ffs_alloc.c revision 1.29 1 /* $NetBSD: ffs_alloc.c,v 1.29 1999/03/24 05:51:30 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53
54 #include <uvm/uvm_extern.h>
55
56 #include <ufs/ufs/quota.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/inode.h>
59 #include <ufs/ufs/ufs_extern.h>
60 #include <ufs/ufs/ufs_bswap.h>
61
62 #include <ufs/ffs/fs.h>
63 #include <ufs/ffs/ffs_extern.h>
64
65 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
66 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
67 struct cg *, ufs_daddr_t));
68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
69 static ino_t ffs_dirpref __P((struct fs *));
70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 static void ffs_fserr __P((struct fs *, u_int, char *));
72 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
73 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
74 int)));
75 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
76 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
77 ufs_daddr_t, int));
78 #if defined(DIAGNOSTIC) || defined(DEBUG)
79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 #endif
81
82 /* in ffs_tables.c */
83 extern int inside[], around[];
84 extern u_char *fragtbl[];
85
86 /*
87 * Allocate a block in the file system.
88 *
89 * The size of the requested block is given, which must be some
90 * multiple of fs_fsize and <= fs_bsize.
91 * A preference may be optionally specified. If a preference is given
92 * the following hierarchy is used to allocate a block:
93 * 1) allocate the requested block.
94 * 2) allocate a rotationally optimal block in the same cylinder.
95 * 3) allocate a block in the same cylinder group.
96 * 4) quadradically rehash into other cylinder groups, until an
97 * available block is located.
98 * If no block preference is given the following heirarchy is used
99 * to allocate a block:
100 * 1) allocate a block in the cylinder group that contains the
101 * inode for the file.
102 * 2) quadradically rehash into other cylinder groups, until an
103 * available block is located.
104 */
105 int
106 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
107 register struct inode *ip;
108 ufs_daddr_t lbn, bpref;
109 int size;
110 struct ucred *cred;
111 ufs_daddr_t *bnp;
112 {
113 register struct fs *fs;
114 ufs_daddr_t bno;
115 int cg;
116 #ifdef QUOTA
117 int error;
118 #endif
119
120 *bnp = 0;
121 fs = ip->i_fs;
122 #ifdef DIAGNOSTIC
123 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
124 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
125 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
126 panic("ffs_alloc: bad size");
127 }
128 if (cred == NOCRED)
129 panic("ffs_alloc: missing credential\n");
130 #endif /* DIAGNOSTIC */
131 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
132 goto nospace;
133 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
134 goto nospace;
135 #ifdef QUOTA
136 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
137 return (error);
138 #endif
139 if (bpref >= fs->fs_size)
140 bpref = 0;
141 if (bpref == 0)
142 cg = ino_to_cg(fs, ip->i_number);
143 else
144 cg = dtog(fs, bpref);
145 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 ffs_alloccg);
147 if (bno > 0) {
148 ip->i_ffs_blocks += btodb(size);
149 ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 *bnp = bno;
151 return (0);
152 }
153 #ifdef QUOTA
154 /*
155 * Restore user's disk quota because allocation failed.
156 */
157 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
158 #endif
159 nospace:
160 ffs_fserr(fs, cred->cr_uid, "file system full");
161 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
162 return (ENOSPC);
163 }
164
165 /*
166 * Reallocate a fragment to a bigger size
167 *
168 * The number and size of the old block is given, and a preference
169 * and new size is also specified. The allocator attempts to extend
170 * the original block. Failing that, the regular block allocator is
171 * invoked to get an appropriate block.
172 */
173 int
174 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
175 register struct inode *ip;
176 ufs_daddr_t lbprev;
177 ufs_daddr_t bpref;
178 int osize, nsize;
179 struct ucred *cred;
180 struct buf **bpp;
181 {
182 register struct fs *fs;
183 struct buf *bp;
184 int cg, request, error;
185 ufs_daddr_t bprev, bno;
186
187 *bpp = 0;
188 fs = ip->i_fs;
189 #ifdef DIAGNOSTIC
190 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
191 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
192 printf(
193 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
194 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
195 panic("ffs_realloccg: bad size");
196 }
197 if (cred == NOCRED)
198 panic("ffs_realloccg: missing credential\n");
199 #endif /* DIAGNOSTIC */
200 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
201 goto nospace;
202 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
203 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
204 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
205 panic("ffs_realloccg: bad bprev");
206 }
207 /*
208 * Allocate the extra space in the buffer.
209 */
210 if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
211 brelse(bp);
212 return (error);
213 }
214 #ifdef QUOTA
215 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
216 brelse(bp);
217 return (error);
218 }
219 #endif
220 /*
221 * Check for extension in the existing location.
222 */
223 cg = dtog(fs, bprev);
224 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
225 if (bp->b_blkno != fsbtodb(fs, bno))
226 panic("bad blockno");
227 ip->i_ffs_blocks += btodb(nsize - osize);
228 ip->i_flag |= IN_CHANGE | IN_UPDATE;
229 allocbuf(bp, nsize);
230 bp->b_flags |= B_DONE;
231 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
232 *bpp = bp;
233 return (0);
234 }
235 /*
236 * Allocate a new disk location.
237 */
238 if (bpref >= fs->fs_size)
239 bpref = 0;
240 switch ((int)fs->fs_optim) {
241 case FS_OPTSPACE:
242 /*
243 * Allocate an exact sized fragment. Although this makes
244 * best use of space, we will waste time relocating it if
245 * the file continues to grow. If the fragmentation is
246 * less than half of the minimum free reserve, we choose
247 * to begin optimizing for time.
248 */
249 request = nsize;
250 if (fs->fs_minfree < 5 ||
251 fs->fs_cstotal.cs_nffree >
252 fs->fs_dsize * fs->fs_minfree / (2 * 100))
253 break;
254 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
255 fs->fs_fsmnt);
256 fs->fs_optim = FS_OPTTIME;
257 break;
258 case FS_OPTTIME:
259 /*
260 * At this point we have discovered a file that is trying to
261 * grow a small fragment to a larger fragment. To save time,
262 * we allocate a full sized block, then free the unused portion.
263 * If the file continues to grow, the `ffs_fragextend' call
264 * above will be able to grow it in place without further
265 * copying. If aberrant programs cause disk fragmentation to
266 * grow within 2% of the free reserve, we choose to begin
267 * optimizing for space.
