Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.26.2.4
      1 /*	$NetBSD: ffs_alloc.c,v 1.26.2.4 1999/05/30 14:58:53 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #if defined(_KERNEL) && !defined(_LKM)
     39 #include "opt_quota.h"
     40 #include "opt_uvm.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/mount.h>
     49 #include <sys/kernel.h>
     50 #include <sys/syslog.h>
     51 
     52 #include <vm/vm.h>
     53 #ifdef UBC
     54 #include <uvm/uvm.h>
     55 #endif
     56 
     57 #include <ufs/ufs/quota.h>
     58 #include <ufs/ufs/ufsmount.h>
     59 #include <ufs/ufs/inode.h>
     60 #include <ufs/ufs/ufs_extern.h>
     61 #include <ufs/ufs/ufs_bswap.h>
     62 
     63 #include <ufs/ffs/fs.h>
     64 #include <ufs/ffs/ffs_extern.h>
     65 
     66 static ufs_daddr_t	ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     67 static ufs_daddr_t	ffs_alloccgblk __P((struct mount *, struct fs *,
     68 	struct cg *, ufs_daddr_t));
     69 static ufs_daddr_t	ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     70 static ino_t	ffs_dirpref __P((struct fs *));
     71 static ufs_daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     72 static void	ffs_fserr __P((struct fs *, u_int, char *));
     73 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     74 				   ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
     75 					       int)));
     76 static ufs_daddr_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     77 static ufs_daddr_t	ffs_mapsearch __P((int, struct fs *, struct cg *,
     78 					ufs_daddr_t, int));
     79 #if defined(DIAGNOSTIC) || defined(DEBUG)
     80 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     81 #endif
     82 
     83 /* in ffs_tables.c */
     84 extern int inside[], around[];
     85 extern u_char *fragtbl[];
     86 
     87 /*
     88  * Allocate a block in the file system.
     89  *
     90  * The size of the requested block is given, which must be some
     91  * multiple of fs_fsize and <= fs_bsize.
     92  * A preference may be optionally specified. If a preference is given
     93  * the following hierarchy is used to allocate a block:
     94  *   1) allocate the requested block.
     95  *   2) allocate a rotationally optimal block in the same cylinder.
     96  *   3) allocate a block in the same cylinder group.
     97  *   4) quadradically rehash into other cylinder groups, until an
     98  *      available block is located.
     99  * If no block preference is given the following heirarchy is used
    100  * to allocate a block:
    101  *   1) allocate a block in the cylinder group that contains the
    102  *      inode for the file.
    103  *   2) quadradically rehash into other cylinder groups, until an
    104  *      available block is located.
    105  */
    106 int
    107 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    108 	register struct inode *ip;
    109 	ufs_daddr_t lbn, bpref;
    110 	int size;
    111 	struct ucred *cred;
    112 	ufs_daddr_t *bnp;
    113 {
    114 	register struct fs *fs;
    115 	ufs_daddr_t bno;
    116 	int cg;
    117 #ifdef QUOTA
    118 	int error;
    119 #endif
    120 
    121 	*bnp = 0;
    122 	fs = ip->i_fs;
    123 #ifdef DIAGNOSTIC
    124 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    125 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    126 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    127 		panic("ffs_alloc: bad size");
    128 	}
    129 	if (cred == NOCRED)
    130 		panic("ffs_alloc: missing credential\n");
    131 #endif /* DIAGNOSTIC */
    132 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    133 		goto nospace;
    134 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    135 		goto nospace;
    136 #ifdef QUOTA
    137 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    138 		return (error);
    139 #endif
    140 	if (bpref >= fs->fs_size)
    141 		bpref = 0;
    142 	if (bpref == 0)
    143 		cg = ino_to_cg(fs, ip->i_number);
    144 	else
    145 		cg = dtog(fs, bpref);
    146 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    147 	    			     ffs_alloccg);
    148 	if (bno > 0) {
    149 		ip->i_ffs_blocks += btodb(size);
    150 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    151 		*bnp = bno;
    152 		return (0);
    153 	}
    154 #ifdef QUOTA
    155 	/*
    156 	 * Restore user's disk quota because allocation failed.
    157 	 */
    158 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    159 #endif
    160 nospace:
    161 	ffs_fserr(fs, cred->cr_uid, "file system full");
    162 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    163 	return (ENOSPC);
    164 }
    165 
    166 /*
    167  * Reallocate a fragment to a bigger size
    168  *
    169  * The number and size of the old block is given, and a preference
    170  * and new size is also specified. The allocator attempts to extend
    171  * the original block. Failing that, the regular block allocator is
    172  * invoked to get an appropriate block.
    173  */
    174 int
    175 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
    176 	register struct inode *ip;
    177 	ufs_daddr_t lbprev;
    178 	ufs_daddr_t bpref;
    179 	int osize, nsize;
    180 	struct ucred *cred;
    181 	struct buf **bpp;
    182 	ufs_daddr_t *blknop;
    183 {
    184 	register struct fs *fs;
    185 	struct buf *bp;
    186 	int cg, request, error;
    187 	ufs_daddr_t bprev, bno;
    188 
    189 	fs = ip->i_fs;
    190 #ifdef DIAGNOSTIC
    191 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    192 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    193 		printf(
    194 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    195 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    196 		panic("ffs_realloccg: bad size");
    197 	}
    198 	if (cred == NOCRED)
    199 		panic("ffs_realloccg: missing credential\n");
    200 #endif /* DIAGNOSTIC */
    201 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    202 		goto nospace;
    203 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
    204 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    205 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    206 		panic("ffs_realloccg: bad bprev");
    207 	}
    208 
    209 #ifdef QUOTA
    210 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    211 		return (error);
    212 	}
    213 #endif
    214 
    215 	/*
    216 	 * Allocate the extra space in the buffer.
    217 	 */
    218 	if (bpp != NULL &&
    219 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    220 		brelse(bp);
    221 		return (error);
    222 	}
    223 
    224 	/*
    225 	 * Check for extension in the existing location.
    226 	 */
    227 	cg = dtog(fs, bprev);
    228 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    229 		ip->i_ffs_blocks += btodb(nsize - osize);
    230 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    231 
    232 		if (bpp != NULL) {
    233 			if (bp->b_blkno != fsbtodb(fs, bno))
    234 				panic("bad blockno");
    235 			allocbuf(bp, nsize);
    236 			bp->b_flags |= B_DONE;
    237 			memset(bp->b_data + osize, 0, nsize - osize);
    238 			*bpp = bp;
    239 		}
    240 		if (blknop != NULL) {
    241 			*blknop = bno;
    242 		}
    243 		return (0);
    244 	}
    245 	/*
    246 	 * Allocate a new disk location.
    247 	 */
    248 	if (bpref >= fs->fs_size)
    249 		bpref = 0;
    250 	switch ((int)fs->fs_optim) {
    251 	case FS_OPTSPACE:
    252 		/*
    253 		 * Allocate an exact sized fragment. Although this makes
    254 		 * best use of space, we will waste time relocating it if
    255 		 * the file continues to grow. If the fragmentation is
    256 		 * less than half of the minimum free reserve, we choose
    257 		 * to begin optimizing for time.
