ffs_alloc.c revision 1.29.4.1 1 /* $NetBSD: ffs_alloc.c,v 1.29.4.1 1999/06/07 04:25:34 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 */
37
38 #if defined(_KERNEL) && !defined(_LKM)
39 #include "opt_ffs.h"
40 #include "opt_quota.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/syslog.h>
51
52 #include <vm/vm.h>
53 #include <uvm/uvm_extern.h>
54 #include <uvm/uvm.h>
55
56 #include <ufs/ufs/quota.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/inode.h>
59 #include <ufs/ufs/ufs_extern.h>
60 #include <ufs/ufs/ufs_bswap.h>
61
62 #include <ufs/ffs/fs.h>
63 #include <ufs/ffs/ffs_extern.h>
64
65 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
66 static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
67 struct cg *, ufs_daddr_t));
68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
69 static ino_t ffs_dirpref __P((struct fs *));
70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 static void ffs_fserr __P((struct fs *, u_int, char *));
72 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
73 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
74 int)));
75 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
76 static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
77 ufs_daddr_t, int));
78 #if defined(DIAGNOSTIC) || defined(DEBUG)
79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 #endif
81
82 /* in ffs_tables.c */
83 extern int inside[], around[];
84 extern u_char *fragtbl[];
85
86 /*
87 * Allocate a block in the file system.
88 *
89 * The size of the requested block is given, which must be some
90 * multiple of fs_fsize and <= fs_bsize.
91 * A preference may be optionally specified. If a preference is given
92 * the following hierarchy is used to allocate a block:
93 * 1) allocate the requested block.
94 * 2) allocate a rotationally optimal block in the same cylinder.
95 * 3) allocate a block in the same cylinder group.
96 * 4) quadradically rehash into other cylinder groups, until an
97 * available block is located.
98 * If no block preference is given the following heirarchy is used
99 * to allocate a block:
100 * 1) allocate a block in the cylinder group that contains the
101 * inode for the file.
102 * 2) quadradically rehash into other cylinder groups, until an
103 * available block is located.
104 */
105 int
106 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
107 register struct inode *ip;
108 ufs_daddr_t lbn, bpref;
109 int size;
110 struct ucred *cred;
111 ufs_daddr_t *bnp;
112 {
113 register struct fs *fs;
114 ufs_daddr_t bno;
115 int cg;
116 #ifdef QUOTA
117 int error;
118 #endif
119
120 *bnp = 0;
121 fs = ip->i_fs;
122 #ifdef DIAGNOSTIC
123 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
124 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
125 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
126 panic("ffs_alloc: bad size");
127 }
128 if (cred == NOCRED)
129 panic("ffs_alloc: missing credential\n");
130 #endif /* DIAGNOSTIC */
131 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
132 goto nospace;
133 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
134 goto nospace;
135 #ifdef QUOTA
136 if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
137 return (error);
138 #endif
139 if (bpref >= fs->fs_size)
140 bpref = 0;
141 if (bpref == 0)
142 cg = ino_to_cg(fs, ip->i_number);
143 else
144 cg = dtog(fs, bpref);
145 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 ffs_alloccg);
147 if (bno > 0) {
148 ip->i_ffs_blocks += btodb(size);
149 ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 *bnp = bno;
151 return (0);
152 }
153 #ifdef QUOTA
154 /*
155 * Restore user's disk quota because allocation failed.
156 */
157 (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
158 #endif
159 nospace:
160 ffs_fserr(fs, cred->cr_uid, "file system full");
161 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
162 return (ENOSPC);
163 }
164
165 /*
166 * Reallocate a fragment to a bigger size
167 *
168 * The number and size of the old block is given, and a preference
169 * and new size is also specified. The allocator attempts to extend
170 * the original block. Failing that, the regular block allocator is
171 * invoked to get an appropriate block.
172 */
173 int
174 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
175 register struct inode *ip;
176 ufs_daddr_t lbprev;
177 ufs_daddr_t bpref;
178 int osize, nsize;
179 struct ucred *cred;
180 struct buf **bpp;
181 ufs_daddr_t *blknop;
182 {
183 register struct fs *fs;
184 struct buf *bp;
185 int cg, request, error;
186 ufs_daddr_t bprev, bno;
187
188 fs = ip->i_fs;
189 #ifdef DIAGNOSTIC
190 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
191 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
192 printf(
193 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
194 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
195 panic("ffs_realloccg: bad size");
196 }
197 if (cred == NOCRED)
198 panic("ffs_realloccg: missing credential\n");
199 #endif /* DIAGNOSTIC */
200 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
201 goto nospace;
202 if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
203 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
204 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
205 panic("ffs_realloccg: bad bprev");
206 }
207
208 #ifdef QUOTA
209 if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
210 return (error);
211 }
212 #endif
213
214 /*
215 * Allocate the extra space in the buffer.
216 */
217 if (bpp != NULL &&
218 (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
219 brelse(bp);
220 return (error);
221 }
222
223 /*
224 * Check for extension in the existing location.
225 */
226 cg = dtog(fs, bprev);
227 if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
228 ip->i_ffs_blocks += btodb(nsize - osize);
229 ip->i_flag |= IN_CHANGE | IN_UPDATE;
230
231 if (bpp != NULL) {
232 if (bp->b_blkno != fsbtodb(fs, bno))
233 panic("bad blockno");
234 allocbuf(bp, nsize);
235 bp->b_flags |= B_DONE;
236 memset(bp->b_data + osize, 0, nsize - osize);
237 *bpp = bp;
238 }
239 if (blknop != NULL) {
240 *blknop = bno;
241 }
242 return (0);
243 }
244 /*
245 * Allocate a new disk location.
246 */
247 if (bpref >= fs->fs_size)
248 bpref = 0;
249 switch ((int)fs->fs_optim) {
250 case FS_OPTSPACE:
251 /*
252 * Allocate an exact sized fragment. Although this makes
253 * best use of space, we will waste time relocating it if
254 * the file continues to grow. If the fragmentation is
255 * less than half of the minimum free reserve, we choose
256 * to begin optimizing for time.
257 */
258 request = nsize;
259 if (fs->fs_minfree < 5 ||
260 fs->fs_cstotal.cs_nffree >
261 fs->fs_dsize * fs->fs_minfree / (2 * 100))
262 break;
263 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
264 fs->fs_fsmnt);
265 fs->fs_optim = FS_OPTTIME;
266 break;
267 case FS_OPTTIME:
268 /*
269 * At this point we have discovered a file that is trying to
270 * grow a small fragment to a larger fragment. To save time,
271 * we allocate a full sized block, then free the unused portion.