268 */
269 request = fs->fs_bsize;
270 if (fs->fs_cstotal.cs_nffree <
271 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
272 break;
273 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
274 fs->fs_fsmnt);
275 fs->fs_optim = FS_OPTSPACE;
276 break;
277 default:
278 printf("dev = 0x%x, optim = %d, fs = %s\n",
279 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
280 panic("ffs_realloccg: bad optim");
281 /* NOTREACHED */
282 }
283 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
284 ffs_alloccg);
285 if (bno > 0) {
286 bp->b_blkno = fsbtodb(fs, bno);
287 (void) uvm_vnp_uncache(ITOV(ip));
288 ffs_blkfree(ip, bprev, (long)osize);
289 if (nsize < request)
290 ffs_blkfree(ip, bno + numfrags(fs, nsize),
291 (long)(request - nsize));
292 ip->i_ffs_blocks += btodb(nsize - osize);
293 ip->i_flag |= IN_CHANGE | IN_UPDATE;
294 allocbuf(bp, nsize);
295 bp->b_flags |= B_DONE;
296 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
297 *bpp = bp;
298 return (0);
299 }
300 #ifdef QUOTA
301 /*
302 * Restore user's disk quota because allocation failed.
303 */
304 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
305 #endif
306 brelse(bp);
307 nospace:
308 /*
309 * no space available
310 */
311 ffs_fserr(fs, cred->cr_uid, "file system full");
312 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
313 return (ENOSPC);
314 }
315
316 /*
317 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
318 *
319 * The vnode and an array of buffer pointers for a range of sequential
320 * logical blocks to be made contiguous is given. The allocator attempts
321 * to find a range of sequential blocks starting as close as possible to
322 * an fs_rotdelay offset from the end of the allocation for the logical
323 * block immediately preceeding the current range. If successful, the
324 * physical block numbers in the buffer pointers and in the inode are
325 * changed to reflect the new allocation. If unsuccessful, the allocation
326 * is left unchanged. The success in doing the reallocation is returned.
327 * Note that the error return is not reflected back to the user. Rather
328 * the previous block allocation will be used.
329 */
330 #ifdef DEBUG
331 #include <sys/sysctl.h>
332 int prtrealloc = 0;
333 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
334 #endif
335
336 int doasyncfree = 1;
337 extern int doreallocblks;
338
339 int
340 ffs_reallocblks(v)
341 void *v;
342 {
343 struct vop_reallocblks_args /* {
344 struct vnode *a_vp;
345 struct cluster_save *a_buflist;
346 } */ *ap = v;
347 struct fs *fs;
348 struct inode *ip;
349 struct vnode *vp;
350 struct buf *sbp, *ebp;
351 ufs_daddr_t *bap, *sbap, *ebap = NULL;
352 struct cluster_save *buflist;
353 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
354 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
355 int i, len, start_lvl, end_lvl, pref, ssize;
356
357 vp = ap->a_vp;
358 ip = VTOI(vp);
359 fs = ip->i_fs;
360 if (fs->fs_contigsumsize <= 0)
361 return (ENOSPC);
362 buflist = ap->a_buflist;
363 len = buflist->bs_nchildren;
364 start_lbn = buflist->bs_children[0]->b_lblkno;
365 end_lbn = start_lbn + len - 1;
366 #ifdef DIAGNOSTIC
367 for (i = 0; i < len; i++)
368 if (!ffs_checkblk(ip,
369 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
370 panic("ffs_reallocblks: unallocated block 1");
371 for (i = 1; i < len; i++)
372 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
373 panic("ffs_reallocblks: non-logical cluster");
374 blkno = buflist->bs_children[0]->b_blkno;
375 ssize = fsbtodb(fs, fs->fs_frag);
376 for (i = 1; i < len - 1; i++)
377 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
378 panic("ffs_reallocblks: non-physical cluster %d", i);
379 #endif
380 /*
381 * If the latest allocation is in a new cylinder group, assume that
382 * the filesystem has decided to move and do not force it back to
383 * the previous cylinder group.
384 */
385 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
386 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
387 return (ENOSPC);
388 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
389 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
390 return (ENOSPC);
391 /*
392 * Get the starting offset and block map for the first block.
393 */
394 if (start_lvl == 0) {
395 sbap = &ip->i_ffs_db[0];
396 soff = start_lbn;
397 } else {
398 idp = &start_ap[start_lvl - 1];
399 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
400 brelse(sbp);
401 return (ENOSPC);
402 }
403 sbap = (ufs_daddr_t *)sbp->b_data;
404 soff = idp->in_off;
405 }
406 /*
407 * Find the preferred location for the cluster.
408 */
409 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
410 /*
411 * If the block range spans two block maps, get the second map.
412 */
413 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
414 ssize = len;
415 } else {
416 #ifdef DIAGNOSTIC
417 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
418 panic("ffs_reallocblk: start == end");
419 #endif
420 ssize = len - (idp->in_off + 1);
421 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
422 goto fail;
423 ebap = (ufs_daddr_t *)ebp->b_data;
424 }
425 /*
426 * Search the block map looking for an allocation of the desired size.
427 */
428 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
429 len, ffs_clusteralloc)) == 0)
430 goto fail;
431 /*
432 * We have found a new contiguous block.
433 *
434 * First we have to replace the old block pointers with the new
435 * block pointers in the inode and indirect blocks associated
436 * with the file.
437 */
438 #ifdef DEBUG
439 if (prtrealloc)
440 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
441 start_lbn, end_lbn);
442 #endif
443 blkno = newblk;
444 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
445 if (i == ssize)
446 bap = ebap;
447 #ifdef DIAGNOSTIC
448 if (!ffs_checkblk(ip,
449 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
450 panic("ffs_reallocblks: unallocated block 2");
451 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
452 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
453 panic("ffs_reallocblks: alloc mismatch");
454 #endif
455 #ifdef DEBUG
456 if (prtrealloc)
457 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
458 #endif
459 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
460 }
461 /*
462 * Next we must write out the modified inode and indirect blocks.
463 * For strict correctness, the writes should be synchronous since
464 * the old block values may have been written to disk. In practise
465 * they are almost never written, but if we are concerned about
466 * strict correctness, the `doasyncfree' flag should be set to zero.
