Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.30
      1 /*	$NetBSD: ffs_alloc.c,v 1.30 1999/11/15 18:49:13 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36  */
     37 
     38 #if defined(_KERNEL) && !defined(_LKM)
     39 #include "opt_ffs.h"
     40 #include "opt_quota.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/mount.h>
     49 #include <sys/kernel.h>
     50 #include <sys/syslog.h>
     51 
     52 #include <vm/vm.h>
     53 
     54 #include <uvm/uvm_extern.h>
     55 
     56 #include <ufs/ufs/quota.h>
     57 #include <ufs/ufs/ufsmount.h>
     58 #include <ufs/ufs/inode.h>
     59 #include <ufs/ufs/ufs_extern.h>
     60 #include <ufs/ufs/ufs_bswap.h>
     61 
     62 #include <ufs/ffs/fs.h>
     63 #include <ufs/ffs/ffs_extern.h>
     64 
     65 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     66 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *,
     67 					ufs_daddr_t));
     68 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     69 static ino_t ffs_dirpref __P((struct fs *));
     70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     71 static void ffs_fserr __P((struct fs *, u_int, char *));
     72 static u_long ffs_hashalloc
     73 		__P((struct inode *, int, long, int,
     74 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
     75 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     76 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
     77 				      ufs_daddr_t, int));
     78 #if defined(DIAGNOSTIC) || defined(DEBUG)
     79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     80 #endif
     81 
     82 /* in ffs_tables.c */
     83 extern int inside[], around[];
     84 extern u_char *fragtbl[];
     85 
     86 /*
     87  * Allocate a block in the file system.
     88  *
     89  * The size of the requested block is given, which must be some
     90  * multiple of fs_fsize and <= fs_bsize.
     91  * A preference may be optionally specified. If a preference is given
     92  * the following hierarchy is used to allocate a block:
     93  *   1) allocate the requested block.
     94  *   2) allocate a rotationally optimal block in the same cylinder.
     95  *   3) allocate a block in the same cylinder group.
     96  *   4) quadradically rehash into other cylinder groups, until an
     97  *      available block is located.
     98  * If no block preference is given the following heirarchy is used
     99  * to allocate a block:
    100  *   1) allocate a block in the cylinder group that contains the
    101  *      inode for the file.
    102  *   2) quadradically rehash into other cylinder groups, until an
    103  *      available block is located.
    104  */
    105 int
    106 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    107 	register struct inode *ip;
    108 	ufs_daddr_t lbn, bpref;
    109 	int size;
    110 	struct ucred *cred;
    111 	ufs_daddr_t *bnp;
    112 {
    113 	register struct fs *fs;
    114 	ufs_daddr_t bno;
    115 	int cg;
    116 #ifdef QUOTA
    117 	int error;
    118 #endif
    119 
    120 	*bnp = 0;
    121 	fs = ip->i_fs;
    122 #ifdef DIAGNOSTIC
    123 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    124 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    125 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    126 		panic("ffs_alloc: bad size");
    127 	}
    128 	if (cred == NOCRED)
    129 		panic("ffs_alloc: missing credential\n");
    130 #endif /* DIAGNOSTIC */
    131 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    132 		goto nospace;
    133 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    134 		goto nospace;
    135 #ifdef QUOTA
    136 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    137 		return (error);
    138 #endif
    139 	if (bpref >= fs->fs_size)
    140 		bpref = 0;
    141 	if (bpref == 0)
    142 		cg = ino_to_cg(fs, ip->i_number);
    143 	else
    144 		cg = dtog(fs, bpref);
    145 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    146 	    			     ffs_alloccg);
    147 	if (bno > 0) {
    148 		ip->i_ffs_blocks += btodb(size);
    149 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    150 		*bnp = bno;
    151 		return (0);
    152 	}
    153 #ifdef QUOTA
    154 	/*
    155 	 * Restore user's disk quota because allocation failed.
    156 	 */
    157 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    158 #endif
    159 nospace:
    160 	ffs_fserr(fs, cred->cr_uid, "file system full");
    161 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    162 	return (ENOSPC);
    163 }
    164 
    165 /*
    166  * Reallocate a fragment to a bigger size
    167  *
    168  * The number and size of the old block is given, and a preference
    169  * and new size is also specified. The allocator attempts to extend
    170  * the original block. Failing that, the regular block allocator is
    171  * invoked to get an appropriate block.
    172  */
    173 int
    174 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    175 	register struct inode *ip;
    176 	ufs_daddr_t lbprev;
    177 	ufs_daddr_t bpref;
    178 	int osize, nsize;
    179 	struct ucred *cred;
    180 	struct buf **bpp;
    181 {
    182 	register struct fs *fs;
    183 	struct buf *bp;
    184 	int cg, request, error;
    185 	ufs_daddr_t bprev, bno;
    186 
    187 	*bpp = 0;
    188 	fs = ip->i_fs;
    189 #ifdef DIAGNOSTIC
    190 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    191 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    192 		printf(
    193 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    194 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    195 		panic("ffs_realloccg: bad size");
    196 	}
    197 	if (cred == NOCRED)
    198 		panic("ffs_realloccg: missing credential\n");
    199 #endif /* DIAGNOSTIC */
    200 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    201 		goto nospace;
    202 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
    203 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    204 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    205 		panic("ffs_realloccg: bad bprev");
    206 	}
    207 	/*
    208 	 * Allocate the extra space in the buffer.
    209 	 */
    210 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    211 		brelse(bp);
    212 		return (error);
    213 	}
    214 #ifdef QUOTA
    215 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    216 		brelse(bp);
    217 		return (error);
    218 	}
    219 #endif
    220 	/*
    221 	 * Check for extension in the existing location.
    222 	 */
    223 	cg = dtog(fs, bprev);
    224 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    225 		if (bp->b_blkno != fsbtodb(fs, bno))
    226 			panic("bad blockno");
    227 		ip->i_ffs_blocks += btodb(nsize - osize);
    228 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    229 		allocbuf(bp, nsize);
    230 		bp->b_flags |= B_DONE;
    231 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    232 		*bpp = bp;
    233 		return (0);
    234 	}
    235 	/*
    236 	 * Allocate a new disk location.
    237 	 */
    238 	if (bpref >= fs->fs_size)
    239 		bpref = 0;
    240 	switch ((int)fs->fs_optim) {
    241 	case FS_OPTSPACE:
    242 		/*
    243 		 * Allocate an exact sized fragment. Although this makes
    244 		 * best use of space, we will waste time relocating it if
    245 		 * the file continues to grow. If the fragmentation is
    246 		 * less than half of the minimum free reserve, we choose
    247 		 * to begin optimizing for time.
    248 		 */
    249 		request = nsize;
    250 		if (fs->fs_minfree < 5 ||
    251 		    fs->fs_cstotal.cs_nffree >
    252 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    253 			break;
    254 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    255 			fs->fs_fsmnt);
    256 		fs->fs_optim = FS_OPTTIME;
    257 		break;
    258 	case FS_OPTTIME:
    259 		/*
    260 		 * At this point we have discovered a file that is trying to
    261 		 * grow a small fragment to a larger fragment. To save time,
    262 		 * we allocate a full sized block, then free the unused portion.
