 || bap[indx - 1] == 0)
729 startcg =
730 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
731 else
732 startcg = dtog(fs,
733 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
734 startcg %= fs->fs_ncg;
735 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
736 for (cg = startcg; cg < fs->fs_ncg; cg++)
737 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
738 fs->fs_cgrotor = cg;
739 return (fs->fs_fpg * cg + fs->fs_frag);
740 }
741 for (cg = 0; cg <= startcg; cg++)
742 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
743 fs->fs_cgrotor = cg;
744 return (fs->fs_fpg * cg + fs->fs_frag);
745 }
746 return (NULL);
747 }
748 /*
749 * One or more previous blocks have been laid out. If less
750 * than fs_maxcontig previous blocks are contiguous, the
751 * next block is requested contiguously, otherwise it is
752 * requested rotationally delayed by fs_rotdelay milliseconds.
753 */
754 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
755 if (indx < fs->fs_maxcontig ||
756 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
757 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
758 return (nextblk);
759 if (fs->fs_rotdelay != 0)
760 /*
761 * Here we convert ms of delay to frags as:
762 * (frags) = (ms) * (rev/sec) * (sect/rev) /
763 * ((sect/frag) * (ms/sec))
764 * then round up to the next block.
765 */
766 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
767 (NSPF(fs) * 1000), fs->fs_frag);
768 return (nextblk);
769 }
770
771 /*
772 * Implement the cylinder overflow algorithm.
773 *
774 * The policy implemented by this algorithm is:
775 * 1) allocate the block in its requested cylinder group.
776 * 2) quadradically rehash on the cylinder group number.
777 * 3) brute force search for a free block.
778 */
779 /*VARARGS5*/
780 static u_long
781 ffs_hashalloc(ip, cg, pref, size, allocator)
782 struct inode *ip;
783 int cg;
784 long pref;
785 int size; /* size for data blocks, mode for inodes */
786 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
787 {
788 register struct fs *fs;
789 long result;
790 int i, icg = cg;
791
792 fs = ip->i_fs;
793 /*
794 * 1: preferred cylinder group
795 */
796 result = (*allocator)(ip, cg, pref, size);
797 if (result)
798 return (result);
799 /*
800 * 2: quadratic rehash
801 */
802 for (i = 1; i < fs->fs_ncg; i *= 2) {
803 cg += i;
804 if (cg >= fs->fs_ncg)
805 cg -= fs->fs_ncg;
806 result = (*allocator)(ip, cg, 0, size);
807 if (result)
808 return (result);
809 }
810 /*
811 * 3: brute force search
812 * Note that we start at i == 2, since 0 was checked initially,
813 * and 1 is always checked in the quadratic rehash.
814 */
815 cg = (icg + 2) % fs->fs_ncg;
816 for (i = 2; i < fs->fs_ncg; i++) {
817 result = (*allocator)(ip, cg, 0, size);
818 if (result)
819 return (result);
820 cg++;
821 if (cg == fs->fs_ncg)
822 cg = 0;
823 }
824 return (NULL);
825 }
826
827 /*
828 * Determine whether a fragment can be extended.
829 *
830 * Check to see if the necessary fragments are available, and
831 * if they are, allocate them.
832 */
833 static ufs_daddr_t
834 ffs_fragextend(ip, cg, bprev, osize, nsize)
835 struct inode *ip;
836 int cg;
837 long bprev;
838 int osize, nsize;
839 {
840 register struct fs *fs;
841 register struct cg *cgp;
842 struct buf *bp;
843 long bno;
844 int frags, bbase;
845 int i, error;
846
847 fs = ip->i_fs;
848 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
849 return (NULL);
850 frags = numfrags(fs, nsize);
851 bbase = fragnum(fs, bprev);
852 if (bbase > fragnum(fs, (bprev + frags - 1))) {
853 /* cannot extend across a block boundary */
854 return (NULL);
855 }
856 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
857 (int)fs->fs_cgsize, NOCRED, &bp);
858 if (error) {
859 brelse(bp);
860 return (NULL);
861 }
862 cgp = (struct cg *)bp->b_data;
863 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
864 brelse(bp);
865 return (NULL);
866 }
867 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
868 bno = dtogd(fs, bprev);
869 for (i = numfrags(fs, osize); i < frags; i++)
870 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
871 brelse(bp);
872 return (NULL);
873 }
874 /*
875 * the current fragment can be extended
876 * deduct the count on fragment being extended into
877 * increase the count on the remaining fragment (if any)
878 * allocate the extended piece
879 */
880 for (i = frags; i < fs->fs_frag - bbase; i++)
881 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
882 break;
883 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
884 if (i != frags)
885 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
886 for (i = numfrags(fs, osize); i < frags; i++) {
887 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
888 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
889 fs->fs_cstotal.cs_nffree--;
890 fs->fs_cs(fs, cg).cs_nffree--;
891 }
892 fs->fs_fmod = 1;
893 bdwrite(bp);
894 return (bprev);
895 }
896
897 /*
898 * Determine whether a block can be allocated.