    258 		 */
    259 		request = nsize;
    260 		if (fs->fs_minfree < 5 ||
    261 		    fs->fs_cstotal.cs_nffree >
    262 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    263 			break;
    264 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    265 			fs->fs_fsmnt);
    266 		fs->fs_optim = FS_OPTTIME;
    267 		break;
    268 	case FS_OPTTIME:
    269 		/*
    270 		 * At this point we have discovered a file that is trying to
    271 		 * grow a small fragment to a larger fragment. To save time,
    272 		 * we allocate a full sized block, then free the unused portion.
    273 		 * If the file continues to grow, the `ffs_fragextend' call
    274 		 * above will be able to grow it in place without further
    275 		 * copying. If aberrant programs cause disk fragmentation to
    276 		 * grow within 2% of the free reserve, we choose to begin
    277 		 * optimizing for space.
    278 		 */
    279 		request = fs->fs_bsize;
    280 		if (fs->fs_cstotal.cs_nffree <
    281 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    282 			break;
    283 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    284 			fs->fs_fsmnt);
    285 		fs->fs_optim = FS_OPTSPACE;
    286 		break;
    287 	default:
    288 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    289 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    290 		panic("ffs_realloccg: bad optim");
    291 		/* NOTREACHED */
    292 	}
    293 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    294 	    			     ffs_alloccg);
    295 	if (bno > 0) {
    296 #if defined(UVM)
    297 		(void) uvm_vnp_uncache(ITOV(ip));
    298 #else
    299 		(void) vnode_pager_uncache(ITOV(ip));
    300 #endif
    301 
    302 		ffs_blkfree(ip, bprev, (long)osize);
    303 		if (nsize < request)
    304 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    305 			    (long)(request - nsize));
    306 		ip->i_ffs_blocks += btodb(nsize - osize);
    307 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    308 
    309 		if (bpp != NULL) {
    310 			bp->b_blkno = fsbtodb(fs, bno);
    311 			allocbuf(bp, nsize);
    312 			bp->b_flags |= B_DONE;
    313 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
    314 			*bpp = bp;
    315 		}
    316 		if (blknop != NULL) {
    317 			*blknop = bno;
    318 		}
    319 		return (0);
    320 	}
    321 #ifdef QUOTA
    322 	/*
    323 	 * Restore user's disk quota because allocation failed.
    324 	 */
    325 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    326 #endif
    327 
    328 	if (bpp != NULL) {
    329 		brelse(bp);
    330 	}
    331 
    332 nospace:
    333 	/*
    334 	 * no space available
    335 	 */
    336 	ffs_fserr(fs, cred->cr_uid, "file system full");
    337 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    338 	return (ENOSPC);
    339 }
    340 
    341 /*
    342  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    343  *
    344  * The vnode and an array of buffer pointers for a range of sequential
    345  * logical blocks to be made contiguous is given. The allocator attempts
    346  * to find a range of sequential blocks starting as close as possible to
    347  * an fs_rotdelay offset from the end of the allocation for the logical
    348  * block immediately preceeding the current range. If successful, the
    349  * physical block numbers in the buffer pointers and in the inode are
    350  * changed to reflect the new allocation. If unsuccessful, the allocation
    351  * is left unchanged. The success in doing the reallocation is returned.
    352  * Note that the error return is not reflected back to the user. Rather
    353  * the previous block allocation will be used.
    354  */
    355 #ifdef DEBUG
    356 #include <sys/sysctl.h>
    357 int prtrealloc = 0;
    358 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    359 #endif
    360 
    361 int doasyncfree = 1;
    362 extern int doreallocblks;
    363 
    364 int
    365 ffs_reallocblks(v)
    366 	void *v;
    367 {
    368 	struct vop_reallocblks_args /* {
    369 		struct vnode *a_vp;
    370 		struct cluster_save *a_buflist;
    371 	} */ *ap = v;
    372 	struct fs *fs;
    373 	struct inode *ip;
    374 	struct vnode *vp;
    375 	struct buf *sbp, *ebp;
    376 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    377 	struct cluster_save *buflist;
    378 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    379 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    380 	int i, len, start_lvl, end_lvl, pref, ssize;
    381 	struct timespec ts;
    382 
    383 #ifdef UBC
    384 	/* XXX don't do this for now */
    385 	return ENOSPC;
    386 #endif
    387 
    388 	vp = ap->a_vp;
    389 	ip = VTOI(vp);
    390 	fs = ip->i_fs;
    391 	if (fs->fs_contigsumsize <= 0)
    392 		return (ENOSPC);
    393 	buflist = ap->a_buflist;
    394 	len = buflist->bs_nchildren;
    395 	start_lbn = buflist->bs_children[0]->b_lblkno;
    396 	end_lbn = start_lbn + len - 1;
    397 #ifdef DIAGNOSTIC
    398 	for (i = 0; i < len; i++)
    399 		if (!ffs_checkblk(ip,
    400 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    401 			panic("ffs_reallocblks: unallocated block 1");
    402 	for (i = 1; i < len; i++)
    403 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    404 			panic("ffs_reallocblks: non-logical cluster");
    405 	blkno = buflist->bs_children[0]->b_blkno;
    406 	ssize = fsbtodb(fs, fs->fs_frag);
    407 	for (i = 1; i < len - 1; i++)
    408 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    409 			panic("ffs_reallocblks: non-physical cluster %d", i);
    410 #endif
    411 	/*
    412 	 * If the latest allocation is in a new cylinder group, assume that
    413 	 * the filesystem has decided to move and do not force it back to
    414 	 * the previous cylinder group.
    415 	 */
    416 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    417 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    418 		return (ENOSPC);
    419 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    420 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    421 		return (ENOSPC);
    422 	/*
    423 	 * Get the starting offset and block map for the first block.
    424 	 */
    425 	if (start_lvl == 0) {
    426 		sbap = &ip->i_ffs_db[0];
    427 		soff = start_lbn;
    428 	} else {
    429 		idp = &start_ap[start_lvl - 1];
    430 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    431 			brelse(sbp);
    432 			return (ENOSPC);
    433 		}
    434 		sbap = (ufs_daddr_t *)sbp->b_data;
    435 		soff = idp->in_off;
    436 	}
    437 	/*
    438 	 * Find the preferred location for the cluster.
    439 	 */
    440 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    441 	/*
    442 	 * If the block range spans two block maps, get the second map.
    443 	 */
    444 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    445 		ssize = len;
    446 	} else {
    447 #ifdef DIAGNOSTIC
    448 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    449 			panic("ffs_reallocblk: start == end");
    450 #endif
    451 		ssize = len - (idp->in_off + 1);
    452 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    453 			goto fail;
    454 		ebap = (ufs_daddr_t *)ebp->b_data;
    455 	}
    456 	/*
    457 	 * Search the block map looking for an allocation of the desired size.
