ffs_alloc.c revision 1.26.2.3 1 /* $NetBSD: ffs_alloc.c,v 1.26.2.3 1999/04/09 04:33:22 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_quota.h"
40 #include "opt_uvm.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53 #ifdef UBC
54 #include <uvm/uvm.h>
55 #endif
56
57 #include <ufs/ufs/quota.h>
58 #include <ufs/ufs/ufsmount.h>
59 #include <ufs/ufs/inode.h>
60 #include <ufs/ufs/ufs_extern.h>
61 #include <ufs/ufs/ufs_bswap.h>
62
63 #include <ufs/ffs/fs.h>
64 #include <ufs/ffs/ffs_extern.h>
65
66 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
67 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
68 struct cg *, ufs_daddr_t));
69 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
70 static ino_t ffs_dirpref __P((struct fs *));
71 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
72 static void ffs_fserr __P((struct fs *, u_int, char *));
73 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
74 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
75 int)));
76 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
77 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
78 ufs_daddr_t, int));
79 #if defined(DIAGNOSTIC) || defined(DEBUG)
80 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
81 #endif
82
83 /* in ffs_tables.c */
84 extern int inside[], around[];
85 extern u_char *fragtbl[];
86
87 /*
88 * Allocate a block in the file system.
89 *
90 * The size of the requested block is given, which must be some
91 * multiple of fs_fsize and <= fs_bsize.
92 * A preference may be optionally specified. If a preference is given
93 * the following hierarchy is used to allocate a block:
94 * 1) allocate the requested block.
95 * 2) allocate a rotationally optimal block in the same cylinder.
96 * 3) allocate a block in the same cylinder group.
97 * 4) quadradically rehash into other cylinder groups, until an
98 * available block is located.
99 * If no block preference is given the following heirarchy is used
100 * to allocate a block:
101 * 1) allocate a block in the cylinder group that contains the
102 * inode for the file.
103 * 2) quadradically rehash into other cylinder groups, until an
104 * available block is located.
105 */
106 int
107 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
108 register struct inode *ip;
109 ufs_daddr_t lbn, bpref;
110 int size;
111 struct ucred *cred;
112 ufs_daddr_t *bnp;
113 {
114 register struct fs *fs;
115 ufs_daddr_t bno;
116 int cg;
117 #ifdef QUOTA
118 int error;
119 #endif
120
121 *bnp = 0;
122 fs = ip->i_fs;
123 #ifdef DIAGNOSTIC
124 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
125 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
126 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
127 panic("ffs_alloc: bad size");
128 }
129 if (cred == NOCRED)
130 panic("ffs_alloc: missing credential\n");
131 #endif /* DIAGNOSTIC */
132 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
133 goto nospace;
134 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
135 goto nospace;
136 #ifdef QUOTA
137 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
138 return (error);
139 #endif
140 if (bpref >= fs->fs_size)
141 bpref = 0;
142 if (bpref == 0)
143 cg = ino_to_cg(fs, ip->i_number);
144 else
145 cg = dtog(fs, bpref);
146 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
147 ffs_alloccg);
148 if (bno > 0) {
149 ip->i_ffs_blocks += btodb(size);
150 ip->i_flag |= IN_CHANGE | IN_UPDATE;
151 *bnp = bno;
152 return (0);
153 }
154 #ifdef QUOTA
155 /*
156 * Restore user's disk quota because allocation failed.
157 */
158 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
159 #endif
160 nospace:
161 ffs_fserr(fs, cred->cr_uid, "file system full");
162 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
163 return (ENOSPC);
164 }
165
166 /*
167 * Reallocate a fragment to a bigger size
168 *
169 * The number and size of the old block is given, and a preference
170 * and new size is also specified. The allocator attempts to extend
171 * the original block. Failing that, the regular block allocator is
172 * invoked to get an appropriate block.
173 */
174 int
175 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
176 register struct inode *ip;
177 ufs_daddr_t lbprev;
178 ufs_daddr_t bpref;
179 int osize, nsize;
180 struct ucred *cred;
181 struct buf **bpp;
182 ufs_daddr_t *blknop;
183 {
184 register struct fs *fs;
185 struct buf *bp;
186 int cg, request, error;
187 ufs_daddr_t bprev, bno;
188
189 if (bpp != NULL) {
190 *bpp = 0;
191 }
192 fs = ip->i_fs;
193 #ifdef DIAGNOSTIC
194 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
195 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
196 printf(
197 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
198 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
199 panic("ffs_realloccg: bad size");
200 }
201 if (cred == NOCRED)
202 panic("ffs_realloccg: missing credential\n");
203 #endif /* DIAGNOSTIC */
204 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
205 goto nospace;
206 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
207 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
208 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
209 panic("ffs_realloccg: bad bprev");
210 }
211
212 #ifdef QUOTA
213 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
214 return (error);
215 }
216 #endif
217
218 /*
219 * Allocate the extra space in the buffer.
220 */
221 if (bpp != NULL &&
222 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
223 brelse(bp);
224 return (error);
225 }
226
227 /*
228 * Check for extension in the existing location.
229 */
230 cg = dtog(fs, bprev);
231 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
232 ip->i_ffs_blocks += btodb(nsize - osize);
233 ip->i_flag |= IN_CHANGE | IN_UPDATE;
234
235 if (bpp != NULL) {
236 if (bp->b_blkno != fsbtodb(fs, bno))
237 panic("bad blockno");
238 allocbuf(bp, nsize);
239 bp->b_flags |= B_DONE;
240 memset(bp->b_data + osize, 0, nsize - osize);
241 *bpp = bp;
242 }
243 else {
244 /*
245 * XXX do page-cache stuff.
246 * I think we don't need to do anything,
247 * assuming pages are always zeroed when alloc'd.
248 */
249 }
250
251 *blknop = bno;
252 return (0);
253 }
254 /*
255 * Allocate a new disk location.
256 */
257 if (bpref >= fs->fs_size)
258 bpref = 0;
259 switch ((int)fs->fs_optim) {
260 case FS_OPTSPACE:
261 /*
262 * Allocate an exact sized fragment. Although this makes
263 * best use of space, we will waste time relocating it if
264 * the file continues to grow. If the fragmentation is
265 * less than half of the minimum free reserve, we choose
266 * to begin optimizing for time.
