ffs_alloc.c revision 1.28 1 /* $NetBSD: ffs_alloc.c,v 1.28 1999/03/05 21:09:49 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #include "opt_uvm.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52
53 #include <vm/vm.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/ufsmount.h>
57 #include <ufs/ufs/inode.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63
64 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
66 struct cg *, ufs_daddr_t));
67 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 static ino_t ffs_dirpref __P((struct fs *));
69 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
70 static void ffs_fserr __P((struct fs *, u_int, char *));
71 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
72 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
73 int)));
74 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
76 ufs_daddr_t, int));
77 #if defined(DIAGNOSTIC) || defined(DEBUG)
78 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
79 #endif
80
81 /* in ffs_tables.c */
82 extern int inside[], around[];
83 extern u_char *fragtbl[];
84
85 /*
86 * Allocate a block in the file system.
87 *
88 * The size of the requested block is given, which must be some
89 * multiple of fs_fsize and <= fs_bsize.
90 * A preference may be optionally specified. If a preference is given
91 * the following hierarchy is used to allocate a block:
92 * 1) allocate the requested block.
93 * 2) allocate a rotationally optimal block in the same cylinder.
94 * 3) allocate a block in the same cylinder group.
95 * 4) quadradically rehash into other cylinder groups, until an
96 * available block is located.
97 * If no block preference is given the following heirarchy is used
98 * to allocate a block:
99 * 1) allocate a block in the cylinder group that contains the
100 * inode for the file.
101 * 2) quadradically rehash into other cylinder groups, until an
102 * available block is located.
103 */
104 int
105 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
106 register struct inode *ip;
107 ufs_daddr_t lbn, bpref;
108 int size;
109 struct ucred *cred;
110 ufs_daddr_t *bnp;
111 {
112 register struct fs *fs;
113 ufs_daddr_t bno;
114 int cg;
115 #ifdef QUOTA
116 int error;
117 #endif
118
119 *bnp = 0;
120 fs = ip->i_fs;
121 #ifdef DIAGNOSTIC
122 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
123 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
124 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
125 panic("ffs_alloc: bad size");
126 }
127 if (cred == NOCRED)
128 panic("ffs_alloc: missing credential\n");
129 #endif /* DIAGNOSTIC */
130 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
131 goto nospace;
132 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
133 goto nospace;
134 #ifdef QUOTA
135 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
136 return (error);
137 #endif
138 if (bpref >= fs->fs_size)
139 bpref = 0;
140 if (bpref == 0)
141 cg = ino_to_cg(fs, ip->i_number);
142 else
143 cg = dtog(fs, bpref);
144 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
145 ffs_alloccg);
146 if (bno > 0) {
147 ip->i_ffs_blocks += btodb(size);
148 ip->i_flag |= IN_CHANGE | IN_UPDATE;
149 *bnp = bno;
150 return (0);
151 }
152 #ifdef QUOTA
153 /*
154 * Restore user's disk quota because allocation failed.
155 */
156 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
157 #endif
158 nospace:
159 ffs_fserr(fs, cred->cr_uid, "file system full");
160 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
161 return (ENOSPC);
162 }
163
164 /*
165 * Reallocate a fragment to a bigger size
166 *
167 * The number and size of the old block is given, and a preference
168 * and new size is also specified. The allocator attempts to extend
169 * the original block. Failing that, the regular block allocator is
170 * invoked to get an appropriate block.
171 */
172 int
173 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
174 register struct inode *ip;
175 ufs_daddr_t lbprev;
176 ufs_daddr_t bpref;
177 int osize, nsize;
178 struct ucred *cred;
179 struct buf **bpp;
180 {
181 register struct fs *fs;
182 struct buf *bp;
183 int cg, request, error;
184 ufs_daddr_t bprev, bno;
185
186 *bpp = 0;
187 fs = ip->i_fs;
188 #ifdef DIAGNOSTIC
189 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
190 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
191 printf(
192 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
193 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
194 panic("ffs_realloccg: bad size");
195 }
196 if (cred == NOCRED)
197 panic("ffs_realloccg: missing credential\n");
198 #endif /* DIAGNOSTIC */
199 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
200 goto nospace;
201 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
202 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
203 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
204 panic("ffs_realloccg: bad bprev");
205 }
206 /*
207 * Allocate the extra space in the buffer.
208 */
209 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
210 brelse(bp);
211 return (error);
212 }
213 #ifdef QUOTA
214 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
215 brelse(bp);
216 return (error);
217 }
218 #endif
219 /*
220 * Check for extension in the existing location.
221 */
222 cg = dtog(fs, bprev);
223 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
224 if (bp->b_blkno != fsbtodb(fs, bno))
225 panic("bad blockno");
226 ip->i_ffs_blocks += btodb(nsize - osize);
227 ip->i_flag |= IN_CHANGE | IN_UPDATE;
228 allocbuf(bp, nsize);
229 bp->b_flags |= B_DONE;
230 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
231 *bpp = bp;
232 return (0);
233 }
234 /*
235 * Allocate a new disk location.
236 */
237 if (bpref >= fs->fs_size)
238 bpref = 0;
239 switch ((int)fs->fs_optim) {
240 case FS_OPTSPACE:
241 /*
242 * Allocate an exact sized fragment. Although this makes
243 * best use of space, we will waste time relocating it if
244 * the file continues to grow. If the fragmentation is
245 * less than half of the minimum free reserve, we choose
246 * to begin optimizing for time.
247 */
248 request = nsize;
249 if (fs->fs_minfree < 5 ||
250 fs->fs_cstotal.cs_nffree >
251 fs->fs_dsize * fs->fs_minfree / (2 * 100))
252 break;
253 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
254 fs->fs_fsmnt);
255 fs->fs_optim = FS_OPTTIME;
256 break;
257 case FS_OPTTIME:
258 /*
259 * At this point we have discovered a file that is trying to
260 * grow a small fragment to a larger fragment. To save time,
261 * we allocate a full sized block, then free the unused portion.
262 * If the file continues to grow, the `ffs_fragextend' call
263 * above will be able to grow it in place without further
264 * copying. If aberrant programs cause disk fragmentation to
265 * grow within 2% of the free reserve, we choose to begin
266 * optimizing for space.