    458 	 */
    459 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    460 	    len, ffs_clusteralloc)) == 0)
    461 		goto fail;
    462 	/*
    463 	 * We have found a new contiguous block.
    464 	 *
    465 	 * First we have to replace the old block pointers with the new
    466 	 * block pointers in the inode and indirect blocks associated
    467 	 * with the file.
    468 	 */
    469 #ifdef DEBUG
    470 	if (prtrealloc)
    471 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    472 		    start_lbn, end_lbn);
    473 #endif
    474 	blkno = newblk;
    475 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    476 		if (i == ssize)
    477 			bap = ebap;
    478 #ifdef DIAGNOSTIC
    479 		if (!ffs_checkblk(ip,
    480 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    481 			panic("ffs_reallocblks: unallocated block 2");
    482 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
    483 			ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
    484 			panic("ffs_reallocblks: alloc mismatch");
    485 #endif
    486 #ifdef DEBUG
    487 		if (prtrealloc)
    488 			printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
    489 #endif
    490 		*bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
    491 	}
    492 	/*
    493 	 * Next we must write out the modified inode and indirect blocks.
    494 	 * For strict correctness, the writes should be synchronous since
    495 	 * the old block values may have been written to disk. In practise
    496 	 * they are almost never written, but if we are concerned about
    497 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    498 	 *
    499 	 * The test on `doasyncfree' should be changed to test a flag
    500 	 * that shows whether the associated buffers and inodes have
    501 	 * been written. The flag should be set when the cluster is
    502 	 * started and cleared whenever the buffer or inode is flushed.
    503 	 * We can then check below to see if it is set, and do the
    504 	 * synchronous write only when it has been cleared.
    505 	 */
    506 	if (sbap != &ip->i_ffs_db[0]) {
    507 		if (doasyncfree)
    508 			bdwrite(sbp);
    509 		else
    510 			bwrite(sbp);
    511 	} else {
    512 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    513 		if (!doasyncfree) {
    514 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    515 			VOP_UPDATE(vp, &ts, &ts, 1);
    516 		}
    517 	}
    518 	if (ssize < len) {
    519 		if (doasyncfree)
    520 			bdwrite(ebp);
    521 		else
    522 			bwrite(ebp);
    523 	}
    524 	/*
    525 	 * Last, free the old blocks and assign the new blocks to the buffers.
    526 	 */
    527 #ifdef DEBUG
    528 	if (prtrealloc)
    529 		printf("\n\tnew:");
    530 #endif
    531 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    532 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    533 		    fs->fs_bsize);
    534 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    535 #ifdef DEBUG
    536 		if (!ffs_checkblk(ip,
    537 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    538 			panic("ffs_reallocblks: unallocated block 3");
    539 		if (prtrealloc)
    540 			printf(" %d,", blkno);
    541 #endif
    542 	}
    543 #ifdef DEBUG
    544 	if (prtrealloc) {
    545 		prtrealloc--;
    546 		printf("\n");
    547 	}
    548 #endif
    549 	return (0);
    550 
    551 fail:
    552 	if (ssize < len)
    553 		brelse(ebp);
    554 	if (sbap != &ip->i_ffs_db[0])
    555 		brelse(sbp);
    556 	return (ENOSPC);
    557 }
    558 
    559 /*
    560  * Allocate an inode in the file system.
    561  *
    562  * If allocating a directory, use ffs_dirpref to select the inode.
    563  * If allocating in a directory, the following hierarchy is followed:
    564  *   1) allocate the preferred inode.
    565  *   2) allocate an inode in the same cylinder group.
    566  *   3) quadradically rehash into other cylinder groups, until an
    567  *      available inode is located.
    568  * If no inode preference is given the following heirarchy is used
    569  * to allocate an inode:
    570  *   1) allocate an inode in cylinder group 0.
    571  *   2) quadradically rehash into other cylinder groups, until an
    572  *      available inode is located.
    573  */
    574 int
    575 ffs_valloc(v)
    576 	void *v;
    577 {
    578 	struct vop_valloc_args /* {
    579 		struct vnode *a_pvp;
    580 		int a_mode;
    581 		struct ucred *a_cred;
    582 		struct vnode **a_vpp;
    583 	} */ *ap = v;
    584 	register struct vnode *pvp = ap->a_pvp;
    585 	register struct inode *pip;
    586 	register struct fs *fs;
    587 	register struct inode *ip;
    588 	mode_t mode = ap->a_mode;
    589 	ino_t ino, ipref;
    590 	int cg, error;
    591 
    592 	*ap->a_vpp = NULL;
    593 	pip = VTOI(pvp);
    594 	fs = pip->i_fs;
    595 	if (fs->fs_cstotal.cs_nifree == 0)
    596 		goto noinodes;
    597 
    598 	if ((mode & IFMT) == IFDIR)
    599 		ipref = ffs_dirpref(fs);
    600 	else
    601 		ipref = pip->i_number;
    602 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    603 		ipref = 0;
    604 	cg = ino_to_cg(fs, ipref);
    605 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    606 	if (ino == 0)
    607 		goto noinodes;
    608 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    609 	if (error) {
    610 		VOP_VFREE(pvp, ino, mode);
    611 		return (error);
    612 	}
    613 	ip = VTOI(*ap->a_vpp);
    614 	if (ip->i_ffs_mode) {
    615 		printf("mode = 0%o, inum = %d, fs = %s\n",
    616 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    617 		panic("ffs_valloc: dup alloc");
    618 	}
    619 	if (ip->i_ffs_blocks) {				/* XXX */
    620 		printf("free inode %s/%d had %d blocks\n",
    621 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    622 		ip->i_ffs_blocks = 0;
    623 	}
    624 	ip->i_ffs_flags = 0;
    625 	/*
    626 	 * Set up a new generation number for this inode.
    627 	 */
    628 	ip->i_ffs_gen++;
    629 	return (0);
    630 noinodes:
    631 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    632 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    633 	return (ENOSPC);
    634 }
    635 
    636 /*
    637  * Find a cylinder to place a directory.
    638  *
    639  * The policy implemented by this algorithm is to select from
    640  * among those cylinder groups with above the average number of
    641  * free inodes, the one with the smallest number of directories.
    642  */
    643 static ino_t
    644 ffs_dirpref(fs)
    645 	register struct fs *fs;
    646 {
    647 	int cg, minndir, mincg, avgifree;
    648 
    649 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    650 	minndir = fs->fs_ipg;
    651 	mincg = 0;
    652 	for (cg = 0; cg < fs->fs_ncg; cg++)
    653 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    654 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    655 			mincg = cg;
    656 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    657 		}
    658 	return ((ino_t)(fs->fs_ipg * mincg));
    659 }
    660 
    661 /*
    662  * Select the desired position for the next block in a file.  The file is
    663  * logically divided into sections. The first section is composed of the
    664  * direct blocks. Each additional section contains fs_maxbpg blocks.