272 * If the file continues to grow, the `ffs_fragextend' call
273 * above will be able to grow it in place without further
274 * copying. If aberrant programs cause disk fragmentation to
275 * grow within 2% of the free reserve, we choose to begin
276 * optimizing for space.
277 */
278 request = fs->fs_bsize;
279 if (fs->fs_cstotal.cs_nffree <
280 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
281 break;
282 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
283 fs->fs_fsmnt);
284 fs->fs_optim = FS_OPTSPACE;
285 break;
286 default:
287 printf("dev = 0x%x, optim = %d, fs = %s\n",
288 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
289 panic("ffs_realloccg: bad optim");
290 /* NOTREACHED */
291 }
292 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
293 ffs_alloccg);
294 if (bno > 0) {
295 (void) uvm_vnp_uncache(ITOV(ip));
296 ffs_blkfree(ip, bprev, (long)osize);
297 if (nsize < request)
298 ffs_blkfree(ip, bno + numfrags(fs, nsize),
299 (long)(request - nsize));
300 ip->i_ffs_blocks += btodb(nsize - osize);
301 ip->i_flag |= IN_CHANGE | IN_UPDATE;
302
303 if (bpp != NULL) {
304 bp->b_blkno = fsbtodb(fs, bno);
305 allocbuf(bp, nsize);
306 bp->b_flags |= B_DONE;
307 memset(bp->b_data + osize, 0, (u_int)nsize - osize);
308 *bpp = bp;
309 }
310 if (blknop != NULL) {
311 *blknop = bno;
312 }
313 return (0);
314 }
315 #ifdef QUOTA
316 /*
317 * Restore user's disk quota because allocation failed.
318 */
319 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
320 #endif
321
322 if (bpp != NULL) {
323 brelse(bp);
324 }
325
326 nospace:
327 /*
328 * no space available
329 */
330 ffs_fserr(fs, cred->cr_uid, "file system full");
331 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
332 return (ENOSPC);
333 }
334
335 /*
336 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
337 *
338 * The vnode and an array of buffer pointers for a range of sequential
339 * logical blocks to be made contiguous is given. The allocator attempts
340 * to find a range of sequential blocks starting as close as possible to
341 * an fs_rotdelay offset from the end of the allocation for the logical
342 * block immediately preceeding the current range. If successful, the
343 * physical block numbers in the buffer pointers and in the inode are
344 * changed to reflect the new allocation. If unsuccessful, the allocation
345 * is left unchanged. The success in doing the reallocation is returned.
346 * Note that the error return is not reflected back to the user. Rather
347 * the previous block allocation will be used.
348 */
349 #ifdef DEBUG
350 #include <sys/sysctl.h>
351 int prtrealloc = 0;
352 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
353 #endif
354
355 int doasyncfree = 1;
356 int doreallocblks;
357
358 int
359 ffs_reallocblks(v)
360 void *v;
361 {
362 struct vop_reallocblks_args /* {
363 struct vnode *a_vp;
364 struct cluster_save *a_buflist;
365 } */ *ap = v;
366 struct fs *fs;
367 struct inode *ip;
368 struct vnode *vp;
369 struct buf *sbp, *ebp;
370 ufs_daddr_t *bap, *sbap, *ebap = NULL;
371 struct cluster_save *buflist;
372 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
373 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
374 int i, len, start_lvl, end_lvl, pref, ssize;
375
376 /* XXX don't do this for now */
377 return ENOSPC;
378
379 vp = ap->a_vp;
380 ip = VTOI(vp);
381 fs = ip->i_fs;
382 if (fs->fs_contigsumsize <= 0)
383 return (ENOSPC);
384 buflist = ap->a_buflist;
385 len = buflist->bs_nchildren;
386 start_lbn = buflist->bs_children[0]->b_lblkno;
387 end_lbn = start_lbn + len - 1;
388 #ifdef DIAGNOSTIC
389 for (i = 0; i < len; i++)
390 if (!ffs_checkblk(ip,
391 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
392 panic("ffs_reallocblks: unallocated block 1");
393 for (i = 1; i < len; i++)
394 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
395 panic("ffs_reallocblks: non-logical cluster");
396 blkno = buflist->bs_children[0]->b_blkno;
397 ssize = fsbtodb(fs, fs->fs_frag);
398 for (i = 1; i < len - 1; i++)
399 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
400 panic("ffs_reallocblks: non-physical cluster %d", i);
401 #endif
402 /*
403 * If the latest allocation is in a new cylinder group, assume that
404 * the filesystem has decided to move and do not force it back to
405 * the previous cylinder group.
406 */
407 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
408 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
409 return (ENOSPC);
410 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
411 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
412 return (ENOSPC);
413 /*
414 * Get the starting offset and block map for the first block.
415 */
416 if (start_lvl == 0) {
417 sbap = &ip->i_ffs_db[0];
418 soff = start_lbn;
419 } else {
420 idp = &start_ap[start_lvl - 1];
421 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
422 brelse(sbp);
423 return (ENOSPC);
424 }
425 sbap = (ufs_daddr_t *)sbp->b_data;
426 soff = idp->in_off;
427 }
428 /*
429 * Find the preferred location for the cluster.
430 */
431 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
432 /*
433 * If the block range spans two block maps, get the second map.
434 */
435 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
436 ssize = len;
437 } else {
438 #ifdef DIAGNOSTIC
439 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
440 panic("ffs_reallocblk: start == end");
441 #endif
442 ssize = len - (idp->in_off + 1);
443 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
444 goto fail;
445 ebap = (ufs_daddr_t *)ebp->b_data;
446 }
447 /*
448 * Search the block map looking for an allocation of the desired size.
449 */
450 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
451 len, ffs_clusteralloc)) == 0)
452 goto fail;
453 /*
454 * We have found a new contiguous block.
455 *
456 * First we have to replace the old block pointers with the new
457 * block pointers in the inode and indirect blocks associated
458 * with the file.