267 */
268 request = fs->fs_bsize;
269 if (fs->fs_cstotal.cs_nffree <
270 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
271 break;
272 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
273 fs->fs_fsmnt);
274 fs->fs_optim = FS_OPTSPACE;
275 break;
276 default:
277 printf("dev = 0x%x, optim = %d, fs = %s\n",
278 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
279 panic("ffs_realloccg: bad optim");
280 /* NOTREACHED */
281 }
282 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
283 ffs_alloccg);
284 if (bno > 0) {
285 bp->b_blkno = fsbtodb(fs, bno);
286 #if defined(UVM)
287 (void) uvm_vnp_uncache(ITOV(ip));
288 #else
289 (void) vnode_pager_uncache(ITOV(ip));
290 #endif
291 ffs_blkfree(ip, bprev, (long)osize);
292 if (nsize < request)
293 ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 (long)(request - nsize));
295 ip->i_ffs_blocks += btodb(nsize - osize);
296 ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 allocbuf(bp, nsize);
298 bp->b_flags |= B_DONE;
299 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
300 *bpp = bp;
301 return (0);
302 }
303 #ifdef QUOTA
304 /*
305 * Restore user's disk quota because allocation failed.
306 */
307 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
308 #endif
309 brelse(bp);
310 nospace:
311 /*
312 * no space available
313 */
314 ffs_fserr(fs, cred->cr_uid, "file system full");
315 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
316 return (ENOSPC);
317 }
318
319 /*
320 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
321 *
322 * The vnode and an array of buffer pointers for a range of sequential
323 * logical blocks to be made contiguous is given. The allocator attempts
324 * to find a range of sequential blocks starting as close as possible to
325 * an fs_rotdelay offset from the end of the allocation for the logical
326 * block immediately preceeding the current range. If successful, the
327 * physical block numbers in the buffer pointers and in the inode are
328 * changed to reflect the new allocation. If unsuccessful, the allocation
329 * is left unchanged. The success in doing the reallocation is returned.
330 * Note that the error return is not reflected back to the user. Rather
331 * the previous block allocation will be used.
332 */
333 #ifdef DEBUG
334 #include <sys/sysctl.h>
335 int prtrealloc = 0;
336 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
337 #endif
338
339 int doasyncfree = 1;
340 extern int doreallocblks;
341
342 int
343 ffs_reallocblks(v)
344 void *v;
345 {
346 struct vop_reallocblks_args /* {
347 struct vnode *a_vp;
348 struct cluster_save *a_buflist;
349 } */ *ap = v;
350 struct fs *fs;
351 struct inode *ip;
352 struct vnode *vp;
353 struct buf *sbp, *ebp;
354 ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 struct cluster_save *buflist;
356 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
358 int i, len, start_lvl, end_lvl, pref, ssize;
359
360 vp = ap->a_vp;
361 ip = VTOI(vp);
362 fs = ip->i_fs;
363 if (fs->fs_contigsumsize <= 0)
364 return (ENOSPC);
365 buflist = ap->a_buflist;
366 len = buflist->bs_nchildren;
367 start_lbn = buflist->bs_children[0]->b_lblkno;
368 end_lbn = start_lbn + len - 1;
369 #ifdef DIAGNOSTIC
370 for (i = 0; i < len; i++)
371 if (!ffs_checkblk(ip,
372 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
373 panic("ffs_reallocblks: unallocated block 1");
374 for (i = 1; i < len; i++)
375 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
376 panic("ffs_reallocblks: non-logical cluster");
377 blkno = buflist->bs_children[0]->b_blkno;
378 ssize = fsbtodb(fs, fs->fs_frag);
379 for (i = 1; i < len - 1; i++)
380 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
381 panic("ffs_reallocblks: non-physical cluster %d", i);
382 #endif
383 /*
384 * If the latest allocation is in a new cylinder group, assume that
385 * the filesystem has decided to move and do not force it back to
386 * the previous cylinder group.
387 */
388 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
389 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
390 return (ENOSPC);
391 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
392 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
393 return (ENOSPC);
394 /*
395 * Get the starting offset and block map for the first block.
396 */
397 if (start_lvl == 0) {
398 sbap = &ip->i_ffs_db[0];
399 soff = start_lbn;
400 } else {
401 idp = &start_ap[start_lvl - 1];
402 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
403 brelse(sbp);
404 return (ENOSPC);
405 }
406 sbap = (ufs_daddr_t *)sbp->b_data;
407 soff = idp->in_off;
408 }
409 /*
410 * Find the preferred location for the cluster.
411 */
412 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
413 /*
414 * If the block range spans two block maps, get the second map.
415 */
416 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
417 ssize = len;
418 } else {
419 #ifdef DIAGNOSTIC
420 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
421 panic("ffs_reallocblk: start == end");
422 #endif
423 ssize = len - (idp->in_off + 1);
424 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
425 goto fail;
426 ebap = (ufs_daddr_t *)ebp->b_data;
427 }
428 /*
429 * Search the block map looking for an allocation of the desired size.
430 */
431 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
432 len, ffs_clusteralloc)) == 0)
433 goto fail;
434 /*
435 * We have found a new contiguous block.
436 *
437 * First we have to replace the old block pointers with the new
438 * block pointers in the inode and indirect blocks associated
439 * with the file.
440 */
441 #ifdef DEBUG
442 if (prtrealloc)
443 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
444 start_lbn, end_lbn);
445 #endif
446 blkno = newblk;
447 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
448 if (i == ssize)
449 bap = ebap;
450 #ifdef DIAGNOSTIC
451 if (!ffs_checkblk(ip,
452 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
453 panic("ffs_reallocblks: unallocated block 2");
454 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
455 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
456 panic("ffs_reallocblks: alloc mismatch");
457 #endif
458 #ifdef DEBUG
459 if (prtrealloc)
460 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
461 #endif
462 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
463 }
464 /*
465 * Next we must write out the modified inode and indirect blocks.
466 * For strict correctness, the writes should be synchronous since
467 * the old block values may have been written to disk. In practise
468 * they are almost never written, but if we are concerned about
469 * strict correctness, the `doasyncfree' flag should be set to zero.