267 */
268 request = nsize;
269 if (fs->fs_minfree < 5 ||
270 fs->fs_cstotal.cs_nffree >
271 fs->fs_dsize * fs->fs_minfree / (2 * 100))
272 break;
273 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
274 fs->fs_fsmnt);
275 fs->fs_optim = FS_OPTTIME;
276 break;
277 case FS_OPTTIME:
278 /*
279 * At this point we have discovered a file that is trying to
280 * grow a small fragment to a larger fragment. To save time,
281 * we allocate a full sized block, then free the unused portion.
282 * If the file continues to grow, the `ffs_fragextend' call
283 * above will be able to grow it in place without further
284 * copying. If aberrant programs cause disk fragmentation to
285 * grow within 2% of the free reserve, we choose to begin
286 * optimizing for space.
287 */
288 request = fs->fs_bsize;
289 if (fs->fs_cstotal.cs_nffree <
290 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
291 break;
292 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
293 fs->fs_fsmnt);
294 fs->fs_optim = FS_OPTSPACE;
295 break;
296 default:
297 printf("dev = 0x%x, optim = %d, fs = %s\n",
298 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
299 panic("ffs_realloccg: bad optim");
300 /* NOTREACHED */
301 }
302 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
303 ffs_alloccg);
304 if (bno > 0) {
305
306 if (bpp != NULL) {
307 bp->b_blkno = fsbtodb(fs, bno);
308 }
309 else {
310 /*
311 * re-label cached pages, if any
312 */
313 uvm_vnp_setpageblknos(ITOV(ip), lblktosize(fs, lbprev),
314 blkoff(fs, ip->i_ffs_size),
315 fsbtodb(fs, bno), UFP_NOALLOC,
316 FALSE);
317 }
318
319 #if defined(UVM)
320 (void) uvm_vnp_uncache(ITOV(ip));
321 #else
322 (void) vnode_pager_uncache(ITOV(ip));
323 #endif
324
325 ffs_blkfree(ip, bprev, (long)osize);
326 if (nsize < request)
327 ffs_blkfree(ip, bno + numfrags(fs, nsize),
328 (long)(request - nsize));
329 ip->i_ffs_blocks += btodb(nsize - osize);
330 ip->i_flag |= IN_CHANGE | IN_UPDATE;
331
332 if (bpp != NULL) {
333 allocbuf(bp, nsize);
334 bp->b_flags |= B_DONE;
335 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
336 *bpp = bp;
337 }
338
339 *blknop = bno;
340 return (0);
341 }
342 #ifdef QUOTA
343 /*
344 * Restore user's disk quota because allocation failed.
345 */
346 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
347 #endif
348
349 if (bpp != NULL) {
350 brelse(bp);
351 }
352
353 nospace:
354 /*
355 * no space available
356 */
357 ffs_fserr(fs, cred->cr_uid, "file system full");
358 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
359 return (ENOSPC);
360 }
361
362 /*
363 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
364 *
365 * The vnode and an array of buffer pointers for a range of sequential
366 * logical blocks to be made contiguous is given. The allocator attempts
367 * to find a range of sequential blocks starting as close as possible to
368 * an fs_rotdelay offset from the end of the allocation for the logical
369 * block immediately preceeding the current range. If successful, the
370 * physical block numbers in the buffer pointers and in the inode are
371 * changed to reflect the new allocation. If unsuccessful, the allocation
372 * is left unchanged. The success in doing the reallocation is returned.
373 * Note that the error return is not reflected back to the user. Rather
374 * the previous block allocation will be used.
375 */
376 #ifdef DEBUG
377 #include <sys/sysctl.h>
378 int prtrealloc = 0;
379 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
380 #endif
381
382 int doasyncfree = 1;
383 extern int doreallocblks;
384
385 int
386 ffs_reallocblks(v)
387 void *v;
388 {
389 struct vop_reallocblks_args /* {
390 struct vnode *a_vp;
391 struct cluster_save *a_buflist;
392 } */ *ap = v;
393 struct fs *fs;
394 struct inode *ip;
395 struct vnode *vp;
396 struct buf *sbp, *ebp;
397 ufs_daddr_t *bap, *sbap, *ebap = NULL;
398 struct cluster_save *buflist;
399 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
400 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
401 int i, len, start_lvl, end_lvl, pref, ssize;
402 struct timespec ts;
403
404 #ifdef UBC
405 /* XXX don't do this for now */
406 return ENOSPC;
407 #endif
408
409 vp = ap->a_vp;
410 ip = VTOI(vp);
411 fs = ip->i_fs;
412 if (fs->fs_contigsumsize <= 0)
413 return (ENOSPC);
414 buflist = ap->a_buflist;
415 len = buflist->bs_nchildren;
416 start_lbn = buflist->bs_children[0]->b_lblkno;
417 end_lbn = start_lbn + len - 1;
418 #ifdef DIAGNOSTIC
419 for (i = 0; i < len; i++)
420 if (!ffs_checkblk(ip,
421 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
422 panic("ffs_reallocblks: unallocated block 1");
423 for (i = 1; i < len; i++)
424 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
425 panic("ffs_reallocblks: non-logical cluster");
426 blkno = buflist->bs_children[0]->b_blkno;
427 ssize = fsbtodb(fs, fs->fs_frag);
428 for (i = 1; i < len - 1; i++)
429 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
430 panic("ffs_reallocblks: non-physical cluster %d", i);
431 #endif
432 /*
433 * If the latest allocation is in a new cylinder group, assume that
434 * the filesystem has decided to move and do not force it back to
435 * the previous cylinder group.
436 */
437 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
438 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
439 return (ENOSPC);
440 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
441 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
442 return (ENOSPC);
443 /*
444 * Get the starting offset and block map for the first block.
445 */
446 if (start_lvl == 0) {
447 sbap = &ip->i_ffs_db[0];
448 soff = start_lbn;
449 } else {
450 idp = &start_ap[start_lvl - 1];
451 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
452 brelse(sbp);
453 return (ENOSPC);
454 }
455 sbap = (ufs_daddr_t *)sbp->b_data;
456 soff = idp->in_off;
457 }
458 /*
459 * Find the preferred location for the cluster.
460 */
461 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
462 /*
463 * If the block range spans two block maps, get the second map.
464 */
465 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
466 ssize = len;
467 } else {
468 #ifdef DIAGNOSTIC
469 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
470 panic("ffs_reallocblk: start == end");
471 #endif
472 ssize = len - (idp->in_off + 1);
473 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
474 goto fail;
475 ebap = (ufs_daddr_t *)ebp->b_data;
476 }
477 /*
478 * Search the block map looking for an allocation of the desired size.