899 *
900 * Check to see if a block of the appropriate size is available,
901 * and if it is, allocate it.
902 */
903 static ufs_daddr_t
904 ffs_alloccg(ip, cg, bpref, size)
905 struct inode *ip;
906 int cg;
907 ufs_daddr_t bpref;
908 int size;
909 {
910 register struct fs *fs;
911 register struct cg *cgp;
912 struct buf *bp;
913 register int i;
914 int error, bno, frags, allocsiz;
915 const int needswap = UFS_IPNEEDSWAP(ip);
916
917 fs = ip->i_fs;
918 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
919 return (NULL);
920 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
921 (int)fs->fs_cgsize, NOCRED, &bp);
922 if (error) {
923 brelse(bp);
924 return (NULL);
925 }
926 cgp = (struct cg *)bp->b_data;
927 if (!cg_chkmagic(cgp, needswap) ||
928 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
929 brelse(bp);
930 return (NULL);
931 }
932 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
933 if (size == fs->fs_bsize) {
934 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
935 bdwrite(bp);
936 return (bno);
937 }
938 /*
939 * check to see if any fragments are already available
940 * allocsiz is the size which will be allocated, hacking
941 * it down to a smaller size if necessary
942 */
943 frags = numfrags(fs, size);
944 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
945 if (cgp->cg_frsum[allocsiz] != 0)
946 break;
947 if (allocsiz == fs->fs_frag) {
948 /*
949 * no fragments were available, so a block will be
950 * allocated, and hacked up
951 */
952 if (cgp->cg_cs.cs_nbfree == 0) {
953 brelse(bp);
954 return (NULL);
955 }
956 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
957 bpref = dtogd(fs, bno);
958 for (i = frags; i < fs->fs_frag; i++)
959 setbit(cg_blksfree(cgp, needswap), bpref + i);
960 i = fs->fs_frag - frags;
961 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
962 fs->fs_cstotal.cs_nffree += i;
963 fs->fs_cs(fs, cg).cs_nffree +=i;
964 fs->fs_fmod = 1;
965 ufs_add32(cgp->cg_frsum[i], 1, needswap);
966 bdwrite(bp);
967 return (bno);
968 }
969 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
970 if (bno < 0) {
971 brelse(bp);
972 return (NULL);
973 }
974 for (i = 0; i < frags; i++)
975 clrbit(cg_blksfree(cgp, needswap), bno + i);
976 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
977 fs->fs_cstotal.cs_nffree -= frags;
978 fs->fs_cs(fs, cg).cs_nffree -= frags;
979 fs->fs_fmod = 1;
980 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
981 if (frags != allocsiz)
982 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
983 bdwrite(bp);
984 return (cg * fs->fs_fpg + bno);
985 }
986
987 /*
988 * Allocate a block in a cylinder group.
989 *
990 * This algorithm implements the following policy:
991 * 1) allocate the requested block.
992 * 2) allocate a rotationally optimal block in the same cylinder.
993 * 3) allocate the next available block on the block rotor for the
994 * specified cylinder group.
995 * Note that this routine only allocates fs_bsize blocks; these
996 * blocks may be fragmented by the routine that allocates them.
997 */
998 static ufs_daddr_t
999 ffs_alloccgblk(mp, fs, cgp, bpref)
1000 struct mount *mp;
1001 register struct fs *fs;
1002 register struct cg *cgp;
1003 ufs_daddr_t bpref;
1004 {
1005 ufs_daddr_t bno, blkno;
1006 int cylno, pos, delta;
1007 short *cylbp;
1008 register int i;
1009 const int needswap = UFS_MPNEEDSWAP(mp);
1010
1011 if (bpref == 0 ||
1012 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1013 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1014 goto norot;
1015 }
1016 bpref = blknum(fs, bpref);
1017 bpref = dtogd(fs, bpref);
1018 /*
1019 * if the requested block is available, use it
1020 */
1021 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1022 fragstoblks(fs, bpref))) {
1023 bno = bpref;
1024 goto gotit;
1025 }
1026 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1027 /*
1028 * Block layout information is not available.