467 *
468 * The test on `doasyncfree' should be changed to test a flag
469 * that shows whether the associated buffers and inodes have
470 * been written. The flag should be set when the cluster is
471 * started and cleared whenever the buffer or inode is flushed.
472 * We can then check below to see if it is set, and do the
473 * synchronous write only when it has been cleared.
474 */
475 if (sbap != &ip->i_ffs_db[0]) {
476 if (doasyncfree)
477 bdwrite(sbp);
478 else
479 bwrite(sbp);
480 } else {
481 ip->i_flag |= IN_CHANGE | IN_UPDATE;
482 if (!doasyncfree)
483 VOP_UPDATE(vp, NULL, NULL, 1);
484 }
485 if (ssize < len) {
486 if (doasyncfree)
487 bdwrite(ebp);
488 else
489 bwrite(ebp);
490 }
491 /*
492 * Last, free the old blocks and assign the new blocks to the buffers.
493 */
494 #ifdef DEBUG
495 if (prtrealloc)
496 printf("\n\tnew:");
497 #endif
498 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
499 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
500 fs->fs_bsize);
501 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
502 #ifdef DEBUG
503 if (!ffs_checkblk(ip,
504 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
505 panic("ffs_reallocblks: unallocated block 3");
506 if (prtrealloc)
507 printf(" %d,", blkno);
508 #endif
509 }
510 #ifdef DEBUG
511 if (prtrealloc) {
512 prtrealloc--;
513 printf("\n");
514 }
515 #endif
516 return (0);
517
518 fail:
519 if (ssize < len)
520 brelse(ebp);
521 if (sbap != &ip->i_ffs_db[0])
522 brelse(sbp);
523 return (ENOSPC);
524 }
525
526 /*
527 * Allocate an inode in the file system.
528 *
529 * If allocating a directory, use ffs_dirpref to select the inode.
530 * If allocating in a directory, the following hierarchy is followed:
531 * 1) allocate the preferred inode.
532 * 2) allocate an inode in the same cylinder group.
533 * 3) quadradically rehash into other cylinder groups, until an
534 * available inode is located.
535 * If no inode preference is given the following heirarchy is used
536 * to allocate an inode:
537 * 1) allocate an inode in cylinder group 0.
538 * 2) quadradically rehash into other cylinder groups, until an
539 * available inode is located.
540 */
541 int
542 ffs_valloc(v)
543 void *v;
544 {
545 struct vop_valloc_args /* {
546 struct vnode *a_pvp;
547 int a_mode;
548 struct ucred *a_cred;
549 struct vnode **a_vpp;
550 } */ *ap = v;
551 register struct vnode *pvp = ap->a_pvp;
552 register struct inode *pip;
553 register struct fs *fs;
554 register struct inode *ip;
555 mode_t mode = ap->a_mode;
556 ino_t ino, ipref;
557 int cg, error;
558
559 *ap->a_vpp = NULL;
560 pip = VTOI(pvp);
561 fs = pip->i_fs;
562 if (fs->fs_cstotal.cs_nifree == 0)
563 goto noinodes;
564
565 if ((mode & IFMT) == IFDIR)
566 ipref = ffs_dirpref(fs);
567 else
568 ipref = pip->i_number;
569 if (ipref >= fs->fs_ncg * fs->fs_ipg)
570 ipref = 0;
571 cg = ino_to_cg(fs, ipref);
572 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
573 if (ino == 0)
574 goto noinodes;
575 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
576 if (error) {
577 VOP_VFREE(pvp, ino, mode);
578 return (error);
579 }
580 ip = VTOI(*ap->a_vpp);
581 if (ip->i_ffs_mode) {
582 printf("mode = 0%o, inum = %d, fs = %s\n",
583 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
584 panic("ffs_valloc: dup alloc");
585 }
586 if (ip->i_ffs_blocks) { /* XXX */
587 printf("free inode %s/%d had %d blocks\n",
588 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
589 ip->i_ffs_blocks = 0;
590 }
591 ip->i_ffs_flags = 0;
592 /*
593 * Set up a new generation number for this inode.
594 */
595 ip->i_ffs_gen++;
596 return (0);
597 noinodes:
598 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
599 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
600 return (ENOSPC);
601 }
602
603 /*
604 * Find a cylinder to place a directory.
605 *
606 * The policy implemented by this algorithm is to select from
607 * among those cylinder groups with above the average number of
608 * free inodes, the one with the smallest number of directories.
609 */
610 static ino_t
611 ffs_dirpref(fs)
612 register struct fs *fs;
613 {
614 int cg, minndir, mincg, avgifree;
615
616 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
617 minndir = fs->fs_ipg;
618 mincg = 0;
619 for (cg = 0; cg < fs->fs_ncg; cg++)
620 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
621 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
622 mincg = cg;
623 minndir = fs->fs_cs(fs, cg).cs_ndir;
624 }
625 return ((ino_t)(fs->fs_ipg * mincg));
626 }
627
628 /*
629 * Select the desired position for the next block in a file. The file is
630 * logically divided into sections. The first section is composed of the
631 * direct blocks. Each additional section contains fs_maxbpg blocks.
632 *
633 * If no blocks have been allocated in the first section, the policy is to
634 * request a block in the same cylinder group as the inode that describes
635 * the file. If no blocks have been allocated in any other section, the
636 * policy is to place the section in a cylinder group with a greater than
637 * average number of free blocks. An appropriate cylinder group is found
638 * by using a rotor that sweeps the cylinder groups. When a new group of
639 * blocks is needed, the sweep begins in the cylinder group following the
640 * cylinder group from which the previous allocation was made. The sweep
641 * continues until a cylinder group with greater than the average number
642 * of free blocks is found. If the allocation is for the first block in an
643 * indirect block, the information on the previous allocation is unavailable;
644 * here a best guess is made based upon the logical block number being
645 * allocated.
646 *
647 * If a section is already partially allocated, the policy is to
648 * contiguously allocate fs_maxcontig blocks. The end of one of these
649 * contiguous blocks and the beginning of the next is physically separated
650 * so that the disk head will be in transit between them for at least
651 * fs_rotdelay milliseconds. This is to allow time for the processor to
652 * schedule another I/O transfer.