    263 		 * If the file continues to grow, the `ffs_fragextend' call
    264 		 * above will be able to grow it in place without further
    265 		 * copying. If aberrant programs cause disk fragmentation to
    266 		 * grow within 2% of the free reserve, we choose to begin
    267 		 * optimizing for space.
    268 		 */
    269 		request = fs->fs_bsize;
    270 		if (fs->fs_cstotal.cs_nffree <
    271 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    272 			break;
    273 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    274 			fs->fs_fsmnt);
    275 		fs->fs_optim = FS_OPTSPACE;
    276 		break;
    277 	default:
    278 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    279 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    280 		panic("ffs_realloccg: bad optim");
    281 		/* NOTREACHED */
    282 	}
    283 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    284 	    			     ffs_alloccg);
    285 	if (bno > 0) {
    286 		bp->b_blkno = fsbtodb(fs, bno);
    287 		(void) uvm_vnp_uncache(ITOV(ip));
    288 		if (!DOINGSOFTDEP(ITOV(ip)))
    289 			ffs_blkfree(ip, bprev, (long)osize);
    290 		if (nsize < request)
    291 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    292 			    (long)(request - nsize));
    293 		ip->i_ffs_blocks += btodb(nsize - osize);
    294 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    295 		allocbuf(bp, nsize);
    296 		bp->b_flags |= B_DONE;
    297 		memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    298 		*bpp = bp;
    299 		return (0);
    300 	}
    301 #ifdef QUOTA
    302 	/*
    303 	 * Restore user's disk quota because allocation failed.
    304 	 */
    305 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    306 #endif
    307 	brelse(bp);
    308 nospace:
    309 	/*
    310 	 * no space available
    311 	 */
    312 	ffs_fserr(fs, cred->cr_uid, "file system full");
    313 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    314 	return (ENOSPC);
    315 }
    316 
    317 /*
    318  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    319  *
    320  * The vnode and an array of buffer pointers for a range of sequential
    321  * logical blocks to be made contiguous is given. The allocator attempts
    322  * to find a range of sequential blocks starting as close as possible to
    323  * an fs_rotdelay offset from the end of the allocation for the logical
    324  * block immediately preceeding the current range. If successful, the
    325  * physical block numbers in the buffer pointers and in the inode are
    326  * changed to reflect the new allocation. If unsuccessful, the allocation
    327  * is left unchanged. The success in doing the reallocation is returned.
    328  * Note that the error return is not reflected back to the user. Rather
    329  * the previous block allocation will be used.
    330  */
    331 #ifdef DEBUG
    332 #include <sys/sysctl.h>
    333 int prtrealloc = 0;
    334 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    335 #endif
    336 
    337 int doasyncfree = 1;
    338 extern int doreallocblks;
    339 
    340 int
    341 ffs_reallocblks(v)
    342 	void *v;
    343 {
    344 	struct vop_reallocblks_args /* {
    345 		struct vnode *a_vp;
    346 		struct cluster_save *a_buflist;
    347 	} */ *ap = v;
    348 	struct fs *fs;
    349 	struct inode *ip;
    350 	struct vnode *vp;
    351 	struct buf *sbp, *ebp;
    352 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    353 	struct cluster_save *buflist;
    354 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    355 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    356 	int i, len, start_lvl, end_lvl, pref, ssize;
    357 
    358 	vp = ap->a_vp;
    359 	ip = VTOI(vp);
    360 	fs = ip->i_fs;
    361 	if (fs->fs_contigsumsize <= 0)
    362 		return (ENOSPC);
    363 	buflist = ap->a_buflist;
    364 	len = buflist->bs_nchildren;
    365 	start_lbn = buflist->bs_children[0]->b_lblkno;
    366 	end_lbn = start_lbn + len - 1;
    367 #ifdef DIAGNOSTIC
    368 	for (i = 0; i < len; i++)
    369 		if (!ffs_checkblk(ip,
    370 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    371 			panic("ffs_reallocblks: unallocated block 1");
    372 	for (i = 1; i < len; i++)
    373 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    374 			panic("ffs_reallocblks: non-logical cluster");
    375 	blkno = buflist->bs_children[0]->b_blkno;
    376 	ssize = fsbtodb(fs, fs->fs_frag);
    377 	for (i = 1; i < len - 1; i++)
    378 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    379 			panic("ffs_reallocblks: non-physical cluster %d", i);
    380 #endif
    381 	/*
    382 	 * If the latest allocation is in a new cylinder group, assume that
    383 	 * the filesystem has decided to move and do not force it back to
    384 	 * the previous cylinder group.
    385 	 */
    386 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    387 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    388 		return (ENOSPC);
    389 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    390 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    391 		return (ENOSPC);
    392 	/*
    393 	 * Get the starting offset and block map for the first block.
    394 	 */
    395 	if (start_lvl == 0) {
    396 		sbap = &ip->i_ffs_db[0];
    397 		soff = start_lbn;
    398 	} else {
    399 		idp = &start_ap[start_lvl - 1];
    400 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    401 			brelse(sbp);
    402 			return (ENOSPC);
    403 		}
    404 		sbap = (ufs_daddr_t *)sbp->b_data;
    405 		soff = idp->in_off;
    406 	}
    407 	/*
    408 	 * Find the preferred location for the cluster.
    409 	 */
    410 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    411 	/*
    412 	 * If the block range spans two block maps, get the second map.
    413 	 */
    414 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    415 		ssize = len;
    416 	} else {
    417 #ifdef DIAGNOSTIC
    418 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    419 			panic("ffs_reallocblk: start == end");
    420 #endif
    421 		ssize = len - (idp->in_off + 1);
    422 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    423 			goto fail;
    424 		ebap = (ufs_daddr_t *)ebp->b_data;
    425 	}
    426 	/*
    427 	 * Search the block map looking for an allocation of the desired size.
    428 	 */
    429 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    430 	    len, ffs_clusteralloc)) == 0)
    431 		goto fail;
    432 	/*
    433 	 * We have found a new contiguous block.
    434 	 *
    435 	 * First we have to replace the old block pointers with the new
    436 	 * block pointers in the inode and indirect blocks associated
    437 	 * with the file.
    438 	 */
    439 #ifdef DEBUG
    440 	if (prtrealloc)
    441 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    442 		    start_lbn, end_lbn);
    443 #endif
    444 	blkno = newblk;
    445 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    446 		ufs_daddr_t ba;
    447 
    448 		if (i == ssize) {
    449 			bap = ebap;
    450 			soff = -i;
    451 		}
    452 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    453 #ifdef DIAGNOSTIC
    454 		if (!ffs_checkblk(ip,
    455 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    456 			panic("ffs_reallocblks: unallocated block 2");
    457 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    458 			panic("ffs_reallocblks: alloc mismatch");
    459 #endif
    460 #ifdef DEBUG
    461 		if (prtrealloc)
    462 			printf(" %d,", ba);
    463 #endif
    464  		if (DOINGSOFTDEP(vp)) {
    465  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
    466  				softdep_setup_allocdirect(ip, start_lbn + i,
    467  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    468  				    buflist->bs_children[i]);
    469  			else
    470  				softdep_setup_allocindir_page(ip, start_lbn + i,
    471  				    i < ssize ? sbp : ebp, soff + i, blkno,
    472  				    ba, buflist->bs_children[i]);
    473  		}
    474 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
    475 	}
    476 	/*
    477 	 * Next we must write out the modified inode and indirect blocks.