1029 * Leaving bpref unchanged means we take the
1030 * next available free block following the one
1031 * we just allocated. Hopefully this will at
1032 * least hit a track cache on drives of unknown
1033 * geometry (e.g. SCSI).
1034 */
1035 goto norot;
1036 }
1037 /*
1038 * check for a block available on the same cylinder
1039 */
1040 cylno = cbtocylno(fs, bpref);
1041 if (cg_blktot(cgp, needswap)[cylno] == 0)
1042 goto norot;
1043 /*
1044 * check the summary information to see if a block is
1045 * available in the requested cylinder starting at the
1046 * requested rotational position and proceeding around.
1047 */
1048 cylbp = cg_blks(fs, cgp, cylno, needswap);
1049 pos = cbtorpos(fs, bpref);
1050 for (i = pos; i < fs->fs_nrpos; i++)
1051 if (ufs_rw16(cylbp[i], needswap) > 0)
1052 break;
1053 if (i == fs->fs_nrpos)
1054 for (i = 0; i < pos; i++)
1055 if (ufs_rw16(cylbp[i], needswap) > 0)
1056 break;
1057 if (ufs_rw16(cylbp[i], needswap) > 0) {
1058 /*
1059 * found a rotational position, now find the actual
1060 * block. A panic if none is actually there.
1061 */
1062 pos = cylno % fs->fs_cpc;
1063 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1064 if (fs_postbl(fs, pos)[i] == -1) {
1065 printf("pos = %d, i = %d, fs = %s\n",
1066 pos, i, fs->fs_fsmnt);
1067 panic("ffs_alloccgblk: cyl groups corrupted");
1068 }
1069 for (i = fs_postbl(fs, pos)[i];; ) {
1070 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1071 bno = blkstofrags(fs, (bno + i));
1072 goto gotit;
1073 }
1074 delta = fs_rotbl(fs)[i];
1075 if (delta <= 0 ||
1076 delta + i > fragstoblks(fs, fs->fs_fpg))
1077 break;
1078 i += delta;
1079 }
1080 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1081 panic("ffs_alloccgblk: can't find blk in cyl");
1082 }
1083 norot:
1084 /*
1085 * no blocks in the requested cylinder, so take next
1086 * available one in this cylinder group.
1087 */
1088 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1089 if (bno < 0)
1090 return (NULL);
1091 cgp->cg_rotor = ufs_rw32(bno, needswap);
1092 gotit:
1093 blkno = fragstoblks(fs, bno);
1094 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1095 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1096 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1097 fs->fs_cstotal.cs_nbfree--;
1098 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1099 cylno = cbtocylno(fs, bno);
1100 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1101 needswap);
1102 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1103 fs->fs_fmod = 1;
1104 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1105 }
1106
1107 /*
1108 * Determine whether a cluster can be allocated.
1109 *
1110 * We do not currently check for optimal rotational layout if there
1111 * are multiple choices in the same cylinder group. Instead we just
1112 * take the first one that we find following bpref.
1113 */
1114 static ufs_daddr_t
1115 ffs_clusteralloc(ip, cg, bpref, len)
1116 struct inode *ip;
1117 int cg;
1118 ufs_daddr_t bpref;
1119 int len;
1120 {
1121 register struct fs *fs;
1122 register struct cg *cgp;
1123 struct buf *bp;
1124 int i, got, run, bno, bit, map;
1125 u_char *mapp;
1126 int32_t *lp;
1127
1128 fs = ip->i_fs;
1129 if (fs->fs_maxcluster[cg] < len)
1130 return (NULL);
1131 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1132 NOCRED, &bp))
1133 goto fail;
1134 cgp = (struct cg *)bp->b_data;
1135 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1136 goto fail;
1137 /*
1138 * Check to see if a cluster of the needed size (or bigger) is
1139 * available in this cylinder group.
1140 */
1141 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1142 for (i = len; i <= fs->fs_contigsumsize; i++)
1143 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1144 break;
1145 if (i > fs->fs_contigsumsize) {
1146 /*
1147 * This is the first time looking for a cluster in this
1148 * cylinder group. Update the cluster summary information
1149 * to reflect the true maximum sized cluster so that
1150 * future cluster allocation requests can avoid reading
1151 * the cylinder group map only to find no clusters.