459 */
460 #ifdef DEBUG
461 if (prtrealloc)
462 printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
463 start_lbn, end_lbn);
464 #endif
465 blkno = newblk;
466 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
467 if (i == ssize)
468 bap = ebap;
469 #ifdef DIAGNOSTIC
470 if (!ffs_checkblk(ip,
471 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
472 panic("ffs_reallocblks: unallocated block 2");
473 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
474 ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
475 panic("ffs_reallocblks: alloc mismatch");
476 #endif
477 #ifdef DEBUG
478 if (prtrealloc)
479 printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
480 #endif
481 *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
482 }
483 /*
484 * Next we must write out the modified inode and indirect blocks.
485 * For strict correctness, the writes should be synchronous since
486 * the old block values may have been written to disk. In practise
487 * they are almost never written, but if we are concerned about
488 * strict correctness, the `doasyncfree' flag should be set to zero.
489 *
490 * The test on `doasyncfree' should be changed to test a flag
491 * that shows whether the associated buffers and inodes have
492 * been written. The flag should be set when the cluster is
493 * started and cleared whenever the buffer or inode is flushed.
494 * We can then check below to see if it is set, and do the
495 * synchronous write only when it has been cleared.
496 */
497 if (sbap != &ip->i_ffs_db[0]) {
498 if (doasyncfree)
499 bdwrite(sbp);
500 else
501 bwrite(sbp);
502 } else {
503 ip->i_flag |= IN_CHANGE | IN_UPDATE;
504 if (!doasyncfree)
505 VOP_UPDATE(vp, NULL, NULL, 1);
506 }
507 if (ssize < len) {
508 if (doasyncfree)
509 bdwrite(ebp);
510 else
511 bwrite(ebp);
512 }
513 /*
514 * Last, free the old blocks and assign the new blocks to the buffers.
515 */
516 #ifdef DEBUG
517 if (prtrealloc)
518 printf("\n\tnew:");
519 #endif
520 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
521 ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
522 fs->fs_bsize);
523 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
524 #ifdef DEBUG
525 if (!ffs_checkblk(ip,
526 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
527 panic("ffs_reallocblks: unallocated block 3");
528 if (prtrealloc)
529 printf(" %d,", blkno);
530 #endif
531 }
532 #ifdef DEBUG
533 if (prtrealloc) {
534 prtrealloc--;
535 printf("\n");
536 }
537 #endif
538 return (0);
539
540 fail:
541 if (ssize < len)
542 brelse(ebp);
543 if (sbap != &ip->i_ffs_db[0])
544 brelse(sbp);
545 return (ENOSPC);
546 }
547
548 /*
549 * Allocate an inode in the file system.
550 *
551 * If allocating a directory, use ffs_dirpref to select the inode.
552 * If allocating in a directory, the following hierarchy is followed:
553 * 1) allocate the preferred inode.
554 * 2) allocate an inode in the same cylinder group.
555 * 3) quadradically rehash into other cylinder groups, until an
556 * available inode is located.
557 * If no inode preference is given the following heirarchy is used
558 * to allocate an inode:
559 * 1) allocate an inode in cylinder group 0.
560 * 2) quadradically rehash into other cylinder groups, until an
561 * available inode is located.
562 */
563 int
564 ffs_valloc(v)
565 void *v;
566 {
567 struct vop_valloc_args /* {
568 struct vnode *a_pvp;
569 int a_mode;
570 struct ucred *a_cred;
571 struct vnode **a_vpp;
572 } */ *ap = v;
573 register struct vnode *pvp = ap->a_pvp;
574 register struct inode *pip;
575 register struct fs *fs;
576 register struct inode *ip;
577 mode_t mode = ap->a_mode;
578 ino_t ino, ipref;
579 int cg, error;
580
581 *ap->a_vpp = NULL;
582 pip = VTOI(pvp);
583 fs = pip->i_fs;
584 if (fs->fs_cstotal.cs_nifree == 0)
585 goto noinodes;
586
587 if ((mode & IFMT) == IFDIR)
588 ipref = ffs_dirpref(fs);
589 else
590 ipref = pip->i_number;
591 if (ipref >= fs->fs_ncg * fs->fs_ipg)
592 ipref = 0;
593 cg = ino_to_cg(fs, ipref);
594 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
595 if (ino == 0)
596 goto noinodes;
597 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
598 if (error) {
599 VOP_VFREE(pvp, ino, mode);
600 return (error);
601 }
602 ip = VTOI(*ap->a_vpp);
603 if (ip->i_ffs_mode) {
604 printf("mode = 0%o, inum = %d, fs = %s\n",
605 ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
606 panic("ffs_valloc: dup alloc");
607 }
608 if (ip->i_ffs_blocks) { /* XXX */
609 printf("free inode %s/%d had %d blocks\n",
610 fs->fs_fsmnt, ino, ip->i_ffs_blocks);
611 ip->i_ffs_blocks = 0;
612 }
613 ip->i_ffs_flags = 0;
614 /*
615 * Set up a new generation number for this inode.
616 */
617 ip->i_ffs_gen++;
618 return (0);
619 noinodes:
620 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
621 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
622 return (ENOSPC);
623 }
624
625 /*
626 * Find a cylinder to place a directory.
627 *
628 * The policy implemented by this algorithm is to select from
629 * among those cylinder groups with above the average number of
630 * free inodes, the one with the smallest number of directories.
631 */
632 static ino_t
633 ffs_dirpref(fs)
634 register struct fs *fs;
635 {
636 int cg, minndir, mincg, avgifree;
637
638 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
639 minndir = fs->fs_ipg;
640 mincg = 0;
641 for (cg = 0; cg < fs->fs_ncg; cg++)
642 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
643 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
644 mincg = cg;
645 minndir = fs->fs_cs(fs, cg).cs_ndir;
646 }
647 return ((ino_t)(fs->fs_ipg * mincg));
648 }
649
650 /*
651 * Select the desired position for the next block in a file. The file is
652 * logically divided into sections. The first section is composed of the
653 * direct blocks. Each additional section contains fs_maxbpg blocks.
654 *
655 * If no blocks have been allocated in the first section, the policy is to
656 * request a block in the same cylinder group as the inode that describes
657 * the file. If no blocks have been allocated in any other section, the
658 * policy is to place the section in a cylinder group with a greater than
659 * average number of free blocks. An appropriate cylinder group is found
660 * by using a rotor that sweeps the cylinder groups. When a new group of
661 * blocks is needed, the sweep begins in the cylinder group following the
662 * cylinder group from which the previous allocation was made. The sweep
663 * continues until a cylinder group with greater than the average number
664 * of free blocks is found. If the allocation is for the first block in an
665 * indirect block, the information on the previous allocation is unavailable;
666 * here a best guess is made based upon the logical block number being
667 * allocated.