470 *
471 * The test on `doasyncfree' should be changed to test a flag
472 * that shows whether the associated buffers and inodes have
473 * been written. The flag should be set when the cluster is
474 * started and cleared whenever the buffer or inode is flushed.
475 * We can then check below to see if it is set, and do the
476 * synchronous write only when it has been cleared.
477 */
478 if (sbap != &ip->i_ffs_db[0]) {
479 if (doasyncfree)
480 bdwrite(sbp);
481 else
482 bwrite(sbp);
483 } else {
484 ip->i_flag |= IN_CHANGE | IN_UPDATE;
485 if (!doasyncfree)
486 VOP_UPDATE(vp, NULL, NULL, 1);
487 }
488 if (ssize < len) {
489 if (doasyncfree)
490 bdwrite(ebp);
491 else
492 bwrite(ebp);
493 }
494 /*
495 * Last, free the old blocks and assign the new blocks to the buffers.
496 */
497 #ifdef DEBUG
498 if (prtrealloc)
499 printf("\n\tnew:");
500 #endif
501 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
502 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
503 fs->fs_bsize);
504 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
505 #ifdef DEBUG
506 if (!ffs_checkblk(ip,
507 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
508 panic("ffs_reallocblks: unallocated block 3");
509 if (prtrealloc)
510 printf(" %d,", blkno);
511 #endif
512 }
513 #ifdef DEBUG
514 if (prtrealloc) {
515 prtrealloc--;
516 printf("\n");
517 }
518 #endif
519 return (0);
520
521 fail:
522 if (ssize < len)
523 brelse(ebp);
524 if (sbap != &ip->i_ffs_db[0])
525 brelse(sbp);
526 return (ENOSPC);
527 }
528
529 /*
530 * Allocate an inode in the file system.
531 *
532 * If allocating a directory, use ffs_dirpref to select the inode.
533 * If allocating in a directory, the following hierarchy is followed:
534 * 1) allocate the preferred inode.
535 * 2) allocate an inode in the same cylinder group.
536 * 3) quadradically rehash into other cylinder groups, until an
537 * available inode is located.
538 * If no inode preference is given the following heirarchy is used
539 * to allocate an inode:
540 * 1) allocate an inode in cylinder group 0.
541 * 2) quadradically rehash into other cylinder groups, until an
542 * available inode is located.
543 */
544 int
545 ffs_valloc(v)
546 void *v;
547 {
548 struct vop_valloc_args /* {
549 struct vnode *a_pvp;
550 int a_mode;
551 struct ucred *a_cred;
552 struct vnode **a_vpp;
553 } */ *ap = v;
554 register struct vnode *pvp = ap->a_pvp;
555 register struct inode *pip;
556 register struct fs *fs;
557 register struct inode *ip;
558 mode_t mode = ap->a_mode;
559 ino_t ino, ipref;
560 int cg, error;
561
562 *ap->a_vpp = NULL;
563 pip = VTOI(pvp);
564 fs = pip->i_fs;
565 if (fs->fs_cstotal.cs_nifree == 0)
566 goto noinodes;
567
568 if ((mode & IFMT) == IFDIR)
569 ipref = ffs_dirpref(fs);
570 else
571 ipref = pip->i_number;
572 if (ipref >= fs->fs_ncg * fs->fs_ipg)
573 ipref = 0;
574 cg = ino_to_cg(fs, ipref);
575 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
576 if (ino == 0)
577 goto noinodes;
578 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
579 if (error) {
580 VOP_VFREE(pvp, ino, mode);
581 return (error);
582 }
583 ip = VTOI(*ap->a_vpp);
584 if (ip->i_ffs_mode) {
585 printf("mode = 0%o, inum = %d, fs = %s\n",
586 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
587 panic("ffs_valloc: dup alloc");
588 }
589 if (ip->i_ffs_blocks) { /* XXX */
590 printf("free inode %s/%d had %d blocks\n",
591 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
592 ip->i_ffs_blocks = 0;
593 }
594 ip->i_ffs_flags = 0;
595 /*
596 * Set up a new generation number for this inode.
597 */
598 ip->i_ffs_gen++;
599 return (0);
600 noinodes:
601 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
602 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
603 return (ENOSPC);
604 }
605
606 /*
607 * Find a cylinder to place a directory.
608 *
609 * The policy implemented by this algorithm is to select from
610 * among those cylinder groups with above the average number of
611 * free inodes, the one with the smallest number of directories.
612 */
613 static ino_t
614 ffs_dirpref(fs)
615 register struct fs *fs;
616 {
617 int cg, minndir, mincg, avgifree;
618
619 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
620 minndir = fs->fs_ipg;
621 mincg = 0;
622 for (cg = 0; cg < fs->fs_ncg; cg++)
623 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
624 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
625 mincg = cg;
626 minndir = fs->fs_cs(fs, cg).cs_ndir;
627 }
628 return ((ino_t)(fs->fs_ipg * mincg));
629 }
630
631 /*
632 * Select the desired position for the next block in a file. The file is
633 * logically divided into sections. The first section is composed of the
634 * direct blocks. Each additional section contains fs_maxbpg blocks.
635 *
636 * If no blocks have been allocated in the first section, the policy is to
637 * request a block in the same cylinder group as the inode that describes
638 * the file. If no blocks have been allocated in any other section, the
639 * policy is to place the section in a cylinder group with a greater than
640 * average number of free blocks. An appropriate cylinder group is found
641 * by using a rotor that sweeps the cylinder groups. When a new group of
642 * blocks is needed, the sweep begins in the cylinder group following the
643 * cylinder group from which the previous allocation was made. The sweep
644 * continues until a cylinder group with greater than the average number
645 * of free blocks is found. If the allocation is for the first block in an
646 * indirect block, the information on the previous allocation is unavailable;
647 * here a best guess is made based upon the logical block number being
648 * allocated.
649 *
650 * If a section is already partially allocated, the policy is to
651 * contiguously allocate fs_maxcontig blocks. The end of one of these
652 * contiguous blocks and the beginning of the next is physically separated
653 * so that the disk head will be in transit between them for at least
654 * fs_rotdelay milliseconds. This is to allow time for the processor to
655 * schedule another I/O transfer.