1152 */
1153 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1154 for (i = len - 1; i > 0; i--)
1155 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1156 break;
1157 fs->fs_maxcluster[cg] = i;
1158 goto fail;
1159 }
1160 /*
1161 * Search the cluster map to find a big enough cluster.
1162 * We take the first one that we find, even if it is larger
1163 * than we need as we prefer to get one close to the previous
1164 * block allocation. We do not search before the current
1165 * preference point as we do not want to allocate a block
1166 * that is allocated before the previous one (as we will
1167 * then have to wait for another pass of the elevator
1168 * algorithm before it will be read). We prefer to fail and
1169 * be recalled to try an allocation in the next cylinder group.
1170 */
1171 if (dtog(fs, bpref) != cg)
1172 bpref = 0;
1173 else
1174 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1175 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1176 map = *mapp++;
1177 bit = 1 << (bpref % NBBY);
1178 for (run = 0, got = bpref;
1179 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1180 if ((map & bit) == 0) {
1181 run = 0;
1182 } else {
1183 run++;
1184 if (run == len)
1185 break;
1186 }
1187 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1188 bit <<= 1;
1189 } else {
1190 map = *mapp++;
1191 bit = 1;
1192 }
1193 }
1194 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1195 goto fail;
1196 /*
1197 * Allocate the cluster that we have found.
1198 */
1199 for (i = 1; i <= len; i++)
1200 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1201 got - run + i))
1202 panic("ffs_clusteralloc: map mismatch");
1203 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1204 if (dtog(fs, bno) != cg)
1205 panic("ffs_clusteralloc: allocated out of group");
1206 len = blkstofrags(fs, len);
1207 for (i = 0; i < len; i += fs->fs_frag)
1208 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1209 != bno + i)
1210 panic("ffs_clusteralloc: lost block");
1211 bdwrite(bp);
1212 return (bno);
1213
1214 fail:
1215 brelse(bp);
1216 return (0);
1217 }
1218
1219 /*
1220 * Determine whether an inode can be allocated.
1221 *
1222 * Check to see if an inode is available, and if it is,
1223 * allocate it using the following policy:
1224 * 1) allocate the requested inode.
1225 * 2) allocate the next available inode after the requested
1226 * inode in the specified cylinder group.
1227 */
1228 static ufs_daddr_t
1229 ffs_nodealloccg(ip, cg, ipref, mode)
1230 struct inode *ip;
1231 int cg;
1232 ufs_daddr_t ipref;
1233 int mode;
1234 {
1235 register struct fs *fs;
1236 register struct cg *cgp;
1237 struct buf *bp;
1238 int error, start, len, loc, map, i;
1239 #ifdef FFS_EI
1240 const int needswap = UFS_IPNEEDSWAP(ip);
1241 #endif
1242
1243 fs = ip->i_fs;
1244 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1245 return (NULL);
1246 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1247 (int)fs->fs_cgsize, NOCRED, &bp);
1248 if (error) {
1249 brelse(bp);
1250 return (NULL);
1251 }
1252 cgp = (struct cg *)bp->b_data;
1253 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1254 brelse(bp);
1255 return (NULL);
1256 }
1257 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1258 if (ipref) {
1259 ipref %= fs->fs_ipg;
1260 if (isclr(cg_inosused(cgp, needswap), ipref))
1261 goto gotit;
1262 }
1263 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1264 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1265 NBBY);
1266 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1267 if (loc == 0) {
1268 len = start + 1;
1269 start = 0;
1270 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1271 if (loc == 0) {
1272 printf("cg = %d, irotor = %d, fs = %s\n",
1273 cg, ufs_rw32(cgp->cg_irotor, needswap),
1274 fs->fs_fsmnt);
1275 panic("ffs_nodealloccg: map corrupted");
1276 /* NOTREACHED */
1277 }
1278 }
1279 i = start + len - loc;
1280 map = cg_inosused(cgp, needswap)[i];
1281 ipref = i * NBBY;
1282 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1283 if ((map & i) == 0) {
1284 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1285 goto gotit;
1286 }
1287 }
1288 printf("fs = %s\n", fs->fs_fsmnt);
1289 panic("ffs_nodealloccg: block not in map");
1290 /* NOTREACHED */
1291 gotit:
1292 setbit(cg_inosused(cgp, needswap), ipref);
1293 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1294 fs->fs_cstotal.cs_nifree--;
1295 fs->fs_cs(fs, cg).cs_nifree --;
1296 fs->fs_fmod = 1;
1297 if ((mode & IFMT) == IFDIR) {
1298 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1299 fs->fs_cstotal.cs_ndir++;
1300 fs->fs_cs(fs, cg).cs_ndir++;
1301 }
1302 bdwrite(bp);
1303 return (cg * fs->fs_ipg + ipref);
1304 }
1305
1306 /*
1307 * Free a block or fragment.