653 */
654 ufs_daddr_t
655 ffs_blkpref(ip, lbn, indx, bap)
656 struct inode *ip;
657 ufs_daddr_t lbn;
658 int indx;
659 ufs_daddr_t *bap;
660 {
661 register struct fs *fs;
662 register int cg;
663 int avgbfree, startcg;
664 ufs_daddr_t nextblk;
665
666 fs = ip->i_fs;
667 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
668 if (lbn < NDADDR) {
669 cg = ino_to_cg(fs, ip->i_number);
670 return (fs->fs_fpg * cg + fs->fs_frag);
671 }
672 /*
673 * Find a cylinder with greater than average number of
674 * unused data blocks.
675 */
676 if (indx == 0 || bap[indx - 1] == 0)
677 startcg =
678 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
679 else
680 startcg = dtog(fs,
681 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
682 startcg %= fs->fs_ncg;
683 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
684 for (cg = startcg; cg < fs->fs_ncg; cg++)
685 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
686 fs->fs_cgrotor = cg;
687 return (fs->fs_fpg * cg + fs->fs_frag);
688 }
689 for (cg = 0; cg <= startcg; cg++)
690 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
691 fs->fs_cgrotor = cg;
692 return (fs->fs_fpg * cg + fs->fs_frag);
693 }
694 return (NULL);
695 }
696 /*
697 * One or more previous blocks have been laid out. If less
698 * than fs_maxcontig previous blocks are contiguous, the
699 * next block is requested contiguously, otherwise it is
700 * requested rotationally delayed by fs_rotdelay milliseconds.
701 */
702 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
703 if (indx < fs->fs_maxcontig ||
704 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
705 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
706 return (nextblk);
707 if (fs->fs_rotdelay != 0)
708 /*
709 * Here we convert ms of delay to frags as:
710 * (frags) = (ms) * (rev/sec) * (sect/rev) /
711 * ((sect/frag) * (ms/sec))
712 * then round up to the next block.
713 */
714 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
715 (NSPF(fs) * 1000), fs->fs_frag);
716 return (nextblk);
717 }
718
719 /*
720 * Implement the cylinder overflow algorithm.
721 *
722 * The policy implemented by this algorithm is:
723 * 1) allocate the block in its requested cylinder group.
724 * 2) quadradically rehash on the cylinder group number.
725 * 3) brute force search for a free block.
726 */
727 /*VARARGS5*/
728 static u_long
729 ffs_hashalloc(ip, cg, pref, size, allocator)
730 struct inode *ip;
731 int cg;
732 long pref;
733 int size; /* size for data blocks, mode for inodes */
734 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
735 {
736 register struct fs *fs;
737 long result;
738 int i, icg = cg;
739
740 fs = ip->i_fs;
741 /*
742 * 1: preferred cylinder group
743 */
744 result = (*allocator)(ip, cg, pref, size);
745 if (result)
746 return (result);
747 /*
748 * 2: quadratic rehash
749 */
750 for (i = 1; i < fs->fs_ncg; i *= 2) {
751 cg += i;
752 if (cg >= fs->fs_ncg)
753 cg -= fs->fs_ncg;
754 result = (*allocator)(ip, cg, 0, size);
755 if (result)
756 return (result);
757 }
758 /*
759 * 3: brute force search
760 * Note that we start at i == 2, since 0 was checked initially,
761 * and 1 is always checked in the quadratic rehash.
762 */
763 cg = (icg + 2) % fs->fs_ncg;
764 for (i = 2; i < fs->fs_ncg; i++) {
765 result = (*allocator)(ip, cg, 0, size);
766 if (result)
767 return (result);
768 cg++;
769 if (cg == fs->fs_ncg)
770 cg = 0;
771 }
772 return (NULL);
773 }
774
775 /*
776 * Determine whether a fragment can be extended.
777 *
778 * Check to see if the necessary fragments are available, and
779 * if they are, allocate them.
780 */
781 static ufs_daddr_t
782 ffs_fragextend(ip, cg, bprev, osize, nsize)
783 struct inode *ip;
784 int cg;
785 long bprev;
786 int osize, nsize;
787 {
788 register struct fs *fs;
789 register struct cg *cgp;
790 struct buf *bp;
791 long bno;
792 int frags, bbase;
793 int i, error;
794
795 fs = ip->i_fs;
796 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
797 return (NULL);
798 frags = numfrags(fs, nsize);
799 bbase = fragnum(fs, bprev);
800 if (bbase > fragnum(fs, (bprev + frags - 1))) {
801 /* cannot extend across a block boundary */
802 return (NULL);
803 }
804 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
805 (int)fs->fs_cgsize, NOCRED, &bp);
806 if (error) {
807 brelse(bp);
808 return (NULL);
809 }
810 cgp = (struct cg *)bp->b_data;
811 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
812 brelse(bp);
813 return (NULL);
814 }
815 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
816 bno = dtogd(fs, bprev);
817 for (i = numfrags(fs, osize); i < frags; i++)
818 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
819 brelse(bp);
820 return (NULL);
821 }
822 /*
823 * the current fragment can be extended
824 * deduct the count on fragment being extended into
825 * increase the count on the remaining fragment (if any)
826 * allocate the extended piece
827 */
828 for (i = frags; i < fs->fs_frag - bbase; i++)
829 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
830 break;
831 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
832 if (i != frags)
833 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
834 for (i = numfrags(fs, osize); i < frags; i++) {
835 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
836 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
837 fs->fs_cstotal.cs_nffree--;
838 fs->fs_cs(fs, cg).cs_nffree--;
839 }
840 fs->fs_fmod = 1;
841 bdwrite(bp);
842 return (bprev);
843 }
844
845 /*
846 * Determine whether a block can be allocated.
847 *
848 * Check to see if a block of the appropriate size is available,
849 * and if it is, allocate it.