656 */
657 ufs_daddr_t
658 ffs_blkpref(ip, lbn, indx, bap)
659 struct inode *ip;
660 ufs_daddr_t lbn;
661 int indx;
662 ufs_daddr_t *bap;
663 {
664 register struct fs *fs;
665 register int cg;
666 int avgbfree, startcg;
667 ufs_daddr_t nextblk;
668
669 fs = ip->i_fs;
670 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
671 if (lbn < NDADDR) {
672 cg = ino_to_cg(fs, ip->i_number);
673 return (fs->fs_fpg * cg + fs->fs_frag);
674 }
675 /*
676 * Find a cylinder with greater than average number of
677 * unused data blocks.
678 */
679 if (indx == 0 || bap[indx - 1] == 0)
680 startcg =
681 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
682 else
683 startcg = dtog(fs,
684 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
685 startcg %= fs->fs_ncg;
686 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
687 for (cg = startcg; cg < fs->fs_ncg; cg++)
688 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
689 fs->fs_cgrotor = cg;
690 return (fs->fs_fpg * cg + fs->fs_frag);
691 }
692 for (cg = 0; cg <= startcg; cg++)
693 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
694 fs->fs_cgrotor = cg;
695 return (fs->fs_fpg * cg + fs->fs_frag);
696 }
697 return (NULL);
698 }
699 /*
700 * One or more previous blocks have been laid out. If less
701 * than fs_maxcontig previous blocks are contiguous, the
702 * next block is requested contiguously, otherwise it is
703 * requested rotationally delayed by fs_rotdelay milliseconds.
704 */
705 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
706 if (indx < fs->fs_maxcontig ||
707 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
708 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
709 return (nextblk);
710 if (fs->fs_rotdelay != 0)
711 /*
712 * Here we convert ms of delay to frags as:
713 * (frags) = (ms) * (rev/sec) * (sect/rev) /
714 * ((sect/frag) * (ms/sec))
715 * then round up to the next block.
716 */
717 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
718 (NSPF(fs) * 1000), fs->fs_frag);
719 return (nextblk);
720 }
721
722 /*
723 * Implement the cylinder overflow algorithm.
724 *
725 * The policy implemented by this algorithm is:
726 * 1) allocate the block in its requested cylinder group.
727 * 2) quadradically rehash on the cylinder group number.
728 * 3) brute force search for a free block.
729 */
730 /*VARARGS5*/
731 static u_long
732 ffs_hashalloc(ip, cg, pref, size, allocator)
733 struct inode *ip;
734 int cg;
735 long pref;
736 int size; /* size for data blocks, mode for inodes */
737 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
738 {
739 register struct fs *fs;
740 long result;
741 int i, icg = cg;
742
743 fs = ip->i_fs;
744 /*
745 * 1: preferred cylinder group
746 */
747 result = (*allocator)(ip, cg, pref, size);
748 if (result)
749 return (result);
750 /*
751 * 2: quadratic rehash
752 */
753 for (i = 1; i < fs->fs_ncg; i *= 2) {
754 cg += i;
755 if (cg >= fs->fs_ncg)
756 cg -= fs->fs_ncg;
757 result = (*allocator)(ip, cg, 0, size);
758 if (result)
759 return (result);
760 }
761 /*
762 * 3: brute force search
763 * Note that we start at i == 2, since 0 was checked initially,
764 * and 1 is always checked in the quadratic rehash.
765 */
766 cg = (icg + 2) % fs->fs_ncg;
767 for (i = 2; i < fs->fs_ncg; i++) {
768 result = (*allocator)(ip, cg, 0, size);
769 if (result)
770 return (result);
771 cg++;
772 if (cg == fs->fs_ncg)
773 cg = 0;
774 }
775 return (NULL);
776 }
777
778 /*
779 * Determine whether a fragment can be extended.
780 *
781 * Check to see if the necessary fragments are available, and
782 * if they are, allocate them.
783 */
784 static ufs_daddr_t
785 ffs_fragextend(ip, cg, bprev, osize, nsize)
786 struct inode *ip;
787 int cg;
788 long bprev;
789 int osize, nsize;
790 {
791 register struct fs *fs;
792 register struct cg *cgp;
793 struct buf *bp;
794 long bno;
795 int frags, bbase;
796 int i, error;
797
798 fs = ip->i_fs;
799 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
800 return (NULL);
801 frags = numfrags(fs, nsize);
802 bbase = fragnum(fs, bprev);
803 if (bbase > fragnum(fs, (bprev + frags - 1))) {
804 /* cannot extend across a block boundary */
805 return (NULL);
806 }
807 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
808 (int)fs->fs_cgsize, NOCRED, &bp);
809 if (error) {
810 brelse(bp);
811 return (NULL);
812 }
813 cgp = (struct cg *)bp->b_data;
814 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
815 brelse(bp);
816 return (NULL);
817 }
818 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
819 bno = dtogd(fs, bprev);
820 for (i = numfrags(fs, osize); i < frags; i++)
821 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
822 brelse(bp);
823 return (NULL);
824 }
825 /*
826 * the current fragment can be extended
827 * deduct the count on fragment being extended into
828 * increase the count on the remaining fragment (if any)
829 * allocate the extended piece
830 */
831 for (i = frags; i < fs->fs_frag - bbase; i++)
832 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
833 break;
834 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
835 if (i != frags)
836 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
837 for (i = numfrags(fs, osize); i < frags; i++) {
838 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
839 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
840 fs->fs_cstotal.cs_nffree--;
841 fs->fs_cs(fs, cg).cs_nffree--;
842 }
843 fs->fs_fmod = 1;
844 bdwrite(bp);
845 return (bprev);
846 }
847
848 /*
849 * Determine whether a block can be allocated.
850 *
851 * Check to see if a block of the appropriate size is available,
852 * and if it is, allocate it.