    665  *
    666  * If no blocks have been allocated in the first section, the policy is to
    667  * request a block in the same cylinder group as the inode that describes
    668  * the file. If no blocks have been allocated in any other section, the
    669  * policy is to place the section in a cylinder group with a greater than
    670  * average number of free blocks.  An appropriate cylinder group is found
    671  * by using a rotor that sweeps the cylinder groups. When a new group of
    672  * blocks is needed, the sweep begins in the cylinder group following the
    673  * cylinder group from which the previous allocation was made. The sweep
    674  * continues until a cylinder group with greater than the average number
    675  * of free blocks is found. If the allocation is for the first block in an
    676  * indirect block, the information on the previous allocation is unavailable;
    677  * here a best guess is made based upon the logical block number being
    678  * allocated.
    679  *
    680  * If a section is already partially allocated, the policy is to
    681  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    682  * contiguous blocks and the beginning of the next is physically separated
    683  * so that the disk head will be in transit between them for at least
    684  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    685  * schedule another I/O transfer.
    686  */
    687 ufs_daddr_t
    688 ffs_blkpref(ip, lbn, indx, bap)
    689 	struct inode *ip;
    690 	ufs_daddr_t lbn;
    691 	int indx;
    692 	ufs_daddr_t *bap;
    693 {
    694 	register struct fs *fs;
    695 	register int cg;
    696 	int avgbfree, startcg;
    697 	ufs_daddr_t nextblk;
    698 
    699 	fs = ip->i_fs;
    700 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    701 		if (lbn < NDADDR) {
    702 			cg = ino_to_cg(fs, ip->i_number);
    703 			return (fs->fs_fpg * cg + fs->fs_frag);
    704 		}
    705 		/*
    706 		 * Find a cylinder with greater than average number of
    707 		 * unused data blocks.
    708 		 */
    709 		if (indx == 0 || bap[indx - 1] == 0)
    710 			startcg =
    711 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    712 		else
    713 			startcg = dtog(fs,
    714 				ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
    715 		startcg %= fs->fs_ncg;
    716 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    717 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    718 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    719 				fs->fs_cgrotor = cg;
    720 				return (fs->fs_fpg * cg + fs->fs_frag);
    721 			}
    722 		for (cg = 0; cg <= startcg; cg++)
    723 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    724 				fs->fs_cgrotor = cg;
    725 				return (fs->fs_fpg * cg + fs->fs_frag);
    726 			}
    727 		return (NULL);
    728 	}
    729 	/*
    730 	 * One or more previous blocks have been laid out. If less
    731 	 * than fs_maxcontig previous blocks are contiguous, the
    732 	 * next block is requested contiguously, otherwise it is
    733 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    734 	 */
    735 	nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
    736 	if (indx < fs->fs_maxcontig ||
    737 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
    738 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    739 		return (nextblk);
    740 	if (fs->fs_rotdelay != 0)
    741 		/*
    742 		 * Here we convert ms of delay to frags as:
    743 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    744 		 *	((sect/frag) * (ms/sec))
    745 		 * then round up to the next block.
    746 		 */
    747 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    748 		    (NSPF(fs) * 1000), fs->fs_frag);
    749 	return (nextblk);
    750 }
    751 
    752 /*
    753  * Implement the cylinder overflow algorithm.
    754  *
    755  * The policy implemented by this algorithm is:
    756  *   1) allocate the block in its requested cylinder group.
    757  *   2) quadradically rehash on the cylinder group number.
    758  *   3) brute force search for a free block.
    759  */
    760 /*VARARGS5*/
    761 static u_long
    762 ffs_hashalloc(ip, cg, pref, size, allocator)
    763 	struct inode *ip;
    764 	int cg;
    765 	long pref;
    766 	int size;	/* size for data blocks, mode for inodes */
    767 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    768 {
    769 	register struct fs *fs;
    770 	long result;
    771 	int i, icg = cg;
    772 
    773 	fs = ip->i_fs;
    774 	/*
    775 	 * 1: preferred cylinder group
    776 	 */
    777 	result = (*allocator)(ip, cg, pref, size);
    778 	if (result)
    779 		return (result);
    780 	/*
    781 	 * 2: quadratic rehash
    782 	 */
    783 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    784 		cg += i;
    785 		if (cg >= fs->fs_ncg)
    786 			cg -= fs->fs_ncg;
    787 		result = (*allocator)(ip, cg, 0, size);
    788 		if (result)
    789 			return (result);
    790 	}
    791 	/*
    792 	 * 3: brute force search
    793 	 * Note that we start at i == 2, since 0 was checked initially,
    794 	 * and 1 is always checked in the quadratic rehash.
    795 	 */
    796 	cg = (icg + 2) % fs->fs_ncg;
    797 	for (i = 2; i < fs->fs_ncg; i++) {
    798 		result = (*allocator)(ip, cg, 0, size);
    799 		if (result)
    800 			return (result);
    801 		cg++;
    802 		if (cg == fs->fs_ncg)
    803 			cg = 0;
    804 	}
    805 	return (NULL);
    806 }
    807 
    808 /*
    809  * Determine whether a fragment can be extended.
    810  *
    811  * Check to see if the necessary fragments are available, and
    812  * if they are, allocate them.
    813  */
    814 static ufs_daddr_t
    815 ffs_fragextend(ip, cg, bprev, osize, nsize)
    816 	struct inode *ip;
    817 	int cg;
    818 	long bprev;
    819 	int osize, nsize;
    820 {
    821 	register struct fs *fs;
    822 	register struct cg *cgp;
    823 	struct buf *bp;
    824 	long bno;
    825 	int frags, bbase;
    826 	int i, error;
    827 
    828 	fs = ip->i_fs;
    829 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    830 		return (NULL);
    831 	frags = numfrags(fs, nsize);
    832 	bbase = fragnum(fs, bprev);
    833 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    834 		/* cannot extend across a block boundary */
    835 		return (NULL);
    836 	}
    837 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    838 		(int)fs->fs_cgsize, NOCRED, &bp);
    839 	if (error) {
    840 		brelse(bp);
    841 		return (NULL);
    842 	}
    843 	cgp = (struct cg *)bp->b_data;
    844 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
    845 		brelse(bp);
    846 		return (NULL);
    847 	}
    848 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
    849 	bno = dtogd(fs, bprev);
    850 	for (i = numfrags(fs, osize); i < frags; i++)
    851 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
    852 			brelse(bp);
    853 			return (NULL);
    854 		}
    855 	/*
    856 	 * the current fragment can be extended
    857 	 * deduct the count on fragment being extended into
    858 	 * increase the count on the remaining fragment (if any)
    859 	 * allocate the extended piece
    860 	 */
    861 	for (i = frags; i < fs->fs_frag - bbase; i++)
    862 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
    863 			break;
    864 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
    865 	if (i != frags)
    866 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
    867 	for (i = numfrags(fs, osize); i < frags; i++) {
    868 		clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
    869 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
    870 		fs->fs_cstotal.cs_nffree--;
    871 		fs->fs_cs(fs, cg).cs_nffree--;
    872 	}
    873 	fs->fs_fmod = 1;
    874 	bdwrite(bp);
    875 	return (bprev);
    876 }
    877 
    878 /*
    879  * Determine whether a block can be allocated.