479 */
480 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
481 len, ffs_clusteralloc)) == 0)
482 goto fail;
483 /*
484 * We have found a new contiguous block.
485 *
486 * First we have to replace the old block pointers with the new
487 * block pointers in the inode and indirect blocks associated
488 * with the file.
489 */
490 #ifdef DEBUG
491 if (prtrealloc)
492 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
493 start_lbn, end_lbn);
494 #endif
495 blkno = newblk;
496 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
497 if (i == ssize)
498 bap = ebap;
499 #ifdef DIAGNOSTIC
500 if (!ffs_checkblk(ip,
501 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
502 panic("ffs_reallocblks: unallocated block 2");
503 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
504 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
505 panic("ffs_reallocblks: alloc mismatch");
506 #endif
507 #ifdef DEBUG
508 if (prtrealloc)
509 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
510 #endif
511 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
512 }
513 /*
514 * Next we must write out the modified inode and indirect blocks.
515 * For strict correctness, the writes should be synchronous since
516 * the old block values may have been written to disk. In practise
517 * they are almost never written, but if we are concerned about
518 * strict correctness, the `doasyncfree' flag should be set to zero.
519 *
520 * The test on `doasyncfree' should be changed to test a flag
521 * that shows whether the associated buffers and inodes have
522 * been written. The flag should be set when the cluster is
523 * started and cleared whenever the buffer or inode is flushed.
524 * We can then check below to see if it is set, and do the
525 * synchronous write only when it has been cleared.
526 */
527 if (sbap != &ip->i_ffs_db[0]) {
528 if (doasyncfree)
529 bdwrite(sbp);
530 else
531 bwrite(sbp);
532 } else {
533 ip->i_flag |= IN_CHANGE | IN_UPDATE;
534 if (!doasyncfree) {
535 TIMEVAL_TO_TIMESPEC(&time, &ts);
536 VOP_UPDATE(vp, &ts, &ts, 1);
537 }
538 }
539 if (ssize < len) {
540 if (doasyncfree)
541 bdwrite(ebp);
542 else
543 bwrite(ebp);
544 }
545 /*
546 * Last, free the old blocks and assign the new blocks to the buffers.
547 */
548 #ifdef DEBUG
549 if (prtrealloc)
550 printf("\n\tnew:");
551 #endif
552 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
553 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
554 fs->fs_bsize);
555 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
556 #ifdef DEBUG
557 if (!ffs_checkblk(ip,
558 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
559 panic("ffs_reallocblks: unallocated block 3");
560 if (prtrealloc)
561 printf(" %d,", blkno);
562 #endif
563 }
564 #ifdef DEBUG
565 if (prtrealloc) {
566 prtrealloc--;
567 printf("\n");
568 }
569 #endif
570 return (0);
571
572 fail:
573 if (ssize < len)
574 brelse(ebp);
575 if (sbap != &ip->i_ffs_db[0])
576 brelse(sbp);
577 return (ENOSPC);
578 }
579
580 /*
581 * Allocate an inode in the file system.
582 *
583 * If allocating a directory, use ffs_dirpref to select the inode.
584 * If allocating in a directory, the following hierarchy is followed:
585 * 1) allocate the preferred inode.
586 * 2) allocate an inode in the same cylinder group.
587 * 3) quadradically rehash into other cylinder groups, until an
588 * available inode is located.
589 * If no inode preference is given the following heirarchy is used
590 * to allocate an inode:
591 * 1) allocate an inode in cylinder group 0.
592 * 2) quadradically rehash into other cylinder groups, until an
593 * available inode is located.
594 */
595 int
596 ffs_valloc(v)
597 void *v;
598 {
599 struct vop_valloc_args /* {
600 struct vnode *a_pvp;
601 int a_mode;
602 struct ucred *a_cred;
603 struct vnode **a_vpp;
604 } */ *ap = v;
605 register struct vnode *pvp = ap->a_pvp;
606 register struct inode *pip;
607 register struct fs *fs;
608 register struct inode *ip;
609 mode_t mode = ap->a_mode;
610 ino_t ino, ipref;
611 int cg, error;
612
613 *ap->a_vpp = NULL;
614 pip = VTOI(pvp);
615 fs = pip->i_fs;
616 if (fs->fs_cstotal.cs_nifree == 0)
617 goto noinodes;
618
619 if ((mode & IFMT) == IFDIR)
620 ipref = ffs_dirpref(fs);
621 else
622 ipref = pip->i_number;
623 if (ipref >= fs->fs_ncg * fs->fs_ipg)
624 ipref = 0;
625 cg = ino_to_cg(fs, ipref);
626 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
627 if (ino == 0)
628 goto noinodes;
629 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
630 if (error) {
631 VOP_VFREE(pvp, ino, mode);
632 return (error);
633 }
634 ip = VTOI(*ap->a_vpp);
635 if (ip->i_ffs_mode) {
636 printf("mode = 0%o, inum = %d, fs = %s\n",
637 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
638 panic("ffs_valloc: dup alloc");
639 }
640 if (ip->i_ffs_blocks) { /* XXX */
641 printf("free inode %s/%d had %d blocks\n",
642 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
643 ip->i_ffs_blocks = 0;
644 }
645 ip->i_ffs_flags = 0;
646 /*
647 * Set up a new generation number for this inode.
648 */
649 ip->i_ffs_gen++;
650 return (0);
651 noinodes:
652 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
653 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
654 return (ENOSPC);
655 }
656
657 /*
658 * Find a cylinder to place a directory.
659 *
660 * The policy implemented by this algorithm is to select from
661 * among those cylinder groups with above the average number of
662 * free inodes, the one with the smallest number of directories.
663 */
664 static ino_t
665 ffs_dirpref(fs)
666 register struct fs *fs;
667 {
668 int cg, minndir, mincg, avgifree;
669
670 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
671 minndir = fs->fs_ipg;
672 mincg = 0;
673 for (cg = 0; cg < fs->fs_ncg; cg++)
674 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
675 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
676 mincg = cg;
677 minndir = fs->fs_cs(fs, cg).cs_ndir;
678 }
679 return ((ino_t)(fs->fs_ipg * mincg));
680 }
681
682 /*
683 * Select the desired position for the next block in a file. The file is
684 * logically divided into sections. The first section is composed of the
685 * direct blocks. Each additional section contains fs_maxbpg blocks.