1308 *
1309 * The specified block or fragment is placed back in the
1310 * free map. If a fragment is deallocated, a possible
1311 * block reassembly is checked.
1312 */
1313 void
1314 ffs_blkfree(ip, bno, size)
1315 register struct inode *ip;
1316 ufs_daddr_t bno;
1317 long size;
1318 {
1319 register struct fs *fs;
1320 register struct cg *cgp;
1321 struct buf *bp;
1322 ufs_daddr_t blkno;
1323 int i, error, cg, blk, frags, bbase;
1324 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1325
1326 fs = ip->i_fs;
1327 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1328 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1329 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1330 panic("blkfree: bad size");
1331 }
1332 cg = dtog(fs, bno);
1333 if ((u_int)bno >= fs->fs_size) {
1334 printf("bad block %d, ino %d\n", bno, ip->i_number);
1335 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1336 return;
1337 }
1338 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1339 (int)fs->fs_cgsize, NOCRED, &bp);
1340 if (error) {
1341 brelse(bp);
1342 return;
1343 }
1344 cgp = (struct cg *)bp->b_data;
1345 if (!cg_chkmagic(cgp, needswap)) {
1346 brelse(bp);
1347 return;
1348 }
1349 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1350 bno = dtogd(fs, bno);
1351 if (size == fs->fs_bsize) {
1352 blkno = fragstoblks(fs, bno);
1353 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1354 printf("dev = 0x%x, block = %d, fs = %s\n",
1355 ip->i_dev, bno, fs->fs_fsmnt);
1356 panic("blkfree: freeing free block");
1357 }
1358 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1359 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1360 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1361 fs->fs_cstotal.cs_nbfree++;
1362 fs->fs_cs(fs, cg).cs_nbfree++;
1363 i = cbtocylno(fs, bno);
1364 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1365 needswap);
1366 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1367 } else {
1368 bbase = bno - fragnum(fs, bno);
1369 /*
1370 * decrement the counts associated with the old frags
1371 */
1372 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1373 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1374 /*
1375 * deallocate the fragment
1376 */
1377 frags = numfrags(fs, size);
1378 for (i = 0; i < frags; i++) {
1379 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1380 printf("dev = 0x%x, block = %d, fs = %s\n",
1381 ip->i_dev, bno + i, fs->fs_fsmnt);
1382 panic("blkfree: freeing free frag");
1383 }
1384 setbit(cg_blksfree(cgp, needswap), bno + i);
1385 }
1386 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1387 fs->fs_cstotal.cs_nffree += i;
1388 fs->fs_cs(fs, cg).cs_nffree +=i;
1389 /*
1390 * add back in counts associated with the new frags
1391 */
1392 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1393 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1394 /*
1395 * if a complete block has been reassembled, account for it
1396 */
1397 blkno = fragstoblks(fs, bbase);
1398 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1399 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1400 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1401 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1402 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1403 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1404 fs->fs_cstotal.cs_nbfree++;
1405 fs->fs_cs(fs, cg).cs_nbfree++;
1406 i = cbtocylno(fs, bbase);
1407 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1408 needswap);
1409 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1410 }
1411 }
1412 fs->fs_fmod = 1;
1413 bdwrite(bp);
1414 }
1415
1416 #if defined(DIAGNOSTIC) || defined(DEBUG)
1417 /*
1418 * Verify allocation of a block or fragment. Returns true if block or
1419 * fragment is allocated, false if it is free.