668 *
669 * If a section is already partially allocated, the policy is to
670 * contiguously allocate fs_maxcontig blocks. The end of one of these
671 * contiguous blocks and the beginning of the next is physically separated
672 * so that the disk head will be in transit between them for at least
673 * fs_rotdelay milliseconds. This is to allow time for the processor to
674 * schedule another I/O transfer.
675 */
676 ufs_daddr_t
677 ffs_blkpref(ip, lbn, indx, bap)
678 struct inode *ip;
679 ufs_daddr_t lbn;
680 int indx;
681 ufs_daddr_t *bap;
682 {
683 register struct fs *fs;
684 register int cg;
685 int avgbfree, startcg;
686 ufs_daddr_t nextblk;
687
688 fs = ip->i_fs;
689 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
690 if (lbn < NDADDR) {
691 cg = ino_to_cg(fs, ip->i_number);
692 return (fs->fs_fpg * cg + fs->fs_frag);
693 }
694 /*
695 * Find a cylinder with greater than average number of
696 * unused data blocks.
697 */
698 if (indx == 0 || bap[indx - 1] == 0)
699 startcg =
700 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
701 else
702 startcg = dtog(fs,
703 ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
704 startcg %= fs->fs_ncg;
705 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
706 for (cg = startcg; cg < fs->fs_ncg; cg++)
707 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
708 fs->fs_cgrotor = cg;
709 return (fs->fs_fpg * cg + fs->fs_frag);
710 }
711 for (cg = 0; cg <= startcg; cg++)
712 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
713 fs->fs_cgrotor = cg;
714 return (fs->fs_fpg * cg + fs->fs_frag);
715 }
716 return (NULL);
717 }
718 /*
719 * One or more previous blocks have been laid out. If less
720 * than fs_maxcontig previous blocks are contiguous, the
721 * next block is requested contiguously, otherwise it is
722 * requested rotationally delayed by fs_rotdelay milliseconds.
723 */
724 nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
725 if (indx < fs->fs_maxcontig ||
726 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
727 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
728 return (nextblk);
729 if (fs->fs_rotdelay != 0)
730 /*
731 * Here we convert ms of delay to frags as:
732 * (frags) = (ms) * (rev/sec) * (sect/rev) /
733 * ((sect/frag) * (ms/sec))
734 * then round up to the next block.
735 */
736 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
737 (NSPF(fs) * 1000), fs->fs_frag);
738 return (nextblk);
739 }
740
741 /*
742 * Implement the cylinder overflow algorithm.
743 *
744 * The policy implemented by this algorithm is:
745 * 1) allocate the block in its requested cylinder group.
746 * 2) quadradically rehash on the cylinder group number.
747 * 3) brute force search for a free block.
748 */
749 /*VARARGS5*/
750 static u_long
751 ffs_hashalloc(ip, cg, pref, size, allocator)
752 struct inode *ip;
753 int cg;
754 long pref;
755 int size; /* size for data blocks, mode for inodes */
756 ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
757 {
758 register struct fs *fs;
759 long result;
760 int i, icg = cg;
761
762 fs = ip->i_fs;
763 /*
764 * 1: preferred cylinder group
765 */
766 result = (*allocator)(ip, cg, pref, size);
767 if (result)
768 return (result);
769 /*
770 * 2: quadratic rehash
771 */
772 for (i = 1; i < fs->fs_ncg; i *= 2) {
773 cg += i;
774 if (cg >= fs->fs_ncg)
775 cg -= fs->fs_ncg;
776 result = (*allocator)(ip, cg, 0, size);
777 if (result)
778 return (result);
779 }
780 /*
781 * 3: brute force search
782 * Note that we start at i == 2, since 0 was checked initially,
783 * and 1 is always checked in the quadratic rehash.
784 */
785 cg = (icg + 2) % fs->fs_ncg;
786 for (i = 2; i < fs->fs_ncg; i++) {
787 result = (*allocator)(ip, cg, 0, size);
788 if (result)
789 return (result);
790 cg++;
791 if (cg == fs->fs_ncg)
792 cg = 0;
793 }
794 return (NULL);
795 }
796
797 /*
798 * Determine whether a fragment can be extended.
799 *
800 * Check to see if the necessary fragments are available, and
801 * if they are, allocate them.
802 */
803 static ufs_daddr_t
804 ffs_fragextend(ip, cg, bprev, osize, nsize)
805 struct inode *ip;
806 int cg;
807 long bprev;
808 int osize, nsize;
809 {
810 register struct fs *fs;
811 register struct cg *cgp;
812 struct buf *bp;
813 long bno;
814 int frags, bbase;
815 int i, error;
816
817 fs = ip->i_fs;
818 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
819 return (NULL);
820 frags = numfrags(fs, nsize);
821 bbase = fragnum(fs, bprev);
822 if (bbase > fragnum(fs, (bprev + frags - 1))) {
823 /* cannot extend across a block boundary */
824 return (NULL);
825 }
826 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
827 (int)fs->fs_cgsize, NOCRED, &bp);
828 if (error) {
829 brelse(bp);
830 return (NULL);
831 }
832 cgp = (struct cg *)bp->b_data;
833 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
834 brelse(bp);
835 return (NULL);
836 }
837 cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
838 bno = dtogd(fs, bprev);
839 for (i = numfrags(fs, osize); i < frags; i++)
840 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
841 brelse(bp);
842 return (NULL);
843 }
844 /*
845 * the current fragment can be extended
846 * deduct the count on fragment being extended into
847 * increase the count on the remaining fragment (if any)
848 * allocate the extended piece
849 */
850 for (i = frags; i < fs->fs_frag - bbase; i++)
851 if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
852 break;
853 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
854 if (i != frags)
855 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
856 for (i = numfrags(fs, osize); i < frags; i++) {
857 clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
858 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
859 fs->fs_cstotal.cs_nffree--;
860 fs->fs_cs(fs, cg).cs_nffree--;
861 }
862 fs->fs_fmod = 1;
863 bdwrite(bp);
864 return (bprev);
865 }
866
867 /*
868 * Determine whether a block can be allocated.
869 *
870 * Check to see if a block of the appropriate size is available,
871 * and if it is, allocate it.