686 *
687 * If no blocks have been allocated in the first section, the policy is to
688 * request a block in the same cylinder group as the inode that describes
689 * the file. If no blocks have been allocated in any other section, the
690 * policy is to place the section in a cylinder group with a greater than
691 * average number of free blocks. An appropriate cylinder group is found
692 * by using a rotor that sweeps the cylinder groups. When a new group of
693 * blocks is needed, the sweep begins in the cylinder group following the
694 * cylinder group from which the previous allocation was made. The sweep
695 * continues until a cylinder group with greater than the average number
696 * of free blocks is found. If the allocation is for the first block in an
697 * indirect block, the information on the previous allocation is unavailable;
698 * here a best guess is made based upon the logical block number being
699 * allocated.
700 *
701 * If a section is already partially allocated, the policy is to
702 * contiguously allocate fs_maxcontig blocks. The end of one of these
703 * contiguous blocks and the beginning of the next is physically separated
704 * so that the disk head will be in transit between them for at least
705 * fs_rotdelay milliseconds. This is to allow time for the processor to
706 * schedule another I/O transfer.
707 */
708 ufs_daddr_t
709 ffs_blkpref(ip, lbn, indx, bap)
710 struct inode *ip;
711 ufs_daddr_t lbn;
712 int indx;
713 ufs_daddr_t *bap;
714 {
715 register struct fs *fs;
716 register int cg;
717 int avgbfree, startcg;
718 ufs_daddr_t nextblk;
719
720 fs = ip->i_fs;
721 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
722 if (lbn < NDADDR) {
723 cg = ino_to_cg(fs, ip->i_number);
724 return (fs->fs_fpg * cg + fs->fs_frag);
725 }
726 /*
727 * Find a cylinder with greater than average number of
728 * unused data blocks.
729 */
730 if (indx == 0 || bap[indx - 1] == 0)
731 startcg =
732 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
733 else
734 startcg = dtog(fs,
735 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
736 startcg %= fs->fs_ncg;
737 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
738 for (cg = startcg; cg < fs->fs_ncg; cg++)
739 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
740 fs->fs_cgrotor = cg;
741 return (fs->fs_fpg * cg + fs->fs_frag);
742 }
743 for (cg = 0; cg <= startcg; cg++)
744 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
745 fs->fs_cgrotor = cg;
746 return (fs->fs_fpg * cg + fs->fs_frag);
747 }
748 return (NULL);
749 }
750 /*
751 * One or more previous blocks have been laid out. If less
752 * than fs_maxcontig previous blocks are contiguous, the
753 * next block is requested contiguously, otherwise it is
754 * requested rotationally delayed by fs_rotdelay milliseconds.
755 */
756 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
757 if (indx < fs->fs_maxcontig ||
758 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
759 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
760 return (nextblk);
761 if (fs->fs_rotdelay != 0)
762 /*
763 * Here we convert ms of delay to frags as:
764 * (frags) = (ms) * (rev/sec) * (sect/rev) /
765 * ((sect/frag) * (ms/sec))
766 * then round up to the next block.
767 */
768 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
769 (NSPF(fs) * 1000), fs->fs_frag);
770 return (nextblk);
771 }
772
773 /*
774 * Implement the cylinder overflow algorithm.
775 *
776 * The policy implemented by this algorithm is:
777 * 1) allocate the block in its requested cylinder group.
778 * 2) quadradically rehash on the cylinder group number.
779 * 3) brute force search for a free block.
780 */
781 /*VARARGS5*/
782 static u_long
783 ffs_hashalloc(ip, cg, pref, size, allocator)
784 struct inode *ip;
785 int cg;
786 long pref;
787 int size; /* size for data blocks, mode for inodes */
788 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
789 {
790 register struct fs *fs;
791 long result;
792 int i, icg = cg;
793
794 fs = ip->i_fs;
795 /*
796 * 1: preferred cylinder group
797 */
798 result = (*allocator)(ip, cg, pref, size);
799 if (result)
800 return (result);
801 /*
802 * 2: quadratic rehash
803 */
804 for (i = 1; i < fs->fs_ncg; i *= 2) {
805 cg += i;
806 if (cg >= fs->fs_ncg)
807 cg -= fs->fs_ncg;
808 result = (*allocator)(ip, cg, 0, size);
809 if (result)
810 return (result);
811 }
812 /*
813 * 3: brute force search
814 * Note that we start at i == 2, since 0 was checked initially,
815 * and 1 is always checked in the quadratic rehash.
816 */
817 cg = (icg + 2) % fs->fs_ncg;
818 for (i = 2; i < fs->fs_ncg; i++) {
819 result = (*allocator)(ip, cg, 0, size);
820 if (result)
821 return (result);
822 cg++;
823 if (cg == fs->fs_ncg)
824 cg = 0;
825 }
826 return (NULL);
827 }
828
829 /*
830 * Determine whether a fragment can be extended.
831 *
832 * Check to see if the necessary fragments are available, and
833 * if they are, allocate them.
834 */
835 static ufs_daddr_t
836 ffs_fragextend(ip, cg, bprev, osize, nsize)
837 struct inode *ip;
838 int cg;
839 long bprev;
840 int osize, nsize;
841 {
842 register struct fs *fs;
843 register struct cg *cgp;
844 struct buf *bp;
845 long bno;
846 int frags, bbase;
847 int i, error;
848
849 fs = ip->i_fs;
850 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
851 return (NULL);
852 frags = numfrags(fs, nsize);
853 bbase = fragnum(fs, bprev);
854 if (bbase > fragnum(fs, (bprev + frags - 1))) {
855 /* cannot extend across a block boundary */
856 return (NULL);
857 }
858 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
859 (int)fs->fs_cgsize, NOCRED, &bp);
860 if (error) {
861 brelse(bp);
862 return (NULL);
863 }
864 cgp = (struct cg *)bp->b_data;
865 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
866 brelse(bp);
867 return (NULL);
868 }
869 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
870 bno = dtogd(fs, bprev);
871 for (i = numfrags(fs, osize); i < frags; i++)
872 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
873 brelse(bp);
874 return (NULL);
875 }
876 /*
877 * the current fragment can be extended
878 * deduct the count on fragment being extended into
879 * increase the count on the remaining fragment (if any)
880 * allocate the extended piece
881 */
882 for (i = frags; i < fs->fs_frag - bbase; i++)
883 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
884 break;
885 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
886 if (i != frags)
887 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
888 for (i = numfrags(fs, osize); i < frags; i++) {
889 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
890 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
891 fs->fs_cstotal.cs_nffree--;
892 fs->fs_cs(fs, cg).cs_nffree--;
893 }
894 fs->fs_fmod = 1;
895 bdwrite(bp);
896 return (bprev);
897 }
898
899 /*
900 * Determine whether a block can be allocated.