    880  *
    881  * Check to see if a block of the appropriate size is available,
    882  * and if it is, allocate it.
    883  */
    884 static ufs_daddr_t
    885 ffs_alloccg(ip, cg, bpref, size)
    886 	struct inode *ip;
    887 	int cg;
    888 	ufs_daddr_t bpref;
    889 	int size;
    890 {
    891 	register struct fs *fs;
    892 	register struct cg *cgp;
    893 	struct buf *bp;
    894 	register int i;
    895 	int error, bno, frags, allocsiz;
    896 	const int needswap = UFS_IPNEEDSWAP(ip);
    897 
    898 	fs = ip->i_fs;
    899 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    900 		return (NULL);
    901 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    902 		(int)fs->fs_cgsize, NOCRED, &bp);
    903 	if (error) {
    904 		brelse(bp);
    905 		return (NULL);
    906 	}
    907 	cgp = (struct cg *)bp->b_data;
    908 	if (!cg_chkmagic(cgp, needswap) ||
    909 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    910 		brelse(bp);
    911 		return (NULL);
    912 	}
    913 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    914 	if (size == fs->fs_bsize) {
    915 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    916 		bdwrite(bp);
    917 		return (bno);
    918 	}
    919 	/*
    920 	 * check to see if any fragments are already available
    921 	 * allocsiz is the size which will be allocated, hacking
    922 	 * it down to a smaller size if necessary
    923 	 */
    924 	frags = numfrags(fs, size);
    925 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    926 		if (cgp->cg_frsum[allocsiz] != 0)
    927 			break;
    928 	if (allocsiz == fs->fs_frag) {
    929 		/*
    930 		 * no fragments were available, so a block will be
    931 		 * allocated, and hacked up
    932 		 */
    933 		if (cgp->cg_cs.cs_nbfree == 0) {
    934 			brelse(bp);
    935 			return (NULL);
    936 		}
    937 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    938 		bpref = dtogd(fs, bno);
    939 		for (i = frags; i < fs->fs_frag; i++)
    940 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    941 		i = fs->fs_frag - frags;
    942 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    943 		fs->fs_cstotal.cs_nffree += i;
    944 		fs->fs_cs(fs, cg).cs_nffree +=i;
    945 		fs->fs_fmod = 1;
    946 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    947 		bdwrite(bp);
    948 		return (bno);
    949 	}
    950 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
    951 	if (bno < 0) {
    952 		brelse(bp);
    953 		return (NULL);
    954 	}
    955 	for (i = 0; i < frags; i++)
    956 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    957 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    958 	fs->fs_cstotal.cs_nffree -= frags;
    959 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    960 	fs->fs_fmod = 1;
    961 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    962 	if (frags != allocsiz)
    963 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    964 	bdwrite(bp);
    965 	return (cg * fs->fs_fpg + bno);
    966 }
    967 
    968 /*
    969  * Allocate a block in a cylinder group.
    970  *
    971  * This algorithm implements the following policy:
    972  *   1) allocate the requested block.
    973  *   2) allocate a rotationally optimal block in the same cylinder.
    974  *   3) allocate the next available block on the block rotor for the
    975  *      specified cylinder group.
    976  * Note that this routine only allocates fs_bsize blocks; these
    977  * blocks may be fragmented by the routine that allocates them.
    978  */
    979 static ufs_daddr_t
    980 ffs_alloccgblk(mp, fs, cgp, bpref)
    981 	struct  mount *mp;
    982 	register struct fs *fs;
    983 	register struct cg *cgp;
    984 	ufs_daddr_t bpref;
    985 {
    986 	ufs_daddr_t bno, blkno;
    987 	int cylno, pos, delta;
    988 	short *cylbp;
    989 	register int i;
    990 	const int needswap = UFS_MPNEEDSWAP(mp);
    991 
    992 	if (bpref == 0 ||
    993 		dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    994 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    995 		goto norot;
    996 	}
    997 	bpref = blknum(fs, bpref);
    998 	bpref = dtogd(fs, bpref);
    999 	/*
   1000 	 * if the requested block is available, use it
   1001 	 */
   1002 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1003 		fragstoblks(fs, bpref))) {
   1004 		bno = bpref;
   1005 		goto gotit;
   1006 	}
   1007 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1008 		/*
   1009 		 * Block layout information is not available.
   1010 		 * Leaving bpref unchanged means we take the
   1011 		 * next available free block following the one
   1012 		 * we just allocated. Hopefully this will at
   1013 		 * least hit a track cache on drives of unknown
   1014 		 * geometry (e.g. SCSI).
   1015 		 */
   1016 		goto norot;
   1017 	}
   1018 	/*
   1019 	 * check for a block available on the same cylinder
   1020 	 */
   1021 	cylno = cbtocylno(fs, bpref);
   1022 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1023 		goto norot;
   1024 	/*
   1025 	 * check the summary information to see if a block is
   1026 	 * available in the requested cylinder starting at the
   1027 	 * requested rotational position and proceeding around.
   1028 	 */
   1029 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1030 	pos = cbtorpos(fs, bpref);
   1031 	for (i = pos; i < fs->fs_nrpos; i++)
   1032 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1033 			break;
   1034 	if (i == fs->fs_nrpos)
   1035 		for (i = 0; i < pos; i++)
   1036 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1037 				break;
   1038 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1039 		/*
   1040 		 * found a rotational position, now find the actual
   1041 		 * block. A panic if none is actually there.
   1042 		 */
   1043 		pos = cylno % fs->fs_cpc;
   1044 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1045 		if (fs_postbl(fs, pos)[i] == -1) {
   1046 			printf("pos = %d, i = %d, fs = %s\n",
   1047 			    pos, i, fs->fs_fsmnt);
   1048 			panic("ffs_alloccgblk: cyl groups corrupted");
   1049 		}
   1050 		for (i = fs_postbl(fs, pos)[i];; ) {
   1051 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1052 				bno = blkstofrags(fs, (bno + i));
   1053 				goto gotit;
   1054 			}
   1055 			delta = fs_rotbl(fs)[i];
   1056 			if (delta <= 0 ||
   1057 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1058 				break;
   1059 			i += delta;
   1060 		}
   1061 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1062 		panic("ffs_alloccgblk: can't find blk in cyl");
   1063 	}
   1064 norot:
   1065 	/*
   1066 	 * no blocks in the requested cylinder, so take next
   1067 	 * available one in this cylinder group.