853 */
854 static ufs_daddr_t
855 ffs_alloccg(ip, cg, bpref, size)
856 struct inode *ip;
857 int cg;
858 ufs_daddr_t bpref;
859 int size;
860 {
861 register struct fs *fs;
862 register struct cg *cgp;
863 struct buf *bp;
864 register int i;
865 int error, bno, frags, allocsiz;
866 const int needswap = UFS_IPNEEDSWAP(ip);
867
868 fs = ip->i_fs;
869 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
870 return (NULL);
871 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
872 (int)fs->fs_cgsize, NOCRED, &bp);
873 if (error) {
874 brelse(bp);
875 return (NULL);
876 }
877 cgp = (struct cg *)bp->b_data;
878 if (!cg_chkmagic(cgp, needswap) ||
879 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
880 brelse(bp);
881 return (NULL);
882 }
883 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
884 if (size == fs->fs_bsize) {
885 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
886 bdwrite(bp);
887 return (bno);
888 }
889 /*
890 * check to see if any fragments are already available
891 * allocsiz is the size which will be allocated, hacking
892 * it down to a smaller size if necessary
893 */
894 frags = numfrags(fs, size);
895 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
896 if (cgp->cg_frsum[allocsiz] != 0)
897 break;
898 if (allocsiz == fs->fs_frag) {
899 /*
900 * no fragments were available, so a block will be
901 * allocated, and hacked up
902 */
903 if (cgp->cg_cs.cs_nbfree == 0) {
904 brelse(bp);
905 return (NULL);
906 }
907 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
908 bpref = dtogd(fs, bno);
909 for (i = frags; i < fs->fs_frag; i++)
910 setbit(cg_blksfree(cgp, needswap), bpref + i);
911 i = fs->fs_frag - frags;
912 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
913 fs->fs_cstotal.cs_nffree += i;
914 fs->fs_cs(fs, cg).cs_nffree +=i;
915 fs->fs_fmod = 1;
916 ufs_add32(cgp->cg_frsum[i], 1, needswap);
917 bdwrite(bp);
918 return (bno);
919 }
920 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
921 if (bno < 0) {
922 brelse(bp);
923 return (NULL);
924 }
925 for (i = 0; i < frags; i++)
926 clrbit(cg_blksfree(cgp, needswap), bno + i);
927 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
928 fs->fs_cstotal.cs_nffree -= frags;
929 fs->fs_cs(fs, cg).cs_nffree -= frags;
930 fs->fs_fmod = 1;
931 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
932 if (frags != allocsiz)
933 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
934 bdwrite(bp);
935 return (cg * fs->fs_fpg + bno);
936 }
937
938 /*
939 * Allocate a block in a cylinder group.
940 *
941 * This algorithm implements the following policy:
942 * 1) allocate the requested block.
943 * 2) allocate a rotationally optimal block in the same cylinder.
944 * 3) allocate the next available block on the block rotor for the
945 * specified cylinder group.
946 * Note that this routine only allocates fs_bsize blocks; these
947 * blocks may be fragmented by the routine that allocates them.
948 */
949 static ufs_daddr_t
950 ffs_alloccgblk(mp, fs, cgp, bpref)
951 struct mount *mp;
952 register struct fs *fs;
953 register struct cg *cgp;
954 ufs_daddr_t bpref;
955 {
956 ufs_daddr_t bno, blkno;
957 int cylno, pos, delta;
958 short *cylbp;
959 register int i;
960 const int needswap = UFS_MPNEEDSWAP(mp);
961
962 if (bpref == 0 ||
963 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
964 bpref = ufs_rw32(cgp->cg_rotor, needswap);
965 goto norot;
966 }
967 bpref = blknum(fs, bpref);
968 bpref = dtogd(fs, bpref);
969 /*
970 * if the requested block is available, use it
971 */
972 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
973 fragstoblks(fs, bpref))) {
974 bno = bpref;
975 goto gotit;
976 }
977 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
978 /*
979 * Block layout information is not available.
980 * Leaving bpref unchanged means we take the
981 * next available free block following the one
982 * we just allocated. Hopefully this will at
983 * least hit a track cache on drives of unknown
984 * geometry (e.g. SCSI).
985 */
986 goto norot;
987 }
988 /*
989 * check for a block available on the same cylinder
990 */
991 cylno = cbtocylno(fs, bpref);
992 if (cg_blktot(cgp, needswap)[cylno] == 0)
993 goto norot;
994 /*
995 * check the summary information to see if a block is
996 * available in the requested cylinder starting at the
997 * requested rotational position and proceeding around.
998 */
999 cylbp = cg_blks(fs, cgp, cylno, needswap);
1000 pos = cbtorpos(fs, bpref);
1001 for (i = pos; i < fs->fs_nrpos; i++)
1002 if (ufs_rw16(cylbp[i], needswap) > 0)
1003 break;
1004 if (i == fs->fs_nrpos)
1005 for (i = 0; i < pos; i++)
1006 if (ufs_rw16(cylbp[i], needswap) > 0)
1007 break;
1008 if (ufs_rw16(cylbp[i], needswap) > 0) {
1009 /*
1010 * found a rotational position, now find the actual
1011 * block. A panic if none is actually there.
1012 */
1013 pos = cylno % fs->fs_cpc;
1014 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1015 if (fs_postbl(fs, pos)[i] == -1) {
1016 printf("pos = %d, i = %d, fs = %s\n",
1017 pos, i, fs->fs_fsmnt);
1018 panic("ffs_alloccgblk: cyl groups corrupted");
1019 }
1020 for (i = fs_postbl(fs, pos)[i];; ) {
1021 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1022 bno = blkstofrags(fs, (bno + i));
1023 goto gotit;
1024 }
1025 delta = fs_rotbl(fs)[i];
1026 if (delta <= 0 ||
1027 delta + i > fragstoblks(fs, fs->fs_fpg))
1028 break;
1029 i += delta;
1030 }
1031 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1032 panic("ffs_alloccgblk: can't find blk in cyl");
1033 }
1034 norot:
1035 /*
1036 * no blocks in the requested cylinder, so take next
1037 * available one in this cylinder group.
1038 */
1039 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1040 if (bno < 0)
1041 return (NULL);
1042 cgp->cg_rotor = ufs_rw32(bno, needswap);
1043 gotit:
1044 blkno = fragstoblks(fs, bno);
1045 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1046 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1047 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1048 fs->fs_cstotal.cs_nbfree--;
1049 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1050 cylno = cbtocylno(fs, bno);
1051 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1052 needswap);
1053 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1054 fs->fs_fmod = 1;
1055 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1056 }
1057
1058 /*
1059 * Determine whether a cluster can be allocated.
1060 *
1061 * We do not currently check for optimal rotational layout if there
1062 * are multiple choices in the same cylinder group. Instead we just
1063 * take the first one that we find following bpref.