901 *
902 * Check to see if a block of the appropriate size is available,
903 * and if it is, allocate it.
904 */
905 static ufs_daddr_t
906 ffs_alloccg(ip, cg, bpref, size)
907 struct inode *ip;
908 int cg;
909 ufs_daddr_t bpref;
910 int size;
911 {
912 register struct fs *fs;
913 register struct cg *cgp;
914 struct buf *bp;
915 register int i;
916 int error, bno, frags, allocsiz;
917 const int needswap = UFS_IPNEEDSWAP(ip);
918
919 fs = ip->i_fs;
920 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
921 return (NULL);
922 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
923 (int)fs->fs_cgsize, NOCRED, &bp);
924 if (error) {
925 brelse(bp);
926 return (NULL);
927 }
928 cgp = (struct cg *)bp->b_data;
929 if (!cg_chkmagic(cgp, needswap) ||
930 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
931 brelse(bp);
932 return (NULL);
933 }
934 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
935 if (size == fs->fs_bsize) {
936 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
937 bdwrite(bp);
938 return (bno);
939 }
940 /*
941 * check to see if any fragments are already available
942 * allocsiz is the size which will be allocated, hacking
943 * it down to a smaller size if necessary
944 */
945 frags = numfrags(fs, size);
946 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
947 if (cgp->cg_frsum[allocsiz] != 0)
948 break;
949 if (allocsiz == fs->fs_frag) {
950 /*
951 * no fragments were available, so a block will be
952 * allocated, and hacked up
953 */
954 if (cgp->cg_cs.cs_nbfree == 0) {
955 brelse(bp);
956 return (NULL);
957 }
958 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
959 bpref = dtogd(fs, bno);
960 for (i = frags; i < fs->fs_frag; i++)
961 setbit(cg_blksfree(cgp, needswap), bpref + i);
962 i = fs->fs_frag - frags;
963 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
964 fs->fs_cstotal.cs_nffree += i;
965 fs->fs_cs(fs, cg).cs_nffree +=i;
966 fs->fs_fmod = 1;
967 ufs_add32(cgp->cg_frsum[i], 1, needswap);
968 bdwrite(bp);
969 return (bno);
970 }
971 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
972 if (bno < 0) {
973 brelse(bp);
974 return (NULL);
975 }
976 for (i = 0; i < frags; i++)
977 clrbit(cg_blksfree(cgp, needswap), bno + i);
978 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
979 fs->fs_cstotal.cs_nffree -= frags;
980 fs->fs_cs(fs, cg).cs_nffree -= frags;
981 fs->fs_fmod = 1;
982 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
983 if (frags != allocsiz)
984 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
985 bdwrite(bp);
986 return (cg * fs->fs_fpg + bno);
987 }
988
989 /*
990 * Allocate a block in a cylinder group.
991 *
992 * This algorithm implements the following policy:
993 * 1) allocate the requested block.
994 * 2) allocate a rotationally optimal block in the same cylinder.
995 * 3) allocate the next available block on the block rotor for the
996 * specified cylinder group.
997 * Note that this routine only allocates fs_bsize blocks; these
998 * blocks may be fragmented by the routine that allocates them.
999 */
1000 static ufs_daddr_t
1001 ffs_alloccgblk(mp, fs, cgp, bpref)
1002 struct mount *mp;
1003 register struct fs *fs;
1004 register struct cg *cgp;
1005 ufs_daddr_t bpref;
1006 {
1007 ufs_daddr_t bno, blkno;
1008 int cylno, pos, delta;
1009 short *cylbp;
1010 register int i;
1011 const int needswap = UFS_MPNEEDSWAP(mp);
1012
1013 if (bpref == 0 ||
1014 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1015 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1016 goto norot;
1017 }
1018 bpref = blknum(fs, bpref);
1019 bpref = dtogd(fs, bpref);
1020 /*
1021 * if the requested block is available, use it
1022 */
1023 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1024 fragstoblks(fs, bpref))) {
1025 bno = bpref;
1026 goto gotit;
1027 }
1028 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1029 /*
1030 * Block layout information is not available.
1031 * Leaving bpref unchanged means we take the
1032 * next available free block following the one
1033 * we just allocated. Hopefully this will at
1034 * least hit a track cache on drives of unknown
1035 * geometry (e.g. SCSI).
1036 */
1037 goto norot;
1038 }
1039 /*
1040 * check for a block available on the same cylinder
1041 */
1042 cylno = cbtocylno(fs, bpref);
1043 if (cg_blktot(cgp, needswap)[cylno] == 0)
1044 goto norot;
1045 /*
1046 * check the summary information to see if a block is
1047 * available in the requested cylinder starting at the
1048 * requested rotational position and proceeding around.
1049 */
1050 cylbp = cg_blks(fs, cgp, cylno, needswap);
1051 pos = cbtorpos(fs, bpref);
1052 for (i = pos; i < fs->fs_nrpos; i++)
1053 if (ufs_rw16(cylbp[i], needswap) > 0)
1054 break;
1055 if (i == fs->fs_nrpos)
1056 for (i = 0; i < pos; i++)
1057 if (ufs_rw16(cylbp[i], needswap) > 0)
1058 break;
1059 if (ufs_rw16(cylbp[i], needswap) > 0) {
1060 /*
1061 * found a rotational position, now find the actual
1062 * block. A panic if none is actually there.
1063 */
1064 pos = cylno % fs->fs_cpc;
1065 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1066 if (fs_postbl(fs, pos)[i] == -1) {
1067 printf("pos = %d, i = %d, fs = %s\n",
1068 pos, i, fs->fs_fsmnt);
1069 panic("ffs_alloccgblk: cyl groups corrupted");
1070 }
1071 for (i = fs_postbl(fs, pos)[i];; ) {
1072 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1073 bno = blkstofrags(fs, (bno + i));
1074 goto gotit;
1075 }
1076 delta = fs_rotbl(fs)[i];
1077 if (delta <= 0 ||
1078 delta + i > fragstoblks(fs, fs->fs_fpg))
1079 break;
1080 i += delta;
1081 }
1082 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1083 panic("ffs_alloccgblk: can't find blk in cyl");
1084 }
1085 norot:
1086 /*
1087 * no blocks in the requested cylinder, so take next
1088 * available one in this cylinder group.