872 */
873 static ufs_daddr_t
874 ffs_alloccg(ip, cg, bpref, size)
875 struct inode *ip;
876 int cg;
877 ufs_daddr_t bpref;
878 int size;
879 {
880 register struct fs *fs;
881 register struct cg *cgp;
882 struct buf *bp;
883 register int i;
884 int error, bno, frags, allocsiz;
885 const int needswap = UFS_IPNEEDSWAP(ip);
886
887 fs = ip->i_fs;
888 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
889 return (NULL);
890 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
891 (int)fs->fs_cgsize, NOCRED, &bp);
892 if (error) {
893 brelse(bp);
894 return (NULL);
895 }
896 cgp = (struct cg *)bp->b_data;
897 if (!cg_chkmagic(cgp, needswap) ||
898 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
899 brelse(bp);
900 return (NULL);
901 }
902 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
903 if (size == fs->fs_bsize) {
904 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
905 bdwrite(bp);
906 return (bno);
907 }
908 /*
909 * check to see if any fragments are already available
910 * allocsiz is the size which will be allocated, hacking
911 * it down to a smaller size if necessary
912 */
913 frags = numfrags(fs, size);
914 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
915 if (cgp->cg_frsum[allocsiz] != 0)
916 break;
917 if (allocsiz == fs->fs_frag) {
918 /*
919 * no fragments were available, so a block will be
920 * allocated, and hacked up
921 */
922 if (cgp->cg_cs.cs_nbfree == 0) {
923 brelse(bp);
924 return (NULL);
925 }
926 bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
927 bpref = dtogd(fs, bno);
928 for (i = frags; i < fs->fs_frag; i++)
929 setbit(cg_blksfree(cgp, needswap), bpref + i);
930 i = fs->fs_frag - frags;
931 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
932 fs->fs_cstotal.cs_nffree += i;
933 fs->fs_cs(fs, cg).cs_nffree +=i;
934 fs->fs_fmod = 1;
935 ufs_add32(cgp->cg_frsum[i], 1, needswap);
936 bdwrite(bp);
937 return (bno);
938 }
939 bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
940 if (bno < 0) {
941 brelse(bp);
942 return (NULL);
943 }
944 for (i = 0; i < frags; i++)
945 clrbit(cg_blksfree(cgp, needswap), bno + i);
946 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
947 fs->fs_cstotal.cs_nffree -= frags;
948 fs->fs_cs(fs, cg).cs_nffree -= frags;
949 fs->fs_fmod = 1;
950 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
951 if (frags != allocsiz)
952 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
953 bdwrite(bp);
954 return (cg * fs->fs_fpg + bno);
955 }
956
957 /*
958 * Allocate a block in a cylinder group.
959 *
960 * This algorithm implements the following policy:
961 * 1) allocate the requested block.
962 * 2) allocate a rotationally optimal block in the same cylinder.
963 * 3) allocate the next available block on the block rotor for the
964 * specified cylinder group.
965 * Note that this routine only allocates fs_bsize blocks; these
966 * blocks may be fragmented by the routine that allocates them.
967 */
968 static ufs_daddr_t
969 ffs_alloccgblk(mp, fs, cgp, bpref)
970 struct mount *mp;
971 register struct fs *fs;
972 register struct cg *cgp;
973 ufs_daddr_t bpref;
974 {
975 ufs_daddr_t bno, blkno;
976 int cylno, pos, delta;
977 short *cylbp;
978 register int i;
979 const int needswap = UFS_MPNEEDSWAP(mp);
980
981 if (bpref == 0 ||
982 dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
983 bpref = ufs_rw32(cgp->cg_rotor, needswap);
984 goto norot;
985 }
986 bpref = blknum(fs, bpref);
987 bpref = dtogd(fs, bpref);
988 /*
989 * if the requested block is available, use it
990 */
991 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
992 fragstoblks(fs, bpref))) {
993 bno = bpref;
994 goto gotit;
995 }
996 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
997 /*
998 * Block layout information is not available.
999 * Leaving bpref unchanged means we take the
1000 * next available free block following the one
1001 * we just allocated. Hopefully this will at
1002 * least hit a track cache on drives of unknown
1003 * geometry (e.g. SCSI).
1004 */
1005 goto norot;
1006 }
1007 /*
1008 * check for a block available on the same cylinder
1009 */
1010 cylno = cbtocylno(fs, bpref);
1011 if (cg_blktot(cgp, needswap)[cylno] == 0)
1012 goto norot;
1013 /*
1014 * check the summary information to see if a block is
1015 * available in the requested cylinder starting at the
1016 * requested rotational position and proceeding around.
1017 */
1018 cylbp = cg_blks(fs, cgp, cylno, needswap);
1019 pos = cbtorpos(fs, bpref);
1020 for (i = pos; i < fs->fs_nrpos; i++)
1021 if (ufs_rw16(cylbp[i], needswap) > 0)
1022 break;
1023 if (i == fs->fs_nrpos)
1024 for (i = 0; i < pos; i++)
1025 if (ufs_rw16(cylbp[i], needswap) > 0)
1026 break;
1027 if (ufs_rw16(cylbp[i], needswap) > 0) {
1028 /*
1029 * found a rotational position, now find the actual
1030 * block. A panic if none is actually there.
1031 */
1032 pos = cylno % fs->fs_cpc;
1033 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1034 if (fs_postbl(fs, pos)[i] == -1) {
1035 printf("pos = %d, i = %d, fs = %s\n",
1036 pos, i, fs->fs_fsmnt);
1037 panic("ffs_alloccgblk: cyl groups corrupted");
1038 }
1039 for (i = fs_postbl(fs, pos)[i];; ) {
1040 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1041 bno = blkstofrags(fs, (bno + i));
1042 goto gotit;
1043 }
1044 delta = fs_rotbl(fs)[i];
1045 if (delta <= 0 ||
1046 delta + i > fragstoblks(fs, fs->fs_fpg))
1047 break;
1048 i += delta;
1049 }
1050 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1051 panic("ffs_alloccgblk: can't find blk in cyl");
1052 }
1053 norot:
1054 /*
1055 * no blocks in the requested cylinder, so take next
1056 * available one in this cylinder group.
1057 */
1058 bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1059 if (bno < 0)
1060 return (NULL);
1061 cgp->cg_rotor = ufs_rw32(bno, needswap);
1062 gotit:
1063 blkno = fragstoblks(fs, bno);
1064 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1065 ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1066 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1067 fs->fs_cstotal.cs_nbfree--;
1068 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1069 cylno = cbtocylno(fs, bno);
1070 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1071 needswap);
1072 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1073 fs->fs_fmod = 1;
1074 return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1075 }
1076
1077 /*
1078 * Determine whether a cluster can be allocated.