1420 */
1421 static int
1422 ffs_checkblk(ip, bno, size)
1423 struct inode *ip;
1424 ufs_daddr_t bno;
1425 long size;
1426 {
1427 struct fs *fs;
1428 struct cg *cgp;
1429 struct buf *bp;
1430 int i, error, frags, free;
1431
1432 fs = ip->i_fs;
1433 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1434 printf("bsize = %d, size = %ld, fs = %s\n",
1435 fs->fs_bsize, size, fs->fs_fsmnt);
1436 panic("checkblk: bad size");
1437 }
1438 if ((u_int)bno >= fs->fs_size)
1439 panic("checkblk: bad block %d", bno);
1440 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1441 (int)fs->fs_cgsize, NOCRED, &bp);
1442 if (error) {
1443 brelse(bp);
1444 return 0;
1445 }
1446 cgp = (struct cg *)bp->b_data;
1447 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1448 brelse(bp);
1449 return 0;
1450 }
1451 bno = dtogd(fs, bno);
1452 if (size == fs->fs_bsize) {
1453 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1454 fragstoblks(fs, bno));
1455 } else {
1456 frags = numfrags(fs, size);
1457 for (free = 0, i = 0; i < frags; i++)
1458 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1459 free++;
1460 if (free != 0 && free != frags)
1461 panic("checkblk: partially free fragment");
1462 }
1463 brelse(bp);
1464 return (!free);
1465 }
1466 #endif /* DIAGNOSTIC */
1467
1468 /*
1469 * Free an inode.
1470 *
1471 * The specified inode is placed back in the free map.
1472 */
1473 int
1474 ffs_vfree(v)
1475 void *v;
1476 {
1477 struct vop_vfree_args /* {
1478 struct vnode *a_pvp;
1479 ino_t a_ino;
1480 int a_mode;
1481 } */ *ap = v;
1482 register struct fs *fs;
1483 register struct cg *cgp;
1484 register struct inode *pip;
1485 ino_t ino = ap->a_ino;
1486 struct buf *bp;
1487 int error, cg;
1488 #ifdef FFS_EI
1489 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1490 #endif
1491
1492 pip = VTOI(ap->a_pvp);
1493 fs = pip->i_fs;
1494 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1495 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1496 pip->i_dev, ino, fs->fs_fsmnt);
1497 cg = ino_to_cg(fs, ino);
1498 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1499 (int)fs->fs_cgsize, NOCRED, &bp);
1500 if (error) {
1501 brelse(bp);
1502 return (0);
1503 }
1504 cgp = (struct cg *)bp->b_data;
1505 if (!cg_chkmagic(cgp, needswap)) {
1506 brelse(bp);
1507 return (0);
1508 }
1509 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1510 ino %= fs->fs_ipg;
1511 if (isclr(cg_inosused(cgp, needswap), ino)) {
1512 printf("dev = 0x%x, ino = %d, fs = %s\n",
1513 pip->i_dev, ino, fs->fs_fsmnt);
1514 if (fs->fs_ronly == 0)
1515 panic("ifree: freeing free inode");
1516 }
1517 clrbit(cg_inosused(cgp, needswap), ino);
1518 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1519 cgp->cg_irotor = ufs_rw32(ino, needswap);
1520 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1521 fs->fs_cstotal.cs_nifree++;
1522 fs->fs_cs(fs, cg).cs_nifree++;
1523 if ((ap->a_mode & IFMT) == IFDIR) {
1524 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1525 fs->fs_cstotal.cs_ndir--;
1526 fs->fs_cs(fs, cg).cs_ndir--;
1527 }
1528 fs->fs_fmod = 1;
1529 bdwrite(bp);
1530 return (0);
1531 }
1532
1533 /*
1534 * Find a block of the specified size in the specified cylinder group.
1535 *
1536 * It is a panic if a request is made to find a block if none are
1537 * available.