    478 	 * For strict correctness, the writes should be synchronous since
    479 	 * the old block values may have been written to disk. In practise
    480 	 * they are almost never written, but if we are concerned about
    481 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    482 	 *
    483 	 * The test on `doasyncfree' should be changed to test a flag
    484 	 * that shows whether the associated buffers and inodes have
    485 	 * been written. The flag should be set when the cluster is
    486 	 * started and cleared whenever the buffer or inode is flushed.
    487 	 * We can then check below to see if it is set, and do the
    488 	 * synchronous write only when it has been cleared.
    489 	 */
    490 	if (sbap != &ip->i_ffs_db[0]) {
    491 		if (doasyncfree)
    492 			bdwrite(sbp);
    493 		else
    494 			bwrite(sbp);
    495 	} else {
    496 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    497 		if (!doasyncfree)
    498 			VOP_UPDATE(vp, NULL, NULL, 1);
    499 	}
    500 	if (ssize < len) {
    501 		if (doasyncfree)
    502 			bdwrite(ebp);
    503 		else
    504 			bwrite(ebp);
    505 	}
    506 	/*
    507 	 * Last, free the old blocks and assign the new blocks to the buffers.
    508 	 */
    509 #ifdef DEBUG
    510 	if (prtrealloc)
    511 		printf("\n\tnew:");
    512 #endif
    513 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    514 		if (!DOINGSOFTDEP(vp))
    515 			ffs_blkfree(ip,
    516 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    517 			    fs->fs_bsize);
    518 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    519 #ifdef DEBUG
    520 		if (!ffs_checkblk(ip,
    521 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    522 			panic("ffs_reallocblks: unallocated block 3");
    523 		if (prtrealloc)
    524 			printf(" %d,", blkno);
    525 #endif
    526 	}
    527 #ifdef DEBUG
    528 	if (prtrealloc) {
    529 		prtrealloc--;
    530 		printf("\n");
    531 	}
    532 #endif
    533 	return (0);
    534 
    535 fail:
    536 	if (ssize < len)
    537 		brelse(ebp);
    538 	if (sbap != &ip->i_ffs_db[0])
    539 		brelse(sbp);
    540 	return (ENOSPC);
    541 }
    542 
    543 /*
    544  * Allocate an inode in the file system.
    545  *
    546  * If allocating a directory, use ffs_dirpref to select the inode.
    547  * If allocating in a directory, the following hierarchy is followed:
    548  *   1) allocate the preferred inode.
    549  *   2) allocate an inode in the same cylinder group.
    550  *   3) quadradically rehash into other cylinder groups, until an
    551  *      available inode is located.
    552  * If no inode preference is given the following heirarchy is used
    553  * to allocate an inode:
    554  *   1) allocate an inode in cylinder group 0.
    555  *   2) quadradically rehash into other cylinder groups, until an
    556  *      available inode is located.
    557  */
    558 int
    559 ffs_valloc(v)
    560 	void *v;
    561 {
    562 	struct vop_valloc_args /* {
    563 		struct vnode *a_pvp;
    564 		int a_mode;
    565 		struct ucred *a_cred;
    566 		struct vnode **a_vpp;
    567 	} */ *ap = v;
    568 	register struct vnode *pvp = ap->a_pvp;
    569 	register struct inode *pip;
    570 	register struct fs *fs;
    571 	register struct inode *ip;
    572 	mode_t mode = ap->a_mode;
    573 	ino_t ino, ipref;
    574 	int cg, error;
    575 
    576 	*ap->a_vpp = NULL;
    577 	pip = VTOI(pvp);
    578 	fs = pip->i_fs;
    579 	if (fs->fs_cstotal.cs_nifree == 0)
    580 		goto noinodes;
    581 
    582 	if ((mode & IFMT) == IFDIR)
    583 		ipref = ffs_dirpref(fs);
    584 	else
    585 		ipref = pip->i_number;
    586 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    587 		ipref = 0;
    588 	cg = ino_to_cg(fs, ipref);
    589 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    590 	if (ino == 0)
    591 		goto noinodes;
    592 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    593 	if (error) {
    594 		VOP_VFREE(pvp, ino, mode);
    595 		return (error);
    596 	}
    597 	ip = VTOI(*ap->a_vpp);
    598 	if (ip->i_ffs_mode) {
    599 		printf("mode = 0%o, inum = %d, fs = %s\n",
    600 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    601 		panic("ffs_valloc: dup alloc");
    602 	}
    603 	if (ip->i_ffs_blocks) {				/* XXX */
    604 		printf("free inode %s/%d had %d blocks\n",
    605 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    606 		ip->i_ffs_blocks = 0;
    607 	}
    608 	ip->i_ffs_flags = 0;
    609 	/*
    610 	 * Set up a new generation number for this inode.
    611 	 */
    612 	ip->i_ffs_gen++;
    613 	return (0);
    614 noinodes:
    615 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    616 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    617 	return (ENOSPC);
    618 }
    619 
    620 /*
    621  * Find a cylinder to place a directory.
    622  *
    623  * The policy implemented by this algorithm is to select from
    624  * among those cylinder groups with above the average number of
    625  * free inodes, the one with the smallest number of directories.
    626  */
    627 static ino_t
    628 ffs_dirpref(fs)
    629 	register struct fs *fs;
    630 {
    631 	int cg, minndir, mincg, avgifree;
    632 
    633 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    634 	minndir = fs->fs_ipg;
    635 	mincg = 0;
    636 	for (cg = 0; cg < fs->fs_ncg; cg++)
    637 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    638 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    639 			mincg = cg;
    640 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    641 		}
    642 	return ((ino_t)(fs->fs_ipg * mincg));
    643 }
    644 
    645 /*
    646  * Select the desired position for the next block in a file.  The file is
    647  * logically divided into sections. The first section is composed of the
    648  * direct blocks. Each additional section contains fs_maxbpg blocks.
    649  *
    650  * If no blocks have been allocated in the first section, the policy is to
    651  * request a block in the same cylinder group as the inode that describes
    652  * the file. If no blocks have been allocated in any other section, the
    653  * policy is to place the section in a cylinder group with a greater than
    654  * average number of free blocks.  An appropriate cylinder group is found
    655  * by using a rotor that sweeps the cylinder groups. When a new group of
    656  * blocks is needed, the sweep begins in the cylinder group following the
    657  * cylinder group from which the previous allocation was made. The sweep
    658  * continues until a cylinder group with greater than the average number
    659  * of free blocks is found. If the allocation is for the first block in an
    660  * indirect block, the information on the previous allocation is unavailable;
    661  * here a best guess is made based upon the logical block number being
    662  * allocated.
    663  *
    664  * If a section is already partially allocated, the policy is to
    665  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    666  * contiguous blocks and the beginning of the next is physically separated
    667  * so that the disk head will be in transit between them for at least
    668  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    669  * schedule another I/O transfer.