1079 *
1080 * We do not currently check for optimal rotational layout if there
1081 * are multiple choices in the same cylinder group. Instead we just
1082 * take the first one that we find following bpref.
1083 */
1084 static ufs_daddr_t
1085 ffs_clusteralloc(ip, cg, bpref, len)
1086 struct inode *ip;
1087 int cg;
1088 ufs_daddr_t bpref;
1089 int len;
1090 {
1091 register struct fs *fs;
1092 register struct cg *cgp;
1093 struct buf *bp;
1094 int i, got, run, bno, bit, map;
1095 u_char *mapp;
1096 int32_t *lp;
1097
1098 fs = ip->i_fs;
1099 if (fs->fs_maxcluster[cg] < len)
1100 return (NULL);
1101 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1102 NOCRED, &bp))
1103 goto fail;
1104 cgp = (struct cg *)bp->b_data;
1105 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1106 goto fail;
1107 /*
1108 * Check to see if a cluster of the needed size (or bigger) is
1109 * available in this cylinder group.
1110 */
1111 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1112 for (i = len; i <= fs->fs_contigsumsize; i++)
1113 if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1114 break;
1115 if (i > fs->fs_contigsumsize) {
1116 /*
1117 * This is the first time looking for a cluster in this
1118 * cylinder group. Update the cluster summary information
1119 * to reflect the true maximum sized cluster so that
1120 * future cluster allocation requests can avoid reading
1121 * the cylinder group map only to find no clusters.
1122 */
1123 lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1124 for (i = len - 1; i > 0; i--)
1125 if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1126 break;
1127 fs->fs_maxcluster[cg] = i;
1128 goto fail;
1129 }
1130 /*
1131 * Search the cluster map to find a big enough cluster.
1132 * We take the first one that we find, even if it is larger
1133 * than we need as we prefer to get one close to the previous
1134 * block allocation. We do not search before the current
1135 * preference point as we do not want to allocate a block
1136 * that is allocated before the previous one (as we will
1137 * then have to wait for another pass of the elevator
1138 * algorithm before it will be read). We prefer to fail and
1139 * be recalled to try an allocation in the next cylinder group.
1140 */
1141 if (dtog(fs, bpref) != cg)
1142 bpref = 0;
1143 else
1144 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1145 mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1146 map = *mapp++;
1147 bit = 1 << (bpref % NBBY);
1148 for (run = 0, got = bpref;
1149 got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1150 if ((map & bit) == 0) {
1151 run = 0;
1152 } else {
1153 run++;
1154 if (run == len)
1155 break;
1156 }
1157 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1158 bit <<= 1;
1159 } else {
1160 map = *mapp++;
1161 bit = 1;
1162 }
1163 }
1164 if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1165 goto fail;
1166 /*
1167 * Allocate the cluster that we have found.
1168 */
1169 for (i = 1; i <= len; i++)
1170 if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1171 got - run + i))
1172 panic("ffs_clusteralloc: map mismatch");
1173 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1174 if (dtog(fs, bno) != cg)
1175 panic("ffs_clusteralloc: allocated out of group");
1176 len = blkstofrags(fs, len);
1177 for (i = 0; i < len; i += fs->fs_frag)
1178 if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1179 != bno + i)
1180 panic("ffs_clusteralloc: lost block");
1181 bdwrite(bp);
1182 return (bno);
1183
1184 fail:
1185 brelse(bp);
1186 return (0);
1187 }
1188
1189 /*
1190 * Determine whether an inode can be allocated.
1191 *
1192 * Check to see if an inode is available, and if it is,
1193 * allocate it using the following policy:
1194 * 1) allocate the requested inode.
1195 * 2) allocate the next available inode after the requested
1196 * inode in the specified cylinder group.
1197 */
1198 static ufs_daddr_t
1199 ffs_nodealloccg(ip, cg, ipref, mode)
1200 struct inode *ip;
1201 int cg;
1202 ufs_daddr_t ipref;
1203 int mode;
1204 {
1205 register struct fs *fs;
1206 register struct cg *cgp;
1207 struct buf *bp;
1208 int error, start, len, loc, map, i;
1209 #ifdef FFS_EI
1210 const int needswap = UFS_IPNEEDSWAP(ip);
1211 #endif
1212
1213 fs = ip->i_fs;
1214 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1215 return (NULL);
1216 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1217 (int)fs->fs_cgsize, NOCRED, &bp);
1218 if (error) {
1219 brelse(bp);
1220 return (NULL);
1221 }
1222 cgp = (struct cg *)bp->b_data;
1223 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1224 brelse(bp);
1225 return (NULL);
1226 }
1227 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1228 if (ipref) {
1229 ipref %= fs->fs_ipg;
1230 if (isclr(cg_inosused(cgp, needswap), ipref))
1231 goto gotit;
1232 }
1233 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1234 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1235 NBBY);
1236 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1237 if (loc == 0) {
1238 len = start + 1;
1239 start = 0;
1240 loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1241 if (loc == 0) {
1242 printf("cg = %d, irotor = %d, fs = %s\n",
1243 cg, ufs_rw32(cgp->cg_irotor, needswap),
1244 fs->fs_fsmnt);
1245 panic("ffs_nodealloccg: map corrupted");
1246 /* NOTREACHED */
1247 }
1248 }
1249 i = start + len - loc;
1250 map = cg_inosused(cgp, needswap)[i];
1251 ipref = i * NBBY;
1252 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1253 if ((map & i) == 0) {
1254 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1255 goto gotit;
1256 }
1257 }
1258 printf("fs = %s\n", fs->fs_fsmnt);
1259 panic("ffs_nodealloccg: block not in map");
1260 /* NOTREACHED */
1261 gotit:
1262 setbit(cg_inosused(cgp, needswap), ipref);
1263 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1264 fs->fs_cstotal.cs_nifree--;
1265 fs->fs_cs(fs, cg).cs_nifree --;
1266 fs->fs_fmod = 1;
1267 if ((mode & IFMT) == IFDIR) {
1268 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1269 fs->fs_cstotal.cs_ndir++;
1270 fs->fs_cs(fs, cg).cs_ndir++;
1271 }
1272 bdwrite(bp);
1273 return (cg * fs->fs_ipg + ipref);
1274 }
1275
1276 /*
1277 * Free a block or fragment.