   1068 	 */
   1069 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
   1070 	if (bno < 0)
   1071 		return (NULL);
   1072 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1073 gotit:
   1074 	blkno = fragstoblks(fs, bno);
   1075 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1076 	ffs_clusteracct(needswap, fs, cgp, blkno, -1);
   1077 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1078 	fs->fs_cstotal.cs_nbfree--;
   1079 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1080 	cylno = cbtocylno(fs, bno);
   1081 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1082 		needswap);
   1083 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1084 	fs->fs_fmod = 1;
   1085 	return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
   1086 }
   1087 
   1088 /*
   1089  * Determine whether a cluster can be allocated.
   1090  *
   1091  * We do not currently check for optimal rotational layout if there
   1092  * are multiple choices in the same cylinder group. Instead we just
   1093  * take the first one that we find following bpref.
   1094  */
   1095 static ufs_daddr_t
   1096 ffs_clusteralloc(ip, cg, bpref, len)
   1097 	struct inode *ip;
   1098 	int cg;
   1099 	ufs_daddr_t bpref;
   1100 	int len;
   1101 {
   1102 	register struct fs *fs;
   1103 	register struct cg *cgp;
   1104 	struct buf *bp;
   1105 	int i, got, run, bno, bit, map;
   1106 	u_char *mapp;
   1107 	int32_t *lp;
   1108 
   1109 	fs = ip->i_fs;
   1110 	if (fs->fs_maxcluster[cg] < len)
   1111 		return (NULL);
   1112 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1113 	    NOCRED, &bp))
   1114 		goto fail;
   1115 	cgp = (struct cg *)bp->b_data;
   1116 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
   1117 		goto fail;
   1118 	/*
   1119 	 * Check to see if a cluster of the needed size (or bigger) is
   1120 	 * available in this cylinder group.
   1121 	 */
   1122 	lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
   1123 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1124 		if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
   1125 			break;
   1126 	if (i > fs->fs_contigsumsize) {
   1127 		/*
   1128 		 * This is the first time looking for a cluster in this
   1129 		 * cylinder group. Update the cluster summary information
   1130 		 * to reflect the true maximum sized cluster so that
   1131 		 * future cluster allocation requests can avoid reading
   1132 		 * the cylinder group map only to find no clusters.
   1133 		 */
   1134 		lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
   1135 		for (i = len - 1; i > 0; i--)
   1136 			if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
   1137 				break;
   1138 		fs->fs_maxcluster[cg] = i;
   1139 		goto fail;
   1140 	}
   1141 	/*
   1142 	 * Search the cluster map to find a big enough cluster.
   1143 	 * We take the first one that we find, even if it is larger
   1144 	 * than we need as we prefer to get one close to the previous
   1145 	 * block allocation. We do not search before the current
   1146 	 * preference point as we do not want to allocate a block
   1147 	 * that is allocated before the previous one (as we will
   1148 	 * then have to wait for another pass of the elevator
   1149 	 * algorithm before it will be read). We prefer to fail and
   1150 	 * be recalled to try an allocation in the next cylinder group.
   1151 	 */
   1152 	if (dtog(fs, bpref) != cg)
   1153 		bpref = 0;
   1154 	else
   1155 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1156 	mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
   1157 	map = *mapp++;
   1158 	bit = 1 << (bpref % NBBY);
   1159 	for (run = 0, got = bpref;
   1160 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
   1161 		if ((map & bit) == 0) {
   1162 			run = 0;
   1163 		} else {
   1164 			run++;
   1165 			if (run == len)
   1166 				break;
   1167 		}
   1168 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1169 			bit <<= 1;
   1170 		} else {
   1171 			map = *mapp++;
   1172 			bit = 1;
   1173 		}
   1174 	}
   1175 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
   1176 		goto fail;
   1177 	/*
   1178 	 * Allocate the cluster that we have found.
   1179 	 */
   1180 	for (i = 1; i <= len; i++)
   1181 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1182 			got - run + i))
   1183 			panic("ffs_clusteralloc: map mismatch");
   1184 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1185 	if (dtog(fs, bno) != cg)
   1186 		panic("ffs_clusteralloc: allocated out of group");
   1187 	len = blkstofrags(fs, len);
   1188 	for (i = 0; i < len; i += fs->fs_frag)
   1189 		if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
   1190 			!= bno + i)
   1191 			panic("ffs_clusteralloc: lost block");
   1192 	bdwrite(bp);
   1193 	return (bno);
   1194 
   1195 fail:
   1196 	brelse(bp);
   1197 	return (0);
   1198 }
   1199 
   1200 /*
   1201  * Determine whether an inode can be allocated.
   1202  *
   1203  * Check to see if an inode is available, and if it is,
   1204  * allocate it using the following policy:
   1205  *   1) allocate the requested inode.
   1206  *   2) allocate the next available inode after the requested
   1207  *      inode in the specified cylinder group.
   1208  */
   1209 static ufs_daddr_t
   1210 ffs_nodealloccg(ip, cg, ipref, mode)
   1211 	struct inode *ip;
   1212 	int cg;
   1213 	ufs_daddr_t ipref;
   1214 	int mode;
   1215 {
   1216 	register struct fs *fs;
   1217 	register struct cg *cgp;
   1218 	struct buf *bp;
   1219 	int error, start, len, loc, map, i;
   1220 #ifdef FFS_EI
   1221 	const int needswap = UFS_IPNEEDSWAP(ip);
   1222 #endif
   1223 
   1224 	fs = ip->i_fs;
   1225 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1226 		return (NULL);
   1227 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1228 		(int)fs->fs_cgsize, NOCRED, &bp);
   1229 	if (error) {
   1230 		brelse(bp);
   1231 		return (NULL);
   1232 	}
   1233 	cgp = (struct cg *)bp->b_data;
   1234 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1235 		brelse(bp);
   1236 		return (NULL);
   1237 	}
   1238 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1239 	if (ipref) {
   1240 		ipref %= fs->fs_ipg;
   1241 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1242 			goto gotit;
   1243 	}
   1244 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1245 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1246 		NBBY);
   1247 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1248 	if (loc == 0) {
   1249 		len = start + 1;
   1250 		start = 0;
   1251 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1252 		if (loc == 0) {
   1253 			printf("cg = %d, irotor = %d, fs = %s\n",
   1254 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1255 				fs->fs_fsmnt);
   1256 			panic("ffs_nodealloccg: map corrupted");
   1257 			/* NOTREACHED */
   1258 		}
   1259 	}
   1260 	i = start + len - loc;
   1261 	map = cg_inosused(cgp, needswap)[i];
   1262 	ipref = i * NBBY;
   1263 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1264 		if ((map & i) == 0) {
   1265 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1266 			goto gotit;
   1267 		}
   1268 	}
   1269 	printf("fs = %s\n", fs->fs_fsmnt);
   1270 	panic("ffs_nodealloccg: block not in map");
   1271 	/* NOTREACHED */
   1272 gotit:
   1273 	setbit(cg_inosused(cgp, needswap), ipref);
   1274 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1275 	fs->fs_cstotal.cs_nifree--;
   1276 	fs->fs_cs(fs, cg).cs_nifree --;
   1277 	fs->fs_fmod = 1;
   1278 	if ((mode & IFMT) == IFDIR) {
   1279 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1280 		fs->fs_cstotal.cs_ndir++;
   1281 		fs->fs_cs(fs, cg).cs_ndir++;
   1282 	}
   1283 	bdwrite(bp);
   1284 	return (cg * fs->fs_ipg + ipref);
   1285 }
   1286 
   1287 /*
   1288  * Free a block or fragment.