    670  */
    671 ufs_daddr_t
    672 ffs_blkpref(ip, lbn, indx, bap)
    673 	struct inode *ip;
    674 	ufs_daddr_t lbn;
    675 	int indx;
    676 	ufs_daddr_t *bap;
    677 {
    678 	register struct fs *fs;
    679 	register int cg;
    680 	int avgbfree, startcg;
    681 	ufs_daddr_t nextblk;
    682 
    683 	fs = ip->i_fs;
    684 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    685 		if (lbn < NDADDR) {
    686 			cg = ino_to_cg(fs, ip->i_number);
    687 			return (fs->fs_fpg * cg + fs->fs_frag);
    688 		}
    689 		/*
    690 		 * Find a cylinder with greater than average number of
    691 		 * unused data blocks.
    692 		 */
    693 		if (indx == 0 || bap[indx - 1] == 0)
    694 			startcg =
    695 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    696 		else
    697 			startcg = dtog(fs,
    698 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    699 		startcg %= fs->fs_ncg;
    700 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    701 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    702 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    703 				fs->fs_cgrotor = cg;
    704 				return (fs->fs_fpg * cg + fs->fs_frag);
    705 			}
    706 		for (cg = 0; cg <= startcg; cg++)
    707 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    708 				fs->fs_cgrotor = cg;
    709 				return (fs->fs_fpg * cg + fs->fs_frag);
    710 			}
    711 		return (NULL);
    712 	}
    713 	/*
    714 	 * One or more previous blocks have been laid out. If less
    715 	 * than fs_maxcontig previous blocks are contiguous, the
    716 	 * next block is requested contiguously, otherwise it is
    717 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    718 	 */
    719 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    720 	if (indx < fs->fs_maxcontig ||
    721 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    722 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    723 		return (nextblk);
    724 	if (fs->fs_rotdelay != 0)
    725 		/*
    726 		 * Here we convert ms of delay to frags as:
    727 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    728 		 *	((sect/frag) * (ms/sec))
    729 		 * then round up to the next block.
    730 		 */
    731 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    732 		    (NSPF(fs) * 1000), fs->fs_frag);
    733 	return (nextblk);
    734 }
    735 
    736 /*
    737  * Implement the cylinder overflow algorithm.
    738  *
    739  * The policy implemented by this algorithm is:
    740  *   1) allocate the block in its requested cylinder group.
    741  *   2) quadradically rehash on the cylinder group number.
    742  *   3) brute force search for a free block.
    743  */
    744 /*VARARGS5*/
    745 static u_long
    746 ffs_hashalloc(ip, cg, pref, size, allocator)
    747 	struct inode *ip;
    748 	int cg;
    749 	long pref;
    750 	int size;	/* size for data blocks, mode for inodes */
    751 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    752 {
    753 	register struct fs *fs;
    754 	long result;
    755 	int i, icg = cg;
    756 
    757 	fs = ip->i_fs;
    758 	/*
    759 	 * 1: preferred cylinder group
    760 	 */
    761 	result = (*allocator)(ip, cg, pref, size);
    762 	if (result)
    763 		return (result);
    764 	/*
    765 	 * 2: quadratic rehash
    766 	 */
    767 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    768 		cg += i;
    769 		if (cg >= fs->fs_ncg)
    770 			cg -= fs->fs_ncg;
    771 		result = (*allocator)(ip, cg, 0, size);
    772 		if (result)
    773 			return (result);
    774 	}
    775 	/*
    776 	 * 3: brute force search
    777 	 * Note that we start at i == 2, since 0 was checked initially,
    778 	 * and 1 is always checked in the quadratic rehash.
    779 	 */
    780 	cg = (icg + 2) % fs->fs_ncg;
    781 	for (i = 2; i < fs->fs_ncg; i++) {
    782 		result = (*allocator)(ip, cg, 0, size);
    783 		if (result)
    784 			return (result);
    785 		cg++;
    786 		if (cg == fs->fs_ncg)
    787 			cg = 0;
    788 	}
    789 	return (NULL);
    790 }
    791 
    792 /*
    793  * Determine whether a fragment can be extended.
    794  *
    795  * Check to see if the necessary fragments are available, and
    796  * if they are, allocate them.
    797  */
    798 static ufs_daddr_t
    799 ffs_fragextend(ip, cg, bprev, osize, nsize)
    800 	struct inode *ip;
    801 	int cg;
    802 	long bprev;
    803 	int osize, nsize;
    804 {
    805 	register struct fs *fs;
    806 	register struct cg *cgp;
    807 	struct buf *bp;
    808 	long bno;
    809 	int frags, bbase;
    810 	int i, error;
    811 
    812 	fs = ip->i_fs;
    813 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    814 		return (NULL);
    815 	frags = numfrags(fs, nsize);
    816 	bbase = fragnum(fs, bprev);
    817 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    818 		/* cannot extend across a block boundary */
    819 		return (NULL);
    820 	}
    821 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    822 		(int)fs->fs_cgsize, NOCRED, &bp);
    823 	if (error) {
    824 		brelse(bp);
    825 		return (NULL);
    826 	}
    827 	cgp = (struct cg *)bp->b_data;
    828 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
    829 		brelse(bp);
    830 		return (NULL);
    831 	}
    832 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
    833 	bno = dtogd(fs, bprev);
    834 	for (i = numfrags(fs, osize); i < frags; i++)
    835 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
    836 			brelse(bp);
    837 			return (NULL);
    838 		}
    839 	/*
    840 	 * the current fragment can be extended
    841 	 * deduct the count on fragment being extended into
    842 	 * increase the count on the remaining fragment (if any)
    843 	 * allocate the extended piece
    844 	 */
    845 	for (i = frags; i < fs->fs_frag - bbase; i++)
    846 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
    847 			break;
    848 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    849 	if (i != frags)
    850 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    851 	for (i = numfrags(fs, osize); i < frags; i++) {
    852 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
    853 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    854 		fs->fs_cstotal.cs_nffree--;
    855 		fs->fs_cs(fs, cg).cs_nffree--;
    856 	}
    857 	fs->fs_fmod = 1;
    858 	if (DOINGSOFTDEP(ITOV(ip)))
    859 		softdep_setup_blkmapdep(bp, fs, bprev);
    860 	bdwrite(bp);
    861 	return (bprev);
    862 }
    863 
    864 /*
    865  * Determine whether a block can be allocated.
    866  *
    867  * Check to see if a block of the appropriate size is available,
    868  * and if it is, allocate it.