1089 */
1090 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1091 if (bno < 0)
1092 return (NULL);
1093 cgp->cg_rotor = ufs_rw32(bno, needswap);
1094 gotit:
1095 blkno = fragstoblks(fs, bno);
1096 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1097 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1098 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1099 fs->fs_cstotal.cs_nbfree--;
1100 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1101 cylno = cbtocylno(fs, bno);
1102 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1103 needswap);
1104 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1105 fs->fs_fmod = 1;
1106 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1107 }
1108
1109 /*
1110 * Determine whether a cluster can be allocated.
1111 *
1112 * We do not currently check for optimal rotational layout if there
1113 * are multiple choices in the same cylinder group. Instead we just
1114 * take the first one that we find following bpref.
1115 */
1116 static ufs_daddr_t
1117 ffs_clusteralloc(ip, cg, bpref, len)
1118 struct inode *ip;
1119 int cg;
1120 ufs_daddr_t bpref;
1121 int len;
1122 {
1123 register struct fs *fs;
1124 register struct cg *cgp;
1125 struct buf *bp;
1126 int i, got, run, bno, bit, map;
1127 u_char *mapp;
1128 int32_t *lp;
1129
1130 fs = ip->i_fs;
1131 if (fs->fs_maxcluster[cg] < len)
1132 return (NULL);
1133 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1134 NOCRED, &bp))
1135 goto fail;
1136 cgp = (struct cg *)bp->b_data;
1137 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1138 goto fail;
1139 /*
1140 * Check to see if a cluster of the needed size (or bigger) is
1141 * available in this cylinder group.
1142 */
1143 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1144 for (i = len; i <= fs->fs_contigsumsize; i++)
1145 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1146 break;
1147 if (i > fs->fs_contigsumsize) {
1148 /*
1149 * This is the first time looking for a cluster in this
1150 * cylinder group. Update the cluster summary information
1151 * to reflect the true maximum sized cluster so that
1152 * future cluster allocation requests can avoid reading
1153 * the cylinder group map only to find no clusters.
1154 */
1155 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1156 for (i = len - 1; i > 0; i--)
1157 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1158 break;
1159 fs->fs_maxcluster[cg] = i;
1160 goto fail;
1161 }
1162 /*
1163 * Search the cluster map to find a big enough cluster.
1164 * We take the first one that we find, even if it is larger
1165 * than we need as we prefer to get one close to the previous
1166 * block allocation. We do not search before the current
1167 * preference point as we do not want to allocate a block
1168 * that is allocated before the previous one (as we will
1169 * then have to wait for another pass of the elevator
1170 * algorithm before it will be read). We prefer to fail and
1171 * be recalled to try an allocation in the next cylinder group.
1172 */
1173 if (dtog(fs, bpref) != cg)
1174 bpref = 0;
1175 else
1176 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1177 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1178 map = *mapp++;
1179 bit = 1 << (bpref % NBBY);
1180 for (run = 0, got = bpref;
1181 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1182 if ((map & bit) == 0) {
1183 run = 0;
1184 } else {
1185 run++;
1186 if (run == len)
1187 break;
1188 }
1189 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1190 bit <<= 1;
1191 } else {
1192 map = *mapp++;
1193 bit = 1;
1194 }
1195 }
1196 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1197 goto fail;
1198 /*
1199 * Allocate the cluster that we have found.
1200 */
1201 for (i = 1; i <= len; i++)
1202 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1203 got - run + i))
1204 panic("ffs_clusteralloc: map mismatch");
1205 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1206 if (dtog(fs, bno) != cg)
1207 panic("ffs_clusteralloc: allocated out of group");
1208 len = blkstofrags(fs, len);
1209 for (i = 0; i < len; i += fs->fs_frag)
1210 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1211 != bno + i)
1212 panic("ffs_clusteralloc: lost block");
1213 bdwrite(bp);
1214 return (bno);
1215
1216 fail:
1217 brelse(bp);
1218 return (0);
1219 }
1220
1221 /*
1222 * Determine whether an inode can be allocated.
1223 *
1224 * Check to see if an inode is available, and if it is,
1225 * allocate it using the following policy:
1226 * 1) allocate the requested inode.
1227 * 2) allocate the next available inode after the requested
1228 * inode in the specified cylinder group.
1229 */
1230 static ufs_daddr_t
1231 ffs_nodealloccg(ip, cg, ipref, mode)
1232 struct inode *ip;
1233 int cg;
1234 ufs_daddr_t ipref;
1235 int mode;
1236 {
1237 register struct fs *fs;
1238 register struct cg *cgp;
1239 struct buf *bp;
1240 int error, start, len, loc, map, i;
1241 #ifdef FFS_EI
1242 const int needswap = UFS_IPNEEDSWAP(ip);
1243 #endif
1244
1245 fs = ip->i_fs;
1246 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1247 return (NULL);
1248 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1249 (int)fs->fs_cgsize, NOCRED, &bp);
1250 if (error) {
1251 brelse(bp);
1252 return (NULL);
1253 }
1254 cgp = (struct cg *)bp->b_data;
1255 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1256 brelse(bp);
1257 return (NULL);
1258 }
1259 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1260 if (ipref) {
1261 ipref %= fs->fs_ipg;
1262 if (isclr(cg_inosused(cgp, needswap), ipref))
1263 goto gotit;
1264 }
1265 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1266 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1267 NBBY);
1268 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1269 if (loc == 0) {
1270 len = start + 1;
1271 start = 0;
1272 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1273 if (loc == 0) {
1274 printf("cg = %d, irotor = %d, fs = %s\n",
1275 cg, ufs_rw32(cgp->cg_irotor, needswap),
1276 fs->fs_fsmnt);
1277 panic("ffs_nodealloccg: map corrupted");
1278 /* NOTREACHED */
1279 }
1280 }
1281 i = start + len - loc;
1282 map = cg_inosused(cgp, needswap)[i];
1283 ipref = i * NBBY;
1284 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1285 if ((map & i) == 0) {
1286 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1287 goto gotit;
1288 }
1289 }
1290 printf("fs = %s\n", fs->fs_fsmnt);
1291 panic("ffs_nodealloccg: block not in map");
1292 /* NOTREACHED */
1293 gotit:
1294 setbit(cg_inosused(cgp, needswap), ipref);
1295 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1296 fs->fs_cstotal.cs_nifree--;
1297 fs->fs_cs(fs, cg).cs_nifree --;
1298 fs->fs_fmod = 1;
1299 if ((mode & IFMT) == IFDIR) {
1300 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1301 fs->fs_cstotal.cs_ndir++;
1302 fs->fs_cs(fs, cg).cs_ndir++;
1303 }
1304 bdwrite(bp);
1305 return (cg * fs->fs_ipg + ipref);
1306 }
1307
1308 /*
1309 * Free a block or fragment.