   1289  *
   1290  * The specified block or fragment is placed back in the
   1291  * free map. If a fragment is deallocated, a possible
   1292  * block reassembly is checked.
   1293  */
   1294 void
   1295 ffs_blkfree(ip, bno, size)
   1296 	register struct inode *ip;
   1297 	ufs_daddr_t bno;
   1298 	long size;
   1299 {
   1300 	register struct fs *fs;
   1301 	register struct cg *cgp;
   1302 	struct buf *bp;
   1303 	ufs_daddr_t blkno;
   1304 	int i, error, cg, blk, frags, bbase;
   1305 	const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
   1306 
   1307 	fs = ip->i_fs;
   1308 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1309 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1310 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1311 		panic("blkfree: bad size");
   1312 	}
   1313 	cg = dtog(fs, bno);
   1314 	if ((u_int)bno >= fs->fs_size) {
   1315 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1316 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1317 		return;
   1318 	}
   1319 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1320 		(int)fs->fs_cgsize, NOCRED, &bp);
   1321 	if (error) {
   1322 		brelse(bp);
   1323 		return;
   1324 	}
   1325 	cgp = (struct cg *)bp->b_data;
   1326 	if (!cg_chkmagic(cgp, needswap)) {
   1327 		brelse(bp);
   1328 		return;
   1329 	}
   1330 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1331 	bno = dtogd(fs, bno);
   1332 	if (size == fs->fs_bsize) {
   1333 		blkno = fragstoblks(fs, bno);
   1334 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1335 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1336 			    ip->i_dev, bno, fs->fs_fsmnt);
   1337 			panic("blkfree: freeing free block");
   1338 		}
   1339 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1340 		ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1341 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1342 		fs->fs_cstotal.cs_nbfree++;
   1343 		fs->fs_cs(fs, cg).cs_nbfree++;
   1344 		i = cbtocylno(fs, bno);
   1345 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1346 			needswap);
   1347 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1348 	} else {
   1349 		bbase = bno - fragnum(fs, bno);
   1350 		/*
   1351 		 * decrement the counts associated with the old frags
   1352 		 */
   1353 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1354 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1355 		/*
   1356 		 * deallocate the fragment
   1357 		 */
   1358 		frags = numfrags(fs, size);
   1359 		for (i = 0; i < frags; i++) {
   1360 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1361 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1362 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1363 				panic("blkfree: freeing free frag");
   1364 			}
   1365 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1366 		}
   1367 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1368 		fs->fs_cstotal.cs_nffree += i;
   1369 		fs->fs_cs(fs, cg).cs_nffree +=i;
   1370 		/*
   1371 		 * add back in counts associated with the new frags
   1372 		 */
   1373 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1374 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1375 		/*
   1376 		 * if a complete block has been reassembled, account for it
   1377 		 */
   1378 		blkno = fragstoblks(fs, bbase);
   1379 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1380 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1381 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1382 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1383 			ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1384 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1385 			fs->fs_cstotal.cs_nbfree++;
   1386 			fs->fs_cs(fs, cg).cs_nbfree++;
   1387 			i = cbtocylno(fs, bbase);
   1388 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
   1389 				needswap);
   1390 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1391 		}
   1392 	}
   1393 	fs->fs_fmod = 1;
   1394 	bdwrite(bp);
   1395 }
   1396 
   1397 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1398 /*
   1399  * Verify allocation of a block or fragment. Returns true if block or
   1400  * fragment is allocated, false if it is free.
   1401  */
   1402 static int
   1403 ffs_checkblk(ip, bno, size)
   1404 	struct inode *ip;
   1405 	ufs_daddr_t bno;
   1406 	long size;
   1407 {
   1408 	struct fs *fs;
   1409 	struct cg *cgp;
   1410 	struct buf *bp;
   1411 	int i, error, frags, free;
   1412 
   1413 	fs = ip->i_fs;
   1414 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1415 		printf("bsize = %d, size = %ld, fs = %s\n",
   1416 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1417 		panic("checkblk: bad size");
   1418 	}
   1419 	if ((u_int)bno >= fs->fs_size)
   1420 		panic("checkblk: bad block %d", bno);
   1421 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1422 		(int)fs->fs_cgsize, NOCRED, &bp);
   1423 	if (error) {
   1424 		brelse(bp);
   1425 		return 0;
   1426 	}
   1427 	cgp = (struct cg *)bp->b_data;
   1428 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
   1429 		brelse(bp);
   1430 		return 0;
   1431 	}
   1432 	bno = dtogd(fs, bno);
   1433 	if (size == fs->fs_bsize) {
   1434 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1435 			fragstoblks(fs, bno));
   1436 	} else {
   1437 		frags = numfrags(fs, size);
   1438 		for (free = 0, i = 0; i < frags; i++)
   1439 			if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
   1440 				free++;
   1441 		if (free != 0 && free != frags)
   1442 			panic("checkblk: partially free fragment");
   1443 	}
   1444 	brelse(bp);
   1445 	return (!free);
   1446 }
   1447 #endif /* DIAGNOSTIC */
   1448 
   1449 /*
   1450  * Free an inode.
   1451  *
   1452  * The specified inode is placed back in the free map.
   1453  */
   1454 int
   1455 ffs_vfree(v)
   1456 	void *v;
   1457 {
   1458 	struct vop_vfree_args /* {
   1459 		struct vnode *a_pvp;
   1460 		ino_t a_ino;
   1461 		int a_mode;
   1462 	} */ *ap = v;
   1463 	register struct fs *fs;
   1464 	register struct cg *cgp;
   1465 	register struct inode *pip;
   1466 	ino_t ino = ap->a_ino;
   1467 	struct buf *bp;
   1468 	int error, cg;
   1469 #ifdef FFS_EI
   1470 	const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
   1471 #endif
   1472 
   1473 	pip = VTOI(ap->a_pvp);
   1474 	fs = pip->i_fs;
   1475 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1476 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1477 		    pip->i_dev, ino, fs->fs_fsmnt);
   1478 	cg = ino_to_cg(fs, ino);
   1479 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1480 		(int)fs->fs_cgsize, NOCRED, &bp);
   1481 	if (error) {
   1482 		brelse(bp);
   1483 		return (0);
   1484 	}
   1485 	cgp = (struct cg *)bp->b_data;
   1486 	if (!cg_chkmagic(cgp, needswap)) {
   1487 		brelse(bp);
   1488 		return (0);
   1489 	}
   1490 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1491 	ino %= fs->fs_ipg;
   1492 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1493 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1494 		    pip->i_dev, ino, fs->fs_fsmnt);
   1495 		if (fs->fs_ronly == 0)
   1496 			panic("ifree: freeing free inode");
   1497 	}
   1498 	clrbit(cg_inosused(cgp, needswap), ino);
   1499 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1500 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1501 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1502 	fs->fs_cstotal.cs_nifree++;
   1503 	fs->fs_cs(fs, cg).cs_nifree++;
   1504 	if ((ap->a_mode & IFMT) == IFDIR) {
   1505 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1506 		fs->fs_cstotal.cs_ndir--;
   1507 		fs->fs_cs(fs, cg).cs_ndir--;
   1508 	}
   1509 	fs->fs_fmod = 1;
   1510 	bdwrite(bp);
   1511 	return (0);
   1512 }
   1513 
   1514 /*
   1515  * Find a block of the specified size in the specified cylinder group.