850 */
851 static ufs_daddr_t
852 ffs_alloccg(ip, cg, bpref, size)
853 struct inode *ip;
854 int cg;
855 ufs_daddr_t bpref;
856 int size;
857 {
858 register struct fs *fs;
859 register struct cg *cgp;
860 struct buf *bp;
861 register int i;
862 int error, bno, frags, allocsiz;
863 const int needswap = UFS_IPNEEDSWAP(ip);
864
865 fs = ip->i_fs;
866 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
867 return (NULL);
868 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
869 (int)fs->fs_cgsize, NOCRED, &bp);
870 if (error) {
871 brelse(bp);
872 return (NULL);
873 }
874 cgp = (struct cg *)bp->b_data;
875 if (!cg_chkmagic(cgp, needswap) ||
876 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
877 brelse(bp);
878 return (NULL);
879 }
880 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
881 if (size == fs->fs_bsize) {
882 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
883 bdwrite(bp);
884 return (bno);
885 }
886 /*
887 * check to see if any fragments are already available
888 * allocsiz is the size which will be allocated, hacking
889 * it down to a smaller size if necessary
890 */
891 frags = numfrags(fs, size);
892 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
893 if (cgp->cg_frsum[allocsiz] != 0)
894 break;
895 if (allocsiz == fs->fs_frag) {
896 /*
897 * no fragments were available, so a block will be
898 * allocated, and hacked up
899 */
900 if (cgp->cg_cs.cs_nbfree == 0) {
901 brelse(bp);
902 return (NULL);
903 }
904 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
905 bpref = dtogd(fs, bno);
906 for (i = frags; i < fs->fs_frag; i++)
907 setbit(cg_blksfree(cgp, needswap), bpref + i);
908 i = fs->fs_frag - frags;
909 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
910 fs->fs_cstotal.cs_nffree += i;
911 fs->fs_cs(fs, cg).cs_nffree +=i;
912 fs->fs_fmod = 1;
913 ufs_add32(cgp->cg_frsum[i], 1, needswap);
914 bdwrite(bp);
915 return (bno);
916 }
917 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
918 if (bno < 0) {
919 brelse(bp);
920 return (NULL);
921 }
922 for (i = 0; i < frags; i++)
923 clrbit(cg_blksfree(cgp, needswap), bno + i);
924 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
925 fs->fs_cstotal.cs_nffree -= frags;
926 fs->fs_cs(fs, cg).cs_nffree -= frags;
927 fs->fs_fmod = 1;
928 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
929 if (frags != allocsiz)
930 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
931 bdwrite(bp);
932 return (cg * fs->fs_fpg + bno);
933 }
934
935 /*
936 * Allocate a block in a cylinder group.
937 *
938 * This algorithm implements the following policy:
939 * 1) allocate the requested block.
940 * 2) allocate a rotationally optimal block in the same cylinder.
941 * 3) allocate the next available block on the block rotor for the
942 * specified cylinder group.
943 * Note that this routine only allocates fs_bsize blocks; these
944 * blocks may be fragmented by the routine that allocates them.
945 */
946 static ufs_daddr_t
947 ffs_alloccgblk(mp, fs, cgp, bpref)
948 struct mount *mp;
949 register struct fs *fs;
950 register struct cg *cgp;
951 ufs_daddr_t bpref;
952 {
953 ufs_daddr_t bno, blkno;
954 int cylno, pos, delta;
955 short *cylbp;
956 register int i;
957 const int needswap = UFS_MPNEEDSWAP(mp);
958
959 if (bpref == 0 ||
960 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
961 bpref = ufs_rw32(cgp->cg_rotor, needswap);
962 goto norot;
963 }
964 bpref = blknum(fs, bpref);
965 bpref = dtogd(fs, bpref);
966 /*
967 * if the requested block is available, use it
968 */
969 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
970 fragstoblks(fs, bpref))) {
971 bno = bpref;
972 goto gotit;
973 }
974 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
975 /*
976 * Block layout information is not available.
977 * Leaving bpref unchanged means we take the
978 * next available free block following the one
979 * we just allocated. Hopefully this will at
980 * least hit a track cache on drives of unknown
981 * geometry (e.g. SCSI).
982 */
983 goto norot;
984 }
985 /*
986 * check for a block available on the same cylinder
987 */
988 cylno = cbtocylno(fs, bpref);
989 if (cg_blktot(cgp, needswap)[cylno] == 0)
990 goto norot;
991 /*
992 * check the summary information to see if a block is
993 * available in the requested cylinder starting at the
994 * requested rotational position and proceeding around.
995 */
996 cylbp = cg_blks(fs, cgp, cylno, needswap);
997 pos = cbtorpos(fs, bpref);
998 for (i = pos; i < fs->fs_nrpos; i++)
999 if (ufs_rw16(cylbp[i], needswap) > 0)
1000 break;
1001 if (i == fs->fs_nrpos)
1002 for (i = 0; i < pos; i++)
1003 if (ufs_rw16(cylbp[i], needswap) > 0)
1004 break;
1005 if (ufs_rw16(cylbp[i], needswap) > 0) {
1006 /*
1007 * found a rotational position, now find the actual
1008 * block. A panic if none is actually there.
1009 */
1010 pos = cylno % fs->fs_cpc;
1011 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1012 if (fs_postbl(fs, pos)[i] == -1) {
1013 printf("pos = %d, i = %d, fs = %s\n",
1014 pos, i, fs->fs_fsmnt);
1015 panic("ffs_alloccgblk: cyl groups corrupted");
1016 }
1017 for (i = fs_postbl(fs, pos)[i];; ) {
1018 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1019 bno = blkstofrags(fs, (bno + i));
1020 goto gotit;
1021 }
1022 delta = fs_rotbl(fs)[i];
1023 if (delta <= 0 ||
1024 delta + i > fragstoblks(fs, fs->fs_fpg))
1025 break;
1026 i += delta;
1027 }
1028 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1029 panic("ffs_alloccgblk: can't find blk in cyl");
1030 }
1031 norot:
1032 /*
1033 * no blocks in the requested cylinder, so take next
1034 * available one in this cylinder group.
1035 */
1036 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1037 if (bno < 0)
1038 return (NULL);
1039 cgp->cg_rotor = ufs_rw32(bno, needswap);
1040 gotit:
1041 blkno = fragstoblks(fs, bno);
1042 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1043 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1044 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1045 fs->fs_cstotal.cs_nbfree--;
1046 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1047 cylno = cbtocylno(fs, bno);
1048 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1049 needswap);
1050 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1051 fs->fs_fmod = 1;
1052 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1053 }
1054
1055 /*
1056 * Determine whether a cluster can be allocated.