1064 */
1065 static ufs_daddr_t
1066 ffs_clusteralloc(ip, cg, bpref, len)
1067 struct inode *ip;
1068 int cg;
1069 ufs_daddr_t bpref;
1070 int len;
1071 {
1072 register struct fs *fs;
1073 register struct cg *cgp;
1074 struct buf *bp;
1075 int i, got, run, bno, bit, map;
1076 u_char *mapp;
1077 int32_t *lp;
1078
1079 fs = ip->i_fs;
1080 if (fs->fs_maxcluster[cg] < len)
1081 return (NULL);
1082 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1083 NOCRED, &bp))
1084 goto fail;
1085 cgp = (struct cg *)bp->b_data;
1086 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1087 goto fail;
1088 /*
1089 * Check to see if a cluster of the needed size (or bigger) is
1090 * available in this cylinder group.
1091 */
1092 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1093 for (i = len; i <= fs->fs_contigsumsize; i++)
1094 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1095 break;
1096 if (i > fs->fs_contigsumsize) {
1097 /*
1098 * This is the first time looking for a cluster in this
1099 * cylinder group. Update the cluster summary information
1100 * to reflect the true maximum sized cluster so that
1101 * future cluster allocation requests can avoid reading
1102 * the cylinder group map only to find no clusters.
1103 */
1104 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1105 for (i = len - 1; i > 0; i--)
1106 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1107 break;
1108 fs->fs_maxcluster[cg] = i;
1109 goto fail;
1110 }
1111 /*
1112 * Search the cluster map to find a big enough cluster.
1113 * We take the first one that we find, even if it is larger
1114 * than we need as we prefer to get one close to the previous
1115 * block allocation. We do not search before the current
1116 * preference point as we do not want to allocate a block
1117 * that is allocated before the previous one (as we will
1118 * then have to wait for another pass of the elevator
1119 * algorithm before it will be read). We prefer to fail and
1120 * be recalled to try an allocation in the next cylinder group.
1121 */
1122 if (dtog(fs, bpref) != cg)
1123 bpref = 0;
1124 else
1125 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1126 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1127 map = *mapp++;
1128 bit = 1 << (bpref % NBBY);
1129 for (run = 0, got = bpref;
1130 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1131 if ((map & bit) == 0) {
1132 run = 0;
1133 } else {
1134 run++;
1135 if (run == len)
1136 break;
1137 }
1138 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1139 bit <<= 1;
1140 } else {
1141 map = *mapp++;
1142 bit = 1;
1143 }
1144 }
1145 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1146 goto fail;
1147 /*
1148 * Allocate the cluster that we have found.
1149 */
1150 for (i = 1; i <= len; i++)
1151 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1152 got - run + i))
1153 panic("ffs_clusteralloc: map mismatch");
1154 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1155 if (dtog(fs, bno) != cg)
1156 panic("ffs_clusteralloc: allocated out of group");
1157 len = blkstofrags(fs, len);
1158 for (i = 0; i < len; i += fs->fs_frag)
1159 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1160 != bno + i)
1161 panic("ffs_clusteralloc: lost block");
1162 bdwrite(bp);
1163 return (bno);
1164
1165 fail:
1166 brelse(bp);
1167 return (0);
1168 }
1169
1170 /*
1171 * Determine whether an inode can be allocated.
1172 *
1173 * Check to see if an inode is available, and if it is,
1174 * allocate it using the following policy:
1175 * 1) allocate the requested inode.
1176 * 2) allocate the next available inode after the requested
1177 * inode in the specified cylinder group.
1178 */
1179 static ufs_daddr_t
1180 ffs_nodealloccg(ip, cg, ipref, mode)
1181 struct inode *ip;
1182 int cg;
1183 ufs_daddr_t ipref;
1184 int mode;
1185 {
1186 register struct fs *fs;
1187 register struct cg *cgp;
1188 struct buf *bp;
1189 int error, start, len, loc, map, i;
1190 #ifdef FFS_EI
1191 const int needswap = UFS_IPNEEDSWAP(ip);
1192 #endif
1193
1194 fs = ip->i_fs;
1195 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1196 return (NULL);
1197 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1198 (int)fs->fs_cgsize, NOCRED, &bp);
1199 if (error) {
1200 brelse(bp);
1201 return (NULL);
1202 }
1203 cgp = (struct cg *)bp->b_data;
1204 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1205 brelse(bp);
1206 return (NULL);
1207 }
1208 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1209 if (ipref) {
1210 ipref %= fs->fs_ipg;
1211 if (isclr(cg_inosused(cgp, needswap), ipref))
1212 goto gotit;
1213 }
1214 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1215 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1216 NBBY);
1217 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1218 if (loc == 0) {
1219 len = start + 1;
1220 start = 0;
1221 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1222 if (loc == 0) {
1223 printf("cg = %d, irotor = %d, fs = %s\n",
1224 cg, ufs_rw32(cgp->cg_irotor, needswap),
1225 fs->fs_fsmnt);
1226 panic("ffs_nodealloccg: map corrupted");
1227 /* NOTREACHED */
1228 }
1229 }
1230 i = start + len - loc;
1231 map = cg_inosused(cgp, needswap)[i];
1232 ipref = i * NBBY;
1233 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1234 if ((map & i) == 0) {
1235 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1236 goto gotit;
1237 }
1238 }
1239 printf("fs = %s\n", fs->fs_fsmnt);
1240 panic("ffs_nodealloccg: block not in map");
1241 /* NOTREACHED */
1242 gotit:
1243 setbit(cg_inosused(cgp, needswap), ipref);
1244 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1245 fs->fs_cstotal.cs_nifree--;
1246 fs->fs_cs(fs, cg).cs_nifree --;
1247 fs->fs_fmod = 1;
1248 if ((mode & IFMT) == IFDIR) {
1249 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1250 fs->fs_cstotal.cs_ndir++;
1251 fs->fs_cs(fs, cg).cs_ndir++;
1252 }
1253 bdwrite(bp);
1254 return (cg * fs->fs_ipg + ipref);
1255 }
1256
1257 /*
1258 * Free a block or fragment.