   1516  *
   1517  * It is a panic if a request is made to find a block if none are
   1518  * available.
   1519  */
   1520 static ufs_daddr_t
   1521 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
   1522 	int needswap;
   1523 	register struct fs *fs;
   1524 	register struct cg *cgp;
   1525 	ufs_daddr_t bpref;
   1526 	int allocsiz;
   1527 {
   1528 	ufs_daddr_t bno;
   1529 	int start, len, loc, i;
   1530 	int blk, field, subfield, pos;
   1531 	int ostart, olen;
   1532 
   1533 	/*
   1534 	 * find the fragment by searching through the free block
   1535 	 * map for an appropriate bit pattern
   1536 	 */
   1537 	if (bpref)
   1538 		start = dtogd(fs, bpref) / NBBY;
   1539 	else
   1540 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1541 	len = howmany(fs->fs_fpg, NBBY) - start;
   1542 	ostart = start;
   1543 	olen = len;
   1544 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1545 		(u_char *)fragtbl[fs->fs_frag],
   1546 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1547 	if (loc == 0) {
   1548 		len = start + 1;
   1549 		start = 0;
   1550 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1551 			(u_char *)fragtbl[fs->fs_frag],
   1552 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1553 		if (loc == 0) {
   1554 			printf("start = %d, len = %d, fs = %s\n",
   1555 			    ostart, olen, fs->fs_fsmnt);
   1556 			printf("offset=%d %ld\n",
   1557 				ufs_rw32(cgp->cg_freeoff, needswap),
   1558 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1559 			panic("ffs_alloccg: map corrupted");
   1560 			/* NOTREACHED */
   1561 		}
   1562 	}
   1563 	bno = (start + len - loc) * NBBY;
   1564 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1565 	/*
   1566 	 * found the byte in the map
   1567 	 * sift through the bits to find the selected frag
   1568 	 */
   1569 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1570 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1571 		blk <<= 1;
   1572 		field = around[allocsiz];
   1573 		subfield = inside[allocsiz];
   1574 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1575 			if ((blk & field) == subfield)
   1576 				return (bno + pos);
   1577 			field <<= 1;
   1578 			subfield <<= 1;
   1579 		}
   1580 	}
   1581 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1582 	panic("ffs_alloccg: block not in map");
   1583 	return (-1);
   1584 }
   1585 
   1586 /*
   1587  * Update the cluster map because of an allocation or free.
   1588  *
   1589  * Cnt == 1 means free; cnt == -1 means allocating.
   1590  */
   1591 void
   1592 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
   1593 	int needswap;
   1594 	struct fs *fs;
   1595 	struct cg *cgp;
   1596 	ufs_daddr_t blkno;
   1597 	int cnt;
   1598 {
   1599 	int32_t *sump;
   1600 	int32_t *lp;
   1601 	u_char *freemapp, *mapp;
   1602 	int i, start, end, forw, back, map, bit;
   1603 
   1604 	if (fs->fs_contigsumsize <= 0)
   1605 		return;
   1606 	freemapp = cg_clustersfree(cgp, needswap);
   1607 	sump = cg_clustersum(cgp, needswap);
   1608 	/*
   1609 	 * Allocate or clear the actual block.
   1610 	 */
   1611 	if (cnt > 0)
   1612 		setbit(freemapp, blkno);
   1613 	else
   1614 		clrbit(freemapp, blkno);
   1615 	/*
   1616 	 * Find the size of the cluster going forward.
   1617 	 */
   1618 	start = blkno + 1;
   1619 	end = start + fs->fs_contigsumsize;
   1620 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1621 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1622 	mapp = &freemapp[start / NBBY];
   1623 	map = *mapp++;
   1624 	bit = 1 << (start % NBBY);
   1625 	for (i = start; i < end; i++) {
   1626 		if ((map & bit) == 0)
   1627 			break;
   1628 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1629 			bit <<= 1;
   1630 		} else {
   1631 			map = *mapp++;
   1632 			bit = 1;
   1633 		}
   1634 	}
   1635 	forw = i - start;
   1636 	/*
   1637 	 * Find the size of the cluster going backward.
   1638 	 */
   1639 	start = blkno - 1;
   1640 	end = start - fs->fs_contigsumsize;
   1641 	if (end < 0)
   1642 		end = -1;
   1643 	mapp = &freemapp[start / NBBY];
   1644 	map = *mapp--;
   1645 	bit = 1 << (start % NBBY);
   1646 	for (i = start; i > end; i--) {
   1647 		if ((map & bit) == 0)
   1648 			break;
   1649 		if ((i & (NBBY - 1)) != 0) {
   1650 			bit >>= 1;
   1651 		} else {
   1652 			map = *mapp--;
   1653 			bit = 1 << (NBBY - 1);
   1654 		}
   1655 	}
   1656 	back = start - i;
   1657 	/*
   1658 	 * Account for old cluster and the possibly new forward and
   1659 	 * back clusters.
   1660 	 */
   1661 	i = back + forw + 1;
   1662 	if (i > fs->fs_contigsumsize)
   1663 		i = fs->fs_contigsumsize;
   1664 	ufs_add32(sump[i], cnt, needswap);
   1665 	if (back > 0)
   1666 		ufs_add32(sump[back], -cnt, needswap);
   1667 	if (forw > 0)
   1668 		ufs_add32(sump[forw], -cnt, needswap);
   1669 
   1670 	/*
   1671 	 * Update cluster summary information.
   1672 	 */
   1673 	lp = &sump[fs->fs_contigsumsize];
   1674 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1675 		if (ufs_rw32(*lp--, needswap) > 0)
   1676 			break;
   1677 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1678 }
   1679 
   1680 /*
   1681  * Fserr prints the name of a file system with an error diagnostic.
   1682  *
   1683  * The form of the error message is:
   1684  *	fs: error message
   1685  */
   1686 static void
   1687 ffs_fserr(fs, uid, cp)
   1688 	struct fs *fs;
   1689 	u_int uid;
   1690 	char *cp;
   1691 {
   1692 
   1693 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1694 }
   1695