    869  */
    870 static ufs_daddr_t
    871 ffs_alloccg(ip, cg, bpref, size)
    872 	struct inode *ip;
    873 	int cg;
    874 	ufs_daddr_t bpref;
    875 	int size;
    876 {
    877 	struct cg *cgp;
    878 	struct buf *bp;
    879 	ufs_daddr_t bno, blkno;
    880 	int error, frags, allocsiz, i;
    881 	struct fs *fs = ip->i_fs;
    882 #ifdef FFS_EI
    883 	const int needswap = UFS_FSNEEDSWAP(fs);
    884 #endif
    885 
    886 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    887 		return (NULL);
    888 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    889 		(int)fs->fs_cgsize, NOCRED, &bp);
    890 	if (error) {
    891 		brelse(bp);
    892 		return (NULL);
    893 	}
    894 	cgp = (struct cg *)bp->b_data;
    895 	if (!cg_chkmagic(cgp, needswap) ||
    896 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    897 		brelse(bp);
    898 		return (NULL);
    899 	}
    900 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    901 	if (size == fs->fs_bsize) {
    902 		bno = ffs_alloccgblk(ip, bp, bpref);
    903 		bdwrite(bp);
    904 		return (bno);
    905 	}
    906 	/*
    907 	 * check to see if any fragments are already available
    908 	 * allocsiz is the size which will be allocated, hacking
    909 	 * it down to a smaller size if necessary
    910 	 */
    911 	frags = numfrags(fs, size);
    912 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    913 		if (cgp->cg_frsum[allocsiz] != 0)
    914 			break;
    915 	if (allocsiz == fs->fs_frag) {
    916 		/*
    917 		 * no fragments were available, so a block will be
    918 		 * allocated, and hacked up
    919 		 */
    920 		if (cgp->cg_cs.cs_nbfree == 0) {
    921 			brelse(bp);
    922 			return (NULL);
    923 		}
    924 		bno = ffs_alloccgblk(ip, bp, bpref);
    925 		bpref = dtogd(fs, bno);
    926 		for (i = frags; i < fs->fs_frag; i++)
    927 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    928 		i = fs->fs_frag - frags;
    929 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    930 		fs->fs_cstotal.cs_nffree += i;
    931 		fs->fs_cs(fs, cg).cs_nffree += i;
    932 		fs->fs_fmod = 1;
    933 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    934 		bdwrite(bp);
    935 		return (bno);
    936 	}
    937 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    938 #if 0
    939 	/*
    940 	 * XXX fvdl mapsearch will panic, and never return -1
    941 	 *          also: returning NULL as ufs_daddr_t ?
    942 	 */
    943 	if (bno < 0) {
    944 		brelse(bp);
    945 		return (NULL);
    946 	}
    947 #endif
    948 	for (i = 0; i < frags; i++)
    949 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    950 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    951 	fs->fs_cstotal.cs_nffree -= frags;
    952 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    953 	fs->fs_fmod = 1;
    954 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    955 	if (frags != allocsiz)
    956 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    957 	blkno = cg * fs->fs_fpg + bno;
    958 	if (DOINGSOFTDEP(ITOV(ip)))
    959 		softdep_setup_blkmapdep(bp, fs, blkno);
    960 	bdwrite(bp);
    961 	return blkno;
    962 }
    963 
    964 /*
    965  * Allocate a block in a cylinder group.
    966  *
    967  * This algorithm implements the following policy:
    968  *   1) allocate the requested block.
    969  *   2) allocate a rotationally optimal block in the same cylinder.
    970  *   3) allocate the next available block on the block rotor for the
    971  *      specified cylinder group.
    972  * Note that this routine only allocates fs_bsize blocks; these
    973  * blocks may be fragmented by the routine that allocates them.
    974  */
    975 static ufs_daddr_t
    976 ffs_alloccgblk(ip, bp, bpref)
    977 	struct inode *ip;
    978 	struct buf *bp;
    979 	ufs_daddr_t bpref;
    980 {
    981 	struct cg *cgp;
    982 	ufs_daddr_t bno, blkno;
    983 	int cylno, pos, delta;
    984 	short *cylbp;
    985 	register int i;
    986 	struct fs *fs = ip->i_fs;
    987 #ifdef FFS_EI
    988 	const int needswap = UFS_FSNEEDSWAP(fs);
    989 #endif
    990 
    991 	cgp = (struct cg *)bp->b_data;
    992 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    993 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    994 		goto norot;
    995 	}
    996 	bpref = blknum(fs, bpref);
    997 	bpref = dtogd(fs, bpref);
    998 	/*
    999 	 * if the requested block is available, use it
   1000 	 */
   1001 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
   1002 		fragstoblks(fs, bpref))) {
   1003 		bno = bpref;
   1004 		goto gotit;
   1005 	}
   1006 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
   1007 		/*
   1008 		 * Block layout information is not available.
   1009 		 * Leaving bpref unchanged means we take the
   1010 		 * next available free block following the one
   1011 		 * we just allocated. Hopefully this will at
   1012 		 * least hit a track cache on drives of unknown
   1013 		 * geometry (e.g. SCSI).
   1014 		 */
   1015 		goto norot;
   1016 	}
   1017 	/*
   1018 	 * check for a block available on the same cylinder
   1019 	 */
   1020 	cylno = cbtocylno(fs, bpref);
   1021 	if (cg_blktot(cgp, needswap)[cylno] == 0)
   1022 		goto norot;
   1023 	/*
   1024 	 * check the summary information to see if a block is
   1025 	 * available in the requested cylinder starting at the
   1026 	 * requested rotational position and proceeding around.
   1027 	 */
   1028 	cylbp = cg_blks(fs, cgp, cylno, needswap);
   1029 	pos = cbtorpos(fs, bpref);
   1030 	for (i = pos; i < fs->fs_nrpos; i++)
   1031 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1032 			break;
   1033 	if (i == fs->fs_nrpos)
   1034 		for (i = 0; i < pos; i++)
   1035 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1036 				break;
   1037 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1038 		/*
   1039 		 * found a rotational position, now find the actual
   1040 		 * block. A panic if none is actually there.
   1041 		 */
   1042 		pos = cylno % fs->fs_cpc;
   1043 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1044 		if (fs_postbl(fs, pos)[i] == -1) {
   1045 			printf("pos = %d, i = %d, fs = %s\n",
   1046 			    pos, i, fs->fs_fsmnt);
   1047 			panic("ffs_alloccgblk: cyl groups corrupted");
   1048 		}
   1049 		for (i = fs_postbl(fs, pos)[i];; ) {
   1050 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1051 				bno = blkstofrags(fs, (bno + i));
   1052 				goto gotit;
   1053 			}
   1054 			delta = fs_rotbl(fs)[i];
   1055 			if (delta <= 0 ||
   1056 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1057 				break;
   1058 			i += delta;
   1059 		}
   1060 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1061 		panic("ffs_alloccgblk: can't find blk in cyl");
   1062 	}
   1063 norot:
   1064 	/*
   1065 	 * no blocks in the requested cylinder, so take next
   1066 	 * available one in this cylinder group.
   1067 	 */
   1068 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1069 	if (bno < 0)
   1070 		return (NULL);
   1071 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1072 gotit:
   1073 	blkno = fragstoblks(fs, bno);
   1074 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1075 	ffs_clusteracct(fs, cgp, blkno, -1);
   1076 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1077 	fs->fs_cstotal.cs_nbfree--;
   1078 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1079 	cylno = cbtocylno(fs, bno);
   1080 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1081 	    needswap);
   1082 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1083 	fs->fs_fmod = 1;
   1084 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1085 	if (DOINGSOFTDEP(ITOV(ip)))
   1086 		softdep_setup_blkmapdep(bp, fs, blkno);
   1087 	return (blkno);
   1088 }
   1089 
   1090 /*
   1091  * Determine whether a cluster can be allocated.