1310 *
1311 * The specified block or fragment is placed back in the
1312 * free map. If a fragment is deallocated, a possible
1313 * block reassembly is checked.
1314 */
1315 void
1316 ffs_blkfree(ip, bno, size)
1317 register struct inode *ip;
1318 ufs_daddr_t bno;
1319 long size;
1320 {
1321 register struct fs *fs;
1322 register struct cg *cgp;
1323 struct buf *bp;
1324 ufs_daddr_t blkno;
1325 int i, error, cg, blk, frags, bbase;
1326 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1327
1328 fs = ip->i_fs;
1329 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1330 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1331 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1332 panic("blkfree: bad size");
1333 }
1334 cg = dtog(fs, bno);
1335 if ((u_int)bno >= fs->fs_size) {
1336 printf("bad block %d, ino %d\n", bno, ip->i_number);
1337 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1338 return;
1339 }
1340 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1341 (int)fs->fs_cgsize, NOCRED, &bp);
1342 if (error) {
1343 brelse(bp);
1344 return;
1345 }
1346 cgp = (struct cg *)bp->b_data;
1347 if (!cg_chkmagic(cgp, needswap)) {
1348 brelse(bp);
1349 return;
1350 }
1351 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1352 bno = dtogd(fs, bno);
1353 if (size == fs->fs_bsize) {
1354 blkno = fragstoblks(fs, bno);
1355 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1356 printf("dev = 0x%x, block = %d, fs = %s\n",
1357 ip->i_dev, bno, fs->fs_fsmnt);
1358 panic("blkfree: freeing free block");
1359 }
1360 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1361 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1362 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1363 fs->fs_cstotal.cs_nbfree++;
1364 fs->fs_cs(fs, cg).cs_nbfree++;
1365 i = cbtocylno(fs, bno);
1366 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1367 needswap);
1368 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1369 } else {
1370 bbase = bno - fragnum(fs, bno);
1371 /*
1372 * decrement the counts associated with the old frags
1373 */
1374 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1375 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1376 /*
1377 * deallocate the fragment
1378 */
1379 frags = numfrags(fs, size);
1380 for (i = 0; i < frags; i++) {
1381 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1382 printf("dev = 0x%x, block = %d, fs = %s\n",
1383 ip->i_dev, bno + i, fs->fs_fsmnt);
1384 panic("blkfree: freeing free frag");
1385 }
1386 setbit(cg_blksfree(cgp, needswap), bno + i);
1387 }
1388 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1389 fs->fs_cstotal.cs_nffree += i;
1390 fs->fs_cs(fs, cg).cs_nffree +=i;
1391 /*
1392 * add back in counts associated with the new frags
1393 */
1394 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1395 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1396 /*
1397 * if a complete block has been reassembled, account for it
1398 */
1399 blkno = fragstoblks(fs, bbase);
1400 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1401 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1402 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1403 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1404 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1405 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1406 fs->fs_cstotal.cs_nbfree++;
1407 fs->fs_cs(fs, cg).cs_nbfree++;
1408 i = cbtocylno(fs, bbase);
1409 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1410 needswap);
1411 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1412 }
1413 }
1414 fs->fs_fmod = 1;
1415 bdwrite(bp);
1416 }
1417
1418 #if defined(DIAGNOSTIC) || defined(DEBUG)
1419 /*
1420 * Verify allocation of a block or fragment. Returns true if block or
1421 * fragment is allocated, false if it is free.
1422 */
1423 static int
1424 ffs_checkblk(ip, bno, size)
1425 struct inode *ip;
1426 ufs_daddr_t bno;
1427 long size;
1428 {
1429 struct fs *fs;
1430 struct cg *cgp;
1431 struct buf *bp;
1432 int i, error, frags, free;
1433
1434 fs = ip->i_fs;
1435 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1436 printf("bsize = %d, size = %ld, fs = %s\n",
1437 fs->fs_bsize, size, fs->fs_fsmnt);
1438 panic("checkblk: bad size");
1439 }
1440 if ((u_int)bno >= fs->fs_size)
1441 panic("checkblk: bad block %d", bno);
1442 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1443 (int)fs->fs_cgsize, NOCRED, &bp);
1444 if (error) {
1445 brelse(bp);
1446 return 0;
1447 }
1448 cgp = (struct cg *)bp->b_data;
1449 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1450 brelse(bp);
1451 return 0;
1452 }
1453 bno = dtogd(fs, bno);
1454 if (size == fs->fs_bsize) {
1455 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1456 fragstoblks(fs, bno));
1457 } else {
1458 frags = numfrags(fs, size);
1459 for (free = 0, i = 0; i < frags; i++)
1460 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1461 free++;
1462 if (free != 0 && free != frags)
1463 panic("checkblk: partially free fragment");
1464 }
1465 brelse(bp);
1466 return (!free);
1467 }
1468 #endif /* DIAGNOSTIC */
1469
1470 /*
1471 * Free an inode.
1472 *
1473 * The specified inode is placed back in the free map.
1474 */
1475 int
1476 ffs_vfree(v)
1477 void *v;
1478 {
1479 struct vop_vfree_args /* {
1480 struct vnode *a_pvp;
1481 ino_t a_ino;
1482 int a_mode;
1483 } */ *ap = v;
1484 register struct fs *fs;
1485 register struct cg *cgp;
1486 register struct inode *pip;
1487 ino_t ino = ap->a_ino;
1488 struct buf *bp;
1489 int error, cg;
1490 #ifdef FFS_EI
1491 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1492 #endif
1493
1494 pip = VTOI(ap->a_pvp);
1495 fs = pip->i_fs;
1496 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1497 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1498 pip->i_dev, ino, fs->fs_fsmnt);
1499 cg = ino_to_cg(fs, ino);
1500 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1501 (int)fs->fs_cgsize, NOCRED, &bp);
1502 if (error) {
1503 brelse(bp);
1504 return (0);
1505 }
1506 cgp = (struct cg *)bp->b_data;
1507 if (!cg_chkmagic(cgp, needswap)) {
1508 brelse(bp);
1509 return (0);
1510 }
1511 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1512 ino %= fs->fs_ipg;
1513 if (isclr(cg_inosused(cgp, needswap), ino)) {
1514 printf("dev = 0x%x, ino = %d, fs = %s\n",
1515 pip->i_dev, ino, fs->fs_fsmnt);
1516 if (fs->fs_ronly == 0)
1517 panic("ifree: freeing free inode");
1518 }
1519 clrbit(cg_inosused(cgp, needswap), ino);
1520 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1521 cgp->cg_irotor = ufs_rw32(ino, needswap);
1522 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1523 fs->fs_cstotal.cs_nifree++;
1524 fs->fs_cs(fs, cg).cs_nifree++;
1525 if ((ap->a_mode & IFMT) == IFDIR) {
1526 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1527 fs->fs_cstotal.cs_ndir--;
1528 fs->fs_cs(fs, cg).cs_ndir--;
1529 }
1530 fs->fs_fmod = 1;
1531 bdwrite(bp);
1532 return (0);
1533 }
1534
1535 /*
1536 * Find a block of the specified size in the specified cylinder group.