1278 *
1279 * The specified block or fragment is placed back in the
1280 * free map. If a fragment is deallocated, a possible
1281 * block reassembly is checked.
1282 */
1283 void
1284 ffs_blkfree(ip, bno, size)
1285 register struct inode *ip;
1286 ufs_daddr_t bno;
1287 long size;
1288 {
1289 register struct fs *fs;
1290 register struct cg *cgp;
1291 struct buf *bp;
1292 ufs_daddr_t blkno;
1293 int i, error, cg, blk, frags, bbase;
1294 const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1295
1296 fs = ip->i_fs;
1297 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1298 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1299 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1300 panic("blkfree: bad size");
1301 }
1302 cg = dtog(fs, bno);
1303 if ((u_int)bno >= fs->fs_size) {
1304 printf("bad block %d, ino %d\n", bno, ip->i_number);
1305 ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1306 return;
1307 }
1308 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1309 (int)fs->fs_cgsize, NOCRED, &bp);
1310 if (error) {
1311 brelse(bp);
1312 return;
1313 }
1314 cgp = (struct cg *)bp->b_data;
1315 if (!cg_chkmagic(cgp, needswap)) {
1316 brelse(bp);
1317 return;
1318 }
1319 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1320 bno = dtogd(fs, bno);
1321 if (size == fs->fs_bsize) {
1322 blkno = fragstoblks(fs, bno);
1323 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1324 printf("dev = 0x%x, block = %d, fs = %s\n",
1325 ip->i_dev, bno, fs->fs_fsmnt);
1326 panic("blkfree: freeing free block");
1327 }
1328 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1329 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1330 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1331 fs->fs_cstotal.cs_nbfree++;
1332 fs->fs_cs(fs, cg).cs_nbfree++;
1333 i = cbtocylno(fs, bno);
1334 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1335 needswap);
1336 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1337 } else {
1338 bbase = bno - fragnum(fs, bno);
1339 /*
1340 * decrement the counts associated with the old frags
1341 */
1342 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1343 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1344 /*
1345 * deallocate the fragment
1346 */
1347 frags = numfrags(fs, size);
1348 for (i = 0; i < frags; i++) {
1349 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1350 printf("dev = 0x%x, block = %d, fs = %s\n",
1351 ip->i_dev, bno + i, fs->fs_fsmnt);
1352 panic("blkfree: freeing free frag");
1353 }
1354 setbit(cg_blksfree(cgp, needswap), bno + i);
1355 }
1356 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1357 fs->fs_cstotal.cs_nffree += i;
1358 fs->fs_cs(fs, cg).cs_nffree +=i;
1359 /*
1360 * add back in counts associated with the new frags
1361 */
1362 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1363 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1364 /*
1365 * if a complete block has been reassembled, account for it
1366 */
1367 blkno = fragstoblks(fs, bbase);
1368 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1369 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1370 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1371 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1372 ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1373 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1374 fs->fs_cstotal.cs_nbfree++;
1375 fs->fs_cs(fs, cg).cs_nbfree++;
1376 i = cbtocylno(fs, bbase);
1377 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1378 needswap);
1379 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1380 }
1381 }
1382 fs->fs_fmod = 1;
1383 bdwrite(bp);
1384 }
1385
1386 #if defined(DIAGNOSTIC) || defined(DEBUG)
1387 /*
1388 * Verify allocation of a block or fragment. Returns true if block or
1389 * fragment is allocated, false if it is free.
1390 */
1391 static int
1392 ffs_checkblk(ip, bno, size)
1393 struct inode *ip;
1394 ufs_daddr_t bno;
1395 long size;
1396 {
1397 struct fs *fs;
1398 struct cg *cgp;
1399 struct buf *bp;
1400 int i, error, frags, free;
1401
1402 fs = ip->i_fs;
1403 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1404 printf("bsize = %d, size = %ld, fs = %s\n",
1405 fs->fs_bsize, size, fs->fs_fsmnt);
1406 panic("checkblk: bad size");
1407 }
1408 if ((u_int)bno >= fs->fs_size)
1409 panic("checkblk: bad block %d", bno);
1410 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1411 (int)fs->fs_cgsize, NOCRED, &bp);
1412 if (error) {
1413 brelse(bp);
1414 return 0;
1415 }
1416 cgp = (struct cg *)bp->b_data;
1417 if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1418 brelse(bp);
1419 return 0;
1420 }
1421 bno = dtogd(fs, bno);
1422 if (size == fs->fs_bsize) {
1423 free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1424 fragstoblks(fs, bno));
1425 } else {
1426 frags = numfrags(fs, size);
1427 for (free = 0, i = 0; i < frags; i++)
1428 if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1429 free++;
1430 if (free != 0 && free != frags)
1431 panic("checkblk: partially free fragment");
1432 }
1433 brelse(bp);
1434 return (!free);
1435 }
1436 #endif /* DIAGNOSTIC */
1437
1438 /*
1439 * Free an inode.
1440 *
1441 * The specified inode is placed back in the free map.
1442 */
1443 int
1444 ffs_vfree(v)
1445 void *v;
1446 {
1447 struct vop_vfree_args /* {
1448 struct vnode *a_pvp;
1449 ino_t a_ino;
1450 int a_mode;
1451 } */ *ap = v;
1452 register struct fs *fs;
1453 register struct cg *cgp;
1454 register struct inode *pip;
1455 ino_t ino = ap->a_ino;
1456 struct buf *bp;
1457 int error, cg;
1458 #ifdef FFS_EI
1459 const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1460 #endif
1461
1462 pip = VTOI(ap->a_pvp);
1463 fs = pip->i_fs;
1464 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1465 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1466 pip->i_dev, ino, fs->fs_fsmnt);
1467 cg = ino_to_cg(fs, ino);
1468 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1469 (int)fs->fs_cgsize, NOCRED, &bp);
1470 if (error) {
1471 brelse(bp);
1472 return (0);
1473 }
1474 cgp = (struct cg *)bp->b_data;
1475 if (!cg_chkmagic(cgp, needswap)) {
1476 brelse(bp);
1477 return (0);
1478 }
1479 cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1480 ino %= fs->fs_ipg;
1481 if (isclr(cg_inosused(cgp, needswap), ino)) {
1482 printf("dev = 0x%x, ino = %d, fs = %s\n",
1483 pip->i_dev, ino, fs->fs_fsmnt);
1484 if (fs->fs_ronly == 0)
1485 panic("ifree: freeing free inode");
1486 }
1487 clrbit(cg_inosused(cgp, needswap), ino);
1488 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1489 cgp->cg_irotor = ufs_rw32(ino, needswap);
1490 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1491 fs->fs_cstotal.cs_nifree++;
1492 fs->fs_cs(fs, cg).cs_nifree++;
1493 if ((ap->a_mode & IFMT) == IFDIR) {
1494 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1495 fs->fs_cstotal.cs_ndir--;
1496 fs->fs_cs(fs, cg).cs_ndir--;
1497 }
1498 fs->fs_fmod = 1;
1499 bdwrite(bp);
1500 return (0);
1501 }
1502
1503 /*
1504 * Find a block of the specified size in the specified cylinder group.