   1092  *
   1093  * We do not currently check for optimal rotational layout if there
   1094  * are multiple choices in the same cylinder group. Instead we just
   1095  * take the first one that we find following bpref.
   1096  */
   1097 static ufs_daddr_t
   1098 ffs_clusteralloc(ip, cg, bpref, len)
   1099 	struct inode *ip;
   1100 	int cg;
   1101 	ufs_daddr_t bpref;
   1102 	int len;
   1103 {
   1104 	register struct fs *fs;
   1105 	register struct cg *cgp;
   1106 	struct buf *bp;
   1107 	int i, got, run, bno, bit, map;
   1108 	u_char *mapp;
   1109 	int32_t *lp;
   1110 
   1111 	fs = ip->i_fs;
   1112 	if (fs->fs_maxcluster[cg] < len)
   1113 		return (NULL);
   1114 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1115 	    NOCRED, &bp))
   1116 		goto fail;
   1117 	cgp = (struct cg *)bp->b_data;
   1118 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1119 		goto fail;
   1120 	/*
   1121 	 * Check to see if a cluster of the needed size (or bigger) is
   1122 	 * available in this cylinder group.
   1123 	 */
   1124 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1125 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1126 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1127 			break;
   1128 	if (i > fs->fs_contigsumsize) {
   1129 		/*
   1130 		 * This is the first time looking for a cluster in this
   1131 		 * cylinder group. Update the cluster summary information
   1132 		 * to reflect the true maximum sized cluster so that
   1133 		 * future cluster allocation requests can avoid reading
   1134 		 * the cylinder group map only to find no clusters.
   1135 		 */
   1136 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1137 		for (i = len - 1; i > 0; i--)
   1138 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1139 				break;
   1140 		fs->fs_maxcluster[cg] = i;
   1141 		goto fail;
   1142 	}
   1143 	/*
   1144 	 * Search the cluster map to find a big enough cluster.
   1145 	 * We take the first one that we find, even if it is larger
   1146 	 * than we need as we prefer to get one close to the previous
   1147 	 * block allocation. We do not search before the current
   1148 	 * preference point as we do not want to allocate a block
   1149 	 * that is allocated before the previous one (as we will
   1150 	 * then have to wait for another pass of the elevator
   1151 	 * algorithm before it will be read). We prefer to fail and
   1152 	 * be recalled to try an allocation in the next cylinder group.
   1153 	 */
   1154 	if (dtog(fs, bpref) != cg)
   1155 		bpref = 0;
   1156 	else
   1157 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1158 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1159 	map = *mapp++;
   1160 	bit = 1 << (bpref % NBBY);
   1161 	for (run = 0, got = bpref;
   1162 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1163 		if ((map & bit) == 0) {
   1164 			run = 0;
   1165 		} else {
   1166 			run++;
   1167 			if (run == len)
   1168 				break;
   1169 		}
   1170 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1171 			bit <<= 1;
   1172 		} else {
   1173 			map = *mapp++;
   1174 			bit = 1;
   1175 		}
   1176 	}
   1177 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1178 		goto fail;
   1179 	/*
   1180 	 * Allocate the cluster that we have found.
   1181 	 */
   1182 #ifdef DIAGNOSTIC
   1183 	for (i = 1; i <= len; i++)
   1184 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1185 		    got - run + i))
   1186 			panic("ffs_clusteralloc: map mismatch");
   1187 #endif
   1188 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1189 	if (dtog(fs, bno) != cg)
   1190 		panic("ffs_clusteralloc: allocated out of group");
   1191 	len = blkstofrags(fs, len);
   1192 	for (i = 0; i < len; i += fs->fs_frag)
   1193 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1194 			panic("ffs_clusteralloc: lost block");
   1195 	bdwrite(bp);
   1196 	return (bno);
   1197 
   1198 fail:
   1199 	brelse(bp);
   1200 	return (0);
   1201 }
   1202 
   1203 /*
   1204  * Determine whether an inode can be allocated.
   1205  *
   1206  * Check to see if an inode is available, and if it is,
   1207  * allocate it using the following policy:
   1208  *   1) allocate the requested inode.
   1209  *   2) allocate the next available inode after the requested
   1210  *      inode in the specified cylinder group.
   1211  */
   1212 static ufs_daddr_t
   1213 ffs_nodealloccg(ip, cg, ipref, mode)
   1214 	struct inode *ip;
   1215 	int cg;
   1216 	ufs_daddr_t ipref;
   1217 	int mode;
   1218 {
   1219 	register struct cg *cgp;
   1220 	struct buf *bp;
   1221 	int error, start, len, loc, map, i;
   1222 	register struct fs *fs = ip->i_fs;
   1223 #ifdef FFS_EI
   1224 	const int needswap = UFS_FSNEEDSWAP(fs);
   1225 #endif
   1226 
   1227 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1228 		return (NULL);
   1229 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1230 		(int)fs->fs_cgsize, NOCRED, &bp);
   1231 	if (error) {
   1232 		brelse(bp);
   1233 		return (NULL);
   1234 	}
   1235 	cgp = (struct cg *)bp->b_data;
   1236 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1237 		brelse(bp);
   1238 		return (NULL);
   1239 	}
   1240 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1241 	if (ipref) {
   1242 		ipref %= fs->fs_ipg;
   1243 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1244 			goto gotit;
   1245 	}
   1246 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1247 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1248 		NBBY);
   1249 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1250 	if (loc == 0) {
   1251 		len = start + 1;
   1252 		start = 0;
   1253 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1254 		if (loc == 0) {
   1255 			printf("cg = %d, irotor = %d, fs = %s\n",
   1256 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1257 				fs->fs_fsmnt);
   1258 			panic("ffs_nodealloccg: map corrupted");
   1259 			/* NOTREACHED */
   1260 		}
   1261 	}
   1262 	i = start + len - loc;
   1263 	map = cg_inosused(cgp, needswap)[i];
   1264 	ipref = i * NBBY;
   1265 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1266 		if ((map & i) == 0) {
   1267 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1268 			goto gotit;
   1269 		}
   1270 	}
   1271 	printf("fs = %s\n", fs->fs_fsmnt);
   1272 	panic("ffs_nodealloccg: block not in map");
   1273 	/* NOTREACHED */
   1274 gotit:
   1275 	if (DOINGSOFTDEP(ITOV(ip)))
   1276 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1277 	setbit(cg_inosused(cgp, needswap), ipref);
   1278 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1279 	fs->fs_cstotal.cs_nifree--;
   1280 	fs->fs_cs(fs, cg).cs_nifree--;
   1281 	fs->fs_fmod = 1;
   1282 	if ((mode & IFMT) == IFDIR) {
   1283 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1284 		fs->fs_cstotal.cs_ndir++;
   1285 		fs->fs_cs(fs, cg).cs_ndir++;
   1286 	}
   1287 	bdwrite(bp);
   1288 	return (cg * fs->fs_ipg + ipref);
   1289 }
   1290 
   1291 /*
   1292  * Free a block or fragment.
   1293  *
   1294  * The specified block or fragment is placed back in the
   1295  * free map. If a fragment is deallocated, a possible
   1296  * block reassembly is checked.