1057 *
1058 * We do not currently check for optimal rotational layout if there
1059 * are multiple choices in the same cylinder group. Instead we just
1060 * take the first one that we find following bpref.
1061 */
1062 static ufs_daddr_t
1063 ffs_clusteralloc(ip, cg, bpref, len)
1064 struct inode *ip;
1065 int cg;
1066 ufs_daddr_t bpref;
1067 int len;
1068 {
1069 register struct fs *fs;
1070 register struct cg *cgp;
1071 struct buf *bp;
1072 int i, got, run, bno, bit, map;
1073 u_char *mapp;
1074 int32_t *lp;
1075
1076 fs = ip->i_fs;
1077 if (fs->fs_maxcluster[cg] < len)
1078 return (NULL);
1079 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1080 NOCRED, &bp))
1081 goto fail;
1082 cgp = (struct cg *)bp->b_data;
1083 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1084 goto fail;
1085 /*
1086 * Check to see if a cluster of the needed size (or bigger) is
1087 * available in this cylinder group.
1088 */
1089 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1090 for (i = len; i <= fs->fs_contigsumsize; i++)
1091 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1092 break;
1093 if (i > fs->fs_contigsumsize) {
1094 /*
1095 * This is the first time looking for a cluster in this
1096 * cylinder group. Update the cluster summary information
1097 * to reflect the true maximum sized cluster so that
1098 * future cluster allocation requests can avoid reading
1099 * the cylinder group map only to find no clusters.
1100 */
1101 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1102 for (i = len - 1; i > 0; i--)
1103 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1104 break;
1105 fs->fs_maxcluster[cg] = i;
1106 goto fail;
1107 }
1108 /*
1109 * Search the cluster map to find a big enough cluster.
1110 * We take the first one that we find, even if it is larger
1111 * than we need as we prefer to get one close to the previous
1112 * block allocation. We do not search before the current
1113 * preference point as we do not want to allocate a block
1114 * that is allocated before the previous one (as we will
1115 * then have to wait for another pass of the elevator
1116 * algorithm before it will be read). We prefer to fail and
1117 * be recalled to try an allocation in the next cylinder group.
1118 */
1119 if (dtog(fs, bpref) != cg)
1120 bpref = 0;
1121 else
1122 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1123 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1124 map = *mapp++;
1125 bit = 1 << (bpref % NBBY);
1126 for (run = 0, got = bpref;
1127 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1128 if ((map & bit) == 0) {
1129 run = 0;
1130 } else {
1131 run++;
1132 if (run == len)
1133 break;
1134 }
1135 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1136 bit <<= 1;
1137 } else {
1138 map = *mapp++;
1139 bit = 1;
1140 }
1141 }
1142 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1143 goto fail;
1144 /*
1145 * Allocate the cluster that we have found.
1146 */
1147 for (i = 1; i <= len; i++)
1148 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1149 got - run + i))
1150 panic("ffs_clusteralloc: map mismatch");
1151 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1152 if (dtog(fs, bno) != cg)
1153 panic("ffs_clusteralloc: allocated out of group");
1154 len = blkstofrags(fs, len);
1155 for (i = 0; i < len; i += fs->fs_frag)
1156 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1157 != bno + i)
1158 panic("ffs_clusteralloc: lost block");
1159 bdwrite(bp);
1160 return (bno);
1161
1162 fail:
1163 brelse(bp);
1164 return (0);
1165 }
1166
1167 /*
1168 * Determine whether an inode can be allocated.
1169 *
1170 * Check to see if an inode is available, and if it is,
1171 * allocate it using the following policy:
1172 * 1) allocate the requested inode.
1173 * 2) allocate the next available inode after the requested
1174 * inode in the specified cylinder group.
1175 */
1176 static ufs_daddr_t
1177 ffs_nodealloccg(ip, cg, ipref, mode)
1178 struct inode *ip;
1179 int cg;
1180 ufs_daddr_t ipref;
1181 int mode;
1182 {
1183 register struct fs *fs;
1184 register struct cg *cgp;
1185 struct buf *bp;
1186 int error, start, len, loc, map, i;
1187 #ifdef FFS_EI
1188 const int needswap = UFS_IPNEEDSWAP(ip);
1189 #endif
1190
1191 fs = ip->i_fs;
1192 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1193 return (NULL);
1194 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1195 (int)fs->fs_cgsize, NOCRED, &bp);
1196 if (error) {
1197 brelse(bp);
1198 return (NULL);
1199 }
1200 cgp = (struct cg *)bp->b_data;
1201 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1202 brelse(bp);
1203 return (NULL);
1204 }
1205 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1206 if (ipref) {
1207 ipref %= fs->fs_ipg;
1208 if (isclr(cg_inosused(cgp, needswap), ipref))
1209 goto gotit;
1210 }
1211 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1212 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1213 NBBY);
1214 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1215 if (loc == 0) {
1216 len = start + 1;
1217 start = 0;
1218 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1219 if (loc == 0) {
1220 printf("cg = %d, irotor = %d, fs = %s\n",
1221 cg, ufs_rw32(cgp->cg_irotor, needswap),
1222 fs->fs_fsmnt);
1223 panic("ffs_nodealloccg: map corrupted");
1224 /* NOTREACHED */
1225 }
1226 }
1227 i = start + len - loc;
1228 map = cg_inosused(cgp, needswap)[i];
1229 ipref = i * NBBY;
1230 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1231 if ((map & i) == 0) {
1232 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1233 goto gotit;
1234 }
1235 }
1236 printf("fs = %s\n", fs->fs_fsmnt);
1237 panic("ffs_nodealloccg: block not in map");
1238 /* NOTREACHED */
1239 gotit:
1240 setbit(cg_inosused(cgp, needswap), ipref);
1241 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1242 fs->fs_cstotal.cs_nifree--;
1243 fs->fs_cs(fs, cg).cs_nifree --;
1244 fs->fs_fmod = 1;
1245 if ((mode & IFMT) == IFDIR) {
1246 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1247 fs->fs_cstotal.cs_ndir++;
1248 fs->fs_cs(fs, cg).cs_ndir++;
1249 }
1250 bdwrite(bp);
1251 return (cg * fs->fs_ipg + ipref);
1252 }
1253
1254 /*
1255 * Free a block or fragment.