1537 *
1538 * It is a panic if a request is made to find a block if none are
1539 * available.
1540 */
1541 static ufs_daddr_t
1542 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1543 int needswap;
1544 register struct fs *fs;
1545 register struct cg *cgp;
1546 ufs_daddr_t bpref;
1547 int allocsiz;
1548 {
1549 ufs_daddr_t bno;
1550 int start, len, loc, i;
1551 int blk, field, subfield, pos;
1552 int ostart, olen;
1553
1554 /*
1555 * find the fragment by searching through the free block
1556 * map for an appropriate bit pattern
1557 */
1558 if (bpref)
1559 start = dtogd(fs, bpref) / NBBY;
1560 else
1561 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1562 len = howmany(fs->fs_fpg, NBBY) - start;
1563 ostart = start;
1564 olen = len;
1565 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1566 (u_char *)fragtbl[fs->fs_frag],
1567 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1568 if (loc == 0) {
1569 len = start + 1;
1570 start = 0;
1571 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1572 (u_char *)fragtbl[fs->fs_frag],
1573 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1574 if (loc == 0) {
1575 printf("start = %d, len = %d, fs = %s\n",
1576 ostart, olen, fs->fs_fsmnt);
1577 printf("offset=%d %ld\n",
1578 ufs_rw32(cgp->cg_freeoff, needswap),
1579 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1580 panic("ffs_alloccg: map corrupted");
1581 /* NOTREACHED */
1582 }
1583 }
1584 bno = (start + len - loc) * NBBY;
1585 cgp->cg_frotor = ufs_rw32(bno, needswap);
1586 /*
1587 * found the byte in the map
1588 * sift through the bits to find the selected frag
1589 */
1590 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1591 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1592 blk <<= 1;
1593 field = around[allocsiz];
1594 subfield = inside[allocsiz];
1595 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1596 if ((blk & field) == subfield)
1597 return (bno + pos);
1598 field <<= 1;
1599 subfield <<= 1;
1600 }
1601 }
1602 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1603 panic("ffs_alloccg: block not in map");
1604 return (-1);
1605 }
1606
1607 /*
1608 * Update the cluster map because of an allocation or free.
1609 *
1610 * Cnt == 1 means free; cnt == -1 means allocating.
1611 */
1612 void
1613 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1614 int needswap;
1615 struct fs *fs;
1616 struct cg *cgp;
1617 ufs_daddr_t blkno;
1618 int cnt;
1619 {
1620 int32_t *sump;
1621 int32_t *lp;
1622 u_char *freemapp, *mapp;
1623 int i, start, end, forw, back, map, bit;
1624
1625 if (fs->fs_contigsumsize <= 0)
1626 return;
1627 freemapp = cg_clustersfree(cgp, needswap);
1628 sump = cg_clustersum(cgp, needswap);
1629 /*
1630 * Allocate or clear the actual block.
1631 */
1632 if (cnt > 0)
1633 setbit(freemapp, blkno);
1634 else
1635 clrbit(freemapp, blkno);
1636 /*
1637 * Find the size of the cluster going forward.
1638 */
1639 start = blkno + 1;
1640 end = start + fs->fs_contigsumsize;
1641 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1642 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1643 mapp = &freemapp[start / NBBY];
1644 map = *mapp++;
1645 bit = 1 << (start % NBBY);
1646 for (i = start; i < end; i++) {
1647 if ((map & bit) == 0)
1648 break;
1649 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1650 bit <<= 1;
1651 } else {
1652 map = *mapp++;
1653 bit = 1;
1654 }
1655 }
1656 forw = i - start;
1657 /*
1658 * Find the size of the cluster going backward.
1659 */
1660 start = blkno - 1;
1661 end = start - fs->fs_contigsumsize;
1662 if (end < 0)
1663 end = -1;
1664 mapp = &freemapp[start / NBBY];
1665 map = *mapp--;
1666 bit = 1 << (start % NBBY);
1667 for (i = start; i > end; i--) {
1668 if ((map & bit) == 0)
1669 break;
1670 if ((i & (NBBY - 1)) != 0) {
1671 bit >>= 1;
1672 } else {
1673 map = *mapp--;
1674 bit = 1 << (NBBY - 1);
1675 }
1676 }
1677 back = start - i;
1678 /*
1679 * Account for old cluster and the possibly new forward and
1680 * back clusters.
1681 */
1682 i = back + forw + 1;
1683 if (i > fs->fs_contigsumsize)
1684 i = fs->fs_contigsumsize;
1685 ufs_add32(sump[i], cnt, needswap);
1686 if (back > 0)
1687 ufs_add32(sump[back], -cnt, needswap);
1688 if (forw > 0)
1689 ufs_add32(sump[forw], -cnt, needswap);
1690
1691 /*
1692 * Update cluster summary information.
1693 */
1694 lp = &sump[fs->fs_contigsumsize];
1695 for (i = fs->fs_contigsumsize; i > 0; i--)
1696 if (ufs_rw32(*lp--, needswap) > 0)
1697 break;
1698 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1699 }
1700
1701 /*
1702 * Fserr prints the name of a file system with an error diagnostic.
1703 *
1704 * The form of the error message is:
1705 * fs: error message
1706 */
1707 static void
1708 ffs_fserr(fs, uid, cp)
1709 struct fs *fs;
1710 u_int uid;
1711 char *cp;
1712 {
1713
1714 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1715 }
1716