   1297  */
   1298 void
   1299 ffs_blkfree(ip, bno, size)
   1300 	register struct inode *ip;
   1301 	ufs_daddr_t bno;
   1302 	long size;
   1303 {
   1304 	register struct cg *cgp;
   1305 	struct buf *bp;
   1306 	ufs_daddr_t blkno;
   1307 	int i, error, cg, blk, frags, bbase;
   1308 	register struct fs *fs = ip->i_fs;
   1309 	const int needswap = UFS_FSNEEDSWAP(fs);
   1310 
   1311 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1312 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1313 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
   1314 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1315 		panic("blkfree: bad size");
   1316 	}
   1317 	cg = dtog(fs, bno);
   1318 	if ((u_int)bno >= fs->fs_size) {
   1319 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1320 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1321 		return;
   1322 	}
   1323 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1324 		(int)fs->fs_cgsize, NOCRED, &bp);
   1325 	if (error) {
   1326 		brelse(bp);
   1327 		return;
   1328 	}
   1329 	cgp = (struct cg *)bp->b_data;
   1330 	if (!cg_chkmagic(cgp, needswap)) {
   1331 		brelse(bp);
   1332 		return;
   1333 	}
   1334 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1335 	bno = dtogd(fs, bno);
   1336 	if (size == fs->fs_bsize) {
   1337 		blkno = fragstoblks(fs, bno);
   1338 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1339 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1340 			    ip->i_dev, bno, fs->fs_fsmnt);
   1341 			panic("blkfree: freeing free block");
   1342 		}
   1343 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1344 		ffs_clusteracct(fs, cgp, blkno, 1);
   1345 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1346 		fs->fs_cstotal.cs_nbfree++;
   1347 		fs->fs_cs(fs, cg).cs_nbfree++;
   1348 		i = cbtocylno(fs, bno);
   1349 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1350 		    needswap);
   1351 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1352 	} else {
   1353 		bbase = bno - fragnum(fs, bno);
   1354 		/*
   1355 		 * decrement the counts associated with the old frags
   1356 		 */
   1357 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1358 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1359 		/*
   1360 		 * deallocate the fragment
   1361 		 */
   1362 		frags = numfrags(fs, size);
   1363 		for (i = 0; i < frags; i++) {
   1364 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1365 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1366 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1367 				panic("blkfree: freeing free frag");
   1368 			}
   1369 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1370 		}
   1371 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1372 		fs->fs_cstotal.cs_nffree += i;
   1373 		fs->fs_cs(fs, cg).cs_nffree += i;
   1374 		/*
   1375 		 * add back in counts associated with the new frags
   1376 		 */
   1377 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1378 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1379 		/*
   1380 		 * if a complete block has been reassembled, account for it
   1381 		 */
   1382 		blkno = fragstoblks(fs, bbase);
   1383 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1384 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1385 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1386 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1387 			ffs_clusteracct(fs, cgp, blkno, 1);
   1388 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1389 			fs->fs_cstotal.cs_nbfree++;
   1390 			fs->fs_cs(fs, cg).cs_nbfree++;
   1391 			i = cbtocylno(fs, bbase);
   1392 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
   1393 								bbase)], 1,
   1394 			    needswap);
   1395 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1396 		}
   1397 	}
   1398 	fs->fs_fmod = 1;
   1399 	bdwrite(bp);
   1400 }
   1401 
   1402 #if defined(DIAGNOSTIC) || defined(DEBUG)
   1403 /*
   1404  * Verify allocation of a block or fragment. Returns true if block or
   1405  * fragment is allocated, false if it is free.
   1406  */
   1407 static int
   1408 ffs_checkblk(ip, bno, size)
   1409 	struct inode *ip;
   1410 	ufs_daddr_t bno;
   1411 	long size;
   1412 {
   1413 	struct fs *fs;
   1414 	struct cg *cgp;
   1415 	struct buf *bp;
   1416 	int i, error, frags, free;
   1417 
   1418 	fs = ip->i_fs;
   1419 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1420 		printf("bsize = %d, size = %ld, fs = %s\n",
   1421 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1422 		panic("checkblk: bad size");
   1423 	}
   1424 	if ((u_int)bno >= fs->fs_size)
   1425 		panic("checkblk: bad block %d", bno);
   1426 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1427 		(int)fs->fs_cgsize, NOCRED, &bp);
   1428 	if (error) {
   1429 		brelse(bp);
   1430 		return 0;
   1431 	}
   1432 	cgp = (struct cg *)bp->b_data;
   1433 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1434 		brelse(bp);
   1435 		return 0;
   1436 	}
   1437 	bno = dtogd(fs, bno);
   1438 	if (size == fs->fs_bsize) {
   1439 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1440 			fragstoblks(fs, bno));
   1441 	} else {
   1442 		frags = numfrags(fs, size);
   1443 		for (free = 0, i = 0; i < frags; i++)
   1444 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1445 				free++;
   1446 		if (free != 0 && free != frags)
   1447 			panic("checkblk: partially free fragment");
   1448 	}
   1449 	brelse(bp);
   1450 	return (!free);
   1451 }
   1452 #endif /* DIAGNOSTIC */
   1453 
   1454 /*
   1455  * Free an inode.
   1456  */
   1457 int
   1458 ffs_vfree(v)
   1459 	void *v;
   1460 {
   1461 	struct vop_vfree_args /* {
   1462 		struct vnode *a_pvp;
   1463 		ino_t a_ino;
   1464 		int a_mode;
   1465 	} */ *ap = v;
   1466 
   1467 	if (DOINGSOFTDEP(ap->a_pvp)) {
   1468 		softdep_freefile(ap);
   1469 		return (0);
   1470 	}
   1471 	return (ffs_freefile(ap));
   1472 }
   1473 
   1474 /*
   1475  * Do the actual free operation.
   1476  * The specified inode is placed back in the free map.
   1477  */
   1478 int
   1479 ffs_freefile(v)
   1480 	void *v;
   1481 {
   1482 	struct vop_vfree_args /* {
   1483 		struct vnode *a_pvp;
   1484 		ino_t a_ino;
   1485 		int a_mode;
   1486 	} */ *ap = v;
   1487 	register struct cg *cgp;
   1488 	register struct inode *pip = VTOI(ap->a_pvp);
   1489 	register struct fs *fs = pip->i_fs;
   1490 	ino_t ino = ap->a_ino;
   1491 	struct buf *bp;
   1492 	int error, cg;
   1493 #ifdef FFS_EI
   1494 	const int needswap = UFS_FSNEEDSWAP(fs);
   1495 #endif
   1496 
   1497 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1498 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1499 		    pip->i_dev, ino, fs->fs_fsmnt);
   1500 	cg = ino_to_cg(fs, ino);
   1501 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1502 		(int)fs->fs_cgsize, NOCRED, &bp);
   1503 	if (error) {
   1504 		brelse(bp);
   1505 		return (error);
   1506 	}
   1507 	cgp = (struct cg *)bp->b_data;
   1508 	if (!cg_chkmagic(cgp, needswap)) {
   1509 		brelse(bp);
   1510 		return (0);
   1511 	}
   1512 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1513 	ino %= fs->fs_ipg;
   1514 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1515 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1516 		    pip->i_dev, ino, fs->fs_fsmnt);
   1517 		if (fs->fs_ronly == 0)
   1518 			panic("ifree: freeing free inode");
   1519 	}
   1520 	clrbit(cg_inosused(cgp, needswap), ino);
   1521 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1522 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1523 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1524 	fs->fs_cstotal.cs_nifree++;
   1525 	fs->fs_cs(fs, cg).cs_nifree++;
   1526 	if ((ap->a_mode & IFMT) == IFDIR) {
   1527 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1528 		fs->fs_cstotal.cs_ndir--;
   1529 		fs->fs_cs(fs, cg).cs_ndir--;
   1530 	}
   1531 	fs->fs_fmod = 1;
   1532 	bdwrite(bp);
   1533 	return (0);
   1534 }
   1535 
   1536 /*
   1537  * Find a block of the specified size in the specified cylinder group.