1256 *
1257 * The specified block or fragment is placed back in the
1258 * free map. If a fragment is deallocated, a possible
1259 * block reassembly is checked.
1260 */
1261 void
1262 ffs_blkfree(ip, bno, size)
1263 register struct inode *ip;
1264 ufs_daddr_t bno;
1265 long size;
1266 {
1267 register struct fs *fs;
1268 register struct cg *cgp;
1269 struct buf *bp;
1270 ufs_daddr_t blkno;
1271 int i, error, cg, blk, frags, bbase;
1272 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1273
1274 fs = ip->i_fs;
1275 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1276 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1277 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1278 panic("blkfree: bad size");
1279 }
1280 cg = dtog(fs, bno);
1281 if ((u_int)bno >= fs->fs_size) {
1282 printf("bad block %d, ino %d\n", bno, ip->i_number);
1283 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1284 return;
1285 }
1286 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1287 (int)fs->fs_cgsize, NOCRED, &bp);
1288 if (error) {
1289 brelse(bp);
1290 return;
1291 }
1292 cgp = (struct cg *)bp->b_data;
1293 if (!cg_chkmagic(cgp, needswap)) {
1294 brelse(bp);
1295 return;
1296 }
1297 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1298 bno = dtogd(fs, bno);
1299 if (size == fs->fs_bsize) {
1300 blkno = fragstoblks(fs, bno);
1301 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1302 printf("dev = 0x%x, block = %d, fs = %s\n",
1303 ip->i_dev, bno, fs->fs_fsmnt);
1304 panic("blkfree: freeing free block");
1305 }
1306 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1307 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1308 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1309 fs->fs_cstotal.cs_nbfree++;
1310 fs->fs_cs(fs, cg).cs_nbfree++;
1311 i = cbtocylno(fs, bno);
1312 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1313 needswap);
1314 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1315 } else {
1316 bbase = bno - fragnum(fs, bno);
1317 /*
1318 * decrement the counts associated with the old frags
1319 */
1320 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1321 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1322 /*
1323 * deallocate the fragment
1324 */
1325 frags = numfrags(fs, size);
1326 for (i = 0; i < frags; i++) {
1327 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1328 printf("dev = 0x%x, block = %d, fs = %s\n",
1329 ip->i_dev, bno + i, fs->fs_fsmnt);
1330 panic("blkfree: freeing free frag");
1331 }
1332 setbit(cg_blksfree(cgp, needswap), bno + i);
1333 }
1334 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1335 fs->fs_cstotal.cs_nffree += i;
1336 fs->fs_cs(fs, cg).cs_nffree +=i;
1337 /*
1338 * add back in counts associated with the new frags
1339 */
1340 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1341 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1342 /*
1343 * if a complete block has been reassembled, account for it
1344 */
1345 blkno = fragstoblks(fs, bbase);
1346 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1347 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1348 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1349 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1350 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1351 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1352 fs->fs_cstotal.cs_nbfree++;
1353 fs->fs_cs(fs, cg).cs_nbfree++;
1354 i = cbtocylno(fs, bbase);
1355 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1356 needswap);
1357 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1358 }
1359 }
1360 fs->fs_fmod = 1;
1361 bdwrite(bp);
1362 }
1363
1364 #if defined(DIAGNOSTIC) || defined(DEBUG)
1365 /*
1366 * Verify allocation of a block or fragment. Returns true if block or
1367 * fragment is allocated, false if it is free.
1368 */
1369 static int
1370 ffs_checkblk(ip, bno, size)
1371 struct inode *ip;
1372 ufs_daddr_t bno;
1373 long size;
1374 {
1375 struct fs *fs;
1376 struct cg *cgp;
1377 struct buf *bp;
1378 int i, error, frags, free;
1379
1380 fs = ip->i_fs;
1381 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1382 printf("bsize = %d, size = %ld, fs = %s\n",
1383 fs->fs_bsize, size, fs->fs_fsmnt);
1384 panic("checkblk: bad size");
1385 }
1386 if ((u_int)bno >= fs->fs_size)
1387 panic("checkblk: bad block %d", bno);
1388 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1389 (int)fs->fs_cgsize, NOCRED, &bp);
1390 if (error) {
1391 brelse(bp);
1392 return 0;
1393 }
1394 cgp = (struct cg *)bp->b_data;
1395 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1396 brelse(bp);
1397 return 0;
1398 }
1399 bno = dtogd(fs, bno);
1400 if (size == fs->fs_bsize) {
1401 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1402 fragstoblks(fs, bno));
1403 } else {
1404 frags = numfrags(fs, size);
1405 for (free = 0, i = 0; i < frags; i++)
1406 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1407 free++;
1408 if (free != 0 && free != frags)
1409 panic("checkblk: partially free fragment");
1410 }
1411 brelse(bp);
1412 return (!free);
1413 }
1414 #endif /* DIAGNOSTIC */
1415
1416 /*
1417 * Free an inode.
1418 *
1419 * The specified inode is placed back in the free map.
1420 */
1421 int
1422 ffs_vfree(v)
1423 void *v;
1424 {
1425 struct vop_vfree_args /* {
1426 struct vnode *a_pvp;
1427 ino_t a_ino;
1428 int a_mode;
1429 } */ *ap = v;
1430 register struct fs *fs;
1431 register struct cg *cgp;
1432 register struct inode *pip;
1433 ino_t ino = ap->a_ino;
1434 struct buf *bp;
1435 int error, cg;
1436 #ifdef FFS_EI
1437 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1438 #endif
1439
1440 pip = VTOI(ap->a_pvp);
1441 fs = pip->i_fs;
1442 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1443 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1444 pip->i_dev, ino, fs->fs_fsmnt);
1445 cg = ino_to_cg(fs, ino);
1446 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1447 (int)fs->fs_cgsize, NOCRED, &bp);
1448 if (error) {
1449 brelse(bp);
1450 return (0);
1451 }
1452 cgp = (struct cg *)bp->b_data;
1453 if (!cg_chkmagic(cgp, needswap)) {
1454 brelse(bp);
1455 return (0);
1456 }
1457 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1458 ino %= fs->fs_ipg;
1459 if (isclr(cg_inosused(cgp, needswap), ino)) {
1460 printf("dev = 0x%x, ino = %d, fs = %s\n",
1461 pip->i_dev, ino, fs->fs_fsmnt);
1462 if (fs->fs_ronly == 0)
1463 panic("ifree: freeing free inode");
1464 }
1465 clrbit(cg_inosused(cgp, needswap), ino);
1466 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1467 cgp->cg_irotor = ufs_rw32(ino, needswap);
1468 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1469 fs->fs_cstotal.cs_nifree++;
1470 fs->fs_cs(fs, cg).cs_nifree++;
1471 if ((ap->a_mode & IFMT) == IFDIR) {
1472 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1473 fs->fs_cstotal.cs_ndir--;
1474 fs->fs_cs(fs, cg).cs_ndir--;
1475 }
1476 fs->fs_fmod = 1;
1477 bdwrite(bp);
1478 return (0);
1479 }
1480
1481 /*
1482 * Find a block of the specified size in the specified cylinder group.