1505 *
1506 * It is a panic if a request is made to find a block if none are
1507 * available.
1508 */
1509 static ufs_daddr_t
1510 ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1511 int needswap;
1512 register struct fs *fs;
1513 register struct cg *cgp;
1514 ufs_daddr_t bpref;
1515 int allocsiz;
1516 {
1517 ufs_daddr_t bno;
1518 int start, len, loc, i;
1519 int blk, field, subfield, pos;
1520 int ostart, olen;
1521
1522 /*
1523 * find the fragment by searching through the free block
1524 * map for an appropriate bit pattern
1525 */
1526 if (bpref)
1527 start = dtogd(fs, bpref) / NBBY;
1528 else
1529 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1530 len = howmany(fs->fs_fpg, NBBY) - start;
1531 ostart = start;
1532 olen = len;
1533 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1534 (u_char *)fragtbl[fs->fs_frag],
1535 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1536 if (loc == 0) {
1537 len = start + 1;
1538 start = 0;
1539 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1540 (u_char *)fragtbl[fs->fs_frag],
1541 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1542 if (loc == 0) {
1543 printf("start = %d, len = %d, fs = %s\n",
1544 ostart, olen, fs->fs_fsmnt);
1545 printf("offset=%d %ld\n",
1546 ufs_rw32(cgp->cg_freeoff, needswap),
1547 (long)cg_blksfree(cgp, needswap) - (long)cgp);
1548 panic("ffs_alloccg: map corrupted");
1549 /* NOTREACHED */
1550 }
1551 }
1552 bno = (start + len - loc) * NBBY;
1553 cgp->cg_frotor = ufs_rw32(bno, needswap);
1554 /*
1555 * found the byte in the map
1556 * sift through the bits to find the selected frag
1557 */
1558 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1559 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1560 blk <<= 1;
1561 field = around[allocsiz];
1562 subfield = inside[allocsiz];
1563 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1564 if ((blk & field) == subfield)
1565 return (bno + pos);
1566 field <<= 1;
1567 subfield <<= 1;
1568 }
1569 }
1570 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1571 panic("ffs_alloccg: block not in map");
1572 return (-1);
1573 }
1574
1575 /*
1576 * Update the cluster map because of an allocation or free.
1577 *
1578 * Cnt == 1 means free; cnt == -1 means allocating.
1579 */
1580 void
1581 ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1582 int needswap;
1583 struct fs *fs;
1584 struct cg *cgp;
1585 ufs_daddr_t blkno;
1586 int cnt;
1587 {
1588 int32_t *sump;
1589 int32_t *lp;
1590 u_char *freemapp, *mapp;
1591 int i, start, end, forw, back, map, bit;
1592
1593 if (fs->fs_contigsumsize <= 0)
1594 return;
1595 freemapp = cg_clustersfree(cgp, needswap);
1596 sump = cg_clustersum(cgp, needswap);
1597 /*
1598 * Allocate or clear the actual block.
1599 */
1600 if (cnt > 0)
1601 setbit(freemapp, blkno);
1602 else
1603 clrbit(freemapp, blkno);
1604 /*
1605 * Find the size of the cluster going forward.
1606 */
1607 start = blkno + 1;
1608 end = start + fs->fs_contigsumsize;
1609 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1610 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1611 mapp = &freemapp[start / NBBY];
1612 map = *mapp++;
1613 bit = 1 << (start % NBBY);
1614 for (i = start; i < end; i++) {
1615 if ((map & bit) == 0)
1616 break;
1617 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1618 bit <<= 1;
1619 } else {
1620 map = *mapp++;
1621 bit = 1;
1622 }
1623 }
1624 forw = i - start;
1625 /*
1626 * Find the size of the cluster going backward.
1627 */
1628 start = blkno - 1;
1629 end = start - fs->fs_contigsumsize;
1630 if (end < 0)
1631 end = -1;
1632 mapp = &freemapp[start / NBBY];
1633 map = *mapp--;
1634 bit = 1 << (start % NBBY);
1635 for (i = start; i > end; i--) {
1636 if ((map & bit) == 0)
1637 break;
1638 if ((i & (NBBY - 1)) != 0) {
1639 bit >>= 1;
1640 } else {
1641 map = *mapp--;
1642 bit = 1 << (NBBY - 1);
1643 }
1644 }
1645 back = start - i;
1646 /*
1647 * Account for old cluster and the possibly new forward and
1648 * back clusters.
1649 */
1650 i = back + forw + 1;
1651 if (i > fs->fs_contigsumsize)
1652 i = fs->fs_contigsumsize;
1653 ufs_add32(sump[i], cnt, needswap);
1654 if (back > 0)
1655 ufs_add32(sump[back], -cnt, needswap);
1656 if (forw > 0)
1657 ufs_add32(sump[forw], -cnt, needswap);
1658
1659 /*
1660 * Update cluster summary information.
1661 */
1662 lp = &sump[fs->fs_contigsumsize];
1663 for (i = fs->fs_contigsumsize; i > 0; i--)
1664 if (ufs_rw32(*lp--, needswap) > 0)
1665 break;
1666 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1667 }
1668
1669 /*
1670 * Fserr prints the name of a file system with an error diagnostic.
1671 *
1672 * The form of the error message is:
1673 * fs: error message
1674 */
1675 static void
1676 ffs_fserr(fs, uid, cp)
1677 struct fs *fs;
1678 u_int uid;
1679 char *cp;
1680 {
1681
1682 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1683 }
1684