   1538  *
   1539  * It is a panic if a request is made to find a block if none are
   1540  * available.
   1541  */
   1542 static ufs_daddr_t
   1543 ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1544 	register struct fs *fs;
   1545 	register struct cg *cgp;
   1546 	ufs_daddr_t bpref;
   1547 	int allocsiz;
   1548 {
   1549 	ufs_daddr_t bno;
   1550 	int start, len, loc, i;
   1551 	int blk, field, subfield, pos;
   1552 	int ostart, olen;
   1553 #ifdef FFS_EI
   1554 	const int needswap = UFS_FSNEEDSWAP(fs);
   1555 #endif
   1556 
   1557 	/*
   1558 	 * find the fragment by searching through the free block
   1559 	 * map for an appropriate bit pattern
   1560 	 */
   1561 	if (bpref)
   1562 		start = dtogd(fs, bpref) / NBBY;
   1563 	else
   1564 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1565 	len = howmany(fs->fs_fpg, NBBY) - start;
   1566 	ostart = start;
   1567 	olen = len;
   1568 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1569 		(u_char *)fragtbl[fs->fs_frag],
   1570 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1571 	if (loc == 0) {
   1572 		len = start + 1;
   1573 		start = 0;
   1574 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1575 			(u_char *)fragtbl[fs->fs_frag],
   1576 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1577 		if (loc == 0) {
   1578 			printf("start = %d, len = %d, fs = %s\n",
   1579 			    ostart, olen, fs->fs_fsmnt);
   1580 			printf("offset=%d %ld\n",
   1581 				ufs_rw32(cgp->cg_freeoff, needswap),
   1582 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1583 			panic("ffs_alloccg: map corrupted");
   1584 			/* NOTREACHED */
   1585 		}
   1586 	}
   1587 	bno = (start + len - loc) * NBBY;
   1588 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1589 	/*
   1590 	 * found the byte in the map
   1591 	 * sift through the bits to find the selected frag
   1592 	 */
   1593 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1594 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1595 		blk <<= 1;
   1596 		field = around[allocsiz];
   1597 		subfield = inside[allocsiz];
   1598 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1599 			if ((blk & field) == subfield)
   1600 				return (bno + pos);
   1601 			field <<= 1;
   1602 			subfield <<= 1;
   1603 		}
   1604 	}
   1605 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1606 	panic("ffs_alloccg: block not in map");
   1607 	return (-1);
   1608 }
   1609 
   1610 /*
   1611  * Update the cluster map because of an allocation or free.
   1612  *
   1613  * Cnt == 1 means free; cnt == -1 means allocating.
   1614  */
   1615 void
   1616 ffs_clusteracct(fs, cgp, blkno, cnt)
   1617 	struct fs *fs;
   1618 	struct cg *cgp;
   1619 	ufs_daddr_t blkno;
   1620 	int cnt;
   1621 {
   1622 	int32_t *sump;
   1623 	int32_t *lp;
   1624 	u_char *freemapp, *mapp;
   1625 	int i, start, end, forw, back, map, bit;
   1626 #ifdef FFS_EI
   1627 	const int needswap = UFS_FSNEEDSWAP(fs);
   1628 #endif
   1629 
   1630 	if (fs->fs_contigsumsize <= 0)
   1631 		return;
   1632 	freemapp = cg_clustersfree(cgp, needswap);
   1633 	sump = cg_clustersum(cgp, needswap);
   1634 	/*
   1635 	 * Allocate or clear the actual block.
   1636 	 */
   1637 	if (cnt > 0)
   1638 		setbit(freemapp, blkno);
   1639 	else
   1640 		clrbit(freemapp, blkno);
   1641 	/*
   1642 	 * Find the size of the cluster going forward.
   1643 	 */
   1644 	start = blkno + 1;
   1645 	end = start + fs->fs_contigsumsize;
   1646 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1647 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1648 	mapp = &freemapp[start / NBBY];
   1649 	map = *mapp++;
   1650 	bit = 1 << (start % NBBY);
   1651 	for (i = start; i < end; i++) {
   1652 		if ((map & bit) == 0)
   1653 			break;
   1654 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1655 			bit <<= 1;
   1656 		} else {
   1657 			map = *mapp++;
   1658 			bit = 1;
   1659 		}
   1660 	}
   1661 	forw = i - start;
   1662 	/*
   1663 	 * Find the size of the cluster going backward.
   1664 	 */
   1665 	start = blkno - 1;
   1666 	end = start - fs->fs_contigsumsize;
   1667 	if (end < 0)
   1668 		end = -1;
   1669 	mapp = &freemapp[start / NBBY];
   1670 	map = *mapp--;
   1671 	bit = 1 << (start % NBBY);
   1672 	for (i = start; i > end; i--) {
   1673 		if ((map & bit) == 0)
   1674 			break;
   1675 		if ((i & (NBBY - 1)) != 0) {
   1676 			bit >>= 1;
   1677 		} else {
   1678 			map = *mapp--;
   1679 			bit = 1 << (NBBY - 1);
   1680 		}
   1681 	}
   1682 	back = start - i;
   1683 	/*
   1684 	 * Account for old cluster and the possibly new forward and
   1685 	 * back clusters.
   1686 	 */
   1687 	i = back + forw + 1;
   1688 	if (i > fs->fs_contigsumsize)
   1689 		i = fs->fs_contigsumsize;
   1690 	ufs_add32(sump[i], cnt, needswap);
   1691 	if (back > 0)
   1692 		ufs_add32(sump[back], -cnt, needswap);
   1693 	if (forw > 0)
   1694 		ufs_add32(sump[forw], -cnt, needswap);
   1695 
   1696 	/*
   1697 	 * Update cluster summary information.
   1698 	 */
   1699 	lp = &sump[fs->fs_contigsumsize];
   1700 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1701 		if (ufs_rw32(*lp--, needswap) > 0)
   1702 			break;
   1703 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1704 }
   1705 
   1706 /*
   1707  * Fserr prints the name of a file system with an error diagnostic.
   1708  *
   1709  * The form of the error message is:
   1710  *	fs: error message
   1711  */
   1712 static void
   1713 ffs_fserr(fs, uid, cp)
   1714 	struct fs *fs;
   1715 	u_int uid;
   1716 	char *cp;
   1717 {
   1718 
   1719 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1720 }
   1721