1483 *
1484 * It is a panic if a request is made to find a block if none are
1485 * available.
1486 */
1487 static ufs_daddr_t
1488 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1489 int needswap;
1490 register struct fs *fs;
1491 register struct cg *cgp;
1492 ufs_daddr_t bpref;
1493 int allocsiz;
1494 {
1495 ufs_daddr_t bno;
1496 int start, len, loc, i;
1497 int blk, field, subfield, pos;
1498 int ostart, olen;
1499
1500 /*
1501 * find the fragment by searching through the free block
1502 * map for an appropriate bit pattern
1503 */
1504 if (bpref)
1505 start = dtogd(fs, bpref) / NBBY;
1506 else
1507 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1508 len = howmany(fs->fs_fpg, NBBY) - start;
1509 ostart = start;
1510 olen = len;
1511 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1512 (u_char *)fragtbl[fs->fs_frag],
1513 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1514 if (loc == 0) {
1515 len = start + 1;
1516 start = 0;
1517 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1518 (u_char *)fragtbl[fs->fs_frag],
1519 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1520 if (loc == 0) {
1521 printf("start = %d, len = %d, fs = %s\n",
1522 ostart, olen, fs->fs_fsmnt);
1523 printf("offset=%d %ld\n",
1524 ufs_rw32(cgp->cg_freeoff, needswap),
1525 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1526 panic("ffs_alloccg: map corrupted");
1527 /* NOTREACHED */
1528 }
1529 }
1530 bno = (start + len - loc) * NBBY;
1531 cgp->cg_frotor = ufs_rw32(bno, needswap);
1532 /*
1533 * found the byte in the map
1534 * sift through the bits to find the selected frag
1535 */
1536 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1537 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1538 blk <<= 1;
1539 field = around[allocsiz];
1540 subfield = inside[allocsiz];
1541 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1542 if ((blk & field) == subfield)
1543 return (bno + pos);
1544 field <<= 1;
1545 subfield <<= 1;
1546 }
1547 }
1548 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1549 panic("ffs_alloccg: block not in map");
1550 return (-1);
1551 }
1552
1553 /*
1554 * Update the cluster map because of an allocation or free.
1555 *
1556 * Cnt == 1 means free; cnt == -1 means allocating.
1557 */
1558 void
1559 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1560 int needswap;
1561 struct fs *fs;
1562 struct cg *cgp;
1563 ufs_daddr_t blkno;
1564 int cnt;
1565 {
1566 int32_t *sump;
1567 int32_t *lp;
1568 u_char *freemapp, *mapp;
1569 int i, start, end, forw, back, map, bit;
1570
1571 if (fs->fs_contigsumsize <= 0)
1572 return;
1573 freemapp = cg_clustersfree(cgp, needswap);
1574 sump = cg_clustersum(cgp, needswap);
1575 /*
1576 * Allocate or clear the actual block.
1577 */
1578 if (cnt > 0)
1579 setbit(freemapp, blkno);
1580 else
1581 clrbit(freemapp, blkno);
1582 /*
1583 * Find the size of the cluster going forward.
1584 */
1585 start = blkno + 1;
1586 end = start + fs->fs_contigsumsize;
1587 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1588 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1589 mapp = &freemapp[start / NBBY];
1590 map = *mapp++;
1591 bit = 1 << (start % NBBY);
1592 for (i = start; i < end; i++) {
1593 if ((map & bit) == 0)
1594 break;
1595 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1596 bit <<= 1;
1597 } else {
1598 map = *mapp++;
1599 bit = 1;
1600 }
1601 }
1602 forw = i - start;
1603 /*
1604 * Find the size of the cluster going backward.
1605 */
1606 start = blkno - 1;
1607 end = start - fs->fs_contigsumsize;
1608 if (end < 0)
1609 end = -1;
1610 mapp = &freemapp[start / NBBY];
1611 map = *mapp--;
1612 bit = 1 << (start % NBBY);
1613 for (i = start; i > end; i--) {
1614 if ((map & bit) == 0)
1615 break;
1616 if ((i & (NBBY - 1)) != 0) {
1617 bit >>= 1;
1618 } else {
1619 map = *mapp--;
1620 bit = 1 << (NBBY - 1);
1621 }
1622 }
1623 back = start - i;
1624 /*
1625 * Account for old cluster and the possibly new forward and
1626 * back clusters.
1627 */
1628 i = back + forw + 1;
1629 if (i > fs->fs_contigsumsize)
1630 i = fs->fs_contigsumsize;
1631 ufs_add32(sump[i], cnt, needswap);
1632 if (back > 0)
1633 ufs_add32(sump[back], -cnt, needswap);
1634 if (forw > 0)
1635 ufs_add32(sump[forw], -cnt, needswap);
1636
1637 /*
1638 * Update cluster summary information.
1639 */
1640 lp = &sump[fs->fs_contigsumsize];
1641 for (i = fs->fs_contigsumsize; i > 0; i--)
1642 if (ufs_rw32(*lp--, needswap) > 0)
1643 break;
1644 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1645 }
1646
1647 /*
1648 * Fserr prints the name of a file system with an error diagnostic.
1649 *
1650 * The form of the error message is:
1651 * fs: error message
1652 */
1653 static void
1654 ffs_fserr(fs, uid, cp)
1655 struct fs *fs;
1656 u_int uid;
1657 char *cp;
1658 {
1659
1660 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1661 }
1662