1259 *
1260 * The specified block or fragment is placed back in the
1261 * free map. If a fragment is deallocated, a possible
1262 * block reassembly is checked.
1263 */
1264 void
1265 ffs_blkfree(ip, bno, size)
1266 register struct inode *ip;
1267 ufs_daddr_t bno;
1268 long size;
1269 {
1270 register struct fs *fs;
1271 register struct cg *cgp;
1272 struct buf *bp;
1273 ufs_daddr_t blkno;
1274 int i, error, cg, blk, frags, bbase;
1275 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1276
1277 fs = ip->i_fs;
1278 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1279 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1280 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1281 panic("blkfree: bad size");
1282 }
1283 cg = dtog(fs, bno);
1284 if ((u_int)bno >= fs->fs_size) {
1285 printf("bad block %d, ino %d\n", bno, ip->i_number);
1286 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1287 return;
1288 }
1289 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1290 (int)fs->fs_cgsize, NOCRED, &bp);
1291 if (error) {
1292 brelse(bp);
1293 return;
1294 }
1295 cgp = (struct cg *)bp->b_data;
1296 if (!cg_chkmagic(cgp, needswap)) {
1297 brelse(bp);
1298 return;
1299 }
1300 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1301 bno = dtogd(fs, bno);
1302 if (size == fs->fs_bsize) {
1303 blkno = fragstoblks(fs, bno);
1304 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1305 printf("dev = 0x%x, block = %d, fs = %s\n",
1306 ip->i_dev, bno, fs->fs_fsmnt);
1307 panic("blkfree: freeing free block");
1308 }
1309 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1310 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1311 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1312 fs->fs_cstotal.cs_nbfree++;
1313 fs->fs_cs(fs, cg).cs_nbfree++;
1314 i = cbtocylno(fs, bno);
1315 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1316 needswap);
1317 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1318 } else {
1319 bbase = bno - fragnum(fs, bno);
1320 /*
1321 * decrement the counts associated with the old frags
1322 */
1323 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1324 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1325 /*
1326 * deallocate the fragment
1327 */
1328 frags = numfrags(fs, size);
1329 for (i = 0; i < frags; i++) {
1330 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1331 printf("dev = 0x%x, block = %d, fs = %s\n",
1332 ip->i_dev, bno + i, fs->fs_fsmnt);
1333 panic("blkfree: freeing free frag");
1334 }
1335 setbit(cg_blksfree(cgp, needswap), bno + i);
1336 }
1337 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1338 fs->fs_cstotal.cs_nffree += i;
1339 fs->fs_cs(fs, cg).cs_nffree +=i;
1340 /*
1341 * add back in counts associated with the new frags
1342 */
1343 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1344 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1345 /*
1346 * if a complete block has been reassembled, account for it
1347 */
1348 blkno = fragstoblks(fs, bbase);
1349 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1350 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1351 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1352 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1353 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1354 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1355 fs->fs_cstotal.cs_nbfree++;
1356 fs->fs_cs(fs, cg).cs_nbfree++;
1357 i = cbtocylno(fs, bbase);
1358 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1359 needswap);
1360 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1361 }
1362 }
1363 fs->fs_fmod = 1;
1364 bdwrite(bp);
1365 }
1366
1367 #if defined(DIAGNOSTIC) || defined(DEBUG)
1368 /*
1369 * Verify allocation of a block or fragment. Returns true if block or
1370 * fragment is allocated, false if it is free.
1371 */
1372 static int
1373 ffs_checkblk(ip, bno, size)
1374 struct inode *ip;
1375 ufs_daddr_t bno;
1376 long size;
1377 {
1378 struct fs *fs;
1379 struct cg *cgp;
1380 struct buf *bp;
1381 int i, error, frags, free;
1382
1383 fs = ip->i_fs;
1384 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1385 printf("bsize = %d, size = %ld, fs = %s\n",
1386 fs->fs_bsize, size, fs->fs_fsmnt);
1387 panic("checkblk: bad size");
1388 }
1389 if ((u_int)bno >= fs->fs_size)
1390 panic("checkblk: bad block %d", bno);
1391 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1392 (int)fs->fs_cgsize, NOCRED, &bp);
1393 if (error) {
1394 brelse(bp);
1395 return 0;
1396 }
1397 cgp = (struct cg *)bp->b_data;
1398 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1399 brelse(bp);
1400 return 0;
1401 }
1402 bno = dtogd(fs, bno);
1403 if (size == fs->fs_bsize) {
1404 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1405 fragstoblks(fs, bno));
1406 } else {
1407 frags = numfrags(fs, size);
1408 for (free = 0, i = 0; i < frags; i++)
1409 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1410 free++;
1411 if (free != 0 && free != frags)
1412 panic("checkblk: partially free fragment");
1413 }
1414 brelse(bp);
1415 return (!free);
1416 }
1417 #endif /* DIAGNOSTIC */
1418
1419 /*
1420 * Free an inode.
1421 *
1422 * The specified inode is placed back in the free map.
1423 */
1424 int
1425 ffs_vfree(v)
1426 void *v;
1427 {
1428 struct vop_vfree_args /* {
1429 struct vnode *a_pvp;
1430 ino_t a_ino;
1431 int a_mode;
1432 } */ *ap = v;
1433 register struct fs *fs;
1434 register struct cg *cgp;
1435 register struct inode *pip;
1436 ino_t ino = ap->a_ino;
1437 struct buf *bp;
1438 int error, cg;
1439 #ifdef FFS_EI
1440 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1441 #endif
1442
1443 pip = VTOI(ap->a_pvp);
1444 fs = pip->i_fs;
1445 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1446 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1447 pip->i_dev, ino, fs->fs_fsmnt);
1448 cg = ino_to_cg(fs, ino);
1449 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1450 (int)fs->fs_cgsize, NOCRED, &bp);
1451 if (error) {
1452 brelse(bp);
1453 return (0);
1454 }
1455 cgp = (struct cg *)bp->b_data;
1456 if (!cg_chkmagic(cgp, needswap)) {
1457 brelse(bp);
1458 return (0);
1459 }
1460 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1461 ino %= fs->fs_ipg;
1462 if (isclr(cg_inosused(cgp, needswap), ino)) {
1463 printf("dev = 0x%x, ino = %d, fs = %s\n",
1464 pip->i_dev, ino, fs->fs_fsmnt);
1465 if (fs->fs_ronly == 0)
1466 panic("ifree: freeing free inode");
1467 }
1468 clrbit(cg_inosused(cgp, needswap), ino);
1469 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1470 cgp->cg_irotor = ufs_rw32(ino, needswap);
1471 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1472 fs->fs_cstotal.cs_nifree++;
1473 fs->fs_cs(fs, cg).cs_nifree++;
1474 if ((ap->a_mode & IFMT) == IFDIR) {
1475 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1476 fs->fs_cstotal.cs_ndir--;
1477 fs->fs_cs(fs, cg).cs_ndir--;
1478 }
1479 fs->fs_fmod = 1;
1480 bdwrite(bp);
1481 return (0);
1482 }
1483
1484 /*
1485 * Find a block of the specified size in the specified cylinder group.