1538 */
1539 static ufs_daddr_t
1540 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1541 int needswap;
1542 register struct fs *fs;
1543 register struct cg *cgp;
1544 ufs_daddr_t bpref;
1545 int allocsiz;
1546 {
1547 ufs_daddr_t bno;
1548 int start, len, loc, i;
1549 int blk, field, subfield, pos;
1550 int ostart, olen;
1551
1552 /*
1553 * find the fragment by searching through the free block
1554 * map for an appropriate bit pattern
1555 */
1556 if (bpref)
1557 start = dtogd(fs, bpref) / NBBY;
1558 else
1559 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1560 len = howmany(fs->fs_fpg, NBBY) - start;
1561 ostart = start;
1562 olen = len;
1563 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1564 (u_char *)fragtbl[fs->fs_frag],
1565 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1566 if (loc == 0) {
1567 len = start + 1;
1568 start = 0;
1569 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1570 (u_char *)fragtbl[fs->fs_frag],
1571 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1572 if (loc == 0) {
1573 printf("start = %d, len = %d, fs = %s\n",
1574 ostart, olen, fs->fs_fsmnt);
1575 printf("offset=%d %ld\n",
1576 ufs_rw32(cgp->cg_freeoff, needswap),
1577 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1578 panic("ffs_alloccg: map corrupted");
1579 /* NOTREACHED */
1580 }
1581 }
1582 bno = (start + len - loc) * NBBY;
1583 cgp->cg_frotor = ufs_rw32(bno, needswap);
1584 /*
1585 * found the byte in the map
1586 * sift through the bits to find the selected frag
1587 */
1588 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1589 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1590 blk <<= 1;
1591 field = around[allocsiz];
1592 subfield = inside[allocsiz];
1593 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1594 if ((blk & field) == subfield)
1595 return (bno + pos);
1596 field <<= 1;
1597 subfield <<= 1;
1598 }
1599 }
1600 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1601 panic("ffs_alloccg: block not in map");
1602 return (-1);
1603 }
1604
1605 /*
1606 * Update the cluster map because of an allocation or free.
1607 *
1608 * Cnt == 1 means free; cnt == -1 means allocating.
1609 */
1610 void
1611 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1612 int needswap;
1613 struct fs *fs;
1614 struct cg *cgp;
1615 ufs_daddr_t blkno;
1616 int cnt;
1617 {
1618 int32_t *sump;
1619 int32_t *lp;
1620 u_char *freemapp, *mapp;
1621 int i, start, end, forw, back, map, bit;
1622
1623 if (fs->fs_contigsumsize <= 0)
1624 return;
1625 freemapp = cg_clustersfree(cgp, needswap);
1626 sump = cg_clustersum(cgp, needswap);
1627 /*
1628 * Allocate or clear the actual block.
1629 */
1630 if (cnt > 0)
1631 setbit(freemapp, blkno);
1632 else
1633 clrbit(freemapp, blkno);
1634 /*
1635 * Find the size of the cluster going forward.
1636 */
1637 start = blkno + 1;
1638 end = start + fs->fs_contigsumsize;
1639 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1640 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1641 mapp = &freemapp[start / NBBY];
1642 map = *mapp++;
1643 bit = 1 << (start % NBBY);
1644 for (i = start; i < end; i++) {
1645 if ((map & bit) == 0)
1646 break;
1647 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1648 bit <<= 1;
1649 } else {
1650 map = *mapp++;
1651 bit = 1;
1652 }
1653 }
1654 forw = i - start;
1655 /*
1656 * Find the size of the cluster going backward.
1657 */
1658 start = blkno - 1;
1659 end = start - fs->fs_contigsumsize;
1660 if (end < 0)
1661 end = -1;
1662 mapp = &freemapp[start / NBBY];
1663 map = *mapp--;
1664 bit = 1 << (start % NBBY);
1665 for (i = start; i > end; i--) {
1666 if ((map & bit) == 0)
1667 break;
1668 if ((i & (NBBY - 1)) != 0) {
1669 bit >>= 1;
1670 } else {
1671 map = *mapp--;
1672 bit = 1 << (NBBY - 1);
1673 }
1674 }
1675 back = start - i;
1676 /*
1677 * Account for old cluster and the possibly new forward and
1678 * back clusters.
1679 */
1680 i = back + forw + 1;
1681 if (i > fs->fs_contigsumsize)
1682 i = fs->fs_contigsumsize;
1683 ufs_add32(sump[i], cnt, needswap);
1684 if (back > 0)
1685 ufs_add32(sump[back], -cnt, needswap);
1686 if (forw > 0)
1687 ufs_add32(sump[forw], -cnt, needswap);
1688
1689 /*
1690 * Update cluster summary information.
1691 */
1692 lp = &sump[fs->fs_contigsumsize];
1693 for (i = fs->fs_contigsumsize; i > 0; i--)
1694 if (ufs_rw32(*lp--, needswap) > 0)
1695 break;
1696 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1697 }
1698
1699 /*
1700 * Fserr prints the name of a file system with an error diagnostic.
1701 *
1702 * The form of the error message is:
1703 * fs: error message
1704 */
1705 static void
1706 ffs_fserr(fs, uid, cp)
1707 struct fs *fs;
1708 u_int uid;
1709 char *cp;
1710 {
1711
1712 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1713 }
1714