1486 *
1487 * It is a panic if a request is made to find a block if none are
1488 * available.
1489 */
1490 static ufs_daddr_t
1491 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1492 int needswap;
1493 register struct fs *fs;
1494 register struct cg *cgp;
1495 ufs_daddr_t bpref;
1496 int allocsiz;
1497 {
1498 ufs_daddr_t bno;
1499 int start, len, loc, i;
1500 int blk, field, subfield, pos;
1501 int ostart, olen;
1502
1503 /*
1504 * find the fragment by searching through the free block
1505 * map for an appropriate bit pattern
1506 */
1507 if (bpref)
1508 start = dtogd(fs, bpref) / NBBY;
1509 else
1510 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1511 len = howmany(fs->fs_fpg, NBBY) - start;
1512 ostart = start;
1513 olen = len;
1514 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1515 (u_char *)fragtbl[fs->fs_frag],
1516 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1517 if (loc == 0) {
1518 len = start + 1;
1519 start = 0;
1520 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1521 (u_char *)fragtbl[fs->fs_frag],
1522 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1523 if (loc == 0) {
1524 printf("start = %d, len = %d, fs = %s\n",
1525 ostart, olen, fs->fs_fsmnt);
1526 printf("offset=%d %ld\n",
1527 ufs_rw32(cgp->cg_freeoff, needswap),
1528 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1529 panic("ffs_alloccg: map corrupted");
1530 /* NOTREACHED */
1531 }
1532 }
1533 bno = (start + len - loc) * NBBY;
1534 cgp->cg_frotor = ufs_rw32(bno, needswap);
1535 /*
1536 * found the byte in the map
1537 * sift through the bits to find the selected frag
1538 */
1539 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1540 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1541 blk <<= 1;
1542 field = around[allocsiz];
1543 subfield = inside[allocsiz];
1544 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1545 if ((blk & field) == subfield)
1546 return (bno + pos);
1547 field <<= 1;
1548 subfield <<= 1;
1549 }
1550 }
1551 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1552 panic("ffs_alloccg: block not in map");
1553 return (-1);
1554 }
1555
1556 /*
1557 * Update the cluster map because of an allocation or free.
1558 *
1559 * Cnt == 1 means free; cnt == -1 means allocating.
1560 */
1561 void
1562 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1563 int needswap;
1564 struct fs *fs;
1565 struct cg *cgp;
1566 ufs_daddr_t blkno;
1567 int cnt;
1568 {
1569 int32_t *sump;
1570 int32_t *lp;
1571 u_char *freemapp, *mapp;
1572 int i, start, end, forw, back, map, bit;
1573
1574 if (fs->fs_contigsumsize <= 0)
1575 return;
1576 freemapp = cg_clustersfree(cgp, needswap);
1577 sump = cg_clustersum(cgp, needswap);
1578 /*
1579 * Allocate or clear the actual block.
1580 */
1581 if (cnt > 0)
1582 setbit(freemapp, blkno);
1583 else
1584 clrbit(freemapp, blkno);
1585 /*
1586 * Find the size of the cluster going forward.
1587 */
1588 start = blkno + 1;
1589 end = start + fs->fs_contigsumsize;
1590 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1591 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1592 mapp = &freemapp[start / NBBY];
1593 map = *mapp++;
1594 bit = 1 << (start % NBBY);
1595 for (i = start; i < end; i++) {
1596 if ((map & bit) == 0)
1597 break;
1598 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1599 bit <<= 1;
1600 } else {
1601 map = *mapp++;
1602 bit = 1;
1603 }
1604 }
1605 forw = i - start;
1606 /*
1607 * Find the size of the cluster going backward.
1608 */
1609 start = blkno - 1;
1610 end = start - fs->fs_contigsumsize;
1611 if (end < 0)
1612 end = -1;
1613 mapp = &freemapp[start / NBBY];
1614 map = *mapp--;
1615 bit = 1 << (start % NBBY);
1616 for (i = start; i > end; i--) {
1617 if ((map & bit) == 0)
1618 break;
1619 if ((i & (NBBY - 1)) != 0) {
1620 bit >>= 1;
1621 } else {
1622 map = *mapp--;
1623 bit = 1 << (NBBY - 1);
1624 }
1625 }
1626 back = start - i;
1627 /*
1628 * Account for old cluster and the possibly new forward and
1629 * back clusters.
1630 */
1631 i = back + forw + 1;
1632 if (i > fs->fs_contigsumsize)
1633 i = fs->fs_contigsumsize;
1634 ufs_add32(sump[i], cnt, needswap);
1635 if (back > 0)
1636 ufs_add32(sump[back], -cnt, needswap);
1637 if (forw > 0)
1638 ufs_add32(sump[forw], -cnt, needswap);
1639
1640 /*
1641 * Update cluster summary information.
1642 */
1643 lp = &sump[fs->fs_contigsumsize];
1644 for (i = fs->fs_contigsumsize; i > 0; i--)
1645 if (ufs_rw32(*lp--, needswap) > 0)
1646 break;
1647 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1648 }
1649
1650 /*
1651 * Fserr prints the name of a file system with an error diagnostic.
1652 *
1653 * The form of the error message is:
1654 * fs: error message
1655 */
1656 static void
1657 ffs_fserr(fs, uid, cp)
1658 struct fs *fs;
1659 u_int uid;
1660 char *cp;
1661 {
1662
1663 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1